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Trellis-Coded Multiple-Pulse-Position Modulation
for Wireless Infrared Communications

Hyuncheol Park, Member, IEEE, and John R. Barry

Abstract—We present new trellis codes based on mul-
tiple-pulse-position modulation (MPPM) for wireless infrared
communication. We assume that the receiver uses maximum-like-
lihood sequence detection to mitigate the effects of channel
dispersion, which we model using a first-order lowpass filter.
Compared to trellis codes based on PPM, the new codes are less
sensitive to multipath dispersion and offer better power efficiency
when the desired bit rate is large, compared with the channel
bandwidth. For example, when the bit rate equals the bandwidth,

trellis-coded
17

2
-MPPM requires 1.4 dB less optical power

than trellis-coded 16-PPM having the same constraint length.

Index Terms—Maximum-likelihood sequence detector (MLSD),
minimum distance, symmetry, trellis-coded multiple-pulse-posi-
tion modulation (TC-MPPM).

I. INTRODUCTION

THE rapid growth of the laptop and handheld computer
industries has elevated the importance of indoor wireless

communications and wireless local-area networks. Nondirected
infrared radiation offers several advantages over radio as a
medium for indoor wireless networks, including an abundance
of unregulated bandwidth, immunity to multipath fading, and
absence of interference between rooms. The channel model
for diffuse infrared communications has unique properties
affecting the choice of a modulation scheme. The intense back-
ground light that is typical of most indoor environments induces
a shot noise at the receiver that is accurately modeled as white
Gaussian noise. Furthermore, the temporal dispersion due to
multipath propagation results in intersymbol interference (ISI).
Because multipath propagation destroys spatial coherence,
the effects of multipath propagation can be characterized by a
baseband linear filter. Thus, an equivalent baseband channel
model for wireless infrared communications using intensity
modulation and direct detection is [1]

(1)

where represents the instantaneous optical power of the
transmitter, represents the instantaneous current of the
receiving photodetector, represents the multipath impulse
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response, and is white Gaussian noise with two-sided
power spectral density . In this paper, we use an exponen-
tial model for the channel impulse response

(2)

where is a 3-dB bandwidth and is the unit-step function.
Note that the channel has unity direct current (dc) gain, and the
delay spread of this channel is . This channel model
is simple and agrees well with experimental channel measure-
ments [2].

When the model (1) is used for conventional radio channels,
the input represents amplitude, and so a power constraint

on the transmitter takes the form

where (3)

However, because the channel input represents optical
power in our application, it must instead satisfy the following
constraints:

and (4)

where is the average optical power constraint of the trans-
mitter. These constraints significantly impact modulation de-
sign.

Multiple-pulse-position modulation (MPPM) is a variation
of pulse-position modulation (PPM) offering improved band-
width efficiency and improved power efficiency [3]. Like PPM,
however, the power efficiency of MPPM degrades rapidly in the
face of multipath dispersion, even with maximum-likelihood
(ML) sequence detection [4]. Trellis-coded modulation (TCM)
is an efficient way of improving the bit-error rate (BER)
performance without sacrificing bandwidth efficiency [5]. The
optimum receiver for TCM on a multipath channel consists
of a ML sequence detector (MLSD) based on a superstate
trellis that combines the states of the code with the states of the
ISI [6]. Georghiades [7] applied Ungerboeck trellis coding to
the photon-counting optical channel. Lee et al. [8] developed
power-efficient trellis codes based on PPM by accounting for
ISI in the set-partitioning procedure.

In Section II, we describe the system model for uncoded
MPPM over a multipath channel. In Section III, we examine the
power efficiency and bandwidth efficiency of uncoded MPPM
on a multipath channel. In Section IV, we describe the results
of a computer search for good trellis codes based on MPPM.
Finally, we evaluate the power efficiency of trellis-coded
MPPM (TC-MPPM) on a multipath channel when the receiver
uses superstate ML sequence detection.
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Fig. 1. Block diagram of MPPM system.

II. SYSTEM MODEL

Let denote the binary block code consisting of the set
of all binary vectors of length and Hamming weight . We
refer to this code as the

MPPM codes, because the number of such codewords is

(5)

The MPPM scheme results from a cascade of this simple block
code with traditional on–off keying (OOK) modulation. In other
words, each symbol period of duration is divided into time
slots of duration , and during each symbol period, a pulse
of light is transmitted in precisely slots. For the special case
of , MPPM reduces to conventional PPM.

We now describe the model for MPPM over a channel with
multipath dispersion, with the aid of Fig. 1. Let
denote the MPPM codeword transmitted during symbol period

. An uncoded MPPM transmitter chooses the codewords
independently and uniformly from , whereas a TC-MPPM
transmitter chooses the codewords with the aid of a convo-
lutional encoder, as described in Section IV-B. In either case, the
sequence is serialized to produce the binary chip sequence

with rate , where .
The binary chip sequence drives a transmitter filter with a rect-
angular pulse shape of duration and unity height. To
satisfy the power constraint of (4), the filter output is multiplied
by before transmission.

The wireless infrared channel model of (1) is shown in
Fig. 1. The receiver uses a unit-energy filter and sam-
ples the output at the chip rate , producing . The
receiver groups the samples into blocks of length ,
producing a sequence of observation vectors , where

. The equivalent dis-
crete-time channel between transmitted and received chips is

(6)

where is the equivalent chip-rate impulse response

(7)

We assume that is the unit-energy whitened matched
filter, so that the noise samples will be independent
zero-mean Gaussian random variables with variance .

The equivalent vector channel between transmitted codewords
and observation vectors is given by [9]

(8)

where the channel impulse response is a Toeplitz sequence ,
with , and the noise component is

. For the special case of an ideal
channel with infinite bandwidth , the transfer func-
tion reduces to a distortionless diagonal
matrix of the form , where from (7) it is not hard
to show that the channel gain is given by

(9)

Alternatively, using the relationship for the

case of uncoded MPPM, we can write the constant gain as

(10)

In this special case, the received vector is simply .

III. PERFORMANCE OF UNCODED MPPM

A. On an Ideal Channel

For an ideal channel with infinite bandwidth , the
received vector is , and the ML detector decides
on the codeword that minimizes . The

MPPM set has perfect symmetry; all of the codewords
have the same energy, the same set of distances to the other
codewords, and the same conditional error probability. We can
thus assume that a particular codeword was transmitted. For

, there are precisely

codewords with Hamming distance from [7]. Observe that
the Euclidean distance from to another
codeword is related to the Hamming distance by

. Thus, the union bound on symbol-error probability
(SEP) for uncoded MPPM with ML detection is [4], [7]

error (11)

Let denote the average optical power required by
MPPM to achieve a given bit rate and a given error probability.
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The calculation of this useful performance metric requires that
(11) be solved for , a formidable task. We can simplify the
calculation by assuming that the error probability is dominated
by the minimum distance term and neglecting the multiplicity

in (11), yielding the following approximation for the error
probability:

error (12)

Solving this for yields the following as the power
requirement for uncoded MPPM:

(13)

where error is the average op-
tical power required by OOK to achieve a bit rate of and
a BER equal to error . When , (13) reverts to the
power requirement for conventional -ary PPM. The bandwidth
of MPPM is roughly approximated as the inverse of chip dura-
tion

(14)

This approximation was shown to be accurate for low duty-cycle
MPPM in [4].

B. On a Multipath Channel

When MLSD is used at the receiver, the probability of a
symbol (block) error of uncoded MPPM on a multipath channel
is well approximated at high signal-to-noise ratio (SNR) by
[11]

error (15)

where is the minimum Euclidean distance between re-
ceived sequences

(16)

The above minimization is performed over all nonzero error
sequences starting at time zero, using an error alphabet
of . We calculated the optical power
required to achieve a BER over this ISI channel. To re-
duce computational complexity, we truncate the vector channel
to four terms, so that . This trunca-
tion has no appreciable effect when is large or when
is small, although it may not be accurate for small and large

. To confirm this claim, we calculated the ratio of the frac-
tional energy of contained outside the truncation interval to
the total energy of

(17)

Fig. 2. Normalized power requirement versus normalized bit rate on an ISI
channel with MLSD for MPPM.

We tabulate this ratio for various in [12]. Except for
OOK and 2-PPM at 1 and 2, less than 0.001% of the
energy is discarded by the truncation.

The results are summarized in Fig. 2, where the normalized
power requirement is plotted versus the bit-rate-to-bandwidth
ratio . The power requirements are normalized by

, the power required by OOK
in the ideal case to achieve a BER. We see that
the power requirement grows as the target bit rate approaches
the channel bandwidth. This increase in signal power can be
interpreted as an ISI penalty. The ISI penalty is particularly
severe when the bit rate approaches the channel bandwidth.
Specifically, when the bit rate equals the bandwidth, the ISI
power penalties for

and

MPPM with ML detection are 8, 8, 8, 8.5, 9, and 10 dB, respec-
tively.

IV. TC-MPPM

A. Signal Set Decimation and MPPM Constellations

If is a power of two, an integer number of information

bits can be used to select each codeword, greatly simplifying
implementation. For this reason, practical PPM systems with

typically use , etc. Unfortunately, when
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TABLE I
BANDWIDTH AND POWER PENALTIES FOR DECIMATED MPPM WITH w = 2

is rarely a power of two. To simplify the implementation of an
MPPM transmitter, then, we propose to decimate the natural
MPPM code by selecting of the

codewords, where

so that is the largest power of two not exceeding

Let denote the selected codewords. The ques-
tion of which codewords to select will be addressed below.
From (14), we see that, roughly speaking, this decimation in-
creases the bandwidth requirement by the ratio

(18)

Furthermore, from (13), we see that the decimation increases the
power requirement by roughly the square root of the ratio (18).
These penalties can be significant for certain values of and

. For example, Table I summarizes the bandwidth and power
penalties for decimating the

MPPM code for . The table shows that the
penalties are particularly small for

and

because all are close to a power of two.
We now describe a useful geometric description of MPPM

codewords for the special case of [13]. Let and

Fig. 3. Constellations for
5

2
-MPPM; the shaded circles represent the

chosen L codewords, and unshaded circles represent the unused codewords.

denote the indexes of the two ones within a particular MPPM
codeword, where , with . Then each
MPPM codeword can then be mapped to the unique point

in two-dimensional space. For example, the codeword
is mapped into , the codeword is

mapped to , and so on. A similar mapping was used in
[14] for pulse-width modulation, where and represented
the starting and ending indexes of each pulse, respectively. In
Fig. 3, we illustrate this mapping for the

MPPM codes.
Note that the Hamming distance between two codewords in

the same row or column is two, and the Hamming distance be-
tween two codewords having different rows and columns is four.

B. Model for TC-MPPM System

The model for a TC-MPPM system is shown in Fig. 4. In-
formation bits with rate enter the trellis encoder, which con-
sists of a linear convolutional encoder followed by
a signal mapper. The convolutional encoder outputs a sequence
of -bit blocks , whereas the signal mapper converts each
block of coded bits into one of the codewords . The
output of the trellis encoder is a sequence of MPPM codewords

with rate . These MPPM codewords
are then transmitted across the multipath channel, as described
in Section II. In Fig. 4, we use the equivalent vector channel
model of Section II. Based on the receiver sequence , the
receiver makes decisions using superstate ML sequence detec-
tion on the combined trellis formed by the convolutional en-
coder and channel ISI.

Let denote the minimum Euclidean distance between
coded sequences

(19)

where the minimization is performed over all distinct
trellis-coded sequences and , and where the Ham-
ming weight of a vector is the number of nonzero
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Fig. 4. System model for TC-MPPM.

Fig. 5. Set partitioning for the decimated
5

2
-MPPM signal set.

components in . The probability of sequence error after ML
sequence detection can be roughly approximated by

error (20)

For this reason, we will use as a performance metric.

C. Symmetry Properties of the Decimated MPPM Signal Set

The calculation of can be significantly simplified when
the underlying signal set satisfies a symmetry property referred
to as the Zehavi and Wolf (Z–W) condition [15], because this
condition allows the all-zero path to serve as a reference path.
In other words, it allows the sequence to be fixed, so that
the minimization in (19) need be performed over only. The
Z–W condition requires that when the signal set is partitioned
into two subsets and , the distance weight profiles of
the two subsets be identical. The distance weight profile of a
subset with respect to an error vector is defined as [15]

(21)

where is the number of codewords of having Hamming dis-
tance between the codeword and codeword ,
and the summation is taken over all the possible .

Fig. 5 shows the set partitioning of the decimated

MPPM signal set. In Fig. 5, we show the selected codewords
(shaded circle), and the number below the constellation repre-
sents the labeling of the codeword. The decimated

MPPM signal set is partitioned into two subsets
and . The distance weight profile

of these subsets are listed in Table II, and they are identical.
Therefore, this signal set satisfies the Z–W condition.

D. Trellis Code Search for -MPPM

We now present trellis codes based on the
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TABLE II

DISTANCE WEIGHT PROFILE FOR DECIMATED
5

2
-MPPM SIGNAL SET

Fig. 6. Constellations for
17

2
_MPPM; the shaded circles represent the

chosen L codewords, and unshaded circles represent the unused codewords.

MPPM signal set. Of the

natural MPPM codewords, we choose the 128 shaded code-
words of Fig. 6. This decimated signal set calls for a rate-6/7
convolutional code, which we choose to be systematic and re-
cursive. This convolutional encoder operates on six bits,

and produces seven encoded bits,
. The coded bits are mapped into one

of the

MPPM codewords according to the mapping rule. This map-
ping rule is depicted in Fig. 6, where each constellation point
is labeled by the decimal representation of the corresponding
seven-bit block of coded bits.

A recursive and systematic configuration for the encoder
is beneficial, because it reduces the number of coefficients to
search, as compared with a feedforward configuration, and
also because it is free from catastrophic condition [5]. Optimal

codes may be selected by performing an exhaustive search.
However, as the code complexity increases, an exhaustive
search becomes impractical. In particular, for

MPPM with constraint length , the number of coefficients to
search is , making it impractical to perform an exhaus-
tive search for large constraint lengths. In such cases, limited
searches are necessary, even if they may not always provide op-
timal codes. One simple limited-search algorithm is a random
search, whereby a large number of generator polynomials are
generated at random, and ones with the best performance are
selected [16].

We performed a random search for the best generator poly-
nomials . We generated 200 polynomials, calcu-
lated the minimum Hamming distance using (19) where
is an all-zero path, and stored the polynomials if the minimum
distance was larger than any previous. We repeated this search
for all constraint lengths between 4 and 12. The coefficient
vectors were generated independently and uniformly dis-
tributed over for , and over
for . The random search results are shown in Table III,
where the generator polynomials are tabulated in
octal form for constraint lengths , along with the
corresponding squared-minimum-Euclidean distance achieved
by the resulting trellis code.

Trellis-coded

MPPM has a bit rate of , where

and its bandwidth and power requirements are

(22)

(23)

where is the minimum Euclidean distance (19) between
valid trellis-coded sequences.

Table III also tabulates a coding gain for each trellis code,
defined to be the reduction in optical power required with the
TC-MPPM, as compared with an uncoded modulation that has
the same bandwidth efficiency.

For a given trellis-coded

MPPM scheme with a given bandwidth efficiency, let denote
the integer such that -PPM has the same bandwidth efficiency.
For example, the bandwidth required by both 9-PPM and trellis-
coded
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TABLE III
GENERATOR COEFFICIENTS FOR TRELLIS-CODED MPPM IN OCTAL FORM

MPPM is larger than the information bit rate by a factor of 2.8.
The asymptotic coding gain of trellis-coded

MPPM over -PPM is then

Asymptotic Coding Gain dB

(24)

Using the constraint lengths 4, 7, and 12, we achieve asymptotic
coding gain of 1.4, 2.3, and 2.9 dB relative to uncoded 9-PPM,
respectively.

E. Approximation for the Minimum Distance of TC-MPPM

In this section, to verify our trellis-code search results, we de-
rive an approximation for the minimum distance of TC-MPPM
for a given constraint length. The minimum distance of a trellis
code is the smallest among the distances of pairs of sequences
arising from an error event. Each trellis path associated with the
error event of length involves MPPM codewords. We define
the trellis path vector, of dimension

, where is the

MPPM codeword corresponding to the th branch in the path.
Observe that the trellis vector is a valid

MPPM codeword with length , and weight . As
we indicated in Section III-A, any valid MPPM codeword has
the same set of distance with respect to the other codewords, and
the number of codewords for

MPPM with mutual Hamming distance is

We can calculate the average distance for

MPPM as shown in (25)–(28) at the bottom of the page, where

is the number of extended MPPM codewords. Since not all valid

MPPM codewords are included in the set of , the in
(25) is only an approximation for .

We also can apply this approximation method to trellis-coded
PPM by treating the trellis-coded PPM sequences of length as
extended MPPM codewords with length and weight

, and then apply (28).

(25)

(26)

(27)

(28)
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The approximations based on average distance are listed in
Table III. For comparison, the table also shows the simplex
bound [17]

(29)

where , and takes the integer part of its
argument. We can see that approximation method is tighter than
the simplex bound.

F. TC-MPPM on Multipath Channel

In this section, we examine the performance of the proposed
TC-MPPM scheme over a multipath channel. A trellis encoder
is followed by an ISI channel whose impulse response is trun-
cated, so that the effective vector channel has memory , as de-
scribed in Section III-B. The th transmitted codeword is a
function of the convolutional encoder state and the informa-
tion bits

(30)

and the state transition equation is

(31)

We consider a receiver that performs MLSD on the com-
bined trellis formed by the convolutional encoder and the ISI
channel. In other words, the trellis-coded signal in the presence
of ISI is modeled using a single finite-state machine. For
rate- TC-MPPM, there are ISI
states associated with each encoder state. The states for the
combined finite-state machine are

(32)

If the convolutional encoder has states, the combined
trellis has states.

The performance of trellis-coded

MPPM with multipath is shown in Fig. 7. As a reference, the
figure also shows the performance of trellis-coded 16-PPM with
multipath, using the PPM encoder coefficients of [8]. We as-
sume the same underlying channel as we considered for the un-
coded case. As in the uncoded case, we calculate the optical
power required to achieve a BER over this ISI channel.

Trellis-coded 16-PPM shows better performance up to a bit-
rate-to-bandwidth ratio of 0.15. Beyond that, trellis-coded

MPPM outperforms trellis-coded 16-PPM. At a bit-rate-to-
bandwidth ratio of unity, the normalized power requirements
for trellis-coded 16-PPM with constraint lengths 4 and 7
are 3.4 and 2.9 dB, respectively. But the power requirements
for trellis-coded

Fig. 7. Power requirement of trellis-coded
17

2
-MPPM and trellis-coded

16-PPM as a function of normalized bit rate.

MPPM with 4 and 7 are 2 and 1.5 dB, respectively. There-
fore, trellis-coded

MPPM requires 1.4 dB less power than trellis-coded 16-PPM
when both schemes use the same constraint length and when
the target bit rate is equal to the channel bandwidth.

V. CONCLUSIONS

We have developed new trellis codes based on MPPM. Trellis
codes with large minimum distance have been obtained through
a random computer search. To verify our results, we derived an
approximation for the minimum distance using the symmetry
properties of MPPM, and compared our result with the well-
known simplex bound. Code-search results show that trellis-
coded

MPPM with constraint length seven provides a coding gain of
2.3 dB over uncoded 9-PPM. Furthermore, when the bit rate
equals the bandwidth, trellis-coded

MPPM requires 1.4 dB less optical power than trellis-coded
16-PPM having the same constraint length.
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