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Abstract The golden code is a full-rate full-diversity space-time code for the two-input

two-output channel with good performance but high decoding complexity. The overlaid

Alamouti codes were recently proposed as an alternative; in exchange for a slight

performance penalty, they have lower decoding complexity on quasistatic channels with

QAM alphabets. However, the complexity advantage of the overlaid codes vanishes for

time-varying channels. This paper proposes the asymmetric golden code, a novel full-

rate and full-diversity space-time code for the two-input two-output channel that offers

reduced-complexity decoding on both quasistatic and time-varying channels.

Keywords Golden code · Nonvanishing determinant · Transmit diversity

1 Introduction

Communication systems having two transmit and two receive antennas are of great

practical importance, in part because power and size constraints prevent many devices

from having more than two antennas. Similarly, the desire for high spectral efficiency

motivates space-time codes with high rate. Therefore, the class of full-rate space-time

codes for two-input two-output channels is especially important and has been incorpo-

rated into the 802.16e standard [1].

Early space-time codes were designed either to increase the diversity gain [2][3],

or to increase the multiplexing gain [4]. Zheng and Tse [5] showed that there is a

continuous tradeoff between the achievable diversity and multiplexing gains. Yao and

Wornell [6] proved that a sufficient condition for achieving the diversity-multiplexing

tradeoff is that the code possess a nonvanishing determinant [7]. The golden code,

proposed independently in [7] and [8], has a nonvanishing determinant and in terms

of the SNR required to achieve a target error probability, it performs better than all

previously reported full-rate codes with two transmit antennas.
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A rate-two space-time code is said to be fast decodable when the worst-case com-

plexity of a maximum-likelihood (ML) decoder for a quasistatic channel is O(q2.5),

where q is the alphabet size [9]. A class of fast-decodable 2 × 2 space-time codes was

recently proposed as alternatives to the golden code [10]-[12]; we call the codes of [10]-

[12] overlaid Alamouti codes because they are based on a layering of two Alamouti

space-time block codes. See [13] for a survey of the overlaid Alamouti codes. For the

special case of QAM alphabets, the golden code itself is fast decodable on both qua-

sistatic and time-varying channels [9], and the overlaid Alamouti codes have worst-case

decoding complexity that is even smaller, namely O(q2).

The overlaid Alamouti codes lose their fast-decodable property when the channel

varies with time, a common occurrence in wireless applications with high mobility. In

this paper we propose a full-rate space-time code with a nonvanishing determinant that

is fast decodable in both quasistatic and rapidly time-varying channels. In particular,

we propose the asymmetric golden code, which is constructed over QAM alphabets,

and in which one layer of the golden code is scaled with respect to the other. We

prove that its worst-case decoding complexity is O(q2.5), regardless of whether the

channel is time varying. For the special case of quasistatic fading, we prove that it has

a decoding complexity of O(q2), the same as the overlaid Alamouti codes. Furthermore,

we present an efficient implementation of a fast ML decoder for quasistatic channels.

The asymmetric golden code has the lowest decoding complexity among previously

proposed codes and maintains its low decoding complexity on both quasistatic and

time-varying channels.

The remainder of the paper is organized as follows. In Section 2.2, we present

the system model and review background material. In Section 3 we present the pro-

posed asymmetric golden code and prove its fast decoding properties in quasistatic and

time-varying channels. In Section 4, we introduce a fast ML decoder with low average

complexity for quasistatic fading. In Section 5 we present numerical results, and in

Section 6 we draw conclusions.

2 Background

2.1 System Model

We consider space-time coding for a system with two transmit antennas and two receive

antennas transmitting four complex information symbols over two symbol periods. The

transmitted codeword can be expressed as a 2× 2 matrix:

C =

[
c1[1] c2[1]

c1[2] c2[2]

]
, (1)

where cm[k] denotes the symbol transmitted from antenna m ∈ {1, 2} at time k ∈
{1, 2}. The received signal yn[k] at receive antenna n ∈ {1, 2} at time k is given by:

yn[k] =

2∑
m=1

cm[k]hm,n[k] + wn[k], (2)

where wn[k] is the complex additive-white Gaussian noise at receive antenna n at time

k, and hm,n[k] is the channel coefficient between the m-th transmit antenna and n-th
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receive antenna at time k. For quasistatic fading, hm,n[k] = hm,n is independent of

time k.

The maximum spatial diversity order for the two-input two-output channel is the

product of the number of transmit and number of receive antennas, namely four. The

following two design criteria for space-time codes over quasistatic fading channels were

derived in [3]:

– Rank Criterion: To achieve fourth order diversity, the difference matrix ∆C =

C− C̃ must have rank two for any pair of distinct codewords C and C̃.

– Determinant Criterion: To further optimize performance, a code with full diversity

should be chosen to maximize the coding gain. For 2×2 square matrices, the coding

gain expression simplifies to:

Γ = min
C6=C̃

∣∣∣det(C− C̃)
∣∣∣ . (3)

Similar criteria were proposed for rapid-fading channels in [3].

2.2 Unified Framework for the Encoding of High-Rate Space-Time Codes for the

Two-Input Two-Output Channel

We present a common framework for comparing the golden code and the overlaid

Alamouti codes in a unified way. In Section 3 we will use this framework to describe

the asymmetric golden code. All of these codes transmit four complex information

symbols {x1, x2, x3, x4} from two transmit antennas in two signaling intervals, and

they may all be viewed as the sum of a pair of rate-one codes. In particular, all may

be described by the following 2× 2 space-time code:

C(x) = C1(a) + ΦLC1(b̂)ΦR, (4)

where:

– x = [x1, x2, x3, x4]>, a = [x1, x2]>, b = [x3, x4]>, b̂ = ΦPb;

– ΦP is a unitary precoding matrix;

– C1(·) is a rate-one encoder for symbol pairs a or b̂;

– ΦL and ΦR are 2× 2 matrices that multiply C1(b̂) on the left and right, respec-

tively.

The four parameters C1(·), ΦL, ΦL, and ΦL are chosen to ensure full diversity, max-

imize the coding gain and reduce decoding complexity.

One possibility for C1(·) is the diagonal algebraic space-time code of [14], defined

by:

CDAST (a1, a2) =

[
u1 0

0 u2

]
, (5)

where [
u1

u2

]
= G

[
a1

a2

]
, G =

[
c s

−s c

]
, (6)

and

c = cos(θ), s = sin(θ), θ =
1

2
tan−1(2), and φ = ejπ/4. (7)
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Another possibility is the Alamouti code:

CAlamouti(a1, a2) =
1√
2

[
a1 a2

−a∗2 a∗1

]
, (8)

where the constant 1/
√

2 ensures that the total transmit energy is identical to the

energy of the underlying alphabet.

The golden code is a special case of (4) with:

C1 = CDAST ,ΦP = I2,ΦL = eiπ/4I2,ΦR =

[
0 1

1 0

]
. (9)

The overlaid Alamouti codes of [10][11] are a special case of (4) with:

C1 = CAlamouti,ΦP =

[
φ1 φ2

−φ∗2 φ∗1

]
,ΦL =

[
1 0

0 −1

]
,ΦR = I2, (10)

where

φ1 =
1√
7

(1 + i) and φ2 =
1√
7

(1 + 2i). (11)

Finally, the overlaid Alamouti code of [12] is also a special case of (4), with:

C1 = CAlamouti,ΦP = I2,ΦL =
α

|α|

[
1 0

0 −i

]
,ΦR = I2, (12)

where

α = (1−
√

7) + i(1 +
√

7). (13)

The worst-case decoding complexity of the golden code is O(q2.5) in both quasistatic

and time-varying fading for QAM alphabets [9]. The overlaid Alamouti codes with

QAM are fast-decodable with worst-case decoding complexity of O(q2) in quasistatic

fading channels [13], but lose their fast decoding property on time-varying channels

and have a worst-case complexity of O(q3). We next present the asymmetric golden

code, which has a worst-case decoding complexity of O(q2) in quasistatic channels and

O(q2.5) in time-varying channels, which is the lowest decoding complexity compared

to previously reported rate-two space-time block codes for the two-input two-output

channel.

3 The Asymmetric Golden Code

We propose a novel full-rate full-diversity space-time code for the two-input two-output

channel: the asymmetric golden code. We first describe encoding, and then prove the

fast decoding properties of the asymmetric golden code.
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3.1 The Asymmetric Golden Code Encoder

We propose the asymmetric golden code, a special case of (4) with

C1 = CK,ΦP = I2,ΦL = KI2,ΦR =

[
0 1

1 0

]
, (14)

where K ∈ (0, 1) is an asymmetry coefficient, to be specified later. The factor K in

ΦL ensures that the second layer will be scaled by K before being added to the first

layer. The rate-one encoder CK in (14) is a modified version of the diagonal algebraic

encoder in (5), defined by:

CK(a1, a2) =

√
2

1 +K2

[
u1 0

0 u∗2

]
, (15)

where [u1, u2]> is given by (6).

Comparing (15) to CDAST of (5), we see two differences: the constant
√

2
1+K2 ,

which ensures that the average transmit energy is equal to that of the underlying

alphabet, and the conjugation of u2. The latter makes CK different from CDAST even

when K = 1. Let a = [x1, x2]> and b = [x3, x4]>. Then, in terms of the original

information symbols, the asymmetric golden code is given by

C =

√
2

1 +K2

([
ã1 0

0 ã∗2

]
+K

[
0 b̃1
b̃∗2 0

])
(16)

=

√
2

1 +K2

[
cx1 + sx2 K(cx3 + sx4)

K(−sx∗3 + cx∗4) −sx∗1 + cx∗2

]
, (17)

where:

ã = Ga, b̃ = Gb, and G =

[
c s

−s c

]
, (18)

and c, s, and φ are given by (7).

Theorem 1 The asymmetry coefficient K ∈ (0, 1) that maximizes the coding gain (3)

for the space-time block code in (16) with QAM alphabet is K = 1/
√

3. The resulting

coding gain is 1/
√

20.

Proof See Appendix A. ut

We next describe the effective channel matrix induced by the asymmetric golden

code. We then establish the key properties of this matrix, and describe a maximum-

likelihood decoder that exploits the key properties to reduce complexity in rapid time-

varying fading as well as quasistatic fading.
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3.2 The Effective Channel Matrix and its Key Properties

Substituting the definition of the asymmetric golden code from (16) into (2), the vector

of samples after conjugating the second and fourth samples received at a receiver with

two antennas at the two time instances can be written as the output of an effective

four-input four-output channel:

y = Hx + n, (19)

where y = [y1[1], y∗1 [2], y2[1], y∗2 [2]]> is the vector of received samples after conjugation,

x=[x1, x2, x3, x4]> is the vector of information symbols, n=[n1[1], n∗1[2], n2[1], n∗2[2]]>

is the noise, and where H = H̄Ψ is the effective channel matrix :

H =

√
3

2


h1,1[1] 0 Kh2,1[1] 0

0 h∗2,1[2] 0 Kh∗1,1[2]

h1,2[1] 0 Kh2,2[1] 0

0 h∗2,2[2] 0 Kh∗1,2[2]


︸ ︷︷ ︸

H̄


c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


︸ ︷︷ ︸

Ψ

. (20)

The structure of the asymmetric golden code induces special properties in its effective

channel matrix that we exploit to reduce decoding complexity. The following two lem-

mas relate these special properties to the orthogonal-triangular (QR) decomposition

H = QR, which results from an application of the Gram-Schmidt procedure to the

columns of H = [h1, · · · ,h4], where the columns of Q = [q1, · · · ,q4] are an orthonor-

mal basis for the subspace spanned by H, and R is upper triangular with nonnegative

real diagonal elements, so that the entry of R in row i and column j is ri,j = q∗ihj .
We present the key properties for fast decoding on time-varying fading and quasistatic

fading in the following two lemmas.

Lemma 1 (The Key Property in Time-Varying Fading) The R matrix in a QR

decomposition H = QR of the effective channel (20) has the form

R =

[
A B

0 D

]
, (21)

where both of the upper triangular matrices A and D are entirely real.

Proof The proof follows immediately from [9] (c.f. Appendix A), where H̄ and Ψ are

given in (20). ut

A few remarks:

– Both A =

[
r1,1 r1,2

0 r2,2

]
and D =

[
r3,3 r3,4

0 r4,4

]
are triangular by construction with real

diagonal entries, so the key property is the fact that both r1,2 and r3,4 are real.

– To demonstrate that r1,2 = h∗1h2/‖h1‖ is real, it is sufficient to show that the

inner product between the first two columns is real, a fact which is easily verified

by direct computation.

– The lemma applies regardless of whether the channel is quasistatic or time-varying.

For the case of quasistatic fading, however, permuting the channel matrix prior to

QR decomposition leads to an R matrix with r1,2 = r3,4 = 0. We next discuss the

key property of this permuted effective channel matrix in quasistatic fading.
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Let us introduce the permutation matrix Π = [e1, e4, e2, e3], where ei is the i-th

column of the 4× 4 identity matrix, so that (19) can be written as:

y = HΠΠ>x + n

= HΠxΠ + n, (22)

where xΠ = Π>x = [x1, x4, x2, x3]> and HΠ = HΠ = H̄ΨΠ is the permuted effective

channel matrix given by

HΠ =

√
3

2


h1,1[1] 0 Kh2,1[1] 0

0 h∗2,1[2] 0 Kh∗1,1[2]

h1,2[1] 0 Kh2,2[1] 0

0 h∗2,2[2] 0 Kh∗1,2[2]


︸ ︷︷ ︸

H̄


c s 0 0

−s c 0 0

0 0 c s

0 0 −s c


︸ ︷︷ ︸

Ψ


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


︸ ︷︷ ︸

Π

. (23)

The following lemma presents the key property in quasistatic fading.

Lemma 2 (The Key Property in Quasistatic Fading) The R matrix in a QR

decomposition HΠ = QR of the permuted effective channel (23) has the form

R =

[
A B

0 D

]
, (24)

where both A and D are real and diagonal.

Proof See Appendix B. ut

We also remark that by construction, both A =

[
r1,1 r1,2

0 r2,2

]
and D =

[
r3,3 r3,4

0 r4,4

]
are

upper triangular with real diagonal entries, so the key property in quasistatic fading is

essentially the fact that r1,2 = r3,4 = 0.

3.3 The Asymmetric Golden Code is Fast-Decodable

We start with the case of time-varying fading. We show how the key property of

Lemma 2 enables fast decoding. If we define z12 = [z1, z2]> and z34 = [z3, z4]>, where

z = Q∗y, then the ML decision minimizes the cost function

P (x) = ‖y −Hx‖2 = ‖z−Rx‖2

= ‖z12 −Aa−Bb‖2 + ‖z34 −Db‖2. (25)

The last equality follows from (24). Therefore, the ML decisions â and b̂ can be found

recursively using:

b̂ = arg min
b∈A2

{‖z12 −Aa∗(b)−Bb‖2 + ‖z34 −Db‖2}, (26)

â = a∗(b̂), (27)

where

a∗(b) = arg min
a∈A2

{‖z12 −Aa−Bb‖2}. (28)
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The function a∗(b̂) in (28) can be viewed as producing the best a for a given b. With

this interpretation, the optimization in (26) can be viewed as that of finding the best

b when a is optimized.

The optimization (28) is equivalent to ML detection for a channel A with an input

of a and an output:

v = z12 −Bb. (29)

It can be solved by a sphere detector applied to a two-level tree. With two QAM inputs

and without any constraints on A, the worst-case complexity would be O(q). This

is because for every candidate symbol x2, the decoder decides on the corresponding

symbol x1 with a slicer whose complexity does not grow with the size of the alphabet1.

But the golden code induces the special property that A is real, which enables us to

determine the real components of a independently from its imaginary components in

(28). Specifically, we may rewrite (28) as:2

a∗(b) = arg min
a∈A2

{‖vR −AaR‖2 + ‖vI −AaI‖2} (30)

= arg min
aR∈(AR)2

{‖vR −AaR‖2}+ j· arg min
aI∈(AI)2

{‖vI −AaI‖2}. (31)

Thus, the optimization in (28) decomposes into the pair of independent optimizations

of (31). Since each optimization in (31) is equivalent to ML detection for a real channel

with two
√
q-PAM inputs, each has a worst-case complexity of O(

√
q). Thus, the overall

complexity of (31) is O(
√
q). We thus arrive at the fast decodability theorem on time-

varying channels.

Theorem 2 (The Asymmetric Golden Code is Fast-Decodable on Time-

Varying Fading) A maximum-likelihood decoder for the asymmetric golden code with

a q-ary QAM alphabet can be implemented with a worst-case complexity of O(q2.5) on

time-varying fading channel.

Proof The ML decision can be found by stepping through each of the q2 candidates

for b as described in (26), and for each implement the O(
√
q) optimization of (31). ut

We next discuss the case of quasistatic fading and show how the key property in

Lemma 2 can also be used to reduce the worst-case ML decoding complexity. We start

by defining the intermediate variables c = [x1, x4]>, d = [x2, x3]>, z12 = [z1, z2]> and

z34 = [z3, z4]>, where z = Q∗y. The ML decision minimizes the cost function

P (x) = ‖y −Hx‖2 = ‖z−Rx‖2

= ‖z12 −Ac−Bd‖2 + ‖z34 −Dd‖2. (32)

The last equality follows from Lemma 2. Therefore, the ML decisions ĉ and d̂ can

also be found recursively using:

d̂ = arg min
d∈A2

{‖z12 −Ac∗(d)−Bd‖2 + ‖z34 −Dd‖2}, (33)

ĉ = c∗(d̂), (34)

1 A QAM slicer can be implemented as a pair of PAM slicers, with each requiring a single
multiply, a single rounding operation, a single addition, and a single hard-limiting operation,
none of which depends on q.

2 Throughout the paper we use superscripts R and I to denote the real and imaginary
components, respectively, so that vR = <{v} and vI = ={v}.
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where

c∗(d) = arg min
c∈A2

{‖z12 −Ac−Bd‖2}. (35)

Similar to a∗(b̂) in (28), the function c∗(d̂) in (35) can be viewed as producing the

best c for a given d. With this interpretation, the optimization in (33) can be viewed

as that of finding the best d when c is optimized.

The optimization (35) is equivalent to ML detection for a channel A with an input

of c and an output:

v = z12 −Bd. (36)

Because the asymmetric golden code induces the special property that A is diagonal

and real, we can determine the four components of c independently from each other.

Specifically, we may rewrite (35) as:

c∗(d) = arg min
c∈A2

{‖v −Ac‖2}

= arg min
xR
4 ∈(AR)

{|vR2 − r2,2xR4 |2}+ i · arg min
xI
4∈(AI)

{|vI2 − r2,2xI4|2}+

arg min
xR
1 ∈(AR)

{|vR1 − r1,1xR1 |2}+ i · arg min
xI
1∈(AI)

{|vI1 − r1,1xI1|2}. (37)

The optimization in (35) decomposes into four independent optimizations of (37). Each

optimization in (37) can be implemented with a slicer. Hence, the overall complexity of

(37) is O(1). We thus arrive at the fast decodability theorem on quasistatic channels.

Theorem 3 (The Asymmetric Golden Code is Fast-Decodable on Quasistatic

Fading) A maximum-likelihood decoder for the asymmetric golden code with q-ary

QAM alphabet can be implemented with a worst-case complexity of O(q2).

Proof As described in (33), the ML decision can be found by stepping through each of

the q2 candidates for d, and for each implement the O(1) optimization of (37). ut

4 Fast ML Decoding with Low Average Decoding Complexity

The decoding strategy used to prove the fast-decodable theorems has a low worst-case

complexity but a high average complexity. In this section we present an efficient im-

plementations of an ML decoder for the asymmetric golden code in quasistatic fading.

The proposed ML decoder has a low average complexity and a worst-case complexity

of O(q2). An efficient ML decoder of the golden code for time-varying channel was pro-

posed in [9], with a worst-case complexity of O(q2.5). Importantly, the algorithm in [9]

[cf. Fig. 2] can be used to the decode the asymmetric golden code in time-varying fad-

ing without any modification to the algorithm. The inputs to the decoding algorithm,

which are the received vector and the effective channel matrix are given by (19) and

(20), respectively. Therefore, we will only consider efficient ML decoding in quasistatic

fading.

A conventional sphere decoder applied to the asymmetric golden code results in

a four-level tree, with a different xi, i ∈ {1, 2, 3, 4}, associated with each level. We

propose a three-level tree that associates x3 with the first level, x2 with the second

level and c = [x1, x4]> with the third level, as illustrated in Figure 1. This new tree
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Fig. 1 The structure of the proposed detection tree and its branch metrics for the asymmetric
golden code. The cost function for the leaf node is the sum of the branch metrics, P (x) =
PR1 + P I1 + PR2 + P I2 + P3 + P4.

is a direct result of the fact that A and D are real and diagonal (Lemma 2), which

allows us to rewrite the ML cost function from (32) as

P (x) =

P1,2︷ ︸︸ ︷
‖vR1 − r1,1xR1 ‖2︸ ︷︷ ︸

PR
1

+ ‖vI1 − r1,1xI1‖2︸ ︷︷ ︸
P I

1

+ ‖vR2 − r2,2xR4 ‖2︸ ︷︷ ︸
PR

2

+ ‖vI2 − r2,2xI4‖2︸ ︷︷ ︸
P I

2

+

‖z3 − r3,3x2‖2︸ ︷︷ ︸
P3

+ ‖z4 − r4,4x3‖2︸ ︷︷ ︸
P4

. (38)

Thus, as illustrated in Figure 1, (38) shows that the total cost of a leaf node x decom-

poses into the sum of three branch metrics, where P4, P3 and P1,2 denotes the branch

metrics for a branch at the first, second and third level of the tree, respectively.

The fact that r3,4 = 0 leads to a significant reduction in the complexity of the

Schnorr-Euchner sorting for the first two stages of the tree. Specifically, the fact that

D is diagonal implies that there is no interference or dependence between the symbols

x2 and x3. Therefore, we can perform a single sort for the symbol x3 emanating from

the root, and simultaneously a single sort for the symbol x2 emanating from its children.

The pseudocode of an efficient implementation of the proposed asymmetric golden

code ML detector is shown in Figure 2. The first five lines represent initializations. In

particular, the first two lines are a QR decomposition of the permuted effective channel
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matrix in (23) and the computation of z. The squared sphere radius P̂ , which represents

the smallest cost (32) encountered so far, is initialized to infinity to ensure ML decoding

(line 3). Sorting or Schnorr-Euchner enumeration is used for faster convergence. Only

two sorting operations (line 4 and line 5) are required. In the pseudocode, the complex

QAM alphabetA is represented by an ordered list, so thatA(k) indexes the k-th symbol

in the list. We next describe the remainder of algorithm, which can be interpreted as

a two-level complex sphere decoder to choose the symbol pair d = [x2, x3]>, followed

by four independent slicers that separately decode xR1 , xR4 , xI1 and xI4.

[Q,R] = QR decomposition(HΠ)1

z = Q∗y2

P̂ =∞3

[P4, Π4] = sorta∈A(|z4 − r4,4a|2)4

[P3, Π3] = sorta∈A(|z3 − r3,3a|2)5

for k from 1 to q do6

if(P4(k) > P̂ ), break, end7

for l from 1 to q do8

if((P3(l) + P4(k)) > P̂ ), break, end9

x3 = A(k), x2 = A(l)10

v1 = z1 − r1,3x2 − r1,4x3, v2 = z2 − r2,3x2 − r2,4x211

xR1 = Q(vR1 /r1,1), xI1 = Q(vI1/r1,1)12

xR4 = Q(vR2 /r2,2), xI4 = Q(vI2/r2,2)13

PR1 = |vR1 − r1,1xR1 |2, P I1 = |vI1 − r1,1xI1|214

PR2 = |vR2 − r2,2xR4 |2, P I2 = |vI2 − r2,2xI4|215

P = PR1 + P I1 + PR2 + P I2 + P3(l) + P4(k)16

if P < P̂ then17

P̂ = P , x̂ = [x1, x2, x3, x4]18

end19

end20

end21

Fig. 2 Pseudocode of a fast ML decoder for the asymmetric golden code in qua-
sistatic fading.

The two-level complex sphere decoder incorporates two common optimizations:

radius update (line 18) and pruning (line 7, line 9). While these optimizations do not

affect the worst-case complexity, they affect the average complexity significantly. The

first level of the complex sphere decoder considers candidate symbols x3 in ascending

order of their branch metric P4 (line 6). The second level of the complex sphere decoder

considers candidate symbols x2 in ascending order of their branch metric P3 (line 8).

The decoder then removes the interference caused by d = [x2, x3]> and forms the two

intermediate variables v1 and v2 of (36), which are functions of the symbols x1 and x4

only (line 11).

Following the two-level complex sphere decoder and interference cancellation, the

decoder decides on the remaining four PAM symbols xR1 , xR4 , xI1 and xI4 separately

using independent slicers (lines 12 and 13). The corresponding branch metrics are

calcualted in lines 14 and 15. The overall cost P for the current candidate symbol

vector is updated in line 16. Radius update and best candidate vector update (line 18)

occur if the current cost P is less than the previous smallest cost P̂ in line 17.
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Fig. 3 Performance comparison for the two-input two-output channel.

5 Numerical Results

In this section, we compare the bit-error rate (BER) performance of the asymmetric

golden code with the golden code and overlaid Alamouti codes of [10][11]. To avoid

clutter we do not include the overlaid Alamouti code of [12] in our comparison; we

simply note that it performs 0.1 dB worse than the overlaid Alamouti codes of [10][11].

In Figure 3, we show simulation results for quasistatic fading with ML detection

implemented using the sphere decoder algorithm, assuming 4-QAM. The asymmetric

golden code, which has the lowest decoding complexity under any channel condition,

suffers a performance loss of 1.0 dB compared to the golden code. This is due to a re-

duction in the coding gain. The overlaid Alamouti codes also suffer a slight performance

loss of 0.3 dB, which may also be attributed to a reduced coding gain.

In Figure 4, we illustrate the impact of a time-varying channel on the performance

and complexity of the overlaid Alamouti and asymmetric golden code, assuming 64-

QAM. The time-selectivity is quantified by fDT , the maximum Doppler frequency

normalized by the symbol period. The number adjacent to each point represents the

corresponding value of fDT . The case of quasistatic fading corresponds to fDT = 0.

For each space-time code, we plot a trajectory of “performance” versus “complexity”

as the Doppler increases, where performance is quantified by the average SNR required

to achieve BER = 10−3, and where complexity is quantified by the average number

of nodes visited by a complex sphere decoder that uses Schnorr-Euchner enumeration,

sphere radius update and depth-first tree search. There are three trajectories:

– The left-most trajectory (labeled “overlaid + ignore”) shows how the performance

of the overlaid Alamouti codes of [10][11] degrades as the Doppler increases, when

the receiver ignores the time variation and pretends that the channel is quasistatic.

Such a strategy is ML for the special case of zero Doppler, and it is effective for

slowly varying channels, but it quickly degrades as the Doppler frequency grows.
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Fig. 4 Complexity and performance as a function of normalized Doppler fDT .

– The right-most trajectory (labeled “overlaid + ML”) shows the performance and

complexity of the overlaid Alamouti codes of [10][11] with an ML detector that

accounts for the time variations of the channel; the performance is good for all

Doppler values but the complexity is high.

– The remaining trajectory (labeled “asymmetric”) shows the performance and com-

plexity of the asymmetric golden code with ML decoding. This trajectory is the only

one of the three that starts in the desirable lower-left corner of the performance-

complexity plane, and stays there for all values of the normalized Doppler frequency.

6 Conclusions

We introduced the asymmetric golden code, which asymmetrically scales the two lay-

ers of the golden code before adding. Furthermore, we proposed a fast ML decoding

algorithm for the asymmetric golden code based on a unique tree construction that ex-

ploits the special structure of the effective channel matrix. The asymmetric golden code

not only achieves the diversity-multiplexing tradeoff, but it maintains a low decoding

complexity in both quasistatic fading and rapid time-varying fading channels.

A Optimal Asymmetry Coefficient K

Since we are maximizing the coding gain for QAM alphabet, which is a subset of Z[i] , {a+bi},
a, b ∈ Z, where i =

√
−1, and because the asymmetric golden code is linear, the asymptotic

coding gain of (3) can be written as:

Γ (K) = min
(∆x1,∆x2,∆x3,∆x4)∈M

| det(C)|, (39)
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where M , {Z + iZ}4 − {0, 0, 0, 0} is the 4-tuple of all possible complex integers excluding
{∆x1,∆x2,∆x3,∆x4} = {0, 0, 0, 0}, which is the all zero 4-tuple. Since the difference between
two integers is again an integer, we simplify the coding gain expression as follows

Γ (K) = min
(x1,x2,x3,x4)∈M

|det(C)|. (40)

Substituting the definition of C in (16) into (40) yields:

Γ (K) = min
(x1,x2,x3,x4)∈M

∣∣∣∣ 2

1 +K2
(u1u

∗
2 −K2u3u

∗
4)

∣∣∣∣
=

1
√

5
min

(x1,x2,x3,x4)∈M

∣∣∣∣ 2

1 +K2

(
g(x1, x2)−K2g(x3, x4)

)∣∣∣∣ , (41)

where
g(a, b) =

(
−|a|2 + |b|2 + <{a∗b}+ i ·

√
5={a∗b}

)
. (42)

We next find the value of K that maximizes (41). We proceed in two steps: first, we establish

the bound Γ (K) ≤ 1/
√

20; then, we show that K = 1/
√

3 achieves the bound with equality.
To establish the bound, let us introduce L ⊆ {(0, 0, 1, 0), (1, 0, 1, 0), (1, 0, 1 + i, 0)} ⊆ M.

Because L is a subset of M, it clearly follows that minM{ · } ≤ minL{ · }, so that the coding
gain of (41) can be bounded by:

Γ (K) ≤
1
√

5
min

(x1,x2,x3,x4)∈L

∣∣∣∣ 2

1 +K2

(
g(x1, x2)−K2g(x3, x4)

)∣∣∣∣
=

1
√

5
min

{
2

1 +K2
K2,

2

1 +K2

(
1−K2

)
,

2

1 +K2

∣∣1− 2K2
∣∣}

≤
2
√

5
max

1>K>0
min

{
K2

1 +K2
,

1−K2

1 +K2
,

∣∣1− 2K2
∣∣

1 +K2

}
(43)

=
1

2
√

5
=

1
√

20
. (44)

The inequality of (43) follows from the fact that h(K) ≤ max1>K>0{h(K)} for any function
h(K) and for any K > 0. The equality in (44) is a result from the following lemma.

Lemma 3 The maximum of the minimum is:

max
1>K>0

min

{
K2

1 +K2
,

1−K2

1 +K2
,

∣∣1− 2K2
∣∣

1 +K2

}
=

1

4
, (45)

and is acheived for K = 1/
√

3.

Proof The functions K2/(1 + K2) and (1 − K2)/(1 + K2) are monotonically increasing and

decreasing, respectively. The function |1 − 2K2|/(1 + K2) is decreasing for K ∈
(

0, 1/
√

2
]

and increasing for K ∈ (1/
√

2, 1). We find the maximum of the minimum over two regions;

K ∈
(

0, 1/
√

2
]

and K ∈ (1/
√

2, 1).

For K ∈
(

0, 1/
√

2
]
, the maximum of the minimum of (45) occurs at the intersection of the

increasing function K2/(1 +K2) and the smaller of the two decreasing functions (1−K2)/(1 +

K2) and |1 − 2K2|/(1 + K2). Since |1 − 2K2| < (1 − K2) for K ∈
(

0, 1/
√

2
]
, the maximum

of the minimum occurs at the intersection of K2/(1 +K2) and |1− 2K2|/(1 +K2), namely at

K = 1/
√

3. The maximum of the minimum is given by 1
4

.

For K ∈ (1/
√

2, 1), the maximum of the minimum occurs at the intersection of the decreas-
ing function (1 − K2)/(1 + K2) and the smaller of the two increasing functions K2/(1 + K2)

and |1−2K2|/(1+K2). Since |1−2K2| < K2 for K ∈ (1/
√

2, 1), the maximum of the minimum

occurs at the intersection of |1− 2K2| and (1−K2), namely at K =
√

2/3. The maximum of

the minimum is given by 1/5 . Therefore, the maximum of the minimum is 1
4

and occurs at

K = 1/
√

3. ut
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We next show that the bound Γ (K) ≤ 1
2
√

5
of (44) is in fact achievable with equality with

K = 1/
√

3. Substituting K = 1/
√

3 into (41), we have:

Γ (1/
√

3) =
1

2
√

5
min

(x1,x2,x3,x4)∈M
|3g(x1, x2)− g(x3, x4)| . (46)

In order to show that Γ (1/
√

3) = 1
2
√

5
, we first prove that Γ (1/

√
3) = 0 only if x1 = x2 =

x3 = x4 = 0 in the following lemma.

Lemma 4 The function f(x1, x2, x3, x4) = 3g(x1, x2) − g(x3, x4) = 0, for xi ∈ {Z + iZ},
i ∈ {1, 2, 3, 4}, only if x1 = x2 = x3 = x4 = 0.

Proof Assume that f(x1, x2, x3, x4) = 0, then we have that

3g(x1, x2)− g(x3, x4) = 0. (47)

The equation in (47) implies that 3 divides g(x3, x4), which is denoted 3|g(x3, x4). We next
show that if 3|g(a, b), then 3|a, 3|b and 9|g(a, b).

Let a = 3la+ ra and b = 3lb+ rb, where la, lb ∈ {Z + iZ}, and ra, rb ∈ {0, 1, 2}+ i{0, 1, 2}.
Since, 3|g(a, b), we have that 3|g(ra, rb). By considering the finite number of possibilities for
ra and rb, we can easily verify that 3|g(ra, rb) only if ra = rb = 0. Therefore, 3|a and 3|b.
Consequently, g(a, b) is then given by

g(a, b) =
(
−|3la|2 + |3lb|2 + <{3l∗a3lb}+ i ·

√
5={3l∗a3lb}

)
= 9

(
−|la|2 + |lb|2 + <{l∗alb}+ i ·

√
5={l∗alb}

)
. (48)

As a result, we also have that 9|g(a, b).
Therefore, f(x1, x2, x3, x4) = 0 implies that 3|g(x3, x4), which in turn implies that 3|x3,

3|x4, and 9|g(x3, x4). However, 9|g(x3, x4) implies that 3|g(x1, x2), which in turn implies that
3|x1, 3|x2, and 9|g(x1, x2). We then have that 3|xk, k ∈ {1, 2, 3, 4}. Hence, we can divide
(47) by 3 and obtain an identical equation in the coefficients yk = xk

3
, where yk ∈ {Z + iZ}.

Since we can repeat this argument and divide by 3 indefinitely, the only possible solution to
f(x1, x2, x3, x4) = 0 is when x1 = x2 = x3 = x4 = 0. ut

The desired result that Γ (1/
√

3) = 1
2
√

5
follows from (46) and Lemma 4. In particular, Lemma

4 proves that |3g(x1, x2) − g(x3, x4)| 6= 0 for (x1, x2, x3, x4) ∈ M. Since the real part of

3g(x1, x2) − g(x3, x4) is an integer, while the imaginary part is an integer multiple of
√

5, it
follows immediately that:

min
(x1,x2,x3,x4)∈M

|3g(x1, x2)− g(x3, x4)| = 1. (49)

Substituting (49) into (46), we obtain that Γ (1/
√

3) = 1
2
√

5
. ut

B Proof of the Key Property for Fast Decoding of the Asymmetric

Golden Code on Quasistatic Fading Channel

Direct computation of the elements of R from the effective channel matrix in (23) yields:

r1,1 =

√
3

2

√
c2µ1 + s2µ2, r1,2 = 0, r1,3 =

3

2
√

5r1,1
(µ1 − µ2), r1,4 =

√
3

2r1,1
µ3

r2,2 =
1
√

3
r1,1, r2,3 =

√
3 r∗1,4, r2,4 =

−1
√

3
r1,3

r3,3 =

√
27|µ4|√
8r21,1

√
c2µ1 + s2µ2, r3,4 = 0

r4,4 =
1
√

3
r3,3, (50)
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where these results are expressed in terms of the following four intermediate variables:

µ1 = |h1,1|2 + |h1,2|2

µ2 = |h2,1|2 + |h2,2|2

µ3 = h∗1,1h2,1 + h∗1,2h2,2

µ4 = h1,1h2,2 − h1,2h2,1. (51)

Because fading is quasistatic, we dropped the time index for simplicity of notation. Because
r1,2 = r3,4 = 0, the matrices A and D in (24) are diagonal with real entires. ut
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