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Steven W. McLaughlin, 
Aravind Nayak, and 
Wei Zeng

he last decade has seen the
development of iteratively
decodable error-control codes of
unprecedented power, whose

large coding gains enable reliable commu-
nication at very low signal-to-noise ratio
(SNR). A by-product of this trend is that
timing recovery must be performed at an
SNR lower than ever before. Conventional
timing recovery ignores the presence of
error-control coding and is thus doomed
to fail when the SNR is low enough. This
article describes iterative timing recovery, a
method for implementing timing recovery
in cooperation with iterative error-control
decoding so as to approximate a more
complicated receiver that jointly solves the
timing recovery and decoding problems.

Timing Recovery Problem
At some point in a digital communications
receiver, an analog waveform must be
sampled. Sampling at the right times is
critical to achieving good overall perform-
ance. The process of synchronizing the ©
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sampler with the pulses of the received analog wave-
form is known as timing recovery.

The timing recovery problem might not be difficult
in isolation, but a practical receiver must not only per-
form timing recovery but also detection of the trans-
mitted message, which involves such tasks as
equalization and error-control decoding. In doing so it
must contend with not only uncertainty in the timing
of the pulses but also with additive noise and intersym-
bol interference (ISI). In principle, one could formu-
late the problem of jointly determining the
maximum-likelihood estimates of the timing offsets and
the message bits. The solution to this problem would
naturally perform the tasks of timing recovery, equal-

ization, and decoding jointly. Unfortunately, the com-
plexity would be prohibitive. Instead, a conventional
receiver performs these tasks separately and sequential-
ly, as illustrated in Figure 1(a). Specifically, a conven-
tional timing recovery scheme ignores error-control
coding, assuming instead that the transmitted symbols
are mutually independent.

The conventional separation approach of Figure 1(a)
works reasonably well at a high SNR but not at the low
SNRs supported by capacity-approaching iteratively
decodable codes. As an extreme example [1], a recent
rate-1/31 code designed for a deep-space application
will operate reliably when the SNR is less than −15 dB!
At this low SNR, a timing recovery scheme that ignores
the code will likely fail. In this article, we describe an
iterative method for jointly performing the tasks of tim-
ing recovery and error-control decoding with complex-
ity comparable to a conventional receiver.

Perhaps the first iterative timing recovery method is
due to Georghiades and Snyder, who applied the
expectation-maximization (EM) algorithm for the case
of constant offset with an ideal, uncoded system [2].
Since then there have been many extensions to account
for ISI, time-varying offsets, and error-control coding
[1], [3]–[5]. There are also close ties between timing
recovery and carrier recovery, and so the recent work
on using iterative concepts to estimate carrier phase is
relevant [1], [6]–[8].

In this article, we present some emerging iterative
timing recovery schemes. In Figure 1(a), a classical
(noniterative) receiver is shown, where the signal flow
is unidirectional from the timing recovery unit to 
the decoding unit. The advent of turbo codes [9] 
has prompted the turbo equalization architecture of
Figure 1(b), where the signal flow from the timing
recovery unit is unidirectional while there is an iterative
exchange between the equalizer and the decoder. The
scenario of Figure 1(b) will not be further examined in
this article since it is covered in detail in a different arti-
cle of this issue [10]. Instead, we focus on two meth-
ods that extend turbo equalization to include timing
recovery iterations. The first such method is schemati-
cally depicted in Figure 1(c), where a timing recovery
step has been added to each iteration of a turbo equal-
izer. The second method [depicted in Figure 1(d)]
merges the timing recovery unit and the soft-output
equalizer into a single unit that performs joint timing
recovery and soft-output equalization in a manner simi-
lar to the BCJR [11] or Baum-Welch algorithm [12].

Classical Timing Recovery
In this section we present a brief overview of the most
widely used method for timing recovery; namely, a
decision-directed, phase-locked loop.

A digital transmitter conveys information by modu-
lating the amplitudes of a sequence of pulses. In theory,
these pulses are transmitted at a fixed rate—the baud
rate 1/T —that is known to the receiver. In practice,

� 1. Conventional timing recovery with (a) conventional 
equalization and with (b) turbo equalization. Iterative timing
recovery with (c) separate timing recovery and equalization and
(d) joint timing recovery and equalization.
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however, the baud rate may vary slowly with time, or
the channel may introduce jitter because of Doppler
effects or other nonidealities. Moreover, manufacturing
imperfections may cause the transmitter and receiver
clock frequencies to differ by a fraction of a percent.
The reality is that the receiver never knows the precise
arrival times of the pulses.

We consider the following simple model for the
received waveform r(t )

r(t ) =
∑

k

akh
(
t − kT − τk

) + n(t ), (1)

where ak ∈ {±1} is the kth binary symbol (or ampli-
tude), h (t ) is the received pulse shape, T is the signal-
ing interval anticipated by the receiver, and n(t ) is
additive Gaussian noise. The uncertainty in the timing
is captured by the offset parameter τk , defined as the
difference between the actual and expected arrival time
of the kth pulse. For example, when the transmitter
and receiver clock frequencies differ, τk increases linear-
ly with time.

Our restriction to binary alphabets is sufficient to
capture the gist of the timing recovery problem. Only
minor modifications are needed to handle higher-order
complex alphabets.

The optimal sampling times are {kT + τk}. The job
of a timing recovery scheme is to estimate the timing
offsets before sampling. Nearly all existing timing
recovery schemes are based on a phase-locked loop
(PLL), which is easily described in terms of the follow-
ing key definitions:

Let τ̂k denote the receiver’s estimate of τk .
Let εk = τk − τ̂k denote the residual error in this
estimate.
Let ε̂k denote the receiver’s estimate of εk .

A second-order PLL estimates τk according to the
recursion

τ̂k+1 = τ̂k + αε̂k + β

k∑

i=0

ε̂i , (2)

where α and β are the proportional
and integral step sizes, respectively.
In other words, the offset estimate is
found by accumulating the output
of a loop filter with transfer function
α + β/(1 − z −1) and input ε̂k . A
block diagram of the PLL is shown
in Figure 2.

The PLL recursion (2) can be
motivated heuristically as follows.
Consider the case when β is zero, in
which case (2) reduces to a first-
order PLL. At time k, the receiver
knows its current estimate τ̂k , and it
also has access to an estimate ε̂k of
the residual error τk − τ̂k . If this

estimate were somehow known to be precisely accu-
rate, then the receiver could cancel the remaining resid-
ual timing error in only one step by choosing
τ̂k+1 = τ̂k + ε̂k . In practice, however, ε̂k is a very noisy
estimate of τk − τ̂k , and by attenuating ε̂k by a factor
α < 1, the PLL essentially low-pass filters the noise.
The downside of this attenuation is that it will take
more than one step to correct for the residual error,
which implies that the PLL will be less agile when
tracking a time-varying offset. In practice, the step size
α ∈ (0, 1) is chosen to trade off the opposing goals of
robustness to noise and agility. A nonzero value of β
takes into account long-term trends in τk , giving a sec-
ond-order PLL the ability to track a frequency offset
with zero average steady-state error. 

The device that generates ε̂k is called a timing-error
detector (TED), and its effectiveness is key to the over-
all performance. A popular choice is the Mueller and
Müller (M&M) TED [13]

ε̂k = rkak−1 − rk−1ak, (3)

where rk = r(kT + τ̂k). This TED is most accurate
when there is no ISI, so that h (kT ) = 0 for nonzero
integers k. Together, (2) and (3) define the conven-
tional approach to timing recovery.

The M&M TED of (3) requires knowledge of the
transmitted symbols {ak}, which is generally available to
the receiver only during an initial start-up or training
phase. In practice, a receiver without training will
implement timing recovery in decision-directed mode
by replacing {ak} in (3) by tentative decisions. The
decision device that generates these decisions will
invariably introduce a processing delay, which we
denote by d . Therefore, as shown in Figure 2, a deci-
sion-directed PLL is driven by {âk−d} instead of {ak}.
The performance of a decision-directed PLL depends
critically on two parameters: 1) reliability of the deci-
sions and 2) processing delay d of the decision device.
There is a fundamental tradeoff between these two
parameters, since reliability can generally be increased
at the expense of processing delay. The importance of

� 2. The traditional approach to timing recovery is based on a decision-directed PLL. DEC
stands for decision device, whose processing delay is d. In practice, the shaded block is
implemented by passing the loop filter output through a voltage controlled oscillator
(VCO). Here we model the VCO as a simple integrator.
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reliability is obvious, since incorrect decisions will drive
the timing estimates away from their true values. The
importance of delay stems from the well-known fact
that a delay in a feedback loop can lead to instability.
Specifically, a linearized analysis of (2) with ε̂k replaced
by εk−d shows that an increase in the delay d moves the
closed-loop poles closer to the unit circle, so that the
step size parameter α must be decreased to maintain
stability. The decreased step size makes the system less
agile to time-varying timing offsets. Intuitively, long-
delayed decisions are useless in the face of time-varying
offsets, regardless of how reliable they might be, so this
loss of agility is not surprising. 

At one extreme, an instantaneous (zero-delay) deci-
sion can be extracted by quantizing rk directly, leading
to the following when there is no ISI:

âk = sign(rk). (4)

Such decisions have zero processing delay but can be
very unreliable. At low SNR, better performance can
be achieved by replacing this hard decision by a so-
called soft decision ãk = E[ak|rk], which for the binary
alphabet and additive Gaussian noise with variance σ 2

reduces to

ãk = E[ak|rk]

=
1
2 · 1 · exp −(rk−1)2

2σ 2 + 1
2 · (−1) · exp −(rk+1)2

2σ 2

1
2 · exp −(rk−1)2

2σ 2 + 1
2 · exp −(rk+1)2

2σ 2

= tanh
rk

σ 2 . (5)

At the other extreme, an entire frame of samples {rk}
can be passed on to an equalizer or channel decoder
that can increase reliability by exploiting the structure
of any channel ISI or forward-error control coding.
The resulting decisions might be very reliable, but the
excessive decoding delay precludes their use in real-
time analog timing recovery. Fortunately, there is also a

middle ground. For example, tentative decisions with
delay d can be recovered from a Viterbi-based equalizer
that backtracks the survivor memory for d stages.
These decisions will be suboptimal when d is small.

We can avoid the problem of detection delay alto-
gether if we adopt an off-line strategy known as inter-
polative timing recovery [14]. Instead of using the
voltage-controlled oscillator (VCO) of a PLL to drive
the sampling times, as shown in Figure 2, we could
instead sample r(t ) asynchronously and uniformly with
a free-running clock at a rate fast enough to avoid alias-
ing. This might be the baud rate, a few percent higher
than the baud rate, or twice the baud rate, depending
on the amount of excess bandwidth and the severity of
the worst-case frequency offset. The asynchronous
samples can be used to estimate what the sampling
times should have been, and then digital interpolation
can be used to effectively resample at the proper times.
It can be shown [15] that the interpolative strategy is
mathematically equivalent to resampling, yet it is much
simpler because it does not require any analog-to-digi-
tal converters—only logic circuits. This interpolative
strategy opens up the door to sophisticated detectors
with large decoding delay that would otherwise be
impractical. The idea is explored in the next section.

Iterative Timing Recovery
In this section we describe iterative timing recovery for
the transmitter and channel shown in Figure 3, where
the channel output is described by the model (1). The
transmitted symbols {ak} are the result of coding, inter-
leaving, and precoding the information bits.

In principle, the receiver would like to perform the
tasks of timing recovery, equalization, and decoding
jointly so as to maximize the joint likelihood function.
Although the complexity of a direct implementation is
prohibitive, an iterative receiver provides a low-com-
plexity approximation to the joint solution. Turbo
equalization is already a well-known technique for iter-
atively approximating the joint-ML equalizer and
decoder [10]. In the following we describe how timing
recovery can be added to the mix.

Algorithm Description
The gist of iterative timing recovery is simple; rather
than performing timing recovery once, without any
help from the decoder, timing recovery is performed
multiple times while interacting with the decoder.

One way to implement iterative timing recovery is to
follow the recursion depicted in
Figure 4. First, the receiver esti-
mates the timing in a conventional
manner, ignoring the ISI and code.
The timing estimates are then
passed to the symbol estimator that
uses them to sample, equalize, and
decode. The output of the symbol
estimator is a sequence of soft esti-

� 3. A transmitter consisting of a forward error-control encoder, an interleaver, and a pre-
coder. The channel introduces intersymbol interference, a time-varying timing offset, and
additive noise.
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Conventional approaches to
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SNR because they ignore
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mates of the transmitted symbols. Based on these soft
decisions, timing estimation is repeated, generating
new timing estimates that are more accurate than the
originals. For example, this timing reestimation might
be implemented using a PLL whose M&M TED (3) is
driven by the soft decisions from the decoder. The
process is then repeated: the new timing estimates are
used to sample, equalize, and decode, and the resulting
soft decisions are used to generate the next set of tim-
ing estimates. The hope is that each set of symbol esti-
mates will improve the timing estimates, which will in
turn improve the next set of symbol estimates, so that
eventually the algorithm will converge to the optimal
solution of the joint-maximum-likelihood problem. For
certain channel models this recursion reduces to an
instance of the EM or Baum–Welch algorithm [12], in
which case the recursion provably converges to a local
maximum of the joint likelihood function. It is impor-
tant to note that the timing estimator and symbol esti-
mator are standard blocks that would be needed
anyway; the only new idea is to have them cooperate in
a simple manner.

Although useful in concept, the iterative picture in
Figure 4 is somewhat misleading because it overstates
the complexity of iterative timing recovery. Suppose
the symbol estimator is implemented using an itera-
tive turbo equalizer that already dominates the receiv-
er complexity. Each iteration of the turbo equalizer
consists of one call to a soft-output equalizer followed
by one call to a soft-output, error-control decoder
[10]. Therefore, if the recursion of Figure 4 is iterated
K times then it appears that the iterative timing-
recovery scheme effectively increases complexity by a
factor of K .

Fortunately, there is an efficient way to implement
iterative timing recovery that is only marginally more
complex than the conventional approach. The basic
idea is to start with a conventional turbo equalizer and
insert a timing estimation step in between each itera-
tion of the turbo equalizer, thus transforming the two-
way iterative procedure of Figure 4 into the three-way
iterative procedure of Figure 1(c). In pseudocode, iter-
ative timing recovery can be summarized as follows:

sample the waveform using a decision-
directed PLL to get waveform samples
{rk}
for i = 1 : K ,

equalize samples {rk} (using the BCJR
[11] algorithm) and pass soft
outputs to decoder 
decode to get estimates of the
transmitted symbols ãk
estimate timing error using PLL
interpolate samples (equivalently
resample waveform) to get new
samples {rk}

end

In this way, soft decisions from each turbo equalizer
iteration are used to improve the timing estimates and
resample the received signal before proceeding with the
next turbo equalizer iteration [4]. As long as the com-
plexity of the timing estimator and interpolation
process are negligible compared to the complexity of
the soft-output equalizer and soft-output decoder
(which are typically based on the BCJR algorithm), the
overall scheme will have comparable complexity to a
conventional receiver.

Performance Results
We now present some numerical results for the partial-
response channel h (t ) = ∑

k h k g (t − kT ) , where
g (t ) = sin (πt/T )/(πt/T ) is an ideal zero-excess-
bandwidth Nyquist pulse. Specifically, we assume
H (D) = ∑

k h kDk = 1 − D2 , a channel known as PR4
in the context of magnetic recording. The timing
recovery problem is relatively easy to solve in this case,
because we can view the received signal as the output
of an ideal ISI-free channel when the input is a
sequence of multilevel symbols b k = ∑

n hnak−n . Thus,
the only modification necessary to the conventional
decision-directed timing recovery system of Figure 2 is
to modify the decision device to estimate the multilevel
symbol b k instead of the original binary symbol ak . For
the PR4 channel, the multilevel symbol takes on one of
three values, b k = ak − ak−2 ∈ {0,±2} . An instanta-
neous soft estimate of b k given rk is b̃ k = E[b k|rk],
which reduces to (with Gaussian noise with variance
σ 2), [4]

b̃ k = 2 sinh 2rk
σ 2

cosh 2rk
σ 2 + exp 2

σ 2

, (6)

� 4. An EM-like recursion between a timing estimator (which
ignores the ISI and code) and a symbol estimator (which 
performs equalization and decoding while ignoring the residual
timing offset).
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A benefit of iterative timing
recovery is that it automatically
corrects for cycle slips.
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where this formula can be obtained by arguments simi-
lar to (5).

Consider the system of Figure 3 with a rate-1/4
recursive systematic convolutional encoder with gener-
ator [1, 1, 1, (1 ⊕ D)/(1 ⊕ D ⊕ D2)] , which maps
blocks of 1278 message bits onto blocks of 5120
encoded bits. Assume the interleaver is spread random
with parameter 16 and length 5120. The precoder is
1/(1 ⊕ D2), which is matched to the PR4 response.
The timing model is a random walk

τk+1 = τk + σwuk, (7)

where {uk} are i.i.d. zero-mean, unit-variance Gaussian
random variables, and where σw controls the severity of
the random walk. To implement an assumption of per-
fect acquisition, we initialize with τ0 = 0. We consider a
PLL-based estimator, which operates according to (2)
and (3) but uses soft estimates of b k = ak − ak−2 from
the latest turbo-equalization iteration in place of ak in
(3), [4]. The resulting iterative receiver is shown in
Figure 5. The results are shown in Figure 6, assuming
σw/T = 0.3%. Observe that the iterative receiver out-
performs a conventional receiver (with timing recovery
performed separately from turbo equalization) by 4.7

dB at BER = 2 × 10−5, falling only
0.2 dB short of a genie-aided turbo
equalizer that has perfect knowledge
of the timing offsets (τ̂ = τ ).

Figure 7 shows the timing wave-
forms for a sample packet at Eb /N0
= 4 dB, where the severity of the
random walk jitter was increased to
σw/T = 1%. The thick gray curve
shows the actual {τk} sequence, plot-
ted as a function of time k . The
actual value of τk is near zero at time
k = 800, but drops quickly so that it
is near −T at time k = 1600. The
thin curve labeled 0 shows τ̂k after
the front-end PLL; it is not able to
track the rapid changes in τk .
Rather, it hovers near zero until it
eventually converges to approxi-
mately τk + T , which is itself a sta-
ble but undesirable operating point.
This phenomenon is called a cycle
slip and is a common mode of fail-
ure for timing recovery systems.

A benefit of iterative timing
recovery is that it automatically corrects for cycle slips.
The curves in Figure 7 labeled 10, 20, etc. show τ̂k
after the 10, 20, etc. iterations of the iterative receiver
of Figure 5. Slowly but surely, from left to right, the
iterative receiver “pinches” the τ̂k curve to match the
τk curve. Eventually, after 95 iterations in this exam-
ple, the τ̂k curve converges closely to the τk curve,
meaning that the cycle slip has been corrected. In
practice we can reduce the number of required itera-
tions by detecting the cycle slip early on and correct-
ing for it [5], [16], but we do not elaborate on these
methods here.

Joint Soft Timing Recovery 
and Equalization
A different method for doing iterative timing recovery
is to implement the scenario in Figure 1(d). Here we
describe only the block labeled “joint timing recovery
and equalization.” Iterating between it on one side and
the decoder on the other is then a simple extension of
the turbo equalization methods presented in [10].

� 5. A method for jointly performing timing recovery, equalization, and decoding. This is
essentially a traditional turbo equalizer but with an extra PLL and interpolation step
added to each iteration. The modified turbo equalizer is able to compensate for a sloppy
front-end PLL. The complexity of the PLL and interpolation functions are generally negligi-
ble compared to the equalizer and decoder, so that the overall system is only marginally
more complex than a conventional turbo equalizer.
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� 6. Performance of the iterative receiver shown in Figure 5, 
with α = 0.025, β = 0, a spread parameter of 16, and 21 interpo-
lation coefficients. The channel was PR4 with σw/T = 0.3% and
perfect acquisition.
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Basic Notation
Throughout this section, we will use dis-
crete-time sequences. A discrete time
sequence {a} is a collection of variables
. . . , a−2, a−1, a0, a1, a2, . . . . A subsequence
from time index i to time index j will be
denoted by a j

i = [ai , ai+1, . . . , aj ] if j ≥ i .
Otherwise, if j < i , a j

i is the empty set
a j

i = ∅.

Quantized Timing Error Model
Consider the sampler in Figure 2. The signal
r(t ) is sampled using a standard PLL sam-
pler. We make an assumption that the sam-
pled signal is of the form

rk =
∑

�

ak−�h (�T − εk) + nk, (8)

where εk is the timing error. (This can
actually be derived from (1) under the
assumption that τk and τ̂k are both slowly
time var ying.) Obviously, an accurate
model would consider εk to be a real-val-
ued random process. Without much loss in
accuracy, however, we can assume that εk
can take one of many values iT /Q , where
i is an arbitrary integer and Q is a fixed
positive integer

εk ∈ F =
{
. . . ,

−2T
Q

,
−T
Q

, 0,
T
Q

,
2T
Q

, . . .

}
. (9)

Clearly, we have segmented the symbol interval of
length T into Q segments. If Q is large, we do not
lose much in terms of accuracy by performing this seg-
mentation.

Markov Timing Error
Let us further assume that εk is a Markov chain.
Obviously, this assumption cannot be justified by either
(8) or assumption (9). It is intuitively clear, however,
that if Q is sufficiently large and if the Markov chain
memory is also large, we can approximate any discrete-
time random process by a Markov chain of sufficiently
large memory. Here, for the simplicity of the presenta-
tion, we will assume that the memory length of the
Markov chain is one. Considering a larger-memory
Markov chain would be a straightforward extension, so
we do not pursue it here. Further, we assume that the
Markov chain is governed by the following (known)
transition probabilities

P (εk|εk−1) =




δ if εk = εk−1 + T/Q
δ if εk = εk−1 − T/Q
1 − 2δ if εk = εk−1
0 otherwise.

(10)

One can easily extend this model to include different

εk−1-dependent probabilities for εk = εk−1 ± iT /Q for
i > 1, but for the simplicity of the presentation we do
not consider such a case.

The states in the Markov chain in (10) are the values
that the process εk can take, i.e., the states are in the set
F defined in (9). At each time instant, we can incre-
ment the state by T/Q with probability δ, decrement
the state by T/Q with probability δ, or remain in the
same state with probability 1 − 2δ , as depicted in
Figure 8. A sample realization of the random process εk
is depicted in Figure 9.

The Problem Formulation
Assume that we send N binary independent and identi-
cally distributed, equally likely symbols ak ∈ {−1, 1}
through the channel, where 1 ≤ k ≤ N . So,
Pr(ak = 1) = 0.5, for 1 ≤ k ≤ N . Then we are faced
with the following problem: We assume that the initial
timing error is ε0 = 0 and that the symbols up to time
0 are ak = −1 for all k ≤ 0. By assumption the signal
model is (8) and the timing error model is (10). We
sample the time axis (0,N T ] to collect samples
rL

1 = [r1, r2, . . . , rL ]. Note that generally L �= N
because the timing error may accumulate over time, so
we will not have the same number of samples as the
number of symbols transmitted. At the receiver site, we
obtain the symbols rL

1 and wish to determine the pos-
terior probability of the kth symbol being either −1 or
1, i.e., we are interested in obtaining

� 7. An illustration of iterative timing recovery correcting a cycle slip. The thick
gray curve shows the actual {τk} curve, plotted versus time k, whereas the thin
black curves labeled 10, 20, etc., show the estimates {τ̂k} after iteration 10, 20,
etc. These results are for the (4095, 3636) rate-8/9 code derived by puncturing 
the encoder [1, (1 ⊕ D ⊕ D3 ⊕ D4)/(1 ⊕ D ⊕ D4)] , assuming Eb/N0 = 4
dB and σw/T = 1%.
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Pr
(
ak = 1|rL

1
)

and

Pr
(
ak = −1|rL

1
) = 1 − Pr

(
ak = 1|rL

1
)
. (11)

The soft values in (11) are what we need to send to the
decoder for iterative soft decoding.

Note that we are typically not interested in estimat-
ing the timing error εk because we are usually just
interested in knowing the transmitted symbols ak .
Given the nature of the problem at hand and, given the
solution that we are going to present, it will become
clear that we will also be able to make an estimate of
the timing error εk . We therefore can ask to compute
the posterior probability of the timing error equaling
any value ψ ∈ F , where F is given in (9), i.e., we can
seek to compute the soft timing error outputs

Pr
(
εk = ψ |rL

1
)

for all ψ ∈ F . (12)

Subsequently, we may seek to make the (hard) maxi-
mum a posteriori estimate of εk as

ε̂k = arg max
ψ∈F

Pr
(
εk = ψ |rL

1
)
. (13)

The Timing Trellis
A problem with the Markov model in Figure 8 is that it
has infinitely many states and thus does not permit trel-
lis-based signal processing methods. For this reason, we
next give an equivalent description with finitely many
states which permits the formulation of a trellis.

Consider the sample realization of the process εk
depicted in Figure 9 for Q = 5. Assume that we sam-
ple the time axis at time instants kT − εk . The exact
sampling points are depicted by bullets (•) on the time
axis t in Figure 10(a). Note that because we assumed
that the timing error is quantized to multiples of 
(T/Q ) the bullets must fall on integer multiples of
(T/Q ) = (T/5), where T is the symbol duration.

Now, partition the time axis t into nonoverlapping
semi-open intervals 

(
(k − 1)T , kT ], where the length

of each interval is the symbol duration T . Each inter-
val has Q = 5 tick marks that denote possible posi-

tions (in multiples of (T/Q )), where a sample can be
taken. From Figure 10(a), we notice that some inter-
vals are sampled once, some intervals (in particular the
sixth interval) are sampled twice, while some intervals
(in particular, the fifth and seventh intervals) are not
sampled at all.

We define a new finite-state Markov process as fol-
lows. Denote the state of the process as qk . The state is
associated with a time interval 

(
(k − 1)T , kT ], and can

take one of the values in the following set:

qk ∈ T = {
0, 11, 22, . . . , 1Q , 2

}
. (14)

The interpretation of the sampling-states qk in the set
T is as follows.
� State qk = 0 ∈ T denotes that the kth symbol inter-
val 

(
(k − 1)T , kT ] is not sampled at all. For example, in

Figure 10, the fifth and seventh symbol intervals have
no samples. Therefore, we have q5 = 0 and q7 = 0.
� State qk = 1i ∈ T , for 1 ≤ i ≤ Q denotes that the
kth symbol interval 

(
(k − 1)T , kT ] is sampled only

once at the i th tick from the beginning of the interval.
For example, in Figure 10, the third interval is sampled
at the fourth tick from the start of the interval, so
q3 = 14. Similarly, the eighth interval is sampled at the
first tick from the start of the interval, hence q8 = 11.
� State qk = 2 ∈ T denotes that the kth symbol inter-
val 

(
(k − 1)T , kT ] is sampled twice. The only way an

interval can be sampled twice is if it is sampled at the
first and Q th ticks. The constraints of the Markov
process in (10) prevent any other way of two samples
falling in the same interval. In Figure 10, the sixth
interval is sampled twice, hence q6 = 2.

Note that in Figure 10, the sequence of states
15, 15, 14, 14, 15, 0, 2, 0, 11, 11, 12, . . . , uniquely deter-
mines where the time axis is sampled. In fact, there is
a one-to-one correspondence between the timing
error sequence εk and the state sequence qk .

Obviously, given assumption (10), there are some
restrictions on how the sampling-states qk can evolve. To
represent all valid sampling-state transitions, we form a 
timing trellis, depicted in Figure 11. To a branch in the
timing trellis, we associate a transition probability

Pr(qk|qk−1). The transition probabilities can
be computed from the Markov assumption
(10). For Q = 5, the transition probabilities
derived from (10) are listed in Figure 11.

Key Feature of the Timing Trellis
The key feature of the timing trellis in Figure
11 is that the branches in the trellis carry a
variable number of samples. We will denote
the vector of samples taken in the timing
interval (k − 1)T , kT ] by z k . Note that z k
could be an empty vector if no sample is
taken in the kth symbol interval. Referring to
Figure 10, we see that the first interval is� 9. Example: A sample of the realization of the timing error process εk .

–5T/Q = –T

k

–4T/Q

–3T/Q

–2T/Q
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4 5 6 7 8 9 10 11 12 13 14 15



IEEE SIGNAL PROCESSING MAGAZINEJANUARY 2004 97

sampled once and, therefore, z1 = r(T − ε1) = r1 .
However, the fifth symbol interval is not sampled at all,
so z5 is an empty vector z5 = ∅. On the other hand, the
sixth interval is sampled twice, so
z6 = [r(5T − ε5), r(6T − ε6)] = [r5, r6].

The Joint ISI-Timing Trellis
Denote by I the ISI length of the pulse h (t ) in (8).
For example, consider the following pulse depicted in
Figure 12(a)

h (t ) =
{ 4

3 sin2
(

2π(t+T )

6T

)
, for − T ≤ t ≤ 2T

0, otherwise.
(15)

The pulse in Figure 12(a) spans three symbol intervals,
so its ISI length is I = 2.

Let us consider first the case when εk = 0 for all
k > 0, i.e., the case when there is no timing error.
Then the pulse h (t ) is sampled at integer multiples of
T . We conclude that the only nonzero samples of h (t )
are then h (T ) = 1 and h (2T ) = 1, both denoted by
circles in Figure 12(a). Consequently, we may rewrite
(8) for the signal sample as

rk = ak + ak−1 + nk . (16)

As the next example, consider a constant nonzero
timing error, say εk = 2T/Q = 2T/5, for all k > 0.
Then, the signal h (t ) is sampled at time instants
kT − 2T/5. In Figure 12(a), these samples (denotes by
stars) are h (−2T/5) = 0.461, h (3T/5) = 1.319, and
h (8T/5) = 0.221. Consequently, we may rewrite (8) as

rk = 0.461 · ak + 1.319 · ak−1 + 0.221 · ak−2 + nk . (17)

Equations (16) and (17) illustrate that the value of
the timing error εk influences the shape of the ISI,
since the two equations are obviously dif ferent.
Therefore, as the timing error εk changes its value with
k, so does the nature of the ISI. We next need to com-
bine the timing trellis (depicted in Figure 11) with a
proper model of ISI. The result is another trellis, which
is a bit more complicated because it captures, jointly,
the ISI and timing error.

First, consider a trellis that purely captures the tran-
sitions from a transmitted symbol subsequence (ak−I ,

ak−I +1, . . . , ak−1) to (ak−I +1, ak−I +2, . . . , ak) . If we
define the set I = {−1, 1}I , then clearly

� 10. (a) Time axis sampled at time instants corresponding to the timing error realization in Figure 8. (b) The timing trellis, where the
thick path corresponds to the sampling realization depicted in the top part of the figure.
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(ak−I +1, ak−I +2, . . . , ak) ∈ I . For I = 2, an example of
this trellis is given in Figure 12(b). The trellis in
Figure 12(b) is a standard trellis used for detection of
symbols over an ISI channel with perfect timing (see
[10] for details).

Next, we define the joint ISI-timing trellis by merg-
ing the ISI trellis in Figure 12(b) and the timing trellis
in Figure 11. A state sk ∈ S at time instant k of the
joint ISI-timing trellis is determined by a pair of states;
the first state coming from the ISI trellis I , i.e.,
(ak−I +1, ak−I +2, . . . , ak), and the second coming from
the timing trellis T , i.e., qk ∈ T :

sk = (
ak−I +1, ak−I +2, . . . , ak, qk

) ∈ S = I × T . (18)

Since the timing trellis has Q + 2 states and since the
ISI trellis has 2I states, the joint ISI-timing trellis has
(Q + 2)2I states. An example of a joint ISI-timing
trellis is given in Figure 12(c), which is a result of
merging the trellises in Figures 12(b) and 11. Note
that the joint ISI-timing trellis in Figure 12(c) has
(Q + 2) · 2I = (5 + 2) · 22 = 28 states, which is why
we only give a subset of the states. A branch in the
joint ISI-timing trellis Figure 12(c) exists if and only if
a corresponding branch exists in both the ISI and tim-
ing trellises of Figures 12(b) and 11.

Note that the joint ISI-timing trellis inherits the key
feature of the timing trellis; namely, the number of
samples carried by a branch of the joint ISI-timing trel-
lis can be either zero, one, or two.

A BCJR-Like Algorithm
The joint ISI-timing trellis admits the execution of
the sum-product algorithm presented in [17]. When
the timing error is εk = 0 for all k > 0, this algorithm
takes the form of the Bah–Jelinek–Cocke–Raviv
(BCJR) algorithm, which is a standard component of
iterative turbo equalization [10]. In principle, we
could end the discussion here and simply state that
the application of the sum-product algorithm [17] on
the joint ISI-timing trellis in Figure 12(c) solves the
problem stated earlier. Since the joint ISI-timing trel-
lis has the unique feature that different branches carry

different numbers of samples, how-
ever, a detailed presentation of the
BCJR-like sum-product algorithm
for the joint ISI-timing trellis is in
order. We will not derive the sum-
product message-passing formulas
but rather, just state them, since
they are very similar to the ones in
[11] (see also [10] and [17] in this
issue). The reader is advised to first
read [11] before proceeding.

Definitions
First, we note that the symbols ak
are i.i.d. with probability 0.5 and we

use the Markov property of the timing trellis in Figure
11 to derive the conditional probability of reaching sk
from sk−1

Pr (sk|sk−1, sk−2, . . . ) = Pr (sk|sk−1)

= Pr(ak)Pr
(
qk|qk−1

)

= 1
2

Pr(qk|qk−1). (19)

We next define the following variables that are needed
to execute the BCJR-like sum-product algorithm on
the joint ISI-timing trellis.
�The α-coefficient α(k, m, i) is defined as the proba-
bility that the kth ISI-timing state sk equals m ∈ S and
that there were i samples during the first k symbol
intervals

α(k, m, i) = Pr
(

sk = m, z k
1 = r i

1

)
. (20)

�The β-coefficient β(k, t , i) is defined as the condi-
tional probability that there were L − i samples in the
last N − k symbol intervals, given that the kth ISI-tim-
ing state sk equals m ∈ S

β(k, m, i) = Pr
(
zN

k+1 = rL
i+1|sk = m

)
. (21)

�The γ-coef ficient is defined as follows. Let
sk−1 = m ′ ∈ S be the state at time k − 1 and let
sk = m ∈ S be the state at time k. Then the γ-coeffi-
cient for the branch (m ′, m) is defined as the joint
probability of the state at time k and the sample vector
z k at time k, given the knowledge of the state at time
k − 1

γ (k, m ′, m, i) =


P (sk = m, z k = ∅|sk−1 = m ′) if m ∈ I × {0}
P (sk = m, z k = ri |sk−1 = m ′) if m ∈ I×{

11, 12, . . . , 1Q
}

P (sk = m, z k = r i
i−1|sk−1 = m ′) if m ∈ I × {2} .

(22)

� 11. A trellis section of the timing trellis and the corresponding transition probabilities.
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Notice that the definition of the γ-coefficient differs
with the value of the timing state qk to compensate of
the different number of samples carried by different
branches of the joint ISI-timing trellis. 

Let the state at time k−1 be sk−1 =
m ′ = (ak−2, ak−1,qk−1) = (−1,−1, 12) , for example,
and let the state at time k be sk = m = (ak−1, ak, qk)

= (−1, 1, 12) . First notice that if (ak−2, ak−1, ak) =
(−1,−1, 1) and if qk = 12, we get ri = 0.461 · (−1)

+1.319 · (−1) + 0.221 · 1 + ni = −1.559 + ni from
(17). Assuming that the noise in the channel is white
Gaussian with variance σ 2, the γ-coefficient for the
branch (m ′, m) is given by

γ (k, m ′, m, i) = P
(
sk = m, z k = ri |sk−1 = m ′)

= P
(
z k = ri |sk−1 = m ′, sk = m

)
× P

(
sk = m|sk−1 = m ′)

=
exp

[
− (ri +1.559)

2

2σ 2

]
√

2πσ 2
P (ak = 1)

× Pr
(
qk = 12|qk−1 = 12

)

=
exp

[
− (ri +1.559)

2

2σ 2

]
√

2πσ 2
· 1

2
· δ. (23)

Similarly, by properly accounting for the ISI and by uti-
lizing the transition probabilities in Figure 11, we can
obtain all the other γ -coefficients for all other branches
in the joint ISI-timing trellis.

With this notation, we can formulate a BCJR-like
algorithm for performing joint soft timing recovery and
symbol detection.

Recursions
Using the Markov properties of the joint ISI-timing
process, it can be shown [18] that the α and β coeffi-
cients satisfy the following recursive forward and back-
ward relations, respectively

α(k, m, i) =




∑
m ′∈S

α(k − 1, m ′, i − 1) · γ (k, m ′, m, i)

if m ∈ I × {
11, 12, . . ., 1Q

}
∑

m ′∈S
α(k − 1, m ′, i) · γ (k, m ′, m, i)

if m ∈ I × {0}∑
m ′∈S

α(k − 1, m ′, i − 2) · γ (k, m ′, m, i)

if m ∈ I × {2}
(24)

β(t , m, i) =
∑

m ′∈I×{11,12,...,1Q }
β(k + 1, m ′, i + 1)

· γ (k + 1, m, m ′, i + 1)

+
∑

m ′∈I×{0}
β(k + 1, m ′, i)

· γ (k + 1, m, m ′, i)
+

∑
m ′∈I×{2}

β(k + 1, m ′, i + 2)

· γ (k + 1, m, m ′, i + 2). (25)

Initial Conditions
The forward (24) and backward (25) recursions need
to be started with a set of initial coefficients α(0, m, i)
and β(N , m, i). These initial coefficients should be
chosen such that they reflect some prior knowledge of
the timing error and transmitted symbols at the begin-
ning and the end of the transmitted block. If we know
that ak = −1 for k ≤ 0, we can set

α(0, m, i) =
{

1 if i = 0 and m = (−1,−1, 1Q
)

0 otherwise

β(N , m, i) =
{

1 if i = L and all; m ∈ S
0 otherwise.

Since the influence of initial conditions dies exponen-
tially as we move away from the boundaries, even if we
choose improper boundary conditions, the impact will
not propagate far.

Soft Symbol Estimates
After completing the forward-backward recursions (24)
and (25), we are in the position to compute the poste-
rior probabilities of the joint-states sk = m ∈ I × T

λk(m) = Pr
(
sk = m, zN

1 = rL
1
)

=
L∑

i=1

α(k, m, i)β(k, m, i). (26)

The gist of iterative timing
recovery is simple: rather than
performing timing recovery
once, timing recovery is
performed multiple times while
interacting with the decoder.



The soft output, which is given as the ratio of posterior
probabilities of two different symbol values, can then
be computed as

Pr
(
ak = 1|rL

1

)
Pr

(
ak = −1|rL

1

) =

∑
m:ak=1

λk(m)∑
m:ak=−1

λk(m)
. (27)

The value in (27) is the quantity that is passed to the
decoder in Figure 1(d) for a round of iterative decod-
ing. The decoder, after performing its task, passes a
new value of the posterior probability, which is to be
used as the new prior probability instead of P (ak) in
(19). This completes an iterative cycle.

Soft Timing Estimates
The a posteriori probability of the timing error for any
value ψ ∈ F can be computed as in [18]

Pr
(
εi = ψ | rL

1
) =

∑
k, j :(i−k+1)T + j

Q T =ψ


 ∑

m:m∈I×{1j}
α(k, m, i)β(k, m, i)




+
∑

k:(i−k)T =ψ

[ ∑
m:m∈I×{2}

α(k, m, i)β(k, m, i)

]

+
∑

k:(i−k+1)T + T
Q =ψ

[ ∑
m:m∈I×{2}

α(k, m, i + 1)

·β(k, m, i + 1)

]
, (28)

for all integers 1 ≤ i ≤ L . Given the formula for
Pr

(
εk = ψ | rL

1

)
in (28), we can easily find the maxi-

mum a posteriori timing error estimate using (13).

Some Implementation Issues
Just as in the classical BCJR algorithm [11], we need to
normalize the α and β coefficients to prevent overflow
errors. Another issue is that the computational com-
plexity and memory requirements for the method are
very high, proportional to the square of the block
length. This can be vastly reduced by reverting to win-
dowed techniques [18].

Simulation Results
To illustrate the applicability of the joint timing/equal-
ization method, we replicate the simulations shown in
Figures 6 and 7. The points of difference from Figures
6 and 7 are: 1) we employ the scenario of Figure 1(d)
rather than Figure 1(c); 2) the joint timing recovery
and equalization is performed using the algorithm pre-
sented in this section; 3) the codes are low-density pari-
ty-check (LDPC) codes rather than convolutional
codes, but the code rates are kept the same; 4) a
message-passing decoder of LDPC codes is used
in place of a decoder of convolutional codes; and
5) no precoder is employed.
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� 12. (a) An example of a pulse with intersymbol interference
length I = 2 that spans I + 1 = 3 symbol intervals. (b) A trellis that
captures the ISI behavior, i.e., that captures the transition rules
from a symbol subsequence (ak−2, ak−1) to (ak−1, ak). (c) A joint
trellis that captures both the timing error and the ISI behavior.
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Figure 13 presents the same results as Figure 6,
under the same channel and timing error assumption
and for the same code rate (1/4). The chosen code was
a regular LDPC code, whose variable-node degree
coefficient is three. The actual timing error is a
Gaussian random walk just as in Figure 6, but the
receiver pretends that the timing error follows the first-
order Markov process quantized to Q = 5 quantiza-
tion levels and performs iterative detection using the
scenario in Figure 1(d). A comparison of Figures 6 and
13 shows that the method in Figure 1(d) requires, on
average, fewer visits to the timing/equalization block
(less iterations) than the method in Figure 1(c). The
price paid is the increased complexity of the joint tim-
ing/equalization unit.

Figure 14 shows the estimated timing error for a
sample realization of a channel by using the scenario in
Figure 1(d). The channel, timing error, and
code rate (8/9) are assumed to be the same
as in Figure 7. Again, the chosen code was a
regular LDPC code whose variable-node
degree is three. The actual timing error is a
Gaussian random walk just as in Figure 7,
but the receiver pretends that the timing
error follows the first-order Markov process
quantized to Q = 10 quantization levels
and performs iterative detection using the
scenario in Figure 1(d). Figure 14 shows
that after the first iteration, there is clearly a
cycle slip present (star ting at time
k ≈ 1300). After the second iteration, the
cycle slip is eliminated, but sporadic jumps in
the timing error estimate still occur. After
the third iteration, even the sporadic jumps
are eliminated.

Conclusions
Conventional approaches to timing recov-
ery fail at low SNR because they ignore

error-control coding. We have described how iterative
timing recovery exploits the power of error-control
codes to enable reliable operation at very low SNR,
with performance that closely matches a genie-aided
receiver that has perfect timing knowledge. A receiver
that uses iterative timing recovery is often only mar-
ginally more complex than a receiver that uses con-
ventional timing recovery and either conventional
turbo equalization or conventional turbo decoding or
message-passing decoding.
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� 14. True and estimated timing error when employing the scenario of Figure 1(d) with an LDPC decoder. The channel and timing error
parameters as well as the code rate are same as in Figure 7.

� 13. Bit error rate performance of the joint soft timing/equalization method
[Figure 1(d)] in conjunction with an LDPC decoder. The channel and timing
error parameters as well as the code rate are the same as in Figure 6.
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