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Abstract — We study the relative impact of rate and raw diversity
order on the capacity and performance of linear space-timecodes.
Outage capacity is not directly affected by raw diversity order,
but it is strongly impacted by the rate of a space-time code.
Specifically, if alinear space-timecodeoperating over a t-input, r-
output Rayleigh-fading channelhasrate R < min(¢, ), we show
that it achieves at most a fraction R /min(¢, r) of the channel's
outage capacity at high SNR. In the absenceof outer codes,the
performance of the space-timecodedependsstrongly on both the
rate and the raw diversity order. Sincelow complexity space-time
codeswith both high rate and high raw diversity order are hard to
find, thereis a trade-off betweenrate and raw diversity order. We
proposea heuristic rule of thumb: start with a rate equal to
min(¢, r) and lower it until a space-timecodewith raw diversity
order of min(¢r, 4) can be found. In particular, when there are 4
or more receve antennas,the rate should be min(z, r). Simulation
results for an 8 x 8 Rayleigh channel showv that the rate-8,
diversity-8 V-BLAST encoderoutperforms a rate-4, diversity-16
Alamouti-based GLST [1] encoder by 7 dB with ML decoding

I. INTRODUCTION

Space-timecodesoffer protection against deep fadesby
carefully introducing spatial redundang into the transmitted
signal. The performanceof a space-timecode is strongly
impactedby its rate, definedas the numberof information
symbolsconveyed per signalinginterval, andits raw diversity
order, as determinedby the rank criterion [2]. The rate
measureshe amountof redundang introducedby the space-
time code, and the raw diversity order quantifies the
effectivenessf the redundang. This paperstudiestheimpact
of the choiceof thesetwo parameter®n the performanceof
space-time codes, with and without an outer code.

Outagecapacityis a useful measureof performancevhen
the space-timecode is complementedby an outer error
correctioncode.In [3] and[4] it wasshavn thata space-time
code with rate lessthan min(¢, r) suffers a non-zeroloss in
outagecapacity However, the amountof capacitylost wasnot
quantified.In [5], it wasshaowvn thatan orthogonalblock code
[6] with rateR < 1 andonerecever antennaachiezesonly a
fraction R of the channels outage capacity The capacity
penalty of more general space-timecodes, operating over
channelswith multiple receve antennaswasposedasanopen
question.We provide a partial answerto that question.By
studyingthe slopeof high-SNRcapacityasymptoteswe shav
thatathigh SNR,alinearspace-timeodewith rateR lessthan
min(¢, r) achieres at most a fraction R/min(¢,r) of the
channels outage capacity
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Although the rate of a space-timecodehasa strongimpact
on outagecapacity its raw diversity order doesnot. This is
becausdhe rank criterion [2] for computingthe raw diversity
order assumesthat the inputs to the space-timecode are
independent. The presenceof an outer code introduces
dependeng in the inputs that makes the achievable diversity
order higher than the raw diversity order We show
qualitatively that the zero offset of the outage capacity
asymptotes increases with the aghlde dversity order

Whencompleity andlateng considerationpreventtheuse
of strong outer codes, outage capacity is no longer a
meaningfulperformancemetric. Without an outer code, both
theraw diversity orderandthe rateareimportantdeterminants
of performancea high raw diversity orderreduceserror rates
by providing diversitygain, while a high rateenableghe useof
smallconstellationsthusincreasingheminimumdistanceand
providing coding gain [2]. While it is both desirableand
theoreticallypossibleto use space-timecodeswith high raw
diversity orderandhigh rate,low complity codeswith both
thesepropertiesareknown only for afew MIMO channeld6].
High diversity orderoftenimplieslow rate,andthereis thusa
trade-of betweenthe two conflicting goals.The key question
is this: which is better a high-rate low-diversity space-time
code, or a low-rate high-diversity space-timecode? More
specifically for agiventargeterrorprobabilityandinformation
rate, what combinationof rate and diversity order shouldone
choose to minimize the required SNR?

We provide a heuristic rule of thumb in this paper: One
shouldstartwith a rate equalto min(¢, r) andreducethe rate
until oneis ableto find a space-timecodewith araw diversity
orderof min(¢r, 4). In particular if thereare4 or morereceve
antennasthere is already enoughraw diversity order even
without additional transmit diversity, and one should use a
code with rate min(¢, r). This heuristic rule is supportedby
simulation resultsfor 32 bits/s/Hz over an 8 x 8 Rayleigh
fadingchannelwherea high-ratelow-diversity codeis shavn
to outperform a lav-rate high-diersity code by’ dB.

In Sectionll, we presensomebackgroundandestablistthe
relationship betweenoutage capacity and diversity order of
MIMO channelsin Sectionlll, we discusghe outagecapacity
of space-timecodes,with an example shaving the effect of
rate and achievable diversity order on the outagecapacity In
Section IV, we discussthe rate-dversity trade-of in the
absencef outercodes,andproposea heuristicrule of thumb
supportedby simulation results. SectionV summarizesthe
conclusions from this paper



Il. THE OUTAGE CAPACITY OF MIMO CHANNELS

A t-transmit, r-receve antenna static wireless MIMO
channel is modeled as
yr=Hx} +n;, (1)

wherex,, is the ¢ x 1 channelinput andy, the r x 1 channel
output at time k. The noisen,, is spectrallyand temporally
white, so that E[n,,m;*]1= &Nyl The entriesof the r x¢
Rayleigh-hding channelmatrix H areindependentgircularly
symmetric, unit-variance Gaussian random variables. We
assumehatH is unknowvn to the transmitter but known to the
recever. The SNR S is definedas the ratio of the average
recevedsignalpowerto theaveragenoisepower atary receve
antenna, namel§ = E[||x;, |E1/N,.

The capacityof the MIMO channelfor ary particularH,
constrained by the transmitteignorance off, is [7]

Ig(H) = logdet [, + SHH*[ @)

The available capacityIg(H) is a randomvariableunknown to
thetransmitterIf it falls below the transmitdatarateR,, error
probability cannotbe madezero by ary code. This event is
calledan outage. Let Fg(x) denotethe cumulatie distribution
function of Ig(H) for an SNR S. The outageprobability is the
probability that an outage occurs, and is clearly equal to
Fg(Ry). As the SNR increases,the outage probability
decreasesThe diversity order d quantifiesthe rate at which
this decrease occurs, as defined by the limit:

logF o(R
d= _Suinw%;b) . 3)
Graphically the diversity ordermeasureshe asymptoticsiope
of outageprobability versusSNR plotted on a log-log scale.
Fg(x) is known for Rayleighfading channelq7], and canbe
used to pree the follaving theorem [8].

Theorem 1. The diversity order of a ¢-transmit, r-receive
antenna Rayleighafling channel is
d=tr. (4)
An alternatve definition of diversity order basedon the
pairwise error probability also leadsto the value ¢ for the
maximumpossiblediversity orderfor codesoperatingover the
Rayleigh channel [2]. The agreementbetween the two
definitionsis not surprisingsincethe outageprobabilitybounds
the lowvest achieable error probability

Insteadof fixing datarate and varying the SNR to obtain
different performanceevels, one could fix the target outage
probability andtry to achieve the maximumpossibledatarate.
As the datarate R, increasesthe outageprobability Fg(R;)
increaseskor agiven SNR S, the maximumdatarateat which
the outageprobability is still belov a targetvaluep, is called
the outage capacity for that \alue ofp,, and is defined by:

C(S, p,) = sup{ Ry: F5(Rp) <p,} -

Analogousto diversity order we define capacity order m by
the limit:

. logC(S, p,)
m =Sll£noo——w- 5 (5)
whichis theasymptotiaateat which outagecapacityincreases
with log SNR.Thefollowing resultrelatescapacityorderto the
number of transmit and regei antennas [8].

Theorem 2. The capacity order of a ¢-transmit, r-receve
antenna Rayleighafling channel is

m =min(, r) . (6)
This resultshouldbe contrastedvith [9], wheretheasymptotic

slope of the averagecapacity (insteadof outagecapacity)is
also shwn to bemin(, r).

From (6), the high-SNR asymptoteof the capacityversus
log SNR plot is a straight line with slope m, namely
C = mlogS + a(p,), wherethe zerooffseta(p,) is a function of
the target outageprobability p,. Although the diversity order
doesnot affect the slope,it doesaffect the offset. We will now
shav that amongtwo channelswith the samecapacityordes
theonewith the higherdiversity orderhasthelargerzerooffset
for smallp,.

Considerthe sketch in Fig. 1, which showvs capacityand
outageprobability asymptotesat high SNR. The upper plot
shaws the outagecapacityasymptotedor outageprobabilities
p andgq < p. The lower plot shavs the asymptoticplot of log
outageprobabilityversudog SNR for adatarateR,, in thehigh
SNRregion. By the definition of capacityanddiversity orders,
the slopesof thelinesin the upperandlower plotsarem and
-d, respectiely. Now, from thesketch,Az /Ax = d, andly / Ax
=m, giving Ay = Azm /d. But sincelly = a(p) — a(q) andAz =
log(p) — log(q), solving fora(q) yields:

a(q) = flp) + loglg) m/d , )
where fip) = a(p) — log(p) m/d is independenbf q. From(7),
therateatwhicha(q) decreasewith q is inverselyproportional
to the diversity orderd. Clearly, for a sufiiciently smallq, a
higherdiversity channelwill have ahigheroffsetthana lower-
diversity channel.
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Fig. 1. Sketch of outage capacity and outage probability asymptote



I1l. OUTAGE CAPACITY OF LINEAR SPACE-TIME CODES

It is commonfor a transmitterto usea concatenatedoding
schemeconsistingof an outercodefeedingcomplex symbols
to aninnerspace-timeode.For example,the outercodecould
be a binary turbo code feeding BPSK symbolsto an inner
Alamouti code.The purposeof the space-timecodeis to offer
protection agpinst deep fades by carefully introducing
redundang acrossspaceandtime. The rate of the space-time
code,definedasthe numberof complex symbolsit encodeper
signaling interval, measuresthe amount of redundang
introduced.The effectivenessof the redundang is measured
by theraw diversity orderof the space-timeodewith uncoded
comple inputs, and is determined by the rank criterion [2].

The combinationof the space-timecodeandthe underlying
MIMO fadingchanneformsaneffective channelsseerby an
outerencoderandthe decoderat the recever. In this section,
we study the outagecapacityof this effective channel.With
some aluse of notation, we will also call this quantity the
outagecapacityof the space-timecodeitself. In particular we
will shawv thatthe outagecapacityis not very sensitve to the
raw diversity order of the space-timecode, but depends
strongly on the rate.

ConsiderarateX /N space-timeodewhich takesin blocks
of K comple symbolsandusesthemto generateV blocks of
t x 1 complex vectors.We restrict attentionto linear space-
time codes, which obtain each complex output-symbol by
somelinear combinationof the K inputs and their comple
conjugates. Bllowing [7], we define the transformations

. [Refx} + _ [ Re{A} Im{A}
X = [Im{x}]’ andA = [—Im{A} Re{A}] ‘ ®)

for complex vectorsx andmatricesA. Letthe jth inputblock be
w; = [uf1), ... w1’ Stacking the N ¢x1 channel-input
vectorsx; 1,X; 9,.. X; v in block; onebelow theother we getthe
compositeNt x 1 outputvectorx;. A comple linear encoder
obtainsx; by [3]:

for somematrix L;. In (9), we have allowed for the possibility
thatthe encodeis time-variant,with the assumptiorthatL; be
chosenindependentlyanduniformly for eachy. Stackingthe N

r x 1 channeloutput vectors,we get the compositechannel
output \ectory;, which is related ta; by

HOo " o
0HO.:
yj= S0 - ‘0 xj+nj, (10)
0 -"0H
wheren,; is the compositenoisevector Letting G denotethe
block diagonal matrix in (10), application of the
transformations of (8) leads to:
§;= Gx;+ n; = GL,+ i;. (11)

This equationrepresentshe transferequationof the 2Nr x 2K
effective channel Note that exceptfor the dimensionsandthe
factthatit is real insteadof comple, the effective channelis

similar to theunderlyingMIMO channel1). Thereforeall the
definitions of the precedingsectionapply In particular it is
easy to shw that the instantaneous capacity foy &his

N AT
Js(H) = %EL[log detH, y, +a>(GLL"G )5], (12)

wherethe expectationis taken over the ensemblérom which

L, is chosenanda is anormalizingconstanthich correctsfor

the scalingof signalpower by L;. Outageprobability, diversity
order outagecapacityand capacityorder cannow be defined
for the effective channelin exactly the sameway asthey were
defined for the i@ MIMO channel in the last section.

Fromthedataprocessingheoremof informationtheory the
capacity of the space-timecoded effective channel cannot
exceedthe capacityof the underlyingMIMO channel.n fact,
mary space-timeodessuffer alossin outagecapacity asseen
from the folloving theorem.

Theorem 3. The capacityorderm.g of a rateR space-time
code operatingover a ¢-input, r-output Rayleigh channel
satisfies

(13)

Proof (sketch): Letv betherankof atypicalinstanceof the
randommatrix M = GL. Writing out the determinanin (12)
in terms of the non-zero eigeatues{A;} of M, we hae

Mgt < min(t, r, R) .

Jg(H) = %vzj: 110g%1 + a?)\i% = 55 10gS + o(1/5).

Dividing by logS and letting S — o yields meg=v/2N.

From the matrix dimensionsyrank(G) < min(2Nt, 2Nr) and
rank(L) < min(2Nt, 2K). Sincethe rank of M = GL cannot
exceed the ranks of eithas or L, we get

v = rank(M) < min(2N¢, 2Nr, 2K) . (14)

Substitutingm g = v/ 2N into (14) finishesthe proof. A more
rigorous proof accounts for the randomnesM(d8].

From the abore theorem,a space-timecodewith rate R <
m =min(t, r) decreasesasymptotic outage capacity from
approximatelymlog(S) to Rlog(S). Thusat high SNR, only a
fractionR /m of the channed outage capacity is achied.

A low capacity order results in a shallav capacity
asymptote Similarly, a low diversity order resultsin a lower
offsetof the capacityasymptoteandhencea capacitylossthat
saturatesat high SNR. However, it is very uncommonfor
space-timeodego have low diversityorder Theraw diversity
order, obtainedusingthe rank criterion assumingndependent
inputs to the space-timecode, is only a lower boundto the
diversity order achiezable by the use of well-designedouter
codes For example,considettheK = ¢, N = 1 serial-to-parallel
converterwhich takesits ¢ complex inputsover the ¢ transmit
antennagvery signalingintenal; it hasaraw diversity orderof
r, sinceit provides no transmitdiversity But since the S/P
converter doesessentiallyno space-timecoding, the effective
channelis the sameas the underlying MIMO channelitself,
andtheachievable diversity orderof the effective channeis ¢r.



Since it is the achievable diversity order that directly affects
capacity, the raw diversity order of a space-time has a much
less dramatic impact on the outage capacity than does its rate.

We will close the section with an example of the effect of
rate and diversity order on the outage capacity of space-time
codes. We consider a Rayleigh fading channel with ¢ =2
transmit antennas, and either 1 or 2 receive antennas. We
consider two rate-1 space-time codes. the Alamouti code of
[10], and the repetition code, which takes in one complex
symbol every signaling interval and transmits it from both
antennas. The 1% outage capacity is plotted vs. SNR in Fig. 2.

Consider first the case of r = 1 receive antenna. In this case,
both the Alamouti code and the repetition code have full
capacity order; this follows because they both have rate 1, so
that their effective capacity order is meg=min(2,1,1)=1,
which matches the capacity order m = min(2,1) =1 of the
underlying 1 x2 channel. This result is verified by Fig. 2,
where the asymptotic slopes of the Alamouti and repetition
capacity curves matches that of the underlying channel itself.
In addition to full capacity order, the Alamouti code has full
diversity order as well, so we expect it to lose very little
capacity. Remarkably, as observed in the figure and proven in
[5], the Alamouti code suffers no capacity penalty when there
is only one receive antenna. The pathological repetition code,
on the other hand, offers no transmit diversity even with an
outer code, and its diversity order is just 1, a loss from the
channel’s diversity order of 2. The effect of the lower diversity
order is the constant capacity loss at high SNR seen in Fig. 2.

When the receiver has two antennas, the diversity order
increases to 4, and more importantly, the capacity order
increases to 2. Meanwhile, Theorem 3 shows that the capacity
order of both codes remain fixed at min(2, 2, 1) = 1. Both codes
can achieve at most 50% of the outage capacity of the
underlying channel at high SNR. The capacity difference, in
bits/ s/ Hz, grows without bound as SNR increases. Asseenin
Fig. 2, the outage capacity curve corresponding to the
underlying channel has a slope that is twice as steep as those
corresponding to the two space-time codes. Also notice that the
repetition code, due to its lower diversity order (2 compared to
4), suffers an additional offset loss when compared to the
Alamouti code.

IV. WEAK OUTER CODES. THE RATE-DIVERSITY TRADE-OFF

The outage capacity analysis so far implicitly assumes the
presence of outer codes designed to achieve near-optimum
performance. However, practical constraints on latency and
complexity often prevent the use of strong outer codes. In this
section, we examine the implications of the absence of outer
codes on performance metrics for space-time codes. As
mentioned in the previous section, the outage capacity depends
directly on the achievable diversity order, and not the raw
diversity order. When there is no outer code, the raw diversity
order, by definition, determines the diversity gain and is clearly
acrucial measure of performance. Since capacity is blind to so

critical a parameter as the raw diversity order, the results
obtained from a capacity-based analysis are not directly
meaningful for stand-alone space-time codes.

The crucial determinants of performance of stand-alone
codes are rate and raw diversity order. A high raw diversity
order reduces error rates by protecting against deep fades. A
high rate enables the use of a smaller constellation while still
maintaining the same information rate, resulting in an increase
of the minimum distance and lower susceptibility to additive
noise. In other words, a higher raw diversity order increases
diversity gain, and a higher rate increases the coding gain [2].
Ideally, one would like to have the best of both worlds by using
space-time codes with high raw diversity order and high rate.
(A high rate also leaves open the possibility of approaching
capacity by using strong outer codes.) While it is theoretically
possible to design codes with both these desirable properties,
such codes have only been developed for a small range of
channel dimensions [6]. Linear dispersion codes [4] are a
promising high-rate option, but they do not necessarily have
high raw diversity order, and also suffer from high decoding
complexity when the channel dimensions are large.

Thus there is a trade-off between rate and raw diversity
order. The question is: Given a target error probability and
information rate, what combination of rate and raw diversity
order minimizes the required SNR? In other words, is the
reduction of coding gain caused by lowering rate compensated
by the higher diversity gain obtained in the process? An exact
answer to the above question depends on the dimensions of the
channel and the class of space-time codes used. We provide a
heuristic answer here.

Extrapolating Theorem 3 to the uncoded case, increasing the
rate beyond min(¢, r) does not buy any additional capacity
order. So our first rule is that the rate need not be higher than
min(¢, r). The second heuristic rule is that beyond a total raw
diversity order of 4, diminishing returns sets in and the
additional diversity gain obtained by increasing the raw
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Fig. 2. Outage capacity versus SNR at 1% outage, assuming ¢ = 2
transmit antennas.



diversity orderis offset by the loss of coding gain dueto the
concomitantrate reduction. Combining the two rules, our
designproceduras to startwith arateof min(z, r), andreduce
the rateonly somuchasis necessaryo obtainaraw diversity
order equal to min(¢r, 4), where the ¢ term accountsfor

channels whose full dersity order is less than

With ML decodingattherecever, theraw diversity orderis
guaranteedto be at least equal to the number of receve
antennaslf the receiver has4 or moreantennasthe heuristic
thresholdon diversity orderis met even without ary transmit
diversity Therefore,accordingto our rule, one should usea
space-time code with rate equahiin(z, ).

To supportour heuristicrule, we presentsimulationresults
comparing two space-timecodes operating over an 8 x 8
Rayleigh fading channel. The first encoderis a serial-to-
parallelcorvertersimilarto the V-BLAST encodef11], with a
rate equalto the numberof transmitantennag8), and a raw
diversity order equalto the numberof recever antennags).
The GLST encodeyon the otherhand,consistsof a serial-to-
parallel corverter followed by four Alamouti [10] codes
operatingindependentlyin parallel.(The 8 transmitantennas
aredividedinto 4 two-antennaroupswith oneAlamouti code
for eachgroup.) Thetotal rate,equalto the sumof the ratesof
the four rate-1Alamouti encodersis equalto 4. The transmit
diversityis 2, resultingin atotal raw diversityorderof 2r = 16.

The GLST encoderis basedon the generalizedlayered
space-time architecture proposedin [1] as a method of
achieving nearoptimum performanceon MIMO channelsby
using high diversity space-timecodes. However, from the
analysign this paperwe know thatthelow rateGLST encoder
incursa heary capacitypenalty In fact,evenwhenthereis no
outercode thenumberof receve antennass largeenoughthat
the ratelossof the GLST encodelis moresignificantthanthe
additional diversity gain obtained.So we expect the GLST
encoder to perform arse than the VBT encoder

Simulation results in Fig.3 confirm this prediction.
Independently fading blocks of 3200 uncoded bits are
transmittedat an information rate of 32 bits per signaling
intenal, with 100 signalingintervals perblock. To achieve the
requiredinformation rate, the rate8 VBT encoderuses16-
QAM, while therate4 GLST encoderuses256-QAM. At the
recever, exact ML decodingwas performedby the useof the
sphere decoder [12].

With successie cancellationinsteadof ML decodingthe
relative performancef thetwo decodershangesiramatically
With successie cancellationthereceve diversityorderis only
1, andtheraw diversityordersof VBT andGLST encodersre
1 and2 (insteadof 8 and16 with ML decoding) respectrely.
Now, therule of thumbwould in fact have calledfor reducing
the rate een further to obtain adérsity order o#t.

V. CONCLUSIONS

We studiedthe impact of the rate and diversity order of a
space-timecodeon its performanceThe outagecapacityof a
space-timecodedoesnot dependstronglyon its raw diversity
order but a codewith rate R < min(¢, r) achieves at most a
fraction R/min(t, r) of the outagecapacityof the underlying
channehthigh SNR.Withoutanoutercode bothhighrateand
high raw diversity order are desirablebut difficult to find,
implying a trade-of betweenrateandraw diversity order We
proposeda heuristicrule of thumbto strike a balancebetween
rate and diversity order In particular when there are mary
receve antennasye claimedthatit is moreimportantto usea
high-rate code than a high-diversity-order code. Simulation
results were shan to support this claim.
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