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The Chase Family of Detection Algorithms for
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Deric W. Waters, Member, IEEE, and John R. Barry, Senior Member, IEEE

Abstract—We introduce a new family of detectors for mul-
tiple-input multiple-output (MIMO) channels. These detectors
are called Chase detectors because they can be interpreted as a
translation of the Chase error-control decoding algorithm from
time to space. The Chase detector is parameterized by only four
parameters; nevertheless, it reduces to a wide range of previ-
ously reported MIMO detectors as special cases, including the
maximum-likelihood and decision-feedback detectors. The Chase
detector defines a simple framework for not only comparing
existing MIMO detection algorithms but also proposing new ones.
For example, based on the Chase framework, we propose a new
detector called B-Chase that performs well on fading channels.
Specifically, on a four-input four-output Rayleigh-fading channel
with uncoded 16-QAM inputs, one instance of the B-Chase
detector falls only 0.4 dB short of the performance of the max-
imum-likelihood sphere detector while reducing complexity by
68%. Another instance of the B-Chase detector outperforms
the BLAST-ordered decision-feedback detector by 4.4 dB while
increasing complexity by only 17%.

Index Terms—Complexity reduction, multiple- input multiple-
output (MIMO) systems, signal detection, tree searching.

I. INTRODUCTION

HE promise of high spectral efficiency and diversity to
fading has led to widespread interest in multiple-input
multiple-output (MIMO) communications. A practical obstacle
to the realization of a MIMO system is the complexity of
detection. For example, the complexity of maximum-likelihood
(ML) detection grows exponentially with both the spectral
efficiency and the number N of channel inputs. A popular
reduced-complexity alternative, despite its significantly infe-
rior performance, is the BLAST-ordered decision-feedback
(BODF) detector [1]-[3], whose complexity is roughly inde-
pendent of spectral efficiency and grows only cubically in V.
The large gap in both performance and complexity between
the ML and BODF detectors has motivated the search for
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alternatives. The sphere detector [4] is a computationally
efficient implementation of the ML detector. There has been
extensive work to reduce its complexity [5], including the
use of ordering [6]-[8] and optimization of the search radius
[9]. A minimum mean-squared-error (MMSE) sphere detector
was proposed in [6] that approximates the ML detector with
reduced average complexity. Sphere detectors applied to a
complex channel model have also been proposed [10], [11].
Other reduced-complexity approximations of the ML detector
have also been proposed [12]—[18]. Lattice reduction [19], [20]
also improves the performance of the BODF detector. A com-
bination of Lenstra—Lenstra—Lovasz (LLL) lattice reduction
with the MMSE BODF detector closely approximates the ML
detector in some cases [21].

There is an important class of reduced-complexity detectors
called list-based detectors that adopts a two-step approach of
first creating a list of candidate decision vectors, then choosing
the best candidate as its final decision. The Chase detector intro-
duced in this paper is an example of a list-based detector; other
examples include [14], [15], [18], [22], and [23]. The rollout de-
tector of [14] enumerates all possibilities for the first m symbols,
then completes the decision vector for each possibility using a
DF detector. The parallel detector [15] generates its list by im-
plementing a separate low-complexity detector for each possible
value of the first symbol. In fact, the parallel detector is like a
rollout detector with m = 1, except that it uses a unique symbol
ordering to improve performance. More recently, a generaliza-
tion of the parallel detector called the fixed-complexity sphere
detector has been shown to achieve full diversity over N-input
N-output channels [23].

This paper proposes the B-Chase detector, and demonstrates
that the B-Chase detector can approach ML performance in
some cases with less complexity than previously reported
detectors [6], [12], [15], [21]. The B-Chase detector distin-
guishes itself from previous list-based detectors in the unique
way it builds its list. It will be shown that the B-Chase de-
tector achieves better performance with significantly smaller
list lengths, leading to a favorable performance-complexity
tradeoff for four-input four-output channels. Instead of enumer-
ating all possibilities for the first symbol, like the parallel and
rollout detectors, the B-Chase detector may enumerate only a
subset of the possible symbol values. Furthermore, the B-Chase
detector adopts a unique symbol ordering, which is critical to
its performance.

In Section II, we introduce the Chase framework for defining
detection algorithms, and show how existing detectors fit into
the framework. In Section III, we propose a new instance
of the Chase detector family called the B-Chase detector. In

1053-587X/$25.00 © 2008 IEEE
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Fig. 1. Block diagram of the Chase detector.

Section IV, we describe a computationally efficient imple-
mentation of the B-Chase detector. In Section V, we present
some performance and complexity numerical results, and in
Section VI, we make concluding remarks.

II. CHASE DETECTION: A GENERAL FRAMEWORK

This paper considers a memoryless channel with N inputs
a=[ay,...an]? and M outputs r = [ry,...7p]7:
r=Ha+w (D
where H = [hy,...hy] is a complex M x N channel ma-
trix whose ith column is h;, and where w = [wy, ... wys]7 is
noise. We assume that the columns of H are linearly indepen-
dent, which implies M > N. We assume that the noise com-
ponents are independent and identically distributed (i.i.d.) com-
plex Gaussian random variables with E[ww*] = NyI, where w*
denotes the conjugate transpose of w. Further, we assume that
the complex inputs are uncorrelated and chosen from the same

unit-energy discrete alphabet A, so that E[aa*] = L.

In this section, we introduce the Chase detector, a general de-
tection strategy for MIMO channels that reduces to a variety of
previously reported detectors as special cases. The Chase de-
tector defines a simple framework for not only comparing ex-
isting MIMO detection algorithms but also proposing new ones.
Specifically, a Chase detector is defined by five steps, as illus-
trated in Fig. 1, and as outlined below.

Step 1) Identify ¢ € {1,... N}, the index of the first symbol
to be detected.

2) Generate a sorted list £ of candidate values for the
ith symbol, defined as the ¢ elements of the alphabet
nearest to y;, where y = (H*H + o’I)7'H*r is
the output of either the zero-forcing (ZF) (o = 0)
or MMSE (a? = Np) linear filter.

3) Generate a set of ¢ residual vectors {r,...r,} by
cancelling the contribution to 7 from the sth symbol,
assuming each candidate from the list is, in turn,
correct:

Step

Step

r,=r-— hlSJ (2)
4) Apply each of {ry,...7¢} to its own independent
subdetector, which makes decisions about the re-
maining N — 1 symbols (all but the 7th symbol).

Step

Together with s;, the jth subdetector defines a can-
didate hard decision a; regarding the input a.

Step 5) Choose as the final hard decision a the candidate hard
decision {@1, .. .a,} that best represents the obser-
vation 7 in a minimum mean-squared-error sense:

3)

a= argmin |r— Hal?.
ac{ay,...a,}

The Chase detector is roughly analogous to its namesake,
the well-known Chase algorithm for soft decoding of binary
error-control codes [24], but with the temporal dimension re-
placed by the spatial dimension. The analogy is loose, but still
useful. The Chase algorithm begins by identifying the p least
reliable bits of a received codeword, and enumerates all 27 cor-
responding binary vectors while fixing the remaining more re-
liable bits. This is analogous to Steps 1) and 2), except in Step
1), only one symbol (not necessarily the least reliable) is identi-
fied instead of p, and in Step 2), only a subset of the most likely
values are enumerated. The Chase algorithm decodes each of
the 2P binary vectors using a simple hard-decoding algorithm,
producing a set of candidate hard decisions for the codeword.
This is analogous to the cancellation and subdetection in Steps
3) and 4). Finally, the Chase algorithm chooses the candidate
codeword that best matches the received observations in a way
precisely analogous to that in Step 5).

To uniquely define an instance of the Chase detector requires
that the following four parameters be specified:

 a strategy for selecting ¢ in Step 1);

* alist length £ for Step 2);

* afilter type, ZF or MMSE, for Step 2);

* a subdetector algorithm for Step 4).

Table I summarizes how the maximum-likelihood (ML), BODF,
parallel decision feedback (PDF), and parallel detectors may be
specified as Chase detectors using these four parameters. For ex-
ample, the Chase detector reduces to the ML detector when the
subdetectors are themselves ML detectors, and the list length is
maximal (¢ = |A]). In this case, the choice of which symbol
to detect first has no effect on performance. On the other hand,
the Chase detector reduces to the BODF detector when the list
length is one and the subdetectors are themselves BODF detec-
tors. In this case, the choice of which symbol to detect first is
critical to performance. The parallel detector is another Chase
detector whose performance is highly sensitive to the choice of
which symbol to detect first. The last row of Table I describes a
new detector that will be proposed in the next section.
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Fig. 2. Decision regions for @ = e7/4 and different list lengths: (a) £ = 1; (b) £ = 2; and (c) £ = 3. The decision list contains @ whenever the input to the list
detector falls within the shaded region. Also indicated is the minimum distance d, to the boundary.

TABLE I
SPECIAL CASES OF THE CHASE DETECTOR
First- Filter Type, Subdetector
Detector Symbol List Length ¢ o
Index {
ML [5] any |A] ZF ML
BODF [1] *BLAST, 1 ZF or BODF
MMSE
PDF [23] *BLAST, 1 ZF or Linear
MMSE
Parallel using (14) |A| ZF any
[15]
B-CHASE || using (14) 1<4 <A ZF or BODF
or (16) MMSE

@ The index BLAST) signifies the first index of the BLAST ordering [1].

III. A NEW CHASE DETECTOR

In this section, we introduce the B-Chase detector, as summa-
rized by the last row of Table I. The B-Chase detector is defined
simply as a Chase detector that uses BODF as a subdetector.
The list length £ can be any integer in the set {1,...|A|}, and
the filters can be ZF or MMSE. It remains to specify the key pa-
rameter, namely, the index ¢ of the symbol to detect first. Two
algorithms for selecting ¢ will be described later in this section.
Before describing them, we must first understand the impact of
the list detector on the signal-to-noise ratio (SNR) of the sth
symbol.

A. SNR Gain of a List Detector

We say that a list detector makes an error when the actual
transmitted symbol does not appear somewhere on the list. With
this definition, increasing the length of the list leads to a de-
crease in the probability of error. (Indeed, a maximal list length
of |A| ensures that the list detector never makes an error.) The
decrease in error probability can be interpreted as an SNR gain.
We demonstrate this effective gain using the 4-QAM alphabet
as an example.

Assume a 4-QAM alphabet {e*77/4 ¢*i37/41 with a ZF
front end (o = 0), and assume that the transmitted symbol is
a = e™/4, The input to the list detector is then y; = a + n;
this defines a scalar channel whose SNR is SNR; = 1/E[|n|?].
In Fig. 2, we illustrate the correct decision regions for lists
lengths ¢ € {1,2,3}. As shown in Fig. 2(a), a list detector
with £ = 1 (i.e., a conventional decision device) will be correct
when y; is in the first quadrant of the complex plane. As
illustrated in Fig. 2(b), a list detector with ¢ = 2 will be correct
when Re{y;} + Im{y;} > 0. As illustrated in Fig. 2(c), a list

detector with £ = 3 will be correct when y; is not in the third
quadrant. Therefore, letting P, denote the list-error probability
for 4-QAM when the list length is ¢, we find that

Py =2Q(1/SNR;) — Q*(1/SNR;)

~2¢—SNR;/2 _ ,—SNR;

~ e—SNRz/27 (4)
Py, =Q(1/2SNR;) ~ ¢~ SNR: 5)
Py =Q*(\/SNR;) ~ ¢~ SNR (6)

where Q(z) = (2r)71/2 [* ¢="/2dt. We twice invoked the
Chernoff-bound approximation Q(z) &~ e~*"/2, which is valid
only at high SNR, and we further assumed that SNR; > log(4)
in the second approximation for P;. Comparing (4) and (5), we
see that increasing the list length from / = 1 to £ = 2 ap-
proximately doubles the SNR. Intuitively, we can attribute this
SNR gain to the fact that the minimum distance to the decision
boundary increases by a factor of /2 when the list length is in-
creased from ¢ = 1to ¢ = 2. Likewise, the SNR gain for / = 3is
the same as that for / = 2 because, as shown in Fig. 2, they have
the same minimum distance from a to the decision boundary.

We approximate the list detector SNR gain at high SNR by
how far it moves the decision boundary. Specifically, let d;(A)
denote the minimum distance from any element in A to the cor-
responding decision region boundary of the list detector with
list length /. We define the SNR gain ’yl? for a list detector with
a list length of £ as

, d?(A
= iy

(N

This gain approximately quantifies the benefit of a list de-
tector (£ > 1) relative to a conventional detector (¢ = 1). For
example, from Fig. 2 we see that d; (4-QAM) 1/4/2 and
d2(4-QAM) = d3(4-QAM) = 1, which is consistent with an
SNR gain of two for both £ = 2 and ¢ = 3. At one extreme, a
minimal list length (£ = 1) yields no SNR gain (77 = 1), as
expected. At the other extreme, a maximal list length (¢ = |A])
yields an infinite SNR gain (fy‘QA‘ = 00), since there is no de-
cision boundary at all in that case. A straightforward analysis
of the list detector decision regions for 16-QAM reveals that
the list detector SNR gains are y5 = 2,73 = 2,73 = 8, and
7%, = 10. Similarly, the list detector SNR gains for 64-QAM
are 77 = 4, v2 = 8, v = 20, y2; = 40, and 723 = 58. When
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compared to the true SNR gain of a list detector, as measured
at an error probability of 0.01, the approximation of (7) is accu-
rate to within 1 dB for a 16-QAM list detector with list length
£ € {1,...9}, and it is accurate to within 1 dB for a 64-QAM
list detector with list length £ € {1,...41}.

B. SNR of the B-Chase Detector

In this subsection we quantify the SNR for each symbol of the
B-Chase detector. We begin by analyzing the output of the linear
filter in Step 2) of the B-Chase detector, which provides the input
to the list detector. First, consider the QR decomposition of the
extended channel matrix [25], [26]:

H [H] = QL
al

®)

where the columns of the (M + N) x N matrix Q are or-
thonormal, and where L is a lower triangular N X N matrix
with positive and real diagonal elements. The bottom N rows
of Q are the matrix aL ' [26].

In terms of the QR decomposition (8), the linear filter of Step
2) can be written as U*Q*, where U* :NL_I, and where the
matrix Q is defined as the top M rows of Q. The output of this
linear filter is thus y = U*Q*r, which reduces to

y=a—ao’U"Ua+ U*'Q*w

=a+n ©)]
where we used the fact that Q*H = L — o?U, and where we
introduced n = U*Q*w — o>U*Ua. Although n contains both
noise (first term) and residual intersymbol interference (ISI)
(second term) when o # 0, we continue to call it noise. Since
Q*Q + a?UU"* =T and o? € {0, Ny}, the noise variance of
the ith output of the forward filter is E[|n;]|?] = No||u;||?, where
u; is the ¢th column of U. There is a slight bias when o = Ny
(MMSE), but to keep complexity low, we opt not to remove it.

The effective SNR for the first symbol detected, including the
gain of the list detector, is

92

SNRW = Tt
b Nollug|?

(10)

A more convenient expression for SNRgZ), and for the SNRs
of the remaining symbols, is defined by a QR decomposition of
the extended channel matrix H whose columns are permuted
according to the detection order. Let II() denote an N x N
permutation matrix that arranges the columns of H such that
the sth column comes first, and the remaining columns are
arranged according to the BLAST ordering. Consider the QR
decomposition

HII® = Q(i)L(’i) (an
where the columns of the (M + N) x N matrix Q) are or-
thonormal, and where L) is a lower triangular N X N matrix
with positive and real diagonal elements. Note that Q = Q)
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and L = L only when I1() is the identity matrix. The effec-
tive SNR for the first symbol detected is

i 2
1 -~ 7

= N, 12)

where l,(:)k is the kth diagonal of L(*). The final N — 1 symbols
in the B-Chase detector when the ith symbol is detected first do
not enjoy any list-detection gain. Therefore, assuming no error

propagation, their SNR can be expressed as

13)

geeey

1N 2
(%)

SNRY = A g N

k NO ’ .

This assumption is justified by the fact that error propagation

is not the limiting factor of performance, even for small list
lengths.

C. B-Chase Selection

The importance of which symbol is detected first is greatly
impacted by the list length. Consider two extreme cases: First,
when the list length is maximal (¢ = |A|), the least reliable
symbol should be detected first. (The Chase error-control de-
coding algorithm similarly identifies the least reliable bits to
enumerate.) When the list length is minimal (£ = 1), the most
reliable symbol should be detected first. (This is consistent with
BLAST-ordered DF detection.) In between these two extremes,
however, the choice of which symbol to detect first must balance
two opposing goals. On the one hand, we want to choose 7 so
that the SNR of the first symbol SNR?) is high; this ensures that
the list detector is likely to be correct. Loosely speaking, SNR?)
is maximized by choosing the column of H that is most orthog-
onal to the remaining columns. On the other hand, we also want
each subdetector to see a well-conditioned channel, so that the
subdetector decisions are likely to be correct. Loosely speaking,
this is accomplished by choosing the column of H that is least
orthogonal to the remaining columns. We now describe two se-
lection algorithms that strike a balance between these two op-
posing goals.

Selection Algorithm 1: Our first selection algorithm maxi-
mizes the minimum SNR of the symbols, as follows:

Lo .08,

l(k)

NONY

When ¢ = 1, so that v, = 1, this selection algorithm can be im-
plemented by choosing the column of U with minimum norm,
as proven in [1]. On the other hand, when the list length is max-
imal and v, = oo, the selection algorithm reduces to the parallel
selection algorithm [15].

Implementing the selection algorithm (14) when ¢ > 1 re-
quires O(N*) computations. This is because the QR decompo-
sition (11) needs to be computed /N times, where each decom-
position involves computing the BLAST ordering of an M X
(N — 1) matrix.

1= argmax (14)

ke{1,2,...N}
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Fig. 3. (a) Overall block diagram for the B-Chase detector. (b) Block diagram
for the DF subdetector when NV = 3.

Selection Algorithm 2: In order to avoid the large complexity
of the first selection algorithm, we propose approximating the
SNR of the symbols inside the subdetectors. First of all, if / = 1
we select the symbol with minimum noise variance, because this
is optimal [1]. On the other hand, if the list length is maximal
(¢ = |A|), we select the symbol with the largest noise vari-
ance because the list detector has an infinite SNR gain to coun-
teract the noise. When the list length is greater than one, but not
maximal, we propose selecting the symbol which maximizes
the minimum of SNR{” and SNR'". This approach is justified
by the fact that the smallest SNR inside the subdetector is often
SNRY”, so that SNR" approximates the minimum SNR inside
the subdetector. The ultimate validity of this approximation will
be shown through the performance results of Section V. This
SNR can be easily calculated from the matrix U, as follows:

1

SNRY) = : (15)
2 Nomingz; {|lu;|? - |g;:[*}
where g;; = uju;/||u;]|. Selection algorithm 2 can thus be
summarized as follows:
argmax  Jug?, (=14
ke{1,2,.N}
= arg max min{”J?”z, —— {H""'1||2_| . lg}}, else.
ke{1,2,..N} k R U195,k 6

Note that if £ = 1, (16) reduces to choosing the column of U
with minimum norm.

FUNCTION BCHASE DETECTOR

INeUTS:  HL/, A
OUTPUT: a

1. [FM, (%), {dﬁj}] = BChasePreprocessing(H, /)
2. y=Fr

3. [sy, ... 8g] = ListDetect(y,|.A, ¢),
so that s; is the i-th closest element of A to y,

4., T=®

5. forl=1tol/,

‘ b= s
7. ¢ = di |y, - s

8 fork=2to N,

9 if¢g<r,

10. z =y, — Tpimy ;b
1. Bk,l = dec{z}

12. e =c + dpglz - %k,l|2
13. end

14, end

15. if¢ <1,

16. T=¢

17 f=1

18 end

19. end

Fig. 4. Computationally efficient implementation of the B-Chase detector.

IV. IMPLEMENTING THE B-CHASE DETECTOR

In this section, we describe an implementation of the B-Chase
detector that has low complexity, as illustrated by the block dia-
gram of Fig. 3, and as summarized by the pseudocode of Figs. 4
and 5. This computationally efficient implementation enables a
detailed performance-complexity tradeoff analysis in Section V.

Step 1): The first step towards implementing the B-Chase
detector is to select the symbol to detect first according to (14)
or (16). Selection algorithm 1 can be implemented directly
once the squares of the diagonal elements of L(®) from (11)
are known. We will calculate these without computing the QR
decomposition of (11) directly. Observe that permuting the
columns of H by II® corresponds to permuting the rows of
C =U"Q* by II()*, As a result, the definitions of I1(9), Q(’i),
and L) given in (11) are equivalently defined by the following
sorted-QR decomposition of C*:

c1) = QWuU® (17)
where U(") = (L()*)~1, This sorted-QR decomposition can be
computed using the algorithm given in [27] after modifying it to
choose the sth column first, then choose the following columns
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FUNCTION BCHASEPREPROCESSING

INpUTS:  H, /

oureuts: M, 1), {d2 , ... d3; n}

1. [Q, L] = QRdecomposition(H)
2. U= (L*™

3. for j=1toN, ;= Zke{l, . j}’uk’ﬂz, end
4. for k=1to N,
N A S T N (0
= sortedQR(U, e, k)
6 S®=minf{(rtf) @52 .., (N
7. end
8. ¢ = arg max S(k)
ke{l, ..., N}
9. D!'= diag(U(i))
10. Q = first M rows on
1. F=D'el)*Q*
2. M=D"e"*Ln)
13. forj=1to N, dﬁj = (lj(;-))z, end

Fig. 5. Preprocessing pseudocode for the proposed implementation of the
B-Chase detector that uses selection algorithm 1.

normally. It is important to note that II(*) calculated in this way
puts the final N — 1 columns of H in their BLAST ordering,
as shown in [28]. Finally, the squares of the diagonal elements
of L) are a by-product of this sorted-QR decomposition, and
selection algorithm 1 can be implemented using (14).

Lines 3-8 of Fig. 5 implement selection algorithm 1 in a less
complex way by computing the sorted-QR decomposition of the
lower triangular matrix U, as we now explain. First, substituting
the definition of C into (17) gives:

c ) = qQun®

=QoWe®+un® (18)
where ©() is a unitary matrix such that U® = @®O*UI®
is an upper triangular matrix with real and positive diagonals.
Then by inspection we see that Q" = QO The matrices
00, UM and 11() are simply defined by the sorted-QR de-
composition of U

Un® = e®Wu®, (19)

As before, the squares of the diagonal elements of L) are a
by-product of this decomposition.

Before moving on to Step 2), we propose applying a front-end
filter to the channel output that reduces the complexity of subse-
quent steps. Lines 9—11 of Fig. 5 give the pseudocode for com-
puting the front-end filter F', which is defined as follows:

F=D 'Q®W* (20)
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where D is a diagonal matrix with d; ; = l;’; Similar to (9),
the output of this filter y = Fr reduces to
y=Mb+n (21)
where M = D'L® is an N x N lower-triangular matrix with
ones along the diagonal, where b = T1()*a is a permuted ver-
sion of the channel input, and the effective noise is n = Fw —
2D 'U®b. Line 12 of Fig. 5 gives the pseudocode for com-
puting M, which will be needed to implement the subdetectors.
Step 2): After applying the front-end filter as shown in Line
2 of Fig. 4 to compute y (21), the list detector simply generates
an ordered list [s1, . . . s¢] of the £ elements of A that are nearest
to Y.

Steps 3) and 4): 1t is convenient for implementation to merge
Steps 3) and 4). The result is £ DF detectors whose first symbol
decisions are hard-wired to distinct outputs of the list detector.
Using the well-known decision-feedback process [29], the Ith
subdetector cancels the intersymbol interference from the kth
element of y as follows:

k—1
Tt = Yk — Z Mk, jbj1 (22)

j=1
where b;; = dec{xy,} is the decision already made regarding

b; by the ¢th subdetector, and where dec{z} quantizes z to the
nearest element of A.

Step 5): In the fifth and final step, the B-Chase detector
chooses its final decision as the subdetector’s output which has
the minimum cost. From (3), the cost of the /th decision vector
can be expressed as ¢; = ||r — HII(Vb;||2, which reduces to

o= [y — by 23)

where I;l is the decision vector produced by the /th subdetector.
For the case when a? = Ny, (23) becomes an approximation
due to the residual ISI.

Two crucial means for reducing complexity deserve to be

highlighted.

e The computations made inside the subdetectors can be
reused to calculate the cost. Specifically, using (22) and
the fact that my, ;, = 1, we can rewrite the cost expression
(23) as

N
c = Z di,k|xk,l — bk,l|2- (24)
k=1

Therefore, calculating the cost for a subdetector de-
cision vector requires at most only O(N) additional
computations.

* A pruning and threshold-tightening strategy can be used
to avoid unnecessary calculations. In particular, a cost
threshold T can be established with the cost ¢; of the first
subdetector’s decision. In subsequent subdetectors, we can
abort both the cost calculation (24) as well as the decision
feedback process (22) whenever this threshold is exceeded
(see Line 9 of Fig. 4). Furthermore, the threshold can be
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reduced each time a lower cost is found (see Line 15 of
Fig. 4).

As presented here, the B-Chase algorithm implements the
subdetectors in serial fashion. The B-Chase detector also lends
itself to a parallel implementation since each of the subdetectors
can operate independently, as portrayed in Fig. 3.

V. NUMERICAL RESULTS

This section examines the performance and complexity of
B-Chase detectors on Rayleigh-fading channels, assuming
the channel parameters H and Ny are known to the receiver.
We will compare the MMSE B-Chase detector to the ZF and
MMSE sphere detectors as implemented in [6] whose initial
radii are set to infinity. Setting the initial radius to infinity
for these sphere detectors is equivalent to setting it to the
mean-squared error of the output of the ZF and MMSE BODF
detectors, respectively. That enables the ZF sphere detector
to achieve ML performance. We also compare against the
lattice-reduced MMSE BODF (LR-BODF) and lattice-reduced
MMSE linear (LR-linear) detectors [21]. The last detector we
compare against is the ML-DF [12] detector, which detects the
first three symbols using ZF sphere detection [6], and the final
symbol using ZF DF detection. We will first give numerical
results for the performance and complexity of these detectors
individually, then jointly. We use B-Chase*({) to denote the
B-Chase detector with list length /, a? = N, and selection
algorithm (14). Likewise, we use B-Chase({) to denote the
B-Chase detector with list length /, a? = Ny, and selection
algorithm (16). The MMSE versions of the parallel and BODF
detectors are also included in the comparison, since they are
the special cases B-Chase*(|A|) and B-Chase(1), respectively.

The B-Chase detector achieves near-ML performance for
a variety of channel dimensions. To demonstrate this we per-
formed simulations over N-input N-output Rayleigh-fading
channels with 16-QAM inputs. Fig. 6 shows the performance
versus the number of antennas, where the SNR per bit is
E[||Ha|?]/(E[||w||?] - log,|A|). We see that B-Chase(16)
achieves near-ML performance, with an SNR penalty that
ranges from 0.5 dB to 1.0 dB as the number of antennas
N increases from 2 to 6. Reducing the list length degrades
performance, but B-Chase(4) performs at least as well as the
LR-BODF detector over the range of N from 2 to 6.

We now quantify the complexity of the B-Chase detector. The
best complexity metric depends upon many variables that are
specific to a particular implementation. We avoid the problem of
defining the relative complexity of different floating-point op-
erations by measuring complexity as the total number of real
multiplies (RMs) per bit. The squared absolute value of a com-
plex number is counted as two RM, and complex multiplica-
tions are counted as three RMs. Since the number of divisions
and square-roots is small compared to the number of multi-
plies, the main drawback of counting only the multiplies is that
it neglects the contribution to the complexity of the addition
operations. However, this is a reasonable simplification since
multiplies are generally more complex to implement than ad-
ditions. Another important point is that the multiplication of a
floating-point number by a constellation point is counted as an
addition since the constellation points are just scaled integers
[30]. This means that implementing interference cancellation
(22) is multiply free.
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Fig. 6. SNR required versus number of antennas for various detectors. Results
are averaged over 10° Rayleigh-fading N X N channels with 16-QAM inputs.

The number of computations required by the detectors we
compare varies for different channel and noise realizations.
Using the average complexity as the basis for comparison may
be too optimistic, since systems are often designed to handle
the worst-case scenario. On the other hand, the worst-case
complexity may be too pessimistic since a practical system
could enforce limits on complexity that are sufficiently high
so as to have only a negligible effect on performance. One
benefit of the B-Chase detector is that even in the worst case,
it is still low in complexity. On the other hand, the worst-case
complexity of the sphere detector and LLL algorithm can be
extremely large. In order to give a fair and practical complexity
comparison, we choose the complexity limit of the detector
such that the probability that it is exceeded is the same as the
target probability of a bit error. In other words, since the target
BER is 103, we quantify complexity using the 99.9% quantile
of real multiplies.

The preprocessing complexity includes those computations
that are required only once per channel estimation. The prepro-
cessing used to implement the B-Chase* detector is described
in Fig. 5, where the IV sorted-QR decompositions dominate the
preprocessing complexity. On the other hand, the most com-
plex part of the preprocessing used to implement the B-Chase
detector is the QR decomposition of the extended channel ma-
trix in line 1 of Fig. 5. The preprocessing complexities of the
MMSE sphere, LR-BODF, and LR-linear detectors are higher
than that of the B-Chase detector. Although the preprocessing
for the MMSE sphere detector is essentially the same as that of
B-Chase(1), it is more complex because it uses the real channel
model which doubles the channel dimensions. The LR-BODF
detector requires the same preprocessing as the MMSE sphere
detector in addition to LLL lattice reduction.
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We define the core-processing complexity as those computa-
tions which must be implemented during every symbol period.
Fig. 4 describes the core-processing of both the B-Chase* and
B-Chase detectors. When ¢ = 1, it requires only 3M N RM
since Lines 7 and 12 can be skipped. Otherwise it requires a
maximum of 3(M + ¢) N RM. We assume that the channel es-
timate is updated every 1" symbol periods. As a result the fotal
complexity, as measured by real multiples per bit, is related to
the preprocessing complexity C',;. and core-processing com-
plexity Ceore by

CCOI‘C + CpI‘C/T

COMPLEXITY =
N -log, 4]

(25)

We now investigate the performance—complexity tradeoff
of the B-Chase detectors for a four-input four-output
Rayleigh-fading channel with 16-QAM inputs. Fig. 7 il-
lustrates the performance versus complexity trade-off of each
detector with a single point, where performance is measured
by the SNR required to reach BER = 1073, and complexity is
measured by the 99.9% quantile of the total real multiplies per
bit (RM/ bit). The channel is assumed to change every eight
symbol periods (7" = 8). Not shown is the ML detector, which
required 57 RM/b and 16.0 dB using the ZF sphere detector
implementation. Also, it is worth noting that starting the sphere
detectors from a noninfinite initial radius [9] decreased the
average complexity, but increased the 99.9% quantile of com-
plexity. B-Chase(16) sacrifices 0.4 dB of performance in order
to reduce complexity by 68%, from 57 to 18 RM/b. At the
low-complexity end of the spectrum, B-Chase(2) outperforms
the BODF detector (B-Chase(1)) by 4.4 dB, while increasing
the complexity by 17%, from 9 to 10.9 RM/b. B-Chase(16)
not only outperforms the LR-BODF, LR-linear, and ML-DF
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Fig. 8. Complexity ratio of various detectors averaged over 10° Rayleigh-
fading 4 X 4 channels with 16-QAM inputs. Complexity is measured as 99.9%
quantile of the total number of real multiplies required to reach BER = 1072,

detectors, but also reduces complexity by 42%, 44%, and 13%,
respectively. B-Chase(16) falls only 0.1 dB short of the MMSE
sphere detector, but required 41% fewer RM/b. The B-Chase*
detector obtained relatively little performance improvement
over the B-Chase detector. Clearly, for this scenario, the
B-Chase detector exhibits a better performance—complexity
tradeoff than the other low-complexity detectors. In addition, by
simply adjusting the list length parameter, the B-Chase detector
provides an effective way to trade complexity for performance.

An important dimension of the complexity comparison is not
represented in Fig. 7 because it does not show the complexity
comparison as a function of how quickly the channel changes.
The relative complexity of the detectors depends upon how
often the preprocessing is performed compared to the core
processing. In order to demonstrate how 7' impacts detection
complexity, Fig. 8 illustrates the complexity ratio between
several pairs of detectors which have similar performance (see
Fig. 7) versus T'. First, B-Chase(16) performed within 0.1 dB
of the MMSE sphere detector, while reducing complexity by
as much as 62% when T' = 1 and requiring practically the
same complexity when T' > 512. In a second comparison,
B-Chase(3) outperformed the LR-linear detector by 0.5 dB,
and was less complex for 7' < 231; reducing complexity
by up to 76% when T" = 1. Next, B-Chase(4) outperformed
the LR-BODF detector by 0.1 dB, and was less complex for
T < 114; reducing complexity by up to 74% when T' = 1.
Finally, B-Chase(16) performed the same as B-Chase*(12),
and reduced complexity when T' < 16. As T increases, the
ability of the B-Chase* detector to reduce the list length with
minimal performance loss outweighs the cost of its increased
preprocessing complexity. These results show that the large
investment in preprocessing made by the MMSE sphere,
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LR-BODF, LR-linear, and B-Chase* detectors does not pay off
unless 7' is quite large.

VI. CONCLUSION

The Chase family of detection algorithms for MIMO chan-
nels is a combination of a list detector and a parallel bank of
subdetectors. The general Chase detector reduces to a variety
of existing MIMO detectors as special cases. Based on the
Chase framework, we proposed the B-Chase detector that
can trade performance for reduced complexity by modifying
the list length. Using efficient implementations and a new
selection algorithm, the B-Chase detector achieves near-ML
performance with low complexity. For example, on a four-input
four-output Rayleigh-fading channel that changes every eight
symbol periods, and whose inputs are uncoded 16-QAM, the
B-Chase(16) detector fell 0.4 dB short of the ML detector
while reducing complexity by 68%. Compared to the MMSE
sphere detector, the B-Chase(16) fell only 0.1 dB short while
reducing complexity by 41%. At the low end of the complexity
spectrum, the B-Chase(2) detector outperformed the MMSE
BODF detector by 4.4 dB while increasing complexity by only
17%.
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