
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 9, SEPTEMBER 2016 2463

The Rotating-Target Algorithm for Jointly
Detecting Asynchronous Tracks

Elnaz Banan Sadeghian and John R. Barry, Senior Member, IEEE

Abstract— Two-dimensional magnetic recording promises to
increase areal density through the joint detection of multiple
tracks of interest. This paper concerns the problem of joint
detection of multiple tracks that are written asynchronously,
meaning that neither the bit boundaries (phase) nor the bit rate
(frequency) are aligned between neighboring tracks. We propose
the rotating-target algorithm for jointly detecting multiple asyn-
chronous tracks from one or more readback waveforms. The
proposed approach is based on the joint Viterbi algorithm and
a time-varying target that results when the asynchrony of the
tracks is absorbed into the underlying target. Timing estimation
for the tracks being detected is embedded inside the joint Viterbi
detector using per-survivor processing. Performance results show
that the proposed algorithm closely matches the performance of
a fictitious system in which neighboring tracks are synchronous,
and further that it significantly outperforms a previously reported
detector that separately detects the two tracks.

Index Terms— Synchronization, multitrack detection,
intertrack interference (ITI), per-survivor processing (PSP),
two-dimensional magnetic recording (TDMR), multiple-input
multiple-output (MIMO).

I. INTRODUCTION

F IRST-GENERATION implementations of two-dimensi-
onal magnetic recording (TDMR) use multiple readers

to recover the bits from only a single track of interest [1].
The synchronization problem in this single-track setting is
straightforward, since off-the-shelf one-dimensional strategies
based on a phase-locked loop (PLL) [2] or interpolative timing
recovery [3], [4] can be applied after the multiple-input single-
output equalizer front end. In this case the equalizer outputs
are synchronized to the track of interest, regardless of the
timing offsets of the interfering tracks [5]. The result is
an instance of modular design, in which the functions of
synchronization and detection are implemented separately.

To realize the full potential of TDMR, however, future
implementations will jointly detect multiple tracks of interest
using a joint or muiltitrack detector [6], which drastically
changes the synchronization problem. The problem is illus-
trated in Fig. 1 for the special case of two tracks of interest
having different bit periods, and two overlapping readers.
The core issue is the impossibility of being synchronous
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Fig. 1. An example of two tracks of interest whose timing differ in frequency
and phase, and two readers with significant overlap.

to both tracks simultaneously: being synchronous to one
necessarily implies being asynchronous to the other. The
implication is that synchronization and detection can no longer
be performed separately, but instead must be performed jointly.

In this paper we present the rotating-target (ROTAR) algo-
rithm as a solution to the problem of jointly detecting multiple
asynchronous tracks from multiple readback waveforms. The
ROTAR algorithm modifies a joint Viterbi detector to have
a time-varying target that accounts for the asynchrony of
the tracks being detected. The proposed algorithm uses per-
survivor processing (PSP) to estimate the timing offsets of the
tracks of interest, a generalization of the per-survivor timing
recovery scheme developed for one-dimensional magnetic
recording [7].

II. CHANNEL MODEL AND ASSUMPTIONS

We consider the problem of jointly detecting K tracks
from N readback waveforms. We assume a perfectly equalized
partial response channel with independent timing offsets for
each of the K tracks, so that the readback waveform from the
i -th of N read heads is:

ri (t) =
K∑

j=1

∑

n

a( j )
n hi, j (t − nT − τ

( j )
n ) + ni (t) (1)

where a( j )
n ∈ {±1} is the n-th bit of track j ∈ {1, . . . K },

hi, j (t) is the bit response at reader i from track j , assumed
to be bandlimited to half the bit rate, τ

( j )
n ≥ 0 is the timing

offset for the n-th bit of track j , defined relative to the analog-
to-digital converter (ADC) sampling period T , and ni (t) is the
additive noise for the i -th read head. We assume independent
white and Gaussian noise with power-spectral density N0/2
for each of the read heads. The assumption that the {τ ( j )

n }
be nonnegative is equivalent to an assumption that the ADC
sampling rate is large enough to avoid signal aliasing.
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The i -th readback waveform is filtered by a low-pass
antialiasing filter and then sampled at the ADC rate 1/T ,
yielding

r (i)
k =

K∑

j=1

∑

n

a( j )
n hi, j (kT − nT − τ

( j )
n ) + n(i)

k , (2)

where n(i)
k is the k-th sample of the filtered noise ni (t), with

zero mean and variance N0/(2T ). Collecting the N samples
from each of the N read heads at time k into the vector
rk = [r (1)

k , ..., r (N)
k ]T , and using (2), we arrive at a multiple-

input multiple-output (MIMO) model:

rk =
K∑

j=1

∑

n

a( j )
n h j (kT − nT − τ

( j )
n ) + nk, (3)

where h j (t) = [h1, j (t), h2, j (t), ..., hN, j (t)]T is the vector-
valued bit response (across all N readers) for track j , and
nk = [n(1)

k , n(2)
k , ..., n(N)

k ]T .

III. DETECTION ALGORITHMS

A. The Case of a Single Isolated Track

Before attacking the general problem of detecting multiple
asynchronous tracks from multiple readback waveforms,
we first examine the simpler case of detecting a single isolated
track (K = 1) from a single readback waveform (N = 1) of
the form r(t) = ∑

n anh(t − nT − τn) + n(t), where an is the
n-th bit of the track, h(t) is the bit response whose bandwidth
is equal to half the bit rate, and τn is the timing offset of the
n-th bit. To be concrete, we will assume a constant frequency
offset here, so that τn = n�T , where �T is the frequency
offset parameter. Sampling at the ADC rate 1/T yields:

rk = r(kT ) =
∑

n

anh(kT − nT − τn) + nk . (4)

In the following we describe two strategies for implementing
the maximum-likelihood (ML) sequence detector: 1) the con-
ventional modular strategy, and 2) an alternative strategy. The
latter strategy will eventually be generalized and adopted for
the multiple-track scenario.

1) The Conventional Modular Strategy: The usual modular
approach is to separately synchronize and detect. This is
illustrated in the lower branch of Fig. 2. First, the ADC sam-
ples {rk} are passed to an interpolative timing recovery (ITR)
block, which aims to recover the readback samples that would
have arisen were the readback waveform sampled at the correct
sampling times, resulting in:

r̂k = r(kT + τk)

=
∑

n

anh(kT − nT − τn + τk) + n̂k

≈
∑

n

anh(kT − nT − τk + τk) + n̂k (5)

=
μ∑

�=0

h�ak−� + n̂k, (6)

Fig. 2. Conventional modular strategy (lower branch) versus alternative
strategy (upper branch) in synchronization and detection of a single isolated
track.

where the approximation (with τn replaced by τk) is valid
when the timing offset varies slowly enough that it is approx-
imately constant over the duration for which the target h(t)
is significant, where {hk = h(k(T + �T ))} is the bit response
sampled at the bit rate, and where the interpolated noise {n̂k}
has the same statistics as the original {nk}. For convenience
we assume a causal target h = [h0, h1, . . . , hμ]T with mem-
ory μ, so that hk = 0 for both k < 0 and k > μ. After
synchronization, the interpolated samples of (6) may then be
passed to a 2μ-state Viterbi detector, designed for the target h.

2) An Alternative Strategy: Rather than resampling the
ADC outputs via interpolation, however, an alternative
approach would be to feed them directly to a detector that
internally accounts for the asynchrony, as illustrated in the
upper branch of Fig. 2. (This is the approach taken by the
ROTAR algorithm introduced in Sect. III-B.2.) This is possible
because we can approximate the noiseless ADC output sk =
rk − nk from (4) as the convolution of the bit sequence {ak}
with a time-varying impulse response, as derived below:

sk =
∑

n

anh(kT − nT − τn)

≈
∑

n

anh(kT − nT − τk) (7)

≈
μ+M/2∑

�=−M/2

h(�T − τk)ak−�, (8)

where the approximation in the second line is the same as
in (5). As a sanity check, the time-varying convolution in (8)
reduces to the time-invariant convolution in (6) for the special
case when τk = 0 for all k, i.e., for the special case when the
ADC is synchronized to the bit rate. In that case, the limits of
the last sum in (8) range from � = 0 to μ. In contrast, in the
general case when the ADC is not synchronized, the limits of
the sum would in principle extend from � = −∞ to ∞ for a
bandlimited bit response. In practice, however, there will only
be a small number of terms that contribute significantly to
the sum. To account for this, we introduce a new variable M ,
which we assume to be even, representing the extra memory
used to represent the time-varying impulse response, beyond
the memory μ of the original target. The second approximation
in (8) is because M is finite, and is accurate for even moderate
choices of M .

An example of a time-varying target is shown in Fig. 3,
assuming a frequency offset of τk = k�T with
�T/T = 2 × 10−4, and a sector of length L = 104 bits. The
extra memory in this illustration is M = 8. At the beginning
of the sector (Fig. 3a), the resampled target is a zero-padded



SADEGHIAN AND BARRY: ROTAR ALGORITHM FOR JOINTLY DETECTING ASYNCHRONOUS TRACKS 2465

Fig. 3. An illustration of a moving target for the case of frequency offset
with �T/T = 2 × 10−4, and a sector length L = 104, assuming M = 8:
(a) The target h[0] at time k = 0; (b) the target h[2500] at one quarter of the
sector; (c) the target h[7500] at three quarters of the sector; and (d) the target
h[10000] at the end of the sector.

version of the synchronous target h = [h0, h1] = [1, 0.5],
with only two nonzero taps. As we move forward through the
sector, the target drifts to the right and the number of nonzero
taps increases. At one quarter of the way through the sector
(Fig. 3b), the target is shifted by τk/T = 0.5 bit periods to the
right, and clearly has more than two significant taps. Likewise
at three quarters of the way through the sector (Fig. 3c), where
the target has shifted by τk/T = 1.5 bit periods, there are more
than two significant taps. By the end of the sector (Fig. 3d),
the target has shifted by two full bit periods, and again has
only two nonzero taps.

With the aid of (8), the unsynchronized ADC output may
be viewed as the output of a time-varying finite-state machine
with independent noise, so that the ML detector can be
implemented by a 2μ+M -state Viterbi algorithm based on the
time-varying target

h[k] = [h(−MT/2 − τk), . . . , h((μ + M/2)T − τk)]T

with memory μ+M . The time-varying target prevents us from
precomputing the expected outputs for each state transition in
the trellis; instead they must be computed anew at each stage
according to the convolution in (8).

The example of Fig. 3 seems to suggest that the amount
of extra memory M required to accommodate the moving
target will depend on not only the severity of the frequency
offset but also the length of the sector. The extra memory is a
significant drawback because it increases the number of states
and therefore the complexity of the detector. Fortunately there
is an efficient strategy for significantly reducing the memory
requirements, regardless of the frequency offset parameter and
the sector length, as described in Sect. III-B.2.

B. Joint Detection of Multiple Asynchronous Tracks

Let us turn our focus back to the joint detection of K tracks
from N readback waveforms. Unlike the case of the isolated
track of the previous section, we can no longer separately
synchronize and detect in a modular way. Nevertheless, the

alternative strategy based on a time-varying target perfectly
suits our purpose. Applying the time-varying convolution
approximation from (8) separately to each track’s contribution
to reader i , the vector of readback samples from (3) can be
written as:

rk ≈
K∑

j=1

μ+M j /2∑

�=−M j /2

h j (�T − τ
( j )
k )a( j )

k−� + nk, (9)

where M j is the extra memory parameter assigned to track j .
This is a noisy output of a finite-state machine, so that the
K tracks can be jointly detected using the Viterbi algorithm.
The expected outputs for a transition (p, q) at time k are:

ok(p, q) =
K∑

j=1

μ+M j /2∑

�=−M j /2

a( j )
k−�(p, q)h j (�T − τ

( j )
k ),

where {a( j )
k (p, q)} are the bits of track j on the survivor path

which arrives at the transition from state p at time k to state q
at time k + 1. The branch metric for this transition (p, q) at
time k is γk(p, q) = ||rk − ok(p, q)||2.

1) High Complexity: The complexity of the joint Viterbi
algorithm is dominated by the number of states

∏K
j=1 2(μ+M j ).

To illustrate how quickly the complexity can grow, consider
the example of Fig. 1, with K = 2 tracks of interest and N = 2
readers. Suppose that the channel response in the absence of
frequency offset (�T1 = �T2 = 0) is:

H(D) =
[

1 + 0.5D 0.4 + 0.16D
0.4 + 0.16D 1 + 0.5D

]
, (10)

where H (i, j )(D) denotes the response at reader i from track j .
The responses from both tracks have memory μ = 1.
Hence, if there were no timing offsets, the standard joint
Viterbi algorithm would require 4 states. Suppose instead that
�T1/T = 2 × 10−5 and �T2/T = 2 × 10−4, and that
the length of the sector is L = 104 bits. Therefore, by the
end of the sector, the responses of tracks 1 and 2 will shift
by 0.2 bit periods and 2 bit periods, respectively. In order
to capture these movements and also to include the significant
taps of the moving responses, a reasonable choice for the extra
memories would be M1 = 2 and M2 = 4, which would result
in a total of 23 × 25 = 256 states. Consequently, compared
with the case where both tracks are synchronously written,
implementing the Viterbi detector for this example increases
the number of states from 4 to 256. Fortunately, as described
below, a more efficient implementation of the time-varying
target can achieve the same performance with a significant
reduction in the amount of extra memory required.

2) The ROTAR Algorithm: We have seen how frequency off-
set causes the time-varying impulse response to both shift and
elongate as time progresses. Nevertheless, we can avoid the
need for large values of the extra memory parameters {M j },
even for extreme cases of large frequency offsets and large
sector lengths, if we modify the detector to dynamically track
only the significant coefficients of the time-varying impulse
response. Towards that objective, let us decompose the k-th
timing offset for track j into its integer and fractional parts:

τ
( j )
k = d( j )

k T + θ
( j )
k , (11)
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where
d( j )

k =
⌊
τ

( j )
k /T

⌋
∈ {0, 1, 2, . . . }

is the integer part, and

θ
( j )
k = τ

( j )
k − d( j )

k T ∈ [0, T )

is the fractional part. With this definition, we can approxi-
mate (3) as:

rk =
K∑

j=1

∑

n

a( j )
n h j (kT − nT − τ

( j )
n ) + nk

≈
K∑

j=1

∑

n

a( j )
n h j (kT − nT − τ

( j )
k ) + nk

=
K∑

j=1

∑

n

a( j )
n h j (kT − nT − d( j )

k T − θ
( j )
k ) + nk

≈
K∑

j=1

μ+M j /2∑

�=−M j /2

a( j )

k−�−d( j)
k

h j (�T − θ
( j )
k ) + nk . (12)

The two approximations above are exactly the same as the two
used in (7) and (8) for the isolated track case: The first approx-
imation is valid when the timing offsets are approximately
constant over the duration of the bit response, and the second
approximation is valid for sufficiently large parameters {M j }.

The model in (12) captures the essence of the proposed
ROTAR algorithm. Here, the timing offset τ

( j )
k is distributed

among the two sides of the convolution: The integer part
acts as a time-varying delay on the bits, while it is only
the fractional part that shifts the responses. The term rotating
target is derived from the behavior of the target in (12) over the
duration of a sector: Each time the target approaches a shift of
one full bit, the delay dk increments by one, and the response
“rotates” or reverts back to its original unshifted form.

The model in (12) is also a noisy version of the output of
a time-varying finite-state machine, and thus the ML detector
can be implemented using, for example, the Viterbi algorithm
with expected outputs for a transition (p, q) at time k com-
puted as:

ok(p, q) =
K∑

j=1

μ+M j /2∑

�=−M j /2

a( j )

k−�−d( j)
k

(p, q)h j (�T − θ
( j )
k ). (13)

Because of the time-varying fractional delay, the expected
outputs will vary with time and cannot be precomputed.
Furthermore, because of the time-varying integer delay of the
bits, the structure of the trellis will change each time the
integer delay increments.

The key advantage of the rotating property is that it enables
us to use small values of the memory parameters {M j },
and thus small overall complexity, without any performance
loss. In particular, since the fractional delay parameters {θ( j )

k }
are limited to the range [0, T ), the vast majority of the
signal energy of the delayed bit responses can be captured
by choosing either M j = 2 or M j = 4 for the asynchro-
nous tracks, with M j = 2 being a reasonable choice for
most applications; the complexity disadvantages of moving to

M j = 4 will likely outweigh the marginal performance
advantages. Thus, the rotating target strategy signifi-
cantly reduces the extra memory required, independent of
both the severity of the frequency offset and the sector
length.

The pseudocode of the proposed ROTAR algorithm is shown
in Algorithm 1 and 2. Algorithm 1 calls Algorithm 2 to
rearrange the states whenever an increment in the integer offset
of any of the input tracks is detected. Algorithm 1 adopts the
genie-aided assumption that the timing offsets of all the input
tracks are known. (The case of unknown timing offsets that
must be estimated is handled later, by Algorithm 3.) The inputs
to Algorithm 1 are the ADC outputs, the responses from all K
tracks and the original memory μ (assumed to be the same for
all tracks) of the responses, the maximum of extra memories
of all tracks Mmax = max

j
M j that will extend the trellis, and

the genie-aided timing offsets. The output is the set of detected
bits of all K tracks.

Algorithm 1 begins by setting the initial state to state 0,
in line 1 where the partial path metric of state 0 and all
other states at time 0, respectively, are set to 0 and ∞.
Also, the survivor path for every state p at time 0 (S0(p)) is
initialized with an empty vector in line 2. The algorithm then
proceeds to the main loop (line 3 through line 16) which steps
through each stage of the trellis. The integer and the fractional
offsets are computed for every track j in line 4 and line 5,
respectively. Line 6 through line 15 step through all state
transitions at stage k. The expected outputs and the transition
metrics are computed, respectively in line 7 and line 8, for the
two transitions from those states p which lead to the state q .
Line 9 checks if the integer offset of any of the tracks is
incremented. In case of an increment, the trellis should be
rearranged and therefore line 10 calls Algorithm 2 to rearrange
the partial path metrics {�k(p)} and the survivor paths {Sk(p)}
for all states p at time k. Thereafter, the algorithm continues
exactly as in the standard Viterbi. The predecessor of state q
at time k +1 is computed in line 12. The partial path metric of
state q at time k +1 is updated in line 13. Also in line 14, the
survivor path of state q is updated by concatenating (denoted
as operator |) the survivor path of the predecessor of state q
with the predecessor of state q . Finally, the estimated bits of all
K tracks are extracted from the survivor path that minimizes
the path metric at the end of the trellis.

The inputs to Algorithm 2 are the partial path metrics, the
survivor paths, and the predecessors of all states p at time k,
and also the integer bit delays of all tracks j . The outputs are
the rearranged partial path metrics, and the rearranged survivor
paths of all states p at time k. The algorithm begins by
declaring an empty vector collectnewstates in line 1. From
line 2 through line 15, the algorithm finds a new state for every
old state and stores it in the vector collectnewstates, as
follows: First, in line 3, the function de2bin converts
the decimal oldstate to its corresponding binary
(over alphabet {−1,+1}) vector denoted as O L DST AT E ,
so that O L DST AT E = [O L DST AT E (1), · · · ,
O L DST AT E (K )], where O L DST AT E ( j ) denotes the
part of the binary vector O L DST AT E which corresponds to
track j . Likewise in line 4, the predecessor of the oldstate is
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Algorithm 1 ROTAR With Known Timing
Inputs: ADC outputs {rk}, responses {h j (t)}, μ, Mmax ,

τ
( j )
k ∀k,∀ j

Output: {â j }
11 Init: �0(0) = 0, �0(p) = ∞ ∀p �= 0
22 Init: S0(p) = [ ] ∀p
3 for k = 0 to L + μ + Mmax − 1 do

4 d( j )
k =

⌊
τ

( j )
k /T

⌋
∀ j

5 θ
( j )
k = τ

( j )
k − d( j )

k T ∀ j

6 for q = 0 to Q − 1 do
7 Compute ok(p, q) using (13) ∀p → q

8 γk(p, q) = ||rk − ok(p, q)||2 ∀p → q

9 if d( j )
k �= d( j )

k−1 ∀ j then

10 ({�k(p)}, {Sk(p)})
= Rearrange States ({�k(p)}, {πk(p)},

{Sk(p)}, {d( j )
k })

11 end
12 πk+1(q) = argmin

p
{�k(p) + γk(p, q)}

13 �k+1(q) = �k(πk+1(q)) + γk(πk+1(q), q)

14 Sk+1(q) = [Sk(πk+1(q))|πk+1(q)]
15 end
16 end
17 Extract {â j } from the survivor path that minimizes

�L+μ+Mmax

converted to a binary vector denoted as 	 = [	(1), · · · ,	(K )]
where 	( j ) denotes the part of the predecessor corresponding
to track j . An empty vector newstate is declared in line 5.
From line 6 through line 13, the algorithm steps through
each track: In line 7, the track with an increment in its
integer offset is detected. In case of an increment, the part
of the predecessor corresponding to track j should replace
the part of the new state corresponding to track j . Hence
N EW ST AT E ( j ) is set to 	( j )(p), in line 8. Otherwise,
the part of the new state corresponding to track j should
be the same as the part of the old state corresponding
to track j . Hence, in line 10, N EW ST AT E ( j ) is set to
O L DST AT E ( j ). In line 12, the binary vector newstate
collects every part of the new state corresponding to every
track, one by one. In line 14, this vector is converted to
decimal to represent the new state for the oldstate. Here,
collectnewstates collects all new states for all old states
from 0 to Q − 1. The old partial path metrics and the
old survivor paths are stored in �im and Sim , respectively
in line 16 and line 17. Line 18 to line 22 determines the
partial path metric and the survivor path for every newstate.
We should note that, the mapping from every old state to
its corresponding new state is not one-to-one. For example,
we might find that both states 2 and 6 change to new state 3.
In this case, the new state 3 takes over the old state which has
the smaller partial path metric. Thus, in line 19, the indices
of the duplicate mappings for every newstate are found and
in line 20, the smaller partial path metric is selected as the
partial path metric of the newstate. Similarly, in line 21, the

Algorithm 2 Rearrange States

Inputs: {�k(p)}, {Sk(p)}, {πk(p)}, {d( j )
k }

Output: {�k(p)}, {Sk(p)}
1 collectnewstates = [ ]
2 for oldstate = 0 to Q − 1 do
3 O L DST AT E = de2bin (oldstate)
4 	 = de2bin (πk(oldstate))
5 newstate = [ ]
6 for j = 1 to K do
7 if d( j )

k �= d( j )
k−1 then

8 N EW ST AT E ( j ) = 	( j )

9 else
10 N EW ST AT E ( j ) = O L DST AT E ( j )

11 end
12 newstate = [newstate|N EW ST AT E ( j )]
13 end
14 collectnewstates = [collectnewstates|

bin2dec (newstate)]
15 end
16 �im (p) = �k(p) ∀p
17 Sim (p) = Sk(p) ∀p
18 for newstate = 0 to Q − 1 do
19 ind = Find (collectnewstates (newstate) =

collectnewstates)
20 �k(newstate) = min(�im (ind))
21 Sk(newstate) = Sim (argmin

ind∈ind
(�im(ind)))

22 end
23 �k(p) = ∞ ∀p /∈ collectnewstates

survivor path of the state with the smaller partial path metric
is selected as the survivor path of the newstate. Finally in
line 23, those new states that do not appear in the vector
collectnewstates are killed by setting their partial path
metrics to ∞.

To help appreciate the complexity reduction of the ROTAR
algorithm let us revisit the example in Sect. III-B.1: There
we saw that a high-complexity implementation of a joint
Viterbi detector with a non-rotating target required the memory
parameter values of M1 = 2 and M2 = 4, which results
in 256 states. Using ROTAR, however, we can get similar
performance using M1 = 2 and M2 = 2, which results in only
23×23 = 64 states. Moreover, since the responses from track 2
shift by two bit periods by the end of the sector, we only
need to rearrange the structure of the trellis twice through
the entire length of the trellis. The computational complexity
of this rearrangement in Algorithm 2 is no greater than the
computational complexity required to process one stage of
the trellis, or equivalently one bit for each track. The extra
complexity of Algorithm 2 is thus negligible in relation to
the dramatic reduction in overall complexity afforded by the
ROTAR algorithm.

3) Locking All ADC’s to One Track: The motivation for
the ROTAR algorithm stems from the simple observation that
it is impossible to simultaneously synchronize the ADC’s to
multiple asynchronous tracks. Nevertheless, this does not mean
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Algorithm 3 ROTAR With PSP
Inputs: ADC outputs {rk}, responses {h j (t)}, μ,

Mmax

Output: â j ∀ j
1 Implement line 1–line 2 from Algorithm 1

2*2 Init: τ̂
( j )
0 (p) = 0 ∀ j,∀p

3*3 Init: sum( j )(p) = 0 ∀ j,∀p
44 for k = 0 to L + μ + Mmax − 1 do

5*5 d̂( j )
k = max

p
	τ̂ ( j )

k (p)/T 
 ∀ j

6*6 θ̂
( j )
k (p) = τ̂

( j )
k (p) − d̂( j )

k T ∀ j,∀p

7 for q = 0 to Q − 1 do
8 Compute ôk(p, q) using (13) ∀p → q

9 γk(p, q) = ||rk − ôk(p, q)||2 ∀p → q

10 if d̂( j )
k �= d̂( j )

k−1 ∀ j then

11 ({�k(p)}, {Sk(p)})
= Rearrange States ({�k(p)}, {πk(p)},

{Sk(p)}, {d̂( j )
k })

12 end
13 Implement line 12–line 14 from Algorithm 1

14*14 ε̂
( j )
k (q) = ∑N

i=1 r (i)
k ô(i, j )

k−1 (q) − r (i)
k−1ô(i, j )

k (q)∀ j

15*15 sum(q) = sum(πk+1(q)) + ε̂k−1(πk+1(q))

16*16 τ̂ k+1(q) = τ̂ k(πk+1(q)) + αε̂k(q) + βsum(q)

17 end
18 end
19 Extract {â j } from the survivor path that minimizes

�L+μ+Mmax

that we must resort to using free-running ADC’s with sampling
rates 1/T that are not matched to the bit rate of any of the
tracks of interest. Instead, while it is impossible to synchronize
the ADC’s to multiple tracks simultaneously, we can always
synchronize them to one of the tracks, and there is a significant
complexity advantage in doing so. Synchronizing all of the
ADC’s to one track enables us to set the corresponding M j

parameter to zero, significantly reducing the number of trellis
states. Synchronizing to one of the tracks can be implemented
using a single timing-error detector for the track along with a
single PLL that feeds either all of the ADC’s (for a real-time
implementation) or a bank of interpolative filters, one for each
ADC (for a digital implementation).

4) ROTAR Algorithm With PSP: For the case when the
timing offsets are not known, a timing estimation strategy
should be used with ROTAR. We propose to use per-survivor
processing inside ROTAR to estimate the timings [8]. The
algorithm runs a separate PLL for each survivor path, so that
every node in the trellis has its own estimate of the timing
offsets.

The pseudocode of the proposed ROTAR algorithm with
PSP is presented in Algorithm 3. The changes in Algorithm 3
compared to Algorithm 1 are marked with an asterisk.
Line 1 implements line 1 and line 2 from Algorithm 1.
In line 2, the estimated timing offsets for all states are initial-
ized to zero. Also, in line 3 a variable sum( j )(p) is defined and

initialized to zero for every state p and track j . This variable
will be used later, in line 15 and line 16, in the PLL update
equation. Line 4–line 17 step through each stage of the trellis.
In line 5, the maximum estimated integer offset among all
states p is selected as the integer offset for all tracks j . This
is implemented to help PLL convergence. Line 6 computes the
fractional offset for every track j and every state p. Line 7
through line 13 are similar to Algorithm 1, considering that
the timings are estimated and are different for each state p.
Line 13 implements line 12 – line 14 from Algorithm 1.
In line 14, the estimate of the timing offset of every track j
is calculated by taking a sum over the estimates which every
reader i provides for track j . Here, we have used the Mueller-
Muller estimate [9] to compute the error estimate from every
reader i for every track j . The expected outputs {ô(i, j )

k (q)}
are the expected outputs from track j to reader i on the
survivor path ending at state q . These outputs are included
in the already computed expected outputs of line 8 and are
defined according to

ô(i, j )
k (q)

=
μ+M j /2∑

�=−M j /2

a( j )

k−�−d̂( j)
k

(q)hi, j (�T − θ̂
( j )
k (πk+1(q))), (14)

where {a( j )
k (q)} are the bits of track j on the survivor path

ending at state q at time k + 1. In line 15, the vector variable
sum(q) = [sum(1)(q), ..., sum(K )(q)]T sums over the past
values of the estimated error vector ε̂k = [ε̂(1)

k , ..., ε̂
(K )
k ]T

on the survivor path which ends at state q at time k + 1.
Finally, in line 16, the estimated timing offsets of all K tracks
are updated through a second-order PLL.

IV. NUMERICAL RESULTS

We present performance results of the ROTAR algorithm for
the case of K = 2 asynchronous tracks with N = 2 readers,
as illustrated in Fig. 1, where the channel model is (10). The
unknown frequency offset parameters for track 1 and track 2,
respectively, are �T1/T = 2 × 10−5 and �T2/T = 2 × 10−4.
The sector length is L = 40 kbits, which results in a maximum
slip of 0.8 and 8 bit periods, respectively, for track 1 and
track 2 at the end of the sector. The second-order PLL
parameters are α = 0.001 and β = α2/4.

The bit-error rate performance of the proposed ROTAR
algorithm with PSP is shown and compared with two other
detectors in Fig. 4. The figure plots the average of the bit-error
probability for the two tracks being detected, as a function
of SNR. (Not shown are the individual error rates for each
track, which are a close match to the average because of the
symmetry in this example.)

The curve labeled “ROTAR 16” shows the performance of
a 16-state ROTAR algorithm whose memory parameters are
M1 = 0 and M2 = 2. To enable M1 = 0, both ADC’s
are locked to track 1 using standard techniques. In particular,
prior to detection a standard ITR block consisting of a SISO
equalizer, a Viterbi symbol detector, a Mueller-Muller timing-
error detector, a second-order PLL, and an interpolation filter



SADEGHIAN AND BARRY: ROTAR ALGORITHM FOR JOINTLY DETECTING ASYNCHRONOUS TRACKS 2469

Fig. 4. BER performance of the ROTAR algorithm with PSP.

plus a secondary interpolation filter were used to lock both
readback waveforms to track 1.

The curve labeled “ROTAR 64” shows the performance
of a 64-state ROTAR algorithm with memory parameters
M1 = 2 and M2 = 2, fed directly by the ADC’s, without
any intervening synchronizer that locks to one of the tracks.

The figure shows that the 16-state and 64-state ROTAR
detectors have nearly identical performance. Considering the
significant reduction in complexity, the advantage of locking
to one track is clear.

Also shown in Fig. 4 is the performance of a conventional
receiver that separately detects the two tracks of interest
using a pair of independent two-input single-output (MISO)
equalizers followed by a pair of independent one-dimensional,
2-state Viterbi detectors with PSP. The performance using this
conventional approach is represented by the curve to the right
with the triangle markers. We observe that ROTAR outper-
forms the conventional approach by 1 dB. This performance
gain is due to the fact that, in the presence of ITI, joint
detection is superior to one-dimensional detection.

Lastly, we also show in Fig. 4 the performance of a fictitious
system for which the two tracks were written synchronously
with each other and also with the ADC sampling rate. The
performance of the 4-state joint Viterbi detector for this syn-
chronous case is represented by the dashed lines. Both of the
ROTAR detectors are seen to closely match the performance
of the synchronous system, despite the presence of frequency
offsets.

V. CONCLUSIONS

We have proposed the rotating target (ROTAR) algorithm for
jointly detecting multiple asynchronous tracks from multiple
readback waveforms. ROTAR applies the Viterbi algorithm to
a time-varying rotating target that accounts for the asynchrony
of the different tracks being detected. To keep complexity
low, the timing offsets are decomposed into their integer and
fractional parts, and only the fractional parts are used to rotate
the target. A further reduction in complexity is realized by

locking the ADC’s to one track. For the case of unknown
timing offsets, ROTAR can use per-survivor processing to
embed synchronization inside the joint Viterbi detector.
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