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Abstract—We introduce a new family of detectors for mul-
tiple-input multiple-output (MIMO) channels. These detectors
are called Chase detectors because they can be interpreted as a
translation of the Chase error-control decoding algorithm from
time to space. The Chase detector is parameterized by only four
parameters; nevertheless, it reduces to a wide range of previ-
ously reported MIMO detectors as special cases, including the
maximum-likelihood and decision-feedback detectors. The Chase
detector defines a simple framework for not only comparing
existing MIMO detection algorithms but also proposing new ones.
For example, based on the Chase framework, we propose a new
detector called B-Chase that performs well on fading channels.
Specifically, on a four-input four-output Rayleigh-fading channel
with uncoded 16-QAM inputs, one instance of the B-Chase
detector falls only 0.4 dB short of the performance of the max-
imum-likelihood sphere detector while reducing complexity by
68%. Another instance of the B-Chase detector outperforms
the BLAST-ordered decision-feedback detector by 4.4 dB while
increasing complexity by only 17%.

Index Terms—Complexity reduction, multiple- input multiple-
output (MIMO) systems, signal detection, tree searching.

I. INTRODUCTION

THE promise of high spectral efficiency and diversity to
fading has led to widespread interest in multiple-input

multiple-output (MIMO) communications. A practical obstacle
to the realization of a MIMO system is the complexity of
detection. For example, the complexity of maximum-likelihood
(ML) detection grows exponentially with both the spectral
efficiency and the number of channel inputs. A popular
reduced-complexity alternative, despite its significantly infe-
rior performance, is the BLAST-ordered decision-feedback
(BODF) detector [1]–[3], whose complexity is roughly inde-
pendent of spectral efficiency and grows only cubically in .

The large gap in both performance and complexity between
the ML and BODF detectors has motivated the search for
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alternatives. The sphere detector [4] is a computationally
efficient implementation of the ML detector. There has been
extensive work to reduce its complexity [5], including the
use of ordering [6]–[8] and optimization of the search radius
[9]. A minimum mean-squared-error (MMSE) sphere detector
was proposed in [6] that approximates the ML detector with
reduced average complexity. Sphere detectors applied to a
complex channel model have also been proposed [10], [11].
Other reduced-complexity approximations of the ML detector
have also been proposed [12]–[18]. Lattice reduction [19], [20]
also improves the performance of the BODF detector. A com-
bination of Lenstra–Lenstra–Lovász (LLL) lattice reduction
with the MMSE BODF detector closely approximates the ML
detector in some cases [21].

There is an important class of reduced-complexity detectors
called list-based detectors that adopts a two-step approach of
first creating a list of candidate decision vectors, then choosing
the best candidate as its final decision. The Chase detector intro-
duced in this paper is an example of a list-based detector; other
examples include [14], [15], [18], [22], and [23]. The rollout de-
tector of [14] enumerates all possibilities for the first symbols,
then completes the decision vector for each possibility using a
DF detector. The parallel detector [15] generates its list by im-
plementing a separate low-complexity detector for each possible
value of the first symbol. In fact, the parallel detector is like a
rollout detector with , except that it uses a unique symbol
ordering to improve performance. More recently, a generaliza-
tion of the parallel detector called the fixed-complexity sphere
detector has been shown to achieve full diversity over -input

-output channels [23].
This paper proposes the -Chase detector, and demonstrates

that the B-Chase detector can approach ML performance in
some cases with less complexity than previously reported
detectors [6], [12], [15], [21]. The B-Chase detector distin-
guishes itself from previous list-based detectors in the unique
way it builds its list. It will be shown that the B-Chase de-
tector achieves better performance with significantly smaller
list lengths, leading to a favorable performance-complexity
tradeoff for four-input four-output channels. Instead of enumer-
ating all possibilities for the first symbol, like the parallel and
rollout detectors, the B-Chase detector may enumerate only a
subset of the possible symbol values. Furthermore, the B-Chase
detector adopts a unique symbol ordering, which is critical to
its performance.

In Section II, we introduce the Chase framework for defining
detection algorithms, and show how existing detectors fit into
the framework. In Section III, we propose a new instance
of the Chase detector family called the B-Chase detector. In
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Fig. 1. Block diagram of the Chase detector.

Section IV, we describe a computationally efficient imple-
mentation of the B-Chase detector. In Section V, we present
some performance and complexity numerical results, and in
Section VI, we make concluding remarks.

II. CHASE DETECTION: A GENERAL FRAMEWORK

This paper considers a memoryless channel with inputs
and outputs :

(1)

where is a complex channel ma-
trix whose th column is , and where is
noise. We assume that the columns of are linearly indepen-
dent, which implies . We assume that the noise com-
ponents are independent and identically distributed (i.i.d.) com-
plex Gaussian random variables with , where
denotes the conjugate transpose of . Further, we assume that
the complex inputs are uncorrelated and chosen from the same
unit-energy discrete alphabet , so that .

In this section, we introduce the Chase detector, a general de-
tection strategy for MIMO channels that reduces to a variety of
previously reported detectors as special cases. The Chase de-
tector defines a simple framework for not only comparing ex-
isting MIMO detection algorithms but also proposing new ones.
Specifically, a Chase detector is defined by five steps, as illus-
trated in Fig. 1, and as outlined below.
Step 1) Identify , the index of the first symbol

to be detected.
Step 2) Generate a sorted list of candidate values for the

th symbol, defined as the elements of the alphabet
nearest to , where is
the output of either the zero-forcing (ZF)
or MMSE linear filter.

Step 3) Generate a set of residual vectors by
cancelling the contribution to from the th symbol,
assuming each candidate from the list is, in turn,
correct:

(2)

Step 4) Apply each of to its own independent
subdetector, which makes decisions about the re-
maining symbols (all but the th symbol).

Together with , the th subdetector defines a can-
didate hard decision regarding the input .

Step 5) Choose as the final hard decision the candidate hard
decision that best represents the obser-
vation in a minimum mean-squared-error sense:

(3)

The Chase detector is roughly analogous to its namesake,
the well-known Chase algorithm for soft decoding of binary
error-control codes [24], but with the temporal dimension re-
placed by the spatial dimension. The analogy is loose, but still
useful. The Chase algorithm begins by identifying the least
reliable bits of a received codeword, and enumerates all cor-
responding binary vectors while fixing the remaining more re-
liable bits. This is analogous to Steps 1) and 2), except in Step
1), only one symbol (not necessarily the least reliable) is identi-
fied instead of , and in Step 2), only a subset of the most likely
values are enumerated. The Chase algorithm decodes each of
the binary vectors using a simple hard-decoding algorithm,
producing a set of candidate hard decisions for the codeword.
This is analogous to the cancellation and subdetection in Steps
3) and 4). Finally, the Chase algorithm chooses the candidate
codeword that best matches the received observations in a way
precisely analogous to that in Step 5).

To uniquely define an instance of the Chase detector requires
that the following four parameters be specified:

• a strategy for selecting in Step 1);
• a list length for Step 2);
• a filter type, ZF or MMSE, for Step 2);
• a subdetector algorithm for Step 4).

Table I summarizes how the maximum-likelihood (ML), BODF,
parallel decision feedback (PDF), and parallel detectors may be
specified as Chase detectors using these four parameters. For ex-
ample, the Chase detector reduces to the ML detector when the
subdetectors are themselves ML detectors, and the list length is
maximal . In this case, the choice of which symbol
to detect first has no effect on performance. On the other hand,
the Chase detector reduces to the BODF detector when the list
length is one and the subdetectors are themselves BODF detec-
tors. In this case, the choice of which symbol to detect first is
critical to performance. The parallel detector is another Chase
detector whose performance is highly sensitive to the choice of
which symbol to detect first. The last row of Table I describes a
new detector that will be proposed in the next section.
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Fig. 2. Decision regions for a = e and different list lengths: (a) ` = 1; (b) ` = 2; and (c) ` = 3. The decision list contains a whenever the input to the list
detector falls within the shaded region. Also indicated is the minimum distance d to the boundary.

TABLE I
SPECIAL CASES OF THE CHASE DETECTOR

The index BLAST signifies the first index of the BLAST ordering [1].

III. A NEW CHASE DETECTOR

In this section, we introduce the B-Chase detector, as summa-
rized by the last row of Table I. The B-Chase detector is defined
simply as a Chase detector that uses BODF as a subdetector.
The list length can be any integer in the set , and
the filters can be ZF or MMSE. It remains to specify the key pa-
rameter, namely, the index of the symbol to detect first. Two
algorithms for selecting will be described later in this section.
Before describing them, we must first understand the impact of
the list detector on the signal-to-noise ratio (SNR) of the th
symbol.

A. SNR Gain of a List Detector

We say that a list detector makes an error when the actual
transmitted symbol does not appear somewhere on the list. With
this definition, increasing the length of the list leads to a de-
crease in the probability of error. (Indeed, a maximal list length
of ensures that the list detector never makes an error.) The
decrease in error probability can be interpreted as an SNR gain.
We demonstrate this effective gain using the 4-QAM alphabet
as an example.

Assume a 4-QAM alphabet with a ZF
front end , and assume that the transmitted symbol is

. The input to the list detector is then ;
this defines a scalar channel whose SNR is .
In Fig. 2, we illustrate the correct decision regions for lists
lengths . As shown in Fig. 2(a), a list detector
with (i.e., a conventional decision device) will be correct
when is in the first quadrant of the complex plane. As
illustrated in Fig. 2(b), a list detector with will be correct
when . As illustrated in Fig. 2(c), a list

detector with will be correct when is not in the third
quadrant. Therefore, letting denote the list-error probability
for 4-QAM when the list length is , we find that

(4)

(5)

(6)

where . We twice invoked the
Chernoff-bound approximation , which is valid
only at high SNR, and we further assumed that
in the second approximation for . Comparing (4) and (5), we
see that increasing the list length from to ap-
proximately doubles the SNR. Intuitively, we can attribute this
SNR gain to the fact that the minimum distance to the decision
boundary increases by a factor of when the list length is in-
creased from to . Likewise, the SNR gain for is
the same as that for because, as shown in Fig. 2, they have
the same minimum distance from to the decision boundary.

We approximate the list detector SNR gain at high SNR by
how far it moves the decision boundary. Specifically, let
denote the minimum distance from any element in to the cor-
responding decision region boundary of the list detector with
list length . We define the SNR gain for a list detector with
a list length of as

(7)

This gain approximately quantifies the benefit of a list de-
tector relative to a conventional detector . For
example, from Fig. 2 we see that 4-QAM and

4-QAM 4-QAM , which is consistent with an
SNR gain of two for both and . At one extreme, a
minimal list length yields no SNR gain , as
expected. At the other extreme, a maximal list length
yields an infinite SNR gain , since there is no de-
cision boundary at all in that case. A straightforward analysis
of the list detector decision regions for 16-QAM reveals that
the list detector SNR gains are , , , and

. Similarly, the list detector SNR gains for 64-QAM
are , , , , and . When



742 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 2, FEBRUARY 2008

compared to the true SNR gain of a list detector, as measured
at an error probability of 0.01, the approximation of (7) is accu-
rate to within 1 dB for a 16-QAM list detector with list length

, and it is accurate to within 1 dB for a 64-QAM
list detector with list length .

B. SNR of the B-Chase Detector

In this subsection we quantify the SNR for each symbol of the
B-Chase detector. We begin by analyzing the output of the linear
filter in Step 2) of the B-Chase detector, which provides the input
to the list detector. First, consider the QR decomposition of the
extended channel matrix [25], [26]:

(8)

where the columns of the matrix are or-
thonormal, and where is a lower triangular matrix
with positive and real diagonal elements. The bottom rows
of are the matrix [26].

In terms of the QR decomposition (8), the linear filter of Step
2) can be written as , where , and where the
matrix is defined as the top rows of . The output of this
linear filter is thus , which reduces to

(9)

where we used the fact that , and where we
introduced . Although contains both
noise (first term) and residual intersymbol interference (ISI)
(second term) when , we continue to call it noise. Since

and , the noise variance of
the th output of the forward filter is , where

is the th column of . There is a slight bias when
(MMSE), but to keep complexity low, we opt not to remove it.

The effective SNR for the first symbol detected, including the
gain of the list detector, is

SNR (10)

A more convenient expression for SNR , and for the SNRs
of the remaining symbols, is defined by a QR decomposition of
the extended channel matrix whose columns are permuted
according to the detection order. Let denote an
permutation matrix that arranges the columns of such that
the th column comes first, and the remaining columns are
arranged according to the BLAST ordering. Consider the QR
decomposition

(11)

where the columns of the matrix are or-
thonormal, and where is a lower triangular matrix
with positive and real diagonal elements. Note that

and only when is the identity matrix. The effec-
tive SNR for the first symbol detected is

SNR (12)

where is the th diagonal of . The final symbols
in the B-Chase detector when the th symbol is detected first do
not enjoy any list-detection gain. Therefore, assuming no error
propagation, their SNR can be expressed as

SNR (13)

This assumption is justified by the fact that error propagation
is not the limiting factor of performance, even for small list
lengths.

C. B-Chase Selection

The importance of which symbol is detected first is greatly
impacted by the list length. Consider two extreme cases: First,
when the list length is maximal , the least reliable
symbol should be detected first. (The Chase error-control de-
coding algorithm similarly identifies the least reliable bits to
enumerate.) When the list length is minimal , the most
reliable symbol should be detected first. (This is consistent with
BLAST-ordered DF detection.) In between these two extremes,
however, the choice of which symbol to detect first must balance
two opposing goals. On the one hand, we want to choose so
that the SNR of the first symbol SNR is high; this ensures that
the list detector is likely to be correct. Loosely speaking, SNR
is maximized by choosing the column of that is most orthog-
onal to the remaining columns. On the other hand, we also want
each subdetector to see a well-conditioned channel, so that the
subdetector decisions are likely to be correct. Loosely speaking,
this is accomplished by choosing the column of that is least
orthogonal to the remaining columns. We now describe two se-
lection algorithms that strike a balance between these two op-
posing goals.

Selection Algorithm 1: Our first selection algorithm maxi-
mizes the minimum SNR of the symbols, as follows:

(14)

When , so that , this selection algorithm can be im-
plemented by choosing the column of with minimum norm,
as proven in [1]. On the other hand, when the list length is max-
imal and , the selection algorithm reduces to the parallel
selection algorithm [15].

Implementing the selection algorithm (14) when re-
quires computations. This is because the QR decompo-
sition (11) needs to be computed times, where each decom-
position involves computing the BLAST ordering of an

matrix.
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Fig. 3. (a) Overall block diagram for the B-Chase detector. (b) Block diagram
for the DF subdetector when N = 3.

Selection Algorithm 2: In order to avoid the large complexity
of the first selection algorithm, we propose approximating the
SNR of the symbols inside the subdetectors. First of all, if
we select the symbol with minimum noise variance, because this
is optimal [1]. On the other hand, if the list length is maximal

, we select the symbol with the largest noise vari-
ance because the list detector has an infinite SNR gain to coun-
teract the noise. When the list length is greater than one, but not
maximal, we propose selecting the symbol which maximizes
the minimum of SNR and SNR . This approach is justified
by the fact that the smallest SNR inside the subdetector is often
SNR , so that SNR approximates the minimum SNR inside
the subdetector. The ultimate validity of this approximation will
be shown through the performance results of Section V. This
SNR can be easily calculated from the matrix , as follows:

SNR (15)

where . Selection algorithm 2 can thus be
summarized as follows:

else.

(16)
Note that if , (16) reduces to choosing the column of
with minimum norm.

Fig. 4. Computationally efficient implementation of the B-Chase detector.

IV. IMPLEMENTING THE B-CHASE DETECTOR

In this section, we describe an implementation of the B-Chase
detector that has low complexity, as illustrated by the block dia-
gram of Fig. 3, and as summarized by the pseudocode of Figs. 4
and 5. This computationally efficient implementation enables a
detailed performance-complexity tradeoff analysis in Section V.

Step 1): The first step towards implementing the B-Chase
detector is to select the symbol to detect first according to (14)
or (16). Selection algorithm 1 can be implemented directly
once the squares of the diagonal elements of from (11)
are known. We will calculate these without computing the QR
decomposition of (11) directly. Observe that permuting the
columns of by corresponds to permuting the rows of

by . As a result, the definitions of , ,
and given in (11) are equivalently defined by the following
sorted-QR decomposition of :

(17)

where . This sorted-QR decomposition can be
computed using the algorithm given in [27] after modifying it to
choose the th column first, then choose the following columns
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Fig. 5. Preprocessing pseudocode for the proposed implementation of the
B-Chase detector that uses selection algorithm 1.

normally. It is important to note that calculated in this way
puts the final columns of in their BLAST ordering,
as shown in [28]. Finally, the squares of the diagonal elements
of are a by-product of this sorted-QR decomposition, and
selection algorithm 1 can be implemented using (14).

Lines 3–8 of Fig. 5 implement selection algorithm 1 in a less
complex way by computing the sorted-QR decomposition of the
lower triangular matrix , as we now explain. First, substituting
the definition of into (17) gives:

(18)

where is a unitary matrix such that
is an upper triangular matrix with real and positive diagonals.
Then by inspection we see that . The matrices

, , and are simply defined by the sorted-QR de-
composition of

(19)

As before, the squares of the diagonal elements of are a
by-product of this decomposition.

Before moving on to Step 2), we propose applying a front-end
filter to the channel output that reduces the complexity of subse-
quent steps. Lines 9–11 of Fig. 5 give the pseudocode for com-
puting the front-end filter , which is defined as follows:

(20)

where is a diagonal matrix with . Similar to (9),
the output of this filter reduces to

(21)

where is an lower-triangular matrix with
ones along the diagonal, where is a permuted ver-
sion of the channel input, and the effective noise is

. Line 12 of Fig. 5 gives the pseudocode for com-
puting , which will be needed to implement the subdetectors.

Step 2): After applying the front-end filter as shown in Line
2 of Fig. 4 to compute (21), the list detector simply generates
an ordered list of the elements of that are nearest
to .

Steps 3) and 4): It is convenient for implementation to merge
Steps 3) and 4). The result is DF detectors whose first symbol
decisions are hard-wired to distinct outputs of the list detector.
Using the well-known decision-feedback process [29], the th
subdetector cancels the intersymbol interference from the th
element of as follows:

(22)

where is the decision already made regarding
by the th subdetector, and where quantizes to the

nearest element of .
Step 5): In the fifth and final step, the B-Chase detector

chooses its final decision as the subdetector’s output which has
the minimum cost. From (3), the cost of the th decision vector
can be expressed as , which reduces to

(23)

where is the decision vector produced by the th subdetector.
For the case when , (23) becomes an approximation
due to the residual ISI.

Two crucial means for reducing complexity deserve to be
highlighted.

• The computations made inside the subdetectors can be
reused to calculate the cost. Specifically, using (22) and
the fact that , we can rewrite the cost expression
(23) as

(24)

Therefore, calculating the cost for a subdetector de-
cision vector requires at most only additional
computations.

• A pruning and threshold-tightening strategy can be used
to avoid unnecessary calculations. In particular, a cost
threshold can be established with the cost of the first
subdetector’s decision. In subsequent subdetectors, we can
abort both the cost calculation (24) as well as the decision
feedback process (22) whenever this threshold is exceeded
(see Line 9 of Fig. 4). Furthermore, the threshold can be



WATERS AND BARRY: THE CHASE FAMILY OF DETECTION ALGORITHMS FOR MIMO CHANNELS 745

reduced each time a lower cost is found (see Line 15 of
Fig. 4).

As presented here, the B-Chase algorithm implements the
subdetectors in serial fashion. The B-Chase detector also lends
itself to a parallel implementation since each of the subdetectors
can operate independently, as portrayed in Fig. 3.

V. NUMERICAL RESULTS

This section examines the performance and complexity of
B-Chase detectors on Rayleigh-fading channels, assuming
the channel parameters and are known to the receiver.
We will compare the MMSE B-Chase detector to the ZF and
MMSE sphere detectors as implemented in [6] whose initial
radii are set to infinity. Setting the initial radius to infinity
for these sphere detectors is equivalent to setting it to the
mean-squared error of the output of the ZF and MMSE BODF
detectors, respectively. That enables the ZF sphere detector
to achieve ML performance. We also compare against the
lattice-reduced MMSE BODF (LR-BODF) and lattice-reduced
MMSE linear (LR-linear) detectors [21]. The last detector we
compare against is the ML-DF [12] detector, which detects the
first three symbols using ZF sphere detection [6], and the final
symbol using ZF DF detection. We will first give numerical
results for the performance and complexity of these detectors
individually, then jointly. We use B-Chase to denote the
B-Chase detector with list length , , and selection
algorithm (14). Likewise, we use B-Chase to denote the
B-Chase detector with list length , , and selection
algorithm (16). The MMSE versions of the parallel and BODF
detectors are also included in the comparison, since they are
the special cases B-Chase and B-Chase(1), respectively.

The B-Chase detector achieves near-ML performance for
a variety of channel dimensions. To demonstrate this we per-
formed simulations over -input -output Rayleigh-fading
channels with 16-QAM inputs. Fig. 6 shows the performance
versus the number of antennas, where the SNR per bit is

. We see that B-Chase(16)
achieves near-ML performance, with an SNR penalty that
ranges from 0.5 dB to 1.0 dB as the number of antennas

increases from 2 to 6. Reducing the list length degrades
performance, but B-Chase(4) performs at least as well as the
LR-BODF detector over the range of from 2 to 6.

We now quantify the complexity of the B-Chase detector. The
best complexity metric depends upon many variables that are
specific to a particular implementation. We avoid the problem of
defining the relative complexity of different floating-point op-
erations by measuring complexity as the total number of real
multiplies (RMs) per bit. The squared absolute value of a com-
plex number is counted as two RM, and complex multiplica-
tions are counted as three RMs. Since the number of divisions
and square-roots is small compared to the number of multi-
plies, the main drawback of counting only the multiplies is that
it neglects the contribution to the complexity of the addition
operations. However, this is a reasonable simplification since
multiplies are generally more complex to implement than ad-
ditions. Another important point is that the multiplication of a
floating-point number by a constellation point is counted as an
addition since the constellation points are just scaled integers
[30]. This means that implementing interference cancellation
(22) is multiply free.

Fig. 6. SNR required versus number of antennas for various detectors. Results
are averaged over 10 Rayleigh-fadingN �N channels with 16-QAM inputs.

The number of computations required by the detectors we
compare varies for different channel and noise realizations.
Using the average complexity as the basis for comparison may
be too optimistic, since systems are often designed to handle
the worst-case scenario. On the other hand, the worst-case
complexity may be too pessimistic since a practical system
could enforce limits on complexity that are sufficiently high
so as to have only a negligible effect on performance. One
benefit of the B-Chase detector is that even in the worst case,
it is still low in complexity. On the other hand, the worst-case
complexity of the sphere detector and LLL algorithm can be
extremely large. In order to give a fair and practical complexity
comparison, we choose the complexity limit of the detector
such that the probability that it is exceeded is the same as the
target probability of a bit error. In other words, since the target
BER is , we quantify complexity using the 99.9% quantile
of real multiplies.

The preprocessing complexity includes those computations
that are required only once per channel estimation. The prepro-
cessing used to implement the B-Chase detector is described
in Fig. 5, where the sorted-QR decompositions dominate the
preprocessing complexity. On the other hand, the most com-
plex part of the preprocessing used to implement the B-Chase
detector is the QR decomposition of the extended channel ma-
trix in line 1 of Fig. 5. The preprocessing complexities of the
MMSE sphere, LR-BODF, and LR-linear detectors are higher
than that of the B-Chase detector. Although the preprocessing
for the MMSE sphere detector is essentially the same as that of
B-Chase(1), it is more complex because it uses the real channel
model which doubles the channel dimensions. The LR-BODF
detector requires the same preprocessing as the MMSE sphere
detector in addition to LLL lattice reduction.
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Fig. 7. Performance-complexity trade-off averaged over 10 Rayleigh-fading
4 � 4 channels with 16-QAM inputs, and T = 8.

We define the core-processing complexity as those computa-
tions which must be implemented during every symbol period.
Fig. 4 describes the core-processing of both the B-Chase and
B-Chase detectors. When , it requires only RM
since Lines 7 and 12 can be skipped. Otherwise it requires a
maximum of RM. We assume that the channel es-
timate is updated every symbol periods. As a result the total
complexity, as measured by real multiples per bit, is related to
the preprocessing complexity and core-processing com-
plexity by

COMPLEXITY (25)

We now investigate the performance–complexity tradeoff
of the B-Chase detectors for a four-input four-output
Rayleigh-fading channel with 16-QAM inputs. Fig. 7 il-
lustrates the performance versus complexity trade-off of each
detector with a single point, where performance is measured
by the SNR required to reach BER , and complexity is
measured by the 99.9% quantile of the total real multiplies per
bit (RM/ bit). The channel is assumed to change every eight
symbol periods . Not shown is the ML detector, which
required 57 RM/b and 16.0 dB using the ZF sphere detector
implementation. Also, it is worth noting that starting the sphere
detectors from a noninfinite initial radius [9] decreased the
average complexity, but increased the 99.9% quantile of com-
plexity. B-Chase(16) sacrifices 0.4 dB of performance in order
to reduce complexity by 68%, from 57 to 18 RM/b. At the
low-complexity end of the spectrum, B-Chase(2) outperforms
the BODF detector (B-Chase(1)) by 4.4 dB, while increasing
the complexity by 17%, from 9 to 10.9 RM/b. B-Chase(16)
not only outperforms the LR-BODF, LR-linear, and ML-DF

Fig. 8. Complexity ratio of various detectors averaged over 10 Rayleigh-
fading 4� 4 channels with 16-QAM inputs. Complexity is measured as 99.9%
quantile of the total number of real multiplies required to reach BER = 10 .

detectors, but also reduces complexity by 42%, 44%, and 13%,
respectively. B-Chase(16) falls only 0.1 dB short of the MMSE
sphere detector, but required 41% fewer RM/b. The B-Chase
detector obtained relatively little performance improvement
over the B-Chase detector. Clearly, for this scenario, the
B-Chase detector exhibits a better performance–complexity
tradeoff than the other low-complexity detectors. In addition, by
simply adjusting the list length parameter, the B-Chase detector
provides an effective way to trade complexity for performance.

An important dimension of the complexity comparison is not
represented in Fig. 7 because it does not show the complexity
comparison as a function of how quickly the channel changes.
The relative complexity of the detectors depends upon how
often the preprocessing is performed compared to the core
processing. In order to demonstrate how impacts detection
complexity, Fig. 8 illustrates the complexity ratio between
several pairs of detectors which have similar performance (see
Fig. 7) versus . First, B-Chase(16) performed within 0.1 dB
of the MMSE sphere detector, while reducing complexity by
as much as 62% when and requiring practically the
same complexity when . In a second comparison,
B-Chase(3) outperformed the LR-linear detector by 0.5 dB,
and was less complex for ; reducing complexity
by up to 76% when . Next, B-Chase(4) outperformed
the LR-BODF detector by 0.1 dB, and was less complex for

; reducing complexity by up to 74% when .
Finally, B-Chase(16) performed the same as B-Chase (12),
and reduced complexity when . As increases, the
ability of the B-Chase detector to reduce the list length with
minimal performance loss outweighs the cost of its increased
preprocessing complexity. These results show that the large
investment in preprocessing made by the MMSE sphere,
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LR-BODF, LR-linear, and B-Chase detectors does not pay off
unless is quite large.

VI. CONCLUSION

The Chase family of detection algorithms for MIMO chan-
nels is a combination of a list detector and a parallel bank of
subdetectors. The general Chase detector reduces to a variety
of existing MIMO detectors as special cases. Based on the
Chase framework, we proposed the B-Chase detector that
can trade performance for reduced complexity by modifying
the list length. Using efficient implementations and a new
selection algorithm, the B-Chase detector achieves near-ML
performance with low complexity. For example, on a four-input
four-output Rayleigh-fading channel that changes every eight
symbol periods, and whose inputs are uncoded 16-QAM, the
B-Chase(16) detector fell 0.4 dB short of the ML detector
while reducing complexity by 68%. Compared to the MMSE
sphere detector, the B-Chase(16) fell only 0.1 dB short while
reducing complexity by 41%. At the low end of the complexity
spectrum, the B-Chase(2) detector outperformed the MMSE
BODF detector by 4.4 dB while increasing complexity by only
17%.
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