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Fast Maximum-Likelihood Decoding of the Golden Code
Mohanned O. Sinnokrot, Student Member, IEEE, and John R. Barry, Senior Member, IEEE

Abstract—Because each golden code codeword conveys four
information symbols from an 𝑀 -ary QAM alphabet, the com-
plexity of an exhaustive-search decoder is proportional to 𝑀4.
In this paper we prove that the golden code is fast-decodable,
meaning that maximum-likelihood decoding is possible with a
worst-case complexity proportional to only 𝑀2.5. The golden
code retains its fast-decodable property regardless of whether
the channel varies with time. We also present an efficient imple-
mentation of a fast maximum-likelihood decoder that exhibits a
low average complexity.

Index Terms—Golden code, maximum-likelihood decoding.

I. INTRODUCTION

SPACE-time coding enables a wireless transmitter with
more than one antenna to communicate at a higher data

rate and more reliably than would otherwise be possible [1][2].
The golden code is a space-time code for two transmit and two
or more receive antennas that has many advantages [3][4]: it is
full-rate; it is fully diverse; and in terms of the signal-to-noise
ratio (SNR) required to achieve a target error probability, it
performs better than previously reported codes with two trans-
mit antennas. Furthermore, the coding gain of the golden code
is independent of the alphabet size, which ensures that the
golden code achieves the full diversity-multiplexing frontier
of Zheng and Tse [5][6], and which makes it compatible with
adaptive modulation. For these reasons, the golden code has
been incorporated into the 802.16e WiMAX standard [7].

The golden code applied to a system with two receive
antennas leads to an effective four-input four-output channel
that maps each block of four 𝑀 -ary information symbols to
a vector of four complex-valued received samples [8]. An
exhaustive-search maximum-likelihood (ML) decoder would
consider each of the 𝑀4 possible input vectors in turn and
choose as its decision the one that best represents the channel
output in a minimum-distance sense. Therefore, the complex-
ity of such an ML decoder is proportional to 𝑀4. Although
significant reductions in average complexity are possible by
adopting a tree-based ML decoder such as a sphere decoder,
the worst-case complexity of a sphere decoder is generally
no better than that of an exhaustive-search. For this reason,
it has been reported that the worst-case complexity of the
golden code grows with the fourth power of the constellation
size [9]-[12]. In the special case when the four inputs are

Manuscript received November 12, 2008; revised April 22, 2009; accepted
July 16, 2009. The associate editor coordinating the review of this letter and
approving it for publication was M. Uysal.

M. O. Sinnokrot and J. R. Barry are with the Department of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
USA (e-mail: {sinnokrot, barry}@ece.gatech.edu).

This work was supported in part by a grant from Texas Instruments.
The material in this correspondence was presented at the IEEE Global
Communications Conference, New Orleans, LA, USA, December 2008.

Digital Object Identifier 10.1109/TWC.2010.01.081512

QAM symbols, however, the worst-case complexity of a tree-
based sphere decoder drops from 𝒪(𝑀4) to 𝒪(𝑀3). This is
because a QAM slicer can be used to find the “best" leaf node
stemming from a particular node at the third level of the four-
level tree, and the complexity of a QAM slicer does not grow
with the size of the alphabet.1

The perception that ML decoding of the golden code has
high complexity has had two effects: First, it has moti-
vated a search for suboptimal decoders for the golden code
with reduced complexity and near-ML performance [13]-
[16]. Second, it has motivated a search for lower-complexity
alternatives that perform almost as well as the golden code
[9][10][17].

In this paper we prove that the golden code with 𝑀 -
ary QAM is fast decodable, by which we mean that ML
decoding is possible with a worst-case complexity of only
𝒪(𝑀2.5). The golden code is fast decodable regardless of
whether the channel varies with time. We also present an
efficient implementation of a fast decoder that has low average
complexity. For concreteness we present our results in the
context of the Dayal-Varanasi golden code [4], but they are in
fact applicable to all three variations [3][4][7].

The remainder of the paper is organized as follows. In
Section II, we review the construction of the golden code and
prove that it is fast decodable. In Section III we introduce
a new fast ML decoder for the golden code that has low
average complexity. In Section IV, we compare the average
complexity of the proposed detector to a conventional golden
code detector. We conclude the paper in Section V.

II. THE GOLDEN CODE IS FAST DECODABLE

A. The Golden Code Induces Structure in Effective Channel

The golden code transmits four complex information sym-
bols over two symbol periods, so that the rate is two symbols
per signaling interval. The transmitted codeword can be ex-
pressed as

C =

[
𝑐1[1] 𝑐2[1]
𝑐1[2] 𝑐2[2]

]
, (1)

where 𝑐𝑖[𝑘] denotes the symbol transmitted from antenna 𝑖 ∈
{1, 2} at time 𝑘 ∈ {1, 2}. In particular, the Dayal-Varanasi
golden code encodes one pair of information symbols a =
[𝑥1, 𝑥2]

⊤ onto the main diagonal of C, and it encodes a second
pair of symbols b = [𝑥3, 𝑥4]

⊤ onto the off-diagonal, yielding
[4]:

C =

[
𝑎̃1 0
0 𝑎̃2

]
+ 𝜙

[
0 𝑏̃1
𝑏̃2 0

]
(2)

1A QAM slicer can be implemented as a pair of PAM slicers, with each
requiring a single multiply, a single rounding operation, a single addition, and
a single hard-limiting operation, none of which depends on 𝑀 .
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where:

ã =Ma, b̃ =Mb, M =

[
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

]
,

𝜃 =
1

2
tan−1(2), 𝜙 = 𝑒𝑗𝜋/4. (3)

Our model for the received signal 𝑦𝑗 [𝑘] at receive antenna
𝑗 at time 𝑘 is given by:

𝑦𝑗[𝑘] =
2∑

𝑖=1

𝑐𝑖[𝑘]ℎ𝑖,𝑗 [𝑘] + 𝑛𝑗[𝑘], (4)

where 𝑛𝑗 [𝑘] is the complex additive-white Gaussian noise
at receive antenna 𝑗 at time 𝑘, and ℎ𝑖,𝑗 [𝑘] is the channel
coefficient between the 𝑖-th transmit antenna and 𝑗-th receive
antenna at time 𝑘. For quasistatic fading, ℎ𝑖,𝑗 [𝑘] = ℎ𝑖,𝑗

is independent of time 𝑘. Substituting the definition of the
golden code from (2) and (3) into (4), the vector of samples
y = [𝑦1[1], 𝑦1[2], 𝑦2[1], 𝑦2[2]]

⊤ received at a receiver with two
antennas at the two time instances can be written as the output
of an effective four-input four-output channel:

y = Hx+ n, (5)

where x = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
⊤ is the vector of information

symbols, 𝑛 = [𝑛1[1], . . . , 𝑛2[2]]
⊤ is the noise, and where

H = H̄Ψ is the effective channel matrix:

H=

⎡
⎢⎣
ℎ1,1[1] 0 𝜙ℎ2,1[1] 0

0 ℎ2,1[2] 0 𝜙ℎ1,1[2]
ℎ1,2[1] 0 𝜙ℎ2,2[1] 0

0 ℎ2,2[2] 0 𝜙ℎ1,2[2]

⎤
⎥⎦

︸ ︷︷ ︸
H̄

⎡
⎢⎣

𝑐 𝑠 0 0
−𝑠 𝑐 0 0
0 0 𝑐 𝑠
0 0 −𝑠 𝑐

⎤
⎥⎦

︸ ︷︷ ︸
Ψ

,

(6)
where 𝑐 = cos(𝜃), 𝑠 = sin(𝜃), 𝜙 = 𝑒𝑗𝜋/4, and 𝜃 = 1

2 tan−1(2).
The structure of the golden code induces special properties

in this effective matrix that we exploit to reduce decod-
ing complexity. The following lemma relates these special
properties to the orthogonal-triangular (QR) decomposition
H = QR, which results from an application of the Gram-
Schmidt procedure to the columns of H = [h1, . . . ,h4], where
Q = [q1, . . . ,q4] is unitary and R is upper triangular with
nonnegative real diagonal elements, so that the entry of R in
row 𝑖 and column 𝑗 is 𝑟𝑖,𝑗 = q∗

𝑖h𝑗 .
Lemma 1: (The Key Property): The R matrix in a QR

decomposition H = QR of the effective channel (6) has the
form

R =

[
A B
0 D

]
, (7)

where both of the upper triangular matrices A and D are
entirely real.

Proof: See the Appendix.
A few remarks:

∙ Both A =

[
𝑟1,1 𝑟1,2
0 𝑟2,2

]
and D =

[
𝑟3,3 𝑟3,4
0 𝑟4,4

]
are

triangular by construction with real diagonal entries, so
the key property is essentially the fact that both 𝑟1,2 and
𝑟3,4 are real.

∙ To demonstrate that 𝑟1,2 = h∗
1h2/∥h1∥ is real, it is

sufficient to show that the inner product between the first

two columns is real, a fact which is easily verified by
direct computation:

h∗
1h2 = cos(𝜃) sin(𝜃)(∣ℎ1,1[1]∣2 − ∣ℎ2,1[2]∣2 +

∣ℎ1,2[1]∣2 − ∣ℎ2,2[2]∣2)
=

1√
5
(∣ℎ1,1[1]∣2 − ∣ℎ2,1[2]∣2 +

∣ℎ1,2[1]∣2 − ∣ℎ2,2[2]∣2). (8)

∙ The lemma applies regardless of whether the channel is
quasistatic or time-varying.

∙ The submatrix B is not mentioned because all four of its
entries are generally complex.

∙ The fact that 𝑟1,2 is real enables the decoder in the next
section to reduce both the worst-case decoding complex-
ity and the average decoding complexity. In contrast,
the fact that 𝑟3,4 is real enables only a reduction in
average complexity. It has no impact on the worst-case
complexity.

B. The Golden Code is Fast Decodable

We now show how the key property of Lemma 1 enables
fast decoding. If we define z12 = [𝑧1, 𝑧2]

⊤ and z34 =
[𝑧3, 𝑧4]

⊤, where z = Q∗y, then the ML decision minimizes
the cost function

𝑃 (x) = ∥y −Hx∥2 = ∥z−Rx∥2
= ∥z12 −Aa−Bb∥2 + ∥z34 −Db∥2. (9)

The last equality follows from (7). Therefore, the ML
decisions â and b̂ can be found recursively using:

b̂ = arg min
b∈𝒜2

{∥z12−Aa∗(b)−Bb∥2+∥z34−Db∥2}, (10)

â = a∗(b̂), (11)

where

a∗(b) = arg min
a∈𝒜2

{∥z12 −Aa−Bb∥2}. (12)

The function a∗(b) in (12) can be viewed as producing the
best a for a given b. With this interpretation, the optimization
in (10) can be viewed as that of finding the best b when a is
optimized.

The optimization (12) is equivalent to ML detection for a
channel matrix A with an input of a and an output:

v = z12 −Bb. (13)

It can thus be solved by a sphere detector applied to a
two-level tree. As discussed in the introduction, with two
QAM inputs and without any constraints on A, its worst-case
complexity would be 𝒪(𝑀). But the golden code induces the
special property that A is real, which enables us to determine
the real components of a independently from its imaginary
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components in (12). Specifically, we may rewrite (12) as:2

a∗(b) = arg min
a∈𝒜2

{∥v𝑅 −Aa𝑅∥2 +
∥v𝐼 −Aa𝐼∥2} (14)

= arg min
a𝑅∈(𝒜𝑅)2

{∥v𝑅 −Aa𝑅∥2}+

𝑗⋅ arg min
a𝐼∈(𝒜𝐼)2

{∥v𝐼 −Aa𝐼∥2}. (15)

Thus, the optimization in (12) decomposes into the pair of
independent optimizations of (15). Since each optimization in
(15) is equivalent to ML detection for a real channel with
two

√
𝑀 -PAM inputs, each has a worst-case complexity of

𝒪(√𝑀). Thus, the overall complexity of (15) is 𝒪(√𝑀).
We thus arrive at our main theorem.

Theorem 1: (Golden Code is Fast Decodable): A
maximum-likelihood decoder for the golden code with
an 𝑀 -ary QAM alphabet can be implemented with a
worst-case complexity of 𝒪(𝑀2.5).

Proof: As described in (10), the ML decision can be
found by stepping through each of the 𝑀2 candidate values
for b, and for each implement the 𝒪(√𝑀) optimization of
(15).

III. A FAST ML DECODER WITH LOW AVERAGE

COMPLEXITY

The decoding strategy used to prove the fast-decodable
theorem has a low worst-case complexity but a high average
complexity. In this section we present an efficient implemen-
tation of an ML decoder for the golden code that has both low
average complexity and a worst-case complexity of 𝒪(𝑀2.5).

A conventional sphere decoder for the golden code is based
on a four-level tree, with a different 𝑥𝑖 associated with each
level. In contrast, as illustrated in Fig. 1, we propose a four-
level tree that associates b𝑅 = (𝑥𝑅

3 , 𝑥
𝑅
4 ) with the first level,

b𝐼 = (𝑥𝐼
3, 𝑥

𝐼
4) with the second level, a𝑅 = (𝑥𝑅

1 , 𝑥
𝑅
2 ) with

the third level, and a𝐼 = (𝑥𝐼
1, 𝑥

𝐼
2) with the fourth level. This

new tree is a direct result of the fact that A and D are real
(Lemma 1), which allows us to rewrite the ML cost function
from (9) as

𝑃 (x) = ∥v𝐼 −Aa𝐼∥2︸ ︷︷ ︸
𝑃1

+ ∥v𝑅 −Aa𝑅∥2︸ ︷︷ ︸
𝑃2

+

∥z𝐼34 −Db𝐼∥2︸ ︷︷ ︸
𝑃3

+ ∥z𝑅34 −Db𝑅∥2︸ ︷︷ ︸
𝑃4

. (16)

Thus, as illustrated in Fig. 1, (16) shows that the total cost of
a leaf node x decomposes into the sum

∑
𝑖 𝑃𝑖 of four branch

metrics, where 𝑃𝑖 denotes the branch metric for a branch at
the (4− 𝑖)-th stage of the tree.

Besides inducing a new tree structure, the fact that D is
real also leads to a significant reduction in the complexity
of the Schnorr-Euchner sorting for the first two stages of the
tree. Specifically, the fact that D is real leads to a second-stage
branch metric 𝑃3 that is independent of the starting node (b𝑅).
Therefore, we can perform a single sort for the symbol pair
(b𝑅) emanating from the root, and simultaneously a single
sort for the symbol pair (b𝐼) emanating from its children.

2Throughout the paper we use superscripts 𝑅 and 𝐼 to denote the real and
imaginary components, respectively, so that 𝑣𝑅 = ℜ{𝑣} and 𝑎𝐼 = ℑ{𝑎}.

Fig. 1. The structure of the proposed detection tree and its branch metrics.
The cost function for the leaf node is the sum of the branch metrics, 𝑃 (x) =
𝑃1 + 𝑃2 + 𝑃3 + 𝑃4.

The pseudocode of an efficient implementation of the pro-
posed ML golden code detector is shown in Fig. 2. The first
five lines represent initializations. In particular, the first two
lines are a QR decomposition of the effective channel matrix
in (6) and the computation of z in (9). The squared sphere
radius 𝑃 , which represents the smallest cost (16) encountered
so far, is initialized to infinity to ensure ML decoding (line
3). Sorting or Schnorr-Euchner enumeration is used for faster
convergence. Only two sorting operations (line 4 and line 5)
are required. In the pseudocode, the complex QAM alphabet
𝒜 is represented by an ordered list, so that 𝒜(𝑘) indexes the
𝑘-th symbol in the list.

The remainder of algorithm can be interpreted as a two-
level complex sphere decoder to choose the symbol pair b =
(𝑥3, 𝑥4)

⊤, followed by an independent pair of two-level real
sphere decoders that separately decode a𝑅 = (𝑥𝑅

1 , 𝑥
𝑅
2 )

⊤ and
a𝐼 = (𝑥𝐼

1, 𝑥
𝐼
2)

⊤.
The two-level complex sphere decoder incorporates two

common optimizations: radius update (line 47) and pruning
(line 7, line 11). While these optimizations do not affect
the worst-case complexity, they affect the average complexity
significantly. The first level of the complex sphere decoder
considers candidate pairs b𝑅 in ascending order of their
branch metric 𝑃4 (line 6). The second level of the complex
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[Q,R] = QR decomposition(H)1

z = Q∗y2

𝑃 =∞3

[𝑃4,Π4] =4

sort𝑎∈𝒜((𝑧𝑅3 − 𝑟3,3𝑎
𝑅 − 𝑟3,4𝑎

𝐼)2 + (𝑧𝑅4 − 𝑟4,4𝑎
𝐼)2)

[𝑃3,Π3] =5

sort𝑎∈𝒜((𝑧𝐼3 − 𝑟3,3𝑎
𝑅 − 𝑟3,4𝑎

𝐼)2 + (𝑧𝐼4 − 𝑟4,4𝑎
𝐼)2)

for 𝑘 from 1 to 𝑀 do6

if (𝑃4(𝑘) + 𝑃3(1)) > 𝑃 then7

break8

end9

for 𝑙 from 1 to 𝑀 do10

if (𝑃3(𝑙) + 𝑃4(𝑘)) > 𝑃 then11

break12

end13

[𝑥𝑅
3 , 𝑥

𝐼
3, 𝑥

𝑅
4 , 𝑥

𝐼
4] =14

[𝒜(Π4(𝑘))
𝑅,𝒜(Π3(𝑙))

𝑅,𝒜(Π4(𝑘))
𝐼 ,𝒜(Π3(𝑙))

𝐼 ]
𝑣1 = 𝑧1 − 𝑟1,3𝑥3 − 𝑟1,4𝑥415

𝑣2 = 𝑧2 − 𝑟2,3𝑥3 − 𝑟2,4𝑥416

𝑃1 = 𝑃2 = 𝑃17

𝒳 = list(𝑣𝑅2 /𝑟2,2)18

for 𝑚 from 1 to
√
𝑀 do19

𝑃2 = (𝑣
𝑅
2 − 𝑟2,2𝒳 (𝑚))220

if 𝑃2 > 𝑃2 then21

break22

end23

𝑢𝑅
1 = 𝑣𝑅1 − 𝑟1,2𝒳 (𝑚)24

𝑞 = 𝑄(𝑢𝑅
1 /𝑟1,1)25

𝑃2 = (𝑢
𝑅
1 − 𝑟1,1𝑞)

2 + 𝑃226

if 𝑃2 < 𝑃2 then27

𝑥𝑅
1 = 𝑞, 𝑥𝑅

2 = 𝒳 (𝑚), 𝑃2 = 𝑃228

end29

end30

𝒳 = list(𝑣𝐼2/𝑟2,2)31

for 𝑛 from 1 to
√
𝑀 do32

𝑃1 = (𝑣
𝐼
2 − 𝑟2,2𝒳 (𝑛))233

if 𝑃1 > 𝑃1 then34

break35

end36

𝑢𝐼
1 = 𝑣𝐼1 − 𝑟1,2𝒳 (𝑛)37

𝑞 = 𝑄(𝑢𝐼
1/𝑟1,1)38

𝑃1 = (𝑢
𝐼
1 − 𝑟1,1𝑞)

2 + 𝑃139

if 𝑃1 < 𝑃1 then40

𝑥𝐼
1 = 𝑞, 𝑥𝐼

2 = 𝒳 (𝑛), 𝑃1 = 𝑃141

end42

end43

𝑃 = 𝑃1 + 𝑃2 + 𝑃3(𝑙) + 𝑃4(𝑘)44

if 𝑃 < 𝑃 then45

x̂ = [𝑥1, 𝑥2, 𝑥3, 𝑥4]46

𝑃 = 𝑃47

end48

end49

end50

Fig. 2. Pseudocode of a fast ML decoder for the golden code.

sphere decoder considers candidate pairs b𝐼 in ascending
order of their branch metric 𝑃3 (line 10). After forming
b = [𝑥3, 𝑥4]

⊤ (line 14), the decoder removes the interference
caused by b and forms the two intermediate variables 𝑣1 and
𝑣2 of (13), which are functions of the symbols 𝑥1 and 𝑥2 only
(line 15 and line 16). Following the two-level complex sphere
decoder and interference cancellation, the decoder decides on
the symbol pairs a𝑅 and a𝐼 separately using an independent
pair of two-level real sphere decoders.

The function list is used to implement sorting for the
final two stages of the tree; it returns a list of candidate
symbols drawn from the

√
𝑀 -ary PAM alphabet 𝒜𝑅, sorted

in ascending order of distance to the input argument. As
described in [18], it can be implemented efficiently using a
table lookup.

After initializing the sphere radius for decoding a𝑅 =
(𝑥𝑅

1 , 𝑥
𝑅
2 )

⊤ (line 17) and forming the sorted list of best
candidate symbols (line 18), the real sphere decoder chooses
the symbol 𝑥𝑅

2 that has the lowest branch metric 𝑃2 (line 20).
The interference from the symbol 𝑥𝑅

2 is then subtracted (line
24) and a decision is made on the symbol 𝑥𝑅

1 using the PAM
slicer 𝑄( ⋅ ) (line 25); the slicer function 𝑄( 𝑥 ) returns the
symbol from the PAM alphabet 𝒜𝑅 that is closest to 𝑥. The
branch-metric 𝑃2 for the current candidate symbol pair a𝑅

is computed in line 26, and radius update occurs if it is less
than the previous smallest value 𝑃2 (line 28). The real sphere
decoder includes pruning and radius update (line 21 and line
28, respectively).

Decoding the symbol pair a𝐼 follows identically to the
decoding of the symbol pair a𝑅 and is shown in line 31
through line 43. Importantly, a𝑅 and a𝐼 are decoded in-
dependently. Therefore, although the pseudocode shows a
serial implementation that decodes first a𝑅 and second a𝐼 , a
hardware implementation could decode them simultaneously
(in parallel), thus decreasing decoding latency. The overall cost
𝑃 for the current candidate symbol vector is updated in line
44. Radius update and best candidate vector update occurs if
the current cost 𝑃 is less than the previous smallest cost 𝑃
(line 46 and line 47, respectively).

The algorithm could be embellished to further reduce av-
erage complexity. For example, the columns of H could be
permuted using a BLAST ordering. (In this case the only
permutations for which the key property of Lemma 1 will
still hold are {1, 2, 3, 4}, {1, 2, 4, 3}, {2, 1, 3, 4}, {2, 1, 4, 3},
{3, 4, 1, 2}, {3, 4, 2, 1}, {4, 3, 1, 2} and {4, 3, 2, 1}.) For the
sake of clarity of exposition, however, we have chosen not to
include such refinements in Fig. 2. Such refinements, which
have no effect on the worst-case complexity, are well-known
in the literature and their application to the pseudocode is
straightforward.

We remark that a quasistatic channel does not offer any
additional reduction in decoding complexity, as compared to
a time-varying channel. This is a direct result of the fact that
the entries of B in (7) are generally complex, regardless of
whether the channel is quasistatic or time-varying.

IV. NUMERICAL RESULTS

In Fig. 3 we compare the average complexity of the
proposed fast ML decoder to a conventional ML decoder.
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Fig. 3. Average decoding complexity versus SNR for golden code with
64-QAM.

The average complexity is quantified by the average number
of nodes visited while searching the tree. The channel was
modeled using (4) with quasistatic i.i.d. Rayleigh fading,
with constant coefficients within each codeword block, but
independent fading from block to block. The alphabet was
64-QAM. The fast ML decoder was implemented following
the pseudocode of Fig. 2. The conventional ML decoder
was implemented using an efficient four-level complex sphere
decoder with Schnorr-Euchner enumeration. Results are shown
for two cases of channel matrix column ordering: no ordering
and BLAST reordering.

As can be seen from Fig. 3, with no column ordering,
the proposed fast ML decoder is about 45% less complex
than a conventional ML decoder. With BLAST ordering, the
proposed ML decoder is about 30% less complex than a
conventional decoder. Beyond the advantages shown in Fig. 3,
the proposed algorithm has three additional advantages that are
not reflected in Fig. 3, namely:

∙ the proposed algorithm reduces the number of Schnorr-
Euchner sort operations for the first two stages to only
two, compared with a conventional decoder that can
require as many as 𝑀 + 1.

∙ the proposed algorithm can avoid BLAST ordering with-
out a high complexity penalty.

∙ decoding of the symbol pairs a𝑅 and a𝐼 can be done in
parallel, reducing decoding latency.

V. CONCLUSION

The golden code induces special structure in the effective
channel matrix. By recognizing and exploiting this structure
we have proven that the worst-case complexity of an ML
decoder for the golden code with 𝑀 -ary QAM is 𝒪(𝑀2.5),
regardless of whether the channel varies with time. By further
exploiting this structure we have proposed a fast ML decoding
algorithm based on a unique tree construction that outperforms

a conventional ML detector on four fronts simultaneously:
worst-case complexity, average complexity, sorting complex-
ity, and decoding latency.

APPENDIX

PROOF OF THE KEY PROPERTY (LEMMA 1)

We will use a QR decomposition of H̄ from (6), namely
H̄ = Q̄R̄, to construct a QR decomposition of H = H̄Ψ,
namely H = QR.

Inspection of (6) reveals that h̄∗
1h2 = h̄∗

1h4 = h̄∗
2h3 =

h̄∗
3h4 = 0, which implies that the subspace spanned by the

first and third columns of H̄ is orthogonal to the subspace
spanned by the second and fourth columns. This fact implies
that 𝑟1,2 = 𝑟1,4 = 𝑟2,3 = 𝑟3,4 = 0, so that:

H = H̄Ψ

= Q̄

⎡
⎢⎢⎣
𝑟1,1 0 𝑟1,3 0
0 𝑟2,2 0 𝑟2,4
0 0 𝑟3,3 0
0 0 0 𝑟4,4

⎤
⎥⎥⎦
⎡
⎢⎢⎣

𝑐 𝑠 0 0
−𝑠 𝑐 0 0
0 0 𝑐 𝑠
0 0 −𝑠 𝑐

⎤
⎥⎥⎦

= Q̄G, (17)

where

G =

[
X Y
0 Z

]
,

X =

[
𝑐𝑟1,1 𝑠𝑟1,1
−𝑠𝑟2,2 𝑐𝑟2,2

]
,

Y =

[
𝑐𝑟1,3 𝑠𝑟1,3
−𝑠𝑟2,4 𝑐𝑟2,4

]
,

Z =

[
𝑐𝑟3,3 𝑠𝑟3,3
−𝑠𝑟4,4 𝑐𝑟4,4

]
. (18)

Observe that the submatrices X and Z are entirely real, since
𝑐 and 𝑠 and 𝑟𝑖𝑖, 𝑖 ∈ {1, 2, 3, 4}, are all real. Therefore, we
can transform G into an upper triangular matrix R = WG
via the purely real Givens rotation matrix:

W =

[
W1 0
0 W2

]
(19)

where

W1 =
1√

(𝑐𝑟1,1)2 + (𝑠𝑟2,2)2

[
𝑐𝑟1,1 −𝑠𝑟2,2
𝑠𝑟2,2 𝑐𝑟1,1

]
,

W2 =
1√

(𝑐𝑟3,3)2 + (𝑠𝑟4,4)2

[
𝑐𝑟3,3 −𝑠𝑟4,4
𝑠𝑟4,4 𝑐𝑟3,3

]
. (20)

Substituting G = W⊤R into (17) yields the desired QR
decomposition H = QR, where Q = Q̄W

⊤
and

R =WG =

[
W1 0
0 W2

] [
X Y
0 Z

]
=

[
A B
0 D

]
. (21)

Since W1, W2, X and Z are all real, it follows that both
A =W1X and D =W2Z are real. And by construction of
W1 and W2, both A and D are upper triangular.
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