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Abstract—The decision-feedback (DF) detector is a nonlinear de-
tection strategy for multiple-input multiple-output (MIMO) chan-
nels that can significantly outperform a linear detector, especially
when the order in which the inputs are detected is optimized ac-
cording to the so-called Bell Labs Layered Space-Time (BLAST)
ordering. The DF detector may be implemented as the cascade of a
linear detector, which mitigates interference at the expense of cor-
relating the noise, followed by a noise predictor, which exploits the
correlation in the noise to reduce its variance. With this architec-
ture, existing linear detectors can be easily upgraded to DF de-
tectors. We propose a low-complexity algorithm for determining
the BLAST ordering that is facilitated by the noise-predictive ar-
chitecture. The resulting ordered noise-predictive DF detector re-
quires fewer computations than previously reported ordered-DF
algorithms. We also propose and derive the ordered noise-predic-
tive minimum-mean-squared-error DF detector and show how to
determine its BLAST ordering with low complexity.

Index Terms—Decision feedback, MIMO detection, noise predic-
tion, ordering, reduced-complexity detection, successive interfer-
ence cancellation, V-BLAST.

I. INTRODUCTION

I N multiple-input multiple-output (MIMO) communica-
tions, the detector that minimizes the joint error probability

is the maximum-likelihood (ML) detector. Unfortunately, the
complexity of the ML detector increases exponentially with the
number of channel inputs and is often prohibitively complex.
The decision-feedback (DF) detector trades performance for
reduced complexity; it is outperformed by the ML detector but
requires fewer computations. The DF detector emerges as a
popular detection strategy in a wide range of MIMO applica-
tions. For example, in the context of a wireless point-to-point
link with antenna arrays at both the transmitter and receiver,
the DF detector is known as the Bell Labs Layered Space-Time
(BLAST) nulling and cancelling detector [1]; in code division
multiple access (CDMA) applications, it is known as the DF
multiuser detector [2], and in packet transmission, it is known
as a generalized DF equalizer (DFE) [3].
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The performance of the DF detector is strongly impacted by
the order in which the inputs are detected. Unfortunately, opti-
mizing the detection order is a difficult problem that often dom-
inates the overall receiver complexity. It is common and prac-
tical to define as optimal the detection order that maximizes the
worst-case post-detection SNR. This ordering, which is known
as the BLAST ordering, approximately minimizes the joint error
probability of the DF detector. The BLAST ordering algorithm
of [4] uses repeated computations of a matrix pseudoinverse to
find this ordering with a complexity of , where is the
number of channel inputs. Two reduced-complexity or-
dering algorithms have also been proposed: the decorrelating
algorithm of [5] and the square-root algorithm of [6]. Other al-
gorithms settle for a suboptimal ordering in order to reduce com-
plexity [7]–[9].

In [2], an architecture for implementing the DF detector
based on linear prediction of the noise was presented. The
noise-predictive DF detector consists of a linear detector fol-
lowed by a linear prediction mechanism that reduces the noise
variance before making a decision. In this paper, we propose a
low-complexity technique for determining the BLAST symbol
ordering that is facilitated by the noise-predictive DF detector.
The resulting ordered noise-predictive DF (O-NP-DF) detector
is mathematically equivalent to the ordered DF detectors of
[4]–[6]. However, the O-NP-DF detector is less complex than
the lowest complexity BLAST-ordered DF detector previously
reported [5]. In fact, if the linear detection filter is already
known, the O-NP-DF detector requires less than half the
computations required by other BLAST-ordered DF detec-
tors. The noise-predictive approach allows existing systems
that use linear detection to be transformed (upgraded) into
BLAST-ordered DF detectors with the addition of relatively
simple processing.

In this paper, we also derive the minimum-mean-squared
error (MMSE) version of the noise-predictive DF detector for
MIMO channels. We show that our novel ordering algorithm is
easily modified to find the MMSE BLAST ordering.

We begin by establishing the channel model and reviewing
the conventional DF detector in Section II. Section III describes
the noise-predictive zero-forcing DF (NP-ZF-DF) detector of
[2]. Section IV describes a low-complexity implementation of
the BLAST-ordered NP-ZF-DF detector. Section V derives the
noise-predictive MMSE DF (NP-MMSE-DF) detector and de-
scribes how to find the corresponding BLAST ordering. Finally,
Section VI compares the complexities of both versions of the
O-NP-DF detector with previously proposed implementations
of the optimally ordered ZF-DF detector.
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Fig. 1. Noise-predictive DF detector.

II. CONVENTIONAL DF DETECTION

In this paper, we consider the following model of a MIMO
channel with inputs and outputs

:

(1)

where is a complex channel matrix, and where
is additive noise. We assume that the columns of

are linearly independent, which implies that there are at least
as many outputs as inputs . We assume that the noise
components are uncorrelated with complex variance so that

, where denotes the conjugate transpose of
. Further, we assume that the inputs are chosen from the same

unit-energy alphabet and are uncorrelated so that .
We now summarize the ZF-DF detector: a well-known detec-

tion strategy for MIMO channels that was first proposed in [2].
Consider the unique QR decomposition of the channel

(2)

where is an matrix with orthonormal
columns, where is an real diagonal matrix whose
diagonal elements are positive, and where is an lower
triangular matrix with ones on the diagonal. The DF detector
first applies a forward filter (sometimes referred to as
the whitened-matched filter) to the received vector, yielding

(3)

The th element of is thus

(4)

where and are the elements from the th row and th
column of the matrices and , respectively. Since is lower

triangular, is free of interference. As a result, the decision
can be found directly by quantizing to the nearest element
in . Using this decision, the interfering term can be subtracted
from . Proceeding iteratively, the ZF-DF detector is succinctly
defined by the following recursion:

dec (5)

where dec represents the quantization of to the nearest
symbol in the alphabet .

III. ZF NOISE-PREDICTIVE DF DETECTION

We now derive an alternative implementation of the ZF-DF
detector based on linear prediction of the noise, as first pro-
posed in [2]. Fig. 1 shows the block diagram of the noise-pre-
dictive zero-forcing DF (NP-ZF-DF) detector that employs this
linear-prediction strategy; the filters and will be defined
shortly. The notion of ordering (the permutation block) is ne-
glected momentarily by assuming an identity permutation.

The starting point for the noise-predictive ZF-DF detector is
the ZF linear detector [11], which essentially inverts the channel
by computing , where is the channel pseudoinverse:

(6)

In Fig. 1, denotes the th row of . From (1), the output of
this filter is free of interference:

(7)

where the noise is no longer white;
its autocorrelation matrix is .

The correlation of the noise can be exploited using linear pre-
diction to reduce its variance. If the first elements of the
noise vector were known, we could form an estimate of the
th element and subtract this estimate from to reduce its
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variance. Specifically, given , a linear predictor
estimates according to

(8)

or, equivalently, , where is a strictly lower triangular
prediction filter whose element at the th row and th column
is . This process is complicated by the fact that the receiver
does not have access to directly but rather to the sum

. However, as shown in Fig. 1, the decision about can be
subtracted from to yield as long as the decision is correct.

Let us define the total MSE as
, which measures the quality of the prediction. As shown

in [12], this total MSE is minimized by the following prediction
filter:

(9)

where is defined by the QR decomposition of (2). Having
thus defined the prediction coefficients, the NP-ZF-DF detector
of Fig. 1 can be summarized succinctly by the following recur-
sion:

dec (10)

We now show that the ZF-DF detector (5) and the NP-ZF-DF
detector (10) are equivalent. Substituting (7) and (9) into (10)
yields the following for the noise-predictive implementation:

dec (11)

where we exploited the fact that and
when , and where we substituted . On the other
hand, for the conventional implementation, substituting (4) into
(5) gives

dec (12)

The conventional and noise-predictive detectors are equivalent
when (11) and (12) are identical or when

(13)

In matrix form, (13) simplifies to

(14)

but since

(15)

we conclude that the conventional ZF-DF detector and the
NP-ZF-DF detector are indeed equivalent.

IV. OPTIMALLY ORDERED ZF NOISE-PREDICTIVE

DF DETECTION

To implement the ordered NP-ZF-DF detector of Fig. 1, the
receiver must first determine the channel pseudoinverse , the
symbol detection order, and the linear prediction filter . In this
section, we show how to calculate both the optimal detection
order and the prediction filter given knowledge of the channel
pseudoinverse.

We first describe two low-complexity algorithms for finding
the best (BLAST) detection order. As implied by Fig. 1, these
sorting algorithms occur after has been calculated. The
permutation in the block diagram of Fig. 1 gives the detector the
flexibility to use any symbol detection order, but in this paper,
we assume that the BLAST ordering is used. Let
denote the BLAST ordering, which is a permutation of the in-
tegers such that denotes the index of the th
symbol to be detected.

The noise-predictive view of the DF detector leads to a simple
algorithm for finding the BLAST ordering. As proven in [1],
the BLAST ordering can be found in a recursive fashion by
choosing each to maximize the post-detection SNR of the th
symbol or equivalently minimize its MSE. Specifically, because
the MSE for the first detected symbol is , we have

(16)

In other words, the channel pseudoinverse row with the smallest
norm determines which symbol to detect first. Once is chosen,
and assuming is correct, the MSE for the second symbol is

(17)

When the prediction coefficient is chosen to minimize
the above MSE, the term reduces to the projection of

onto the subspace spanned by , which we denote as .
Hence, the optimal satisfies

(18)

Repeating the above procedure recursively leads to the fol-
lowing simple and succinct procedure for finding the BLAST
ordering:

(19)

where denotes the projection of onto the span of
. This is a key result that is the basis of the

noise-predictive implementation of the BLAST-ordered DF
detector. In words, finding the BLAST ordering amounts to
choosing the rows of the channel pseudoinverse, where the best
choice for the th row is the unchosen row that is closest to the
subspace spanned by the rows already chosen.
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Fig. 2. Noise-predictive sorting algorithm using MGS orthogonalization.

A computationally efficient implementation of the sorting al-
gorithm of (19) is given in Fig. 2. It is based on an adaptation of
the modified Gramm–Schmidt (MGS) QR decomposition [13].
The algorithm accepts the channel pseudoinverse as an input,
and it produces two outputs: the optimal ordering
and an intermediate matrix that can be used to determine the
linear prediction filter . The MGS procedure of the sorting al-
gorithm operates on the rows of , . During the
first iteration , line A-4 chooses the row nearest to the
null space. Then, line A-10 removes the portions from the re-
maining rows of that are parallel to . Therefore, in the next
iteration , each of the candidate rows of is orthog-
onal to . Consequently, the remaining row closest to the sub-
space spanned by the previously chosen row is simply the row
with minimum norm. As before, line A-10 ensures that the re-
maining rows of are orthogonal to . The iterations continue
until , when the BLAST ordering is determined.

We now present an alternative algorithm for finding the op-
timal ordering based on the Householder QR decomposition
[13], which is less complex than Function A for large . The
pseudocode is given in Fig. 3. It is similar to the MGS algo-
rithm, but it rotates the subspace represented by the unchosen
rows of such that making them orthogonal to the row just
chosen is done by deleting the first column of . Line B-6 cre-
ates a Householder vector that yields a matrix whose ef-
fective dimensions are after the subspace
rotation performed in line B-8.

Given the intermediate output of either of the sorting algo-
rithms just described, calculating the linear prediction filter
is straightforward. To avoid confusion, let denote an
permutation matrix whose th column is the th column of the
identity matrix. In Fig. 1, the ordering is accounted for by per-
muting the rows of the linear detector so that the cascade of the

Fig. 3. Noise-predictive sorting algorithm using Householder orthogonal-
ization.

Fig. 4. Calculation of the prediction filter P from the output of the
noise-predictive sorting functions A and B.

channel pseudoinverse and the permutation leads to an effective
front-end filter of

(20)

This ordered linear detection filter is the pseudoinverse of an
ordered channel matrix

(21)

When performed on , the decomposition of (2) yields the ma-
trices and . From (9) and in these new terms, the ordered
prediction filter is

(22)

Unfortunately, unless is the identity matrix, is not equal
to . However, the matrix is easily calculated from
the output matrix of the sorting algorithm (Function A or B).
First, permute the rows of such that it is a lower triangular
matrix. The columns of this permuted need only be divided
by the corresponding diagonal elements for the th column
to arrive at . Next, simply invert using back
substitution, and use (22) to get . Fig. 4 gives the pseudocode
for this procedure.
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In summary, the optimally ordered noise-predictive zero-
forcing DF (O-NP-ZF-DF) detector implementation has four
steps. First, the channel pseudoinverse is applied to the received
vector. Next, the optimal symbol order is calculated from the
channel pseudoinverse using either the MGS or Householder
sorting algorithm. Then, the linear prediction filter is calculated
from the output of the sorting algorithm. After these calcula-
tions, the detector can be implemented using (10), as illustrated
in Fig. 1.

V. NOISE-PREDICTIVE MMSE DF DETECTION

The ZF-DF detector cancels the interference completely
without regard to noise amplification. The MMSE-DF de-
tector improves on this strategy by finding the optimal balance
between interference cancellation and noise reduction that
minimizes the total MSE [14]. In this section, we derive a
noise-predictive implementation of the optimally ordered
MMSE-DF detector.

Like the ZF-DF detector, the MMSE-DF detector can also be
implemented as a cascade of a linear filter and a noise-predictive
mechanism so that the basic architecture of Fig. 1 applies to both
the zero-forcing and MMSE versions of the DF detector. How-
ever, instead of the channel pseudoinverse, the noise-predictive
MMSE DF (NP-MMSE-DF) detector begins with the MMSE
linear detection filter [11]:

(23)

where

(24)

This choice for minimizes the total MSE ,
where is the vector of errors after the linear
filter. Unlike the ZF case, this error vector contains residual in-
tersymbol interference (ISI) as well as noise:

(25)

In the following, we continue to use our “noise”-predictive ter-
minology, even though strictly speaking, the “noise” being pre-
dicted is , which contains residual ISI as well as noise.

Let denote an estimate of based on linear predic-
tion. Let denote the error in this estimate. We now
derive the strictly lower triangular linear prediction filter that
minimizes the total MSE . From (25), the autocorrela-
tion matrix of can be written as

(26)

Since is Hermitian and positive definite, has the fol-
lowing Cholesky factorization:

(27)

where is a lower triangular matrix with diagonal elements
of one, and where is a real diagonal matrix with positive
diagonal elements. The total MSE after linear prediction is re-
lated to by

trace (28)

It is easy to show [12] that the best choice for cancels
:

(29)

Therefore, the effective front-end filter of the noise-predictive
MMSE-DF (NP-MMSE-DF) detector is given by

(30)

This forward filter is identical to the forward filter of the con-
ventional MMSE-DF detector defined in [15]. With this forward
filter, the corresponding feedback filter is , which is identical
to the feedback filter of the conventional MMSE-DF detector
defined in [15]. Therefore, we conclude that the NP-MMSE-DF
detector is equivalent to the conventional MMSE-DF detector.

Just as for the ZF-DF detector, the performance of the
MMSE-DF detector is improved if the detection order of the
symbols is chosen to minimize the maximum MSE. However,
the ordering problem for the NP-MMSE-DF detector is com-
plicated by the fact that the “noise” includes residual ISI. For
convenience, we define an augmented matrix :

(31)

so that . Let be the th row of the matrix .
From (26), the MSE for the first detected symbol is equal to

. Therefore, we choose the symbol with
minimum MSE by

(32)

After is chosen, and assuming is correct, the MSE for the
second symbol is

(33)

Let be the th row of the matrix . Then, by substituting
from (25), the MSE for the second symbol becomes

(34)

where the last equality in (34) follows from straightforward al-
gebraic manipulation. When the prediction coefficient is
chosen to minimize the MSE, the term reduces to the
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TABLE I
COMPLEXITY OF FUNCTION A: MGS SORTING ALGORITHM

projection of onto the subspace spanned by , which we
denote as . Hence, the optimal satisfies

(35)

The above procedure can be repeated recursively to determine
the BLAST ordering. In a fashion reminiscent of the ZF sorting
algorithm (19), the above procedure is succinctly described by
the following recursive sorting algorithm:

(36)

where denotes the projection of onto the span of
.

The MMSE sorting algorithm (36) just described is identical
to the ZF sorting algorithm (19), except that and have been
replaced by and , respectively. As a result, we need not de-
rive an implementation of the MMSE ordering algorithm from
scratch; it is realized by both Functions A and B when their in-
puts are the augmented matrix instead of the channel pseu-
doinverse.

When , reduces to the channel pseudoinverse,
and the matrix has no impact on the sorting algorithm.
Therefore, as expected, the MMSE sorting algorithm reduces to
the ZF sorting algorithm when the noise is zero.

VI. COMPLEXITY COMPARISON

In this section, we compare the complexity of the optimally
ordered noise-predictive zero-forcing DF (O-NP-ZF-DF) de-
tector to the complexity of three previously reported optimally
ordered ZF-DF detector implementations: the BLAST detector
[4], the modified decorrelation DF (MDDF) detector, and the
square-root (SQRT) detector. The BLAST detector has
complexity due to repeated pseudoinverse calculations. The
MDDF detector [5] uses the symmetry of the Cholesky decom-
position of the channel to reduce the complexity to .
Finally, the SQRT detector [6] exploits the symmetry in the QR
decomposition of the channel to achieve complexity.
The SQRT detector of [6] uses the MMSE criterion, but for
the sake of a fair complexity comparison, we consider its ZF
version here.

Performance does not affect this comparison since all of the
detectors are mathematically identical. The distinguishing cri-
teria among these detectors is the number of computations they
require. None of the detectors addresses estimation directly;
therefore, in this comparison, the complexity of estimation is
neglected. However, it is possible to estimate directly [10],
[11], in which case, the O-NP-DF detector would have very low
complexity. Since many systems estimate rather than , we
also examine the complexity when the channel pseudoinverse is
calculated from .

Several notes are appropriate regarding the complexity
comparison. First, we measure complexity as the total number
of complex additions, subtractions, multiplications, divisions,
and square-roots required each time the detector is calculated.
Second, in the context of DF detectors, MIMO systems with
and as low as two are of interest. As a result, lower order
complexity terms are not always negligible. Third, the SQRT
algorithm proposed using a more complex QR decomposition
that improves numerical stability by avoiding the inversion of
a lower triangular matrix. However, to make a fair complexity
comparison, we assume that the MGS implementation of the
QR decomposition [13] is used by all detectors. Thus, the
SQRT algorithm we consider here is less complex and less
stable than that originally proposed in [6]. The complexity of
the SQRT and MDDF algorithms depends on the ordering of
the channel. We consider their worst-case complexity since
a practical implementation must be designed to handle the
maximum possible complexity. Finally, the complexity of the
quantization operation is ignored since it is the same for all the
detectors and depends on the symbol constellation.

The complexity analysis begins with the proposed optimally
ordered noise-predictive ZF DF (O-NP-ZF-DF) detector. Ta-
bles I and II itemize the complexities of the MGS and House-
holder-based sorting algorithms, respectively. The complexity
of their respective MMSE counterparts can be found by sub-
stituting for . The MGS sorting algorithm (Func-
tion A) is less complex than the Householder sorting algorithm
(Function B) for small and . However, depending on the
condition number of the input matrix, the MGS algorithm may
have significantly worse numerical accuracy [13, p. 232]. The
calculation of the linear prediction filter (see Fig. 4) has a com-
plexity of for both the ZF and MMSE ver-
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TABLE II
COMPLEXITY OF FUNCTION B: HOUSEHOLDER SORTING ALGORITHM

TABLE III
COMPARISON OF DF DETECTORS

sions of the O-NP-DF detector. After and are known,
the detector of (10) has complexity .

If the channel matrix is known, the least-complex option for
calculating the channel pseudoinverse depends on the relative
values of and . If , we propose to use the lower-
upper triangular (LU) decomposition [13, p. 98], which requires

operations to calculate the pseudoinverse. Oth-
erwise, we propose to use the MGS QR decomposition, which
requires operations to cal-
culate the pseudoinverse.

Table III gives the complexity of the O-NP-ZF-DF detector
when the channel pseudoinverse is given and when the channel
matrix is given, where it is assumed that the detection filters are
recalculated every symbol periods. For comparison, Table III
also gives the complexity of the ZF-MDDF, ZF-SQRT, and

ZF-BLAST algorithms, assuming that MGS QR decomposi-
tions are used. Fig. 5 illustrates the complexities of Table III
as a function of , where and are assumed.
For , Function B is used to implement the O-NP-ZF-DF
detector (given ), which is shown to be roughly 56% less
complex than the MDDF detector (given ). Fig. 5 also shows
that the O-NP-ZF-DF detector (given ) requires approxi-
mately 32% fewer computations than the ZF-MDDF detector
(given ).

The complexity curves generally follow the dominant
terms in the complexity expressions. However, the BLAST
complexity curve in Fig. 5 demonstrates the importance of in-
cluding lower order terms. Even though the BLAST detector’s
asymptotic complexity is an order of magnitude greater, it
is less complex than the SQRT and MDDF detectors when
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Fig. 5. Complexity comparison for various implementations of the ordered
ZF-DF detector, assuming the ZF criterion withM = N and L = 1.

. The complexity of the BLAST algorithm could
be further reduced by using the LU decomposition to calculate
first the channel pseudoinverse and, then, the MGS QR decom-
position for the other pseudoinverse calculations.

VII. CONCLUSION

The noise-predictive DF detector consists of a linear detector
and a linear prediction mechanism that reduces noise variance.
We showed that the noise-predictive view of the DF detector
leads to a simple and computationally efficient way of calcu-
lating the BLAST detection ordering for both the MMSE and
ZF versions of the DF detector. The noise-predictive imple-
mentation makes it easy to upgrade an existing linear detector
by appending relatively simple additional processing. Further-
more, despite the fact that the linear detector and this add-on
processing may have been designed independently, the overall
complexity of the resulting noise-predictive DF detector is lower
than previously reported ordered DF detectors.
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