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Adaptive Minimum Symbol-Error Rate Equalization
for Quadrature-Amplitude Modulation

Chen-Chu Yeh, Member, IEEE,and John R. Barry, Member, IEEE

Abstract—We propose theadaptive minimum symbol-error rate
algorithm, which is a low-complexity technique for adapting the
coefficients of a linear equalizer in systems using pulse-amplitude
or quadrature-amplitude modulation. The proposed algorithm
very nearly minimizes error probability in white Gaussian noise
and can significantly outperform the minimum-mean-squared
error equalizer (by as much as 16 dB) when the number of equal-
izer coefficients is small relative to the severity of the intersymbol
interference.

Index Terms—Adaptive equalization, MMSE criterion.

I. INTRODUCTION

T HE minimum-mean-squared error (MMSE) criterion is by
far the most popular strategy for linear equalizer design, in

part because of its amenability to adaptive implementation, and
in part because it is widely believed to offer good performance
with respect to more relevant performance measures such as
error probability. Indeed, when the number of equalizer coeffi-
cients is sufficiently large, the MMSE equalizer closely approx-
imates the linear equalizer whose coefficients are chosen to min-
imize symbol-error rate (SER). In contrast, however, when the
number of equalizer coefficients is small relative to the severity
of the intersymbol interference (ISI), the MMSE equalizer is far
from optimal.

While the superiority of minimum-SER equalization has been
known for decades [1]–[3], there were no known adaptive tech-
niques for its implementation until the work of Chenet al. [4].
Since then, others have proposed techniques for realizing a min-
imum-SER equalizer [5]–[8], but all were restricted to binary
modulation schemes. In this paper, we propose an adaptive al-
gorithm for realizing the minimum-SER equalizer that is ap-
plicable to nonbinary pulse-amplitude modulation (PAM) and
higher order complex quadrature amplitude modulation (QAM).
First reported in [9], the proposed algorithm is a generalization
of the binary scheme of [8]. Related work recently appeared in
[10]. Simulation results show that the proposed algorithm very
nearly minimizes SER, outperforming the MMSE equalizer by
16 dB in one example. Nevertheless, the complexity of the pro-
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Fig. 1. System block diagram.

posed algorithm is no greater than that of the least-mean square
(LMS) algorithm.

II. PROBLEM STATEMENT AND SYMBOL-ERRORPROBABILITY

We first consider a real-valued linear discrete-time channel
whose output at time is given by

(1)

as depicted in Fig. 1, where the input symbols are
drawn independently and uniformly from the alphabet

, where is the causal channel
impulse response with memory and satisfying for

, and where the noise samples are inde-
pendent zero-mean Gaussian random variables with variance

. The equalizer output at timecan be expressed as an inner
product , where is a vector
of equalizer coefficients, and is a
vector of channel outputs. This latter vector can be expressed as

(2)

where is an Toeplitz matrix satisfying
, where is a vector of trans-

mitted symbols, and where is a vector
of noise samples.

We constrain the decision device to be memoryless so
that the decision regarding symbol depends
only on the th equalizer output . The delay parameter

accounts for the delay of the
channel and the equalizer, and it must be optimized for best
performance.

When higher order (nonbinary) alphabets are used, the thresh-
olds of the decision device must also be optimized. Let

denote theoverall impulse response of the cas-
cade of the channel and equalizer. In vector form, we have

The equalizer output at timecan then be expressed as

(3)
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The first term represents the desired signal, the second
term represents residual ISI, and the third term represents the
filtered noise, as defined by . Because the residual
ISI plus noise has a symmetric probability distribution, the min-
imum-error probability decision thresholds are

. Equivalently, we can apply the integer thresholds
to thenormalizedequalizer output

. We remark that although the cursor is often close to
unity and often ignored, it actually introduces a bias [11], and
normalizing the equalizer output removes the bias.

Let denote the set of all possible vectors,
and let denote a random vector uniformly distributed over the
subset of such vectors for which thedesiredsymbol
is 1 (i.e., ). The problem addressed in this paper is
that of finding a method for adaptingto minimize SER. The
following result provides a concise characterization of SER in
terms of .

Lemma 1: With optimal decision thresholds, the symbol-
error probability Pr after any equalizer may
be expressed in an exact and compact form as

(4)

where is the Gaussian error function [12], and where the ex-
pectation is with respect to.

Proof: Let de-
note the equalizer error, containing both residual ISI and noise.
Because and are independent and symmetric random
variables, the probability distribution of the equalizer error is
also symmetric, satisfying . This symmetry im-
plies that

Pr Pr Pr (5)

The key to the proof is the following derivation of a concise
expression for the above probabilities:

Pr Pr (6)

Pr

(7)

(8)

(9)

The expression in (7) results from conditioning (6) on a par-
ticular outcome of the set of interfering symbols

and then averaging over all equally likely out-
comes. Now, the SER can be decomposed into the sum of two
terms, according to whether one of the endpoints or one of the

inner points of the -ary alphabet is
transmitted:

Pr

Pr (10)

With optimal decision thresholds ,
the two conditional probabilities reduce to

Pr Pr

Pr Pr (11)

Substituting (9) and (11) into (10) yields (4), which is the desired
result.

III. A DAPTIVE ALGORITHM FORMINIMIZING SER

By setting to zero the gradient of (4), we find that the equal-
izer that minimizes error probability must satisfy the following
fixed-point relationship:

for any (12)

where the vector function is defined by

(13)

As in the binary case [8], the fixed-point condition of (12) is
necessary but not sufficient to minimize error probability. This is
because the error probability surface can have local minima that
are not global minima. Although (12) cannot be solved in closed
form, the following recursion can be used to find a fixed-point
solution:

(14)

where is a positive step size. For known channels, (14)
provides a convenient method for numerically computing the
coefficients of the minimum-SER equalizer. As in the binary
case, careful initialization is needed to avoid undesirable local
minima [8].

We now derive an adaptive algorithm that, unlike (14), is suit-
able for unknown and time-varying channels. Let us first intro-
duce anerror indicator function that is unity if a decision
error occurs at time and zero otherwise. In terms of the nor-
malized equalizer output , we may express the indi-
cator function mathematically as , where

if and
if and
otherwise.

(15)

In Appendix A, we prove that the indicator function satisfies the
following key relationship:

sign (16)

where is the error at the output of the normalized
equalizer. This relationship is important because the right-hand
side of (16) is very nearly the function of (13). Indeed,
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replacing in (16) by the approximation
[12] leads to the following approximation for (13):

sign (17)

Thus, we can use the indicator function to approximate and sim-
plify the deterministic recursion of (14):

sign

sign

sign (18)

The first approximation follows from (17), with
, and the second approximation neglects noise. Although

the accuracy of the two approximations in (18) can be quantified
analytically [13], they are best justified by the good performance
of the resulting algorithm, as demonstrated in Section V.

Removing the expectation in (18) leads to the following
asymptotically unbiased stochastic update:

sign (19)

This defines the adaptive minimum-SER (AMSER) algorithm.
When , (19) reverts back to the binary algorithm proposed
in [8].

The AMSER algorithm has the same form as two other well-
known adaptive equalization techniques, namely, the LMS al-
gorithm and thesign-errorLMS algorithm [14]:

LMS:

sign-LMS: sign (20)

but with the important distinction that AMSER updates the co-
efficients only when an error occurs (i.e., when ). In
retrospect, one could partially justify the presence of the error
indicator in the AMSER update by arguing that an equal-
izer that does not produce an error should not be changed. In
contrast, the LMS and sign-LMS algorithms will update the co-
efficients at every iteration, regardless of whether an error oc-
curs. Upon closer inspection, we see that the AMSER algo-
rithm differs from the sign-LMS algorithm in only two ways:
First, the AMSER equalizer only updates when a decision error
occurs, and second, the AMSER error signal

is based on the normalized equalizer output, whereas the
sign-LMS error signal is not. Because it can avoid a
floating-point multiplication, AMSER is slightly less complex
than the LMS algorithm, with complexity comparable with the
sign-LMS algorithm. Despite the striking similarities between
AMSER and the LMS-based algorithms, Section V will show
that their performance is vastly different.

Evaluating the indicator function in (19) requires knowl-
edge of , which changes with time asadapts. Let de-
note the receiver’s estimate of at time . From (3), we see
that the ratio has mean . A receiver with training
can thus track using the simple moving average

where is a positive step size.

Because the AMSER algorithm (19) updates only when an
error occurs, the convergence rate will be slow when the error
rate is low. To speed convergence, the AMSER algorithm can
be modified so that it updates not only when an error is made
but also when an error isalmostmade as well, i.e., when the
distance between the equalizer output and the nearest decision
threshold is less than some small positive constant. Specifi-
cally, the indicator function of (15) may be modified to

if and
if and
otherwise.

(21)

When , (21) reverts to (15). A nonzero can adversely
affect the steady-state SER, however, so the choice ofis a
tradeoff between convergence speed and steady-state perfor-
mance. The design and analysis of algorithm modifications for
speeding convergence is an important area for further research
but is beyond the scope of this paper. We only note that the sim-
ilarities of the proposed algorithm with the binary algorithm of
[8] will allow the direct application of binary speed-up tech-
niques such as the multistep and infinite-step algorithms of [13],
as well as the related technique of [15].

IV. EXTENSION TO COMPLEX QAM SYSTEMS

In this section, we derive an extension of the AMSER algo-
rithm that is applicable to a complex -QAM system. We still
use the model of (1)–(3), as illustrated in Fig. 1, but we now as-
sume that the symbols, filters, and noise are all complex valued.
We assume that the real and imaginary parts of the symbols are
chosen independently and uniformly from

and that the noise has independent real and imaginary parts,
where each is white and Gaussian with zero mean and variance

. In the following, we will use subscripts of and to de-
note real and imaginary parts, respectively, so that we may de-
compose , , ,

, and . When convenient, the
time index will be dropped.

By symmetry, the real and imaginary parts of the symbol de-
cisions are equally likely to be incorrect, so that

Pr Pr

for any complex equalizer. The derivation that follows will
use this probability, call it SER, as the optimization criterion.
This criterion is essentially equivalent to the error probability
for the complex symbols since application of the union bound
yields Pr SER , which is tight for even moderate
values of SNR.

The key to our derivation is to express the complex system
with equalizer coefficients as a pair of real systems with
coefficients. Specifically, the real part of the output of the com-
plex equalizer at time can be expressed as

(22)

where we have introduced the real vectors
and , each having components. Because
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and ,
we may express as

(23)

(24)

with obvious definitions for , , and . We see that the vector
of channel outputs in (24) differs from the vector of channel
outputs in (2) for areal-valued PAM system in only two in-
consequential ways: First, there are outputs instead of ;
second, the channel matrix is not Toeplitz. The latter implies
that the components of cannot be expressed as a convolution
of a real impulse response with the components of, or, in other
words, we cannot convert from (24) back to an equation of the
form (1). However, this has no impact whatsoever on the anal-
ysis and derivations presented in this paper because it was never
required that be Toeplitz. (Indeed, the AMSER algorithm ap-
plies toarbitrary multiple-input multiple-output channels [16].)

If we were to adapt the real components of to mini-
mize Pr , without regard to the imagi-
nary part of the decision, then a direct application of (19) to the
real system of (24) yields

sign (25)

where is the normalized equalizer output, and
is the resulting error, where

, and where is defined by

In terms of the complex filter , we may write
. Equivalently, in terms of the complex equalizer

, (25) can be rewritten as

sign (26)

where denotes the conjugate of.
Alternatively, we could instead adaptto minimize the prob-

ability that theimaginarypart of the decision is incorrect, ig-
noring the real part. Specifically, consider the imaginary part of
the equalizer output

(27)

where again is given by (24), and where we have introduced
the following permutation matrix:

Like , the permuted observation vector may also be mod-
eled using (24) but with replacing . If we were to adapt
in an attempt to minimize Pr , ignoring
the real part of the decision, then application of (19) yields

sign (28)

where is the normalized equalizer output, and
is the resulting error, where

, and where is defined by

In terms of the complex filter , we may write
. In terms of the complex vector , (28)

becomes

sign (29)

A symmetry argument demonstrates that (26) and (29) con-
verge in the mean to the same steady-state solution so that they
are, in that sense, redundant. However, each by itself converges
slowly, because each would update the equalizer only when an
error occurs in its dimension. The speed of convergence can
be roughly doubled by adding (26) to (29), in effect running
both simultaneously. This leads to the main result of this sec-
tion, namely, the following complex version of the AMSER
algorithm:

(30)

where

sign sign (31)

where

where is defined by (21), where
is the normalized equalizer output and is
the resulting error, and where . Although
the notation in (31) is somewhat cumbersome, it has a straight-
forward interpretation. Specifically, we may interpret the factor

in (30) as acomplex error indicator;
its real part indicates the presence and sign of an error for the
real part of the decision, and its imaginary part independently
indicates the presence and sign of an error for the imaginary
part of the decision.

V. NUMERICAL RESULTS

The performance difference between anexact minimum-SER
(EMSER)equalizer and an MMSE equalizer is most pronounced
when the number of equalizer coefficients is small relative to
the severity of the ISI. For example, consider the real channel

with 4-PAM and only equal-
izer coefficients. In Fig. 2, we compare the learning curves for
AMSER and LMS by plotting SER versus time, averaged over
1000 independent trials. The AMSER equalizer used the LMS
update for the first 200 symbol periods as initialization and then
switched to the AMSER update of (19) with there-
after. Both equalizers used a delay of , which minimizes
SER for the MMSE equalizer, and a step size . The
SNR was 27 dB, where SNR , and

is the alphabet energy. We observe from the figure that
the AMSER algorithm significantly outperforms the LMS al-
gorithm, achieving a steady-state SER that is 15 times smaller.
Furthermore, just as the LMS algorithm closely matches the
performance of the exact MMSE equalizer, the AMSER algo-
rithm comes close to achieving the optimal performance of the
EMSER equalizer.

We now test the performance of the proposed algorithm as a
function of SNR by considering another 4-PAM example, this
time against the channel , with
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Fig. 2. Learning curves for the LMS and AMSER adaptive equalizers.

Fig. 3. Performance comparison for the five-tap 4-PAM example (dashed lines
and open circles) and the 16-QAM example (solid lines and filled circles). The
points labeled (a) and (b) correspond to the constellations of Fig. 4(a) and (b),
respectively.

equalizer coefficients, and with a delay of (which
minimizes SER for the MMSE equalizer). In Fig. 3, we plot SER
versus SNR for the five-tap EMSER,
AMSER, and MMSE equalizers. The coefficients of the MMSE
and EMSER equalizers were calculated exactly, whereas the
AMSER coefficients were obtained via the stochastic update
(19), with , , and after iterations
with training. The small step size and long training period were
chosen to diminish the impact of transient effects and allow us to
test the steady-state performance of the algorithm. The SER for
all three equalizers was then evaluated using (4). Observe from
Fig. 3 that the performance of AMSER is almost indistinguish-
able from that of the EMSER equalizer and that the AMSER
equalizer outperforms the MMSE equalizer by over 16 dB at
high SNR.

To demonstrate the effectiveness of AMSER for large com-
plex alphabets, consider a 16-QAM system with

(a)

(b)

Fig. 4. First quadrants of the noiseless constellations for the 16-QAM example
with SNR= 34 dB. (a) After the MMSE equalizer (with MSE= �6.3 dB, and
SER = 2:2� 10 ). (b) After the EMSER equalizer (with MSE= �4.4 dB
and SER = 1:1 � 10 ).

and equalizer coefficients. A plot
of SER versus SNR for the four-tap EMSER, AMSER, and
MMSE equalizers is shown in Fig. 3. In all cases, the delay is

, which minimizes SER for the MMSE equalizer. The
MMSE and EMSER coefficients were calculated exactly, and
the AMSER coefficients were obtained adaptively via (30) with

and after training symbols. The SER
for all three equalizers was evaluated using (4). AMSER outper-
forms MMSE by more than 13 dB.

It is instructive to compare the noiseless constellation dia-
grams after the MMSE and EMSER equalizers for the previous
16-QAM example, as illustrated in Fig. 4 for SNR3.4 dB.
(Only the first quadrant is shown; the other three quadrants are
translates of the first.) The constellations from Fig. 4(a) and (b)
correspond to the MMSE point labeled (a) and the EMSER point
in Fig. 3, respectively. The EMSER equalizer is scaled to have
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the same norm—and therefore the same noise enhancement—as
the MMSE equalizer. The MMSE equalizer penalizes all points
that stray from the desired, even those that are unlikely to cause
an error. The clusters that result after the MMSE equalizer are
roughly Gaussian in shape with significant tails, causing the dis-
tance between neighboring clusters to be small. In contrast, the
EMSER equalizer exploits the non-Gaussianity of the ISI. The
clusters after the EMSER equalizer are markedly non-Gaussian,
and the distance between clusters after EMSER is significantly
larger than for the MMSE case. Thus, although the MSE of
the EMSER equalizer is 1.9 dB greater than that of the MMSE
equalizer, its SER is smaller by a factor of 200.

A rigorous convergence analysis is beyond the scope of
this paper. We only mention two facts. First, empirically, the
AMSER algorithm has exhibited good convergence properties
in our simulations. Second, the close link between the AMSER
and LMS algorithms suggests that they may share similar
convergence properties.

VI. CONCLUSIONS

The AMSER algorithm is an adaptive equalization technique
that approximates the minimum-SER equalizer for PAM
and QAM, with complexity comparable to that of the LMS
algorithm. The minimum-SER equalizer can be far superior to
the MMSE equalizer when the number of equalizer coefficients
is small. Future work should devise methods for speeding up
convergence.

APPENDIX

DERIVATION OF (16)

Let sign , where is the
error at the output of the normalized equalizer, and
is the error indicator function of (15). Thus, . Let
be uniformly distributed over the setof all vectors of
PAM symbols, and let be uniformly distributed over the subset
for which the th location is unity, . Let , ,
and denote the subsets of for which ,

, and , respectively. Then

(32)

(33)

Since is impossible when , and since
is impossible when , we have

Pr

(34)

Pr

(35)

Pr

Pr

(36)

Substituting (34)–(36) into (33) yields

(37)

However, the symmetry of the PAM alphabet implies that

and it also implies that

so that (37) reduces to

(38)
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We consider separately theth component of from the
others. First, the th component of (38) is

(39)

(40)

where the fact that is independent of

implies that the second expectation of (39) is zero (since
). Observe that it is no longer

necessary to condition the first expectation of (39) on the event
since the argument of the expectation is independent

of . Consider next the th component of with
; from (38), we see that it does not contain a contribution

from so that the conditioning in (38) on
or has no impact and that both expectations can
equivalently be computed with respect to all . Hence,
from (38)

(41)

(42)

Combining (40) and (42) yields

(43)

Left-multiplying both sides of (43) by the deterministic matrix
yields (16), which is the desired result. Q.E.D.
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