
Abstract — We study the relative impact of rate and raw diversity
order on the capacityand performanceof linear space-timecodes.
Outage capacity is not dir ectly affected by raw diversity order,
but it is strongly impacted by the rate of a space-time code.
Specifically, if a linear space-timecodeoperating over a t-input, r-
output Rayleigh-fading channel has rate R < min(t, r), we show
that it achieves at most a fraction R ⁄ min(t, r) of the channel’s
outagecapacity at high SNR. In the absenceof outer codes,the
performanceof the space-timecodedependsstrongly on both the
rate and the raw diversity order. Sincelow complexity space-time
codeswith both high rate and high raw diversity order arehard to
find, there is a trade-off betweenrate and raw diversity order. We
propose a heuristic rule of thumb: start with a rate equal to
min(t, r) and lower it until a space-timecodewith raw diversity
order of min(tr, 4) can be found. In particular , when there are 4
or more receiveantennas,the rate shouldbemin(t, r). Simulation
results for an 8 × 8 Rayleigh channel show that the rate-8,
diversity-8 V-BLAST encoderoutperforms a rate-4, diversity-16
Alamouti-based GLST [1] encoder by 7 dB with ML decoding.

I. INTRODUCTION

Space-timecodesoffer protection against deep fadesby
carefully introducingspatial redundancy into the transmitted
signal. The performanceof a space-timecode is strongly
impactedby its rate, definedas the numberof information
symbolsconveyed per signalinginterval, andits raw diversity
order, as determinedby the rank criterion [2]. The rate
measuresthe amountof redundancy introducedby the space-
time code, and the raw diversity order quantifies the
effectivenessof the redundancy. This paperstudiesthe impact
of the choiceof thesetwo parameterson the performanceof
space-time codes, with and without an outer code.

Outagecapacityis a useful measureof performancewhen
the space-timecode is complementedby an outer error-
correctioncode.In [3] and[4] it wasshown that a space-time
code with rate less than min(t, r) suffers a non-zeroloss in
outagecapacity. However, theamountof capacitylost wasnot
quantified.In [5], it wasshown that an orthogonalblock code
[6] with rateR < 1 andonereceiver antennaachievesonly a
fraction R of the channel’s outage capacity. The capacity
penalty of more general space-timecodes, operating over
channelswith multiple receive antennas,wasposedasanopen
question.We provide a partial answerto that question.By
studyingtheslopeof high-SNRcapacityasymptotes,we show
thatathighSNR,a linearspace-timecodewith rateR lessthan
min(t, r) achieves at most a fraction R ⁄ min(t, r) of the
channel’s outage capacity.

Although the rateof a space-timecodehasa strongimpact
on outagecapacity, its raw diversity order doesnot. This is
becausethe rank criterion [2] for computingthe raw diversity
order assumesthat the inputs to the space-timecode are
independent.The presenceof an outer code introduces
dependency in the inputs that makes the achievable diversity
order higher than the raw diversity order. We show
qualitatively that the zero offset of the outage capacity
asymptotes increases with the achievable diversity order.

Whencomplexity andlatency considerationspreventtheuse
of strong outer codes, outage capacity is no longer a
meaningfulperformancemetric. Without an outer code,both
theraw diversityorderandtherateareimportantdeterminants
of performance;a high raw diversity orderreduceserror rates
by providing diversitygain,while ahighrateenablestheuseof
smallconstellations,thusincreasingtheminimumdistanceand
providing coding gain [2]. While it is both desirableand
theoreticallypossibleto usespace-timecodeswith high raw
diversity orderandhigh rate,low complexity codeswith both
thesepropertiesareknown only for a few MIMO channels[6].
High diversityorderoften implies low rate,andthereis thusa
trade-off betweenthe two conflicting goals.The key question
is this: which is better, a high-rate low-diversity space-time
code, or a low-rate high-diversity space-timecode? More
specifically, for agiventargeterrorprobabilityandinformation
rate,what combinationof rateanddiversity ordershouldone
choose to minimize the required SNR?

We provide a heuristic rule of thumb in this paper:One
shouldstartwith a rateequalto min(t, r) andreducethe rate
until oneis ableto find a space-timecodewith a raw diversity
orderof min(tr, 4). In particular, if thereare4 or morereceive
antennas,there is already enoughraw diversity order even
without additional transmit diversity, and one should use a
code with rate min(t, r). This heuristic rule is supportedby
simulation results for 32 bits ⁄ s ⁄ Hz over an 8 × 8 Rayleigh
fadingchannel,wherea high-ratelow-diversitycodeis shown
to outperform a low-rate high-diversity code by7 dB.

In SectionII, wepresentsomebackground,andestablishthe
relationshipbetweenoutagecapacityand diversity order of
MIMO channels.In SectionIII, wediscusstheoutagecapacity
of space-timecodes,with an exampleshowing the effect of
rateandachievablediversity orderon the outagecapacity. In
Section IV, we discuss the rate-diversity trade-off in the
absenceof outercodes,andproposea heuristicrule of thumb
supportedby simulation results.Section V summarizesthe
conclusions from this paper.
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II. THE OUTAGE CAPACITY OF MIMO CHANNELS

A t-transmit, r-receive antenna static wireless MIMO
channel is modeled as

yk = Hxk + nk , (1)

wherexk is the t × 1 channelinput and yk the r × 1 channel
output at time k. The noise nk is spectrallyand temporally
white, so that E[nk+lnk* ] = δlN0Ir. The entries of the r × t
Rayleigh-fadingchannelmatrix H are independent,circularly
symmetric, unit-variance Gaussian random variables. We
assumethatH is unknown to thetransmitter, but known to the
receiver. The SNR S is definedas the ratio of the average
receivedsignalpower to theaveragenoisepoweratany receive
antenna, namelyS = E[||xk ||2] ⁄ N0.

The capacityof the MIMO channelfor any particular H,
constrained by the transmitter’s ignorance ofH, is [7]

IS(H) = log det . (2)

TheavailablecapacityIS(H) is a randomvariableunknown to
the transmitter. If it falls below thetransmitdatarateRb, error
probability cannotbe madezero by any code.This event is
calledan outage. Let FS(x) denotethe cumulative distribution
function of IS(H) for an SNR S. The outageprobability is the
probability that an outage occurs, and is clearly equal to
FS(Rb). As the SNR increases, the outage probability
decreases.The diversity order d quantifiesthe rate at which
this decrease occurs, as defined by the limit:

d = . (3)

Graphically, thediversityordermeasurestheasymptoticslope
of outageprobability versusSNR plotted on a log-log scale.
FS(x) is known for Rayleighfading channels[7], and can be
used to prove the following theorem [8].

Theorem 1. The diversity order of a t-transmit, r-receive
antenna Rayleigh-fading channel is

d = tr . (4)

An alternative definition of diversity order based on the
pairwise error probability also leadsto the value tr for the
maximumpossiblediversityorderfor codesoperatingover the
Rayleigh channel [2]. The agreement between the two
definitionsis notsurprisingsincetheoutageprobabilitybounds
the lowest achievable error probability.

Insteadof fixing datarate and varying the SNR to obtain
different performancelevels, one could fix the target outage
probabilityandtry to achieve themaximumpossibledatarate.
As the data rate Rb increases,the outageprobability FS(Rb)
increases.For a givenSNRS, themaximumdatarateat which
the outageprobability is still below a target valuepo is called
theoutage capacity for that value ofpo, and is defined by:

C(S, po) = sup{Rb: FS(Rb) < po} .
Analogousto diversity order, we definecapacity order m by
the limit:

m = , (5)

which is theasymptoticrateatwhichoutagecapacityincreases
with log SNR.Thefollowing resultrelatescapacityorderto the
number of transmit and receive antennas [8].

Theorem 2. The capacityorder of a t-transmit, r-receive
antenna Rayleigh fading channel is

m = min(t, r) . (6)

This resultshouldbecontrastedwith [9], wheretheasymptotic
slopeof the averagecapacity(insteadof outagecapacity)is
also shown to bemin(t, r).

From (6), the high-SNRasymptoteof the capacityversus
log SNR plot is a straight line with slope m, namely
C = mlogS + α(po), wherethezerooffsetα(po) is a functionof
the target outageprobability po. Although the diversity order
doesnot affect theslope,it doesaffect theoffset.We will now
show that amongtwo channelswith the samecapacityorder,
theonewith thehigherdiversityorderhasthelargerzerooffset
for smallpo.

Considerthe sketch in Fig. 1, which shows capacityand
outageprobability asymptotesat high SNR. The upper plot
shows the outagecapacityasymptotesfor outageprobabilities
p andq < p. The lower plot shows the asymptoticplot of log
outageprobabilityversuslog SNR for adatarateRb in thehigh
SNRregion.By thedefinitionof capacityanddiversityorders,
the slopesof the lines in the upperandlower plots arem and
−d, respectively. Now, from thesketch,∆z ⁄∆x = d, and∆y ⁄∆x
= m, giving ∆y = ∆zm ⁄d. But since∆y = α(p) – α(q) and∆z =
log(p) – log(q), solving forα(q) yields:

α(q) = f(p) + log(q) m ⁄ d , (7)

where f(p) = α(p) – log(p) m ⁄ d is independentof q. From(7),
therateatwhichα(q) decreaseswith q is inverselyproportional
to the diversity order d. Clearly, for a sufficiently small q, a
higher-diversitychannelwill have a higheroffsetthana lower-
diversity channel.
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Fig. 1. Sketch of outage capacity and outage probability asymptotes.
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III. OUTAGE CAPACITY OF LINEAR SPACE-TIME CODES

It is commonfor a transmitterto usea concatenatedcoding
schemeconsistingof an outercodefeedingcomplex symbols
to aninnerspace-timecode.For example,theoutercodecould
be a binary turbo code feeding BPSK symbols to an inner
Alamouti code.Thepurposeof thespace-timecodeis to offer
protection against deep fades by carefully introducing
redundancy acrossspaceandtime. The rateof the space-time
code,definedasthenumberof complex symbolsit encodesper
signaling interval, measures the amount of redundancy
introduced.The effectivenessof the redundancy is measured
by theraw diversityorderof thespace-timecodewith uncoded
complex inputs, and is determined by the rank criterion [2].

Thecombinationof thespace-timecodeandtheunderlying
MIMO fadingchannelformsaneffective channelasseenby an
outerencoderandthe decoderat the receiver. In this section,
we study the outagecapacityof this effective channel.With
some abuse of notation, we will also call this quantity the
outagecapacityof thespace-timecodeitself. In particular, we
will show that the outagecapacityis not very sensitive to the
raw diversity order of the space-timecode, but depends
strongly on the rate.

Considera rate-K ⁄N space-timecodewhich takesin blocks
of K complex symbolsandusesthemto generateN blocksof
t × 1 complex vectors.We restrict attentionto linear space-
time codes,which obtain each complex output-symbolby
somelinear combinationof the K inputs and their complex
conjugates. Following [7], we define the transformations

= , and = , (8)

for complex vectorsx andmatricesA. Let thejth inputblockbe
uj = [uj(1), … uj(K)]T. Stacking the N t × 1 channel-input
vectorsxj,1,xj,2,...xj,N in block j onebelow theother, wegetthe
compositeNt × 1 output vector xj. A complex linear encoder
obtainsxj by [3]:

j = Lj j (9)

for somematrix Lj. In (9), we have allowedfor thepossibility
thattheencoderis time-variant,with theassumptionthatLj be
chosenindependentlyanduniformly for eachj. StackingtheN
r × 1 channeloutput vectors,we get the compositechannel
output vectoryj, which is related toxj by

yj = xj + nj , (10)

wherenj is the compositenoisevector. Letting G denotethe
block diagonal matrix in (10), application of the
transformations of (8) leads to:

j = j + j = Lj j + j . (11)

This equationrepresentsthe transferequationof the2Nr × 2K
effective channel.Note that exceptfor thedimensionsandthe
fact that it is real insteadof complex, the effective channelis

similar to theunderlyingMIMO channel(1). Therefore,all the
definitionsof the precedingsectionapply. In particular, it is
easy to show that the instantaneous capacity for any H is

JS(H) = , (12)

wherethe expectationis taken over the ensemblefrom which
Lj is chosen,andα is anormalizingconstantwhichcorrectsfor
thescalingof signalpower by Lj. Outageprobability, diversity
order, outagecapacityandcapacityordercannow be defined
for theeffective channelin exactly thesameway asthey were
defined for the raw MIMO channel in the last section.

Fromthedataprocessingtheoremof informationtheory, the
capacity of the space-timecoded effective channel cannot
exceedthecapacityof theunderlyingMIMO channel.In fact,
many space-timecodessuffer a lossin outagecapacity, asseen
from the following theorem.

Theorem 3. The capacityordermeff of a rate-R space-time
code operatingover a t-input, r-output Rayleigh channel
satisfies

meff ≤ min(t, r, R) . (13)

Proof (sketch): Let v betherankof a typical instanceof the
randommatrix M = L. Writing out thedeterminantin (12)
in terms of the non-zero eigenvalues{λi} of M, we have

JS(H) =  = logS + o(1 ⁄S).

Dividing by logS and letting S → ∞ yields meff = v ⁄2N.
From the matrix dimensions,rank( ) ≤ min(2Nt, 2Nr) and
rank(L) ≤ min(2Nt, 2K). Since the rank of M = L cannot
exceed the ranks of either or L, we get

v = rank(M) ≤ min(2Nt, 2Nr, 2K) . (14)

Substitutingmeff = v ⁄2N into (14)finishestheproof.A more
rigorous proof accounts for the randomness ofM [8].

From the above theorem,a space-timecodewith rate R <
m = min(t, r) decreasesasymptotic outage capacity from
approximatelymlog(S) to Rlog(S). Thusat high SNR, only a
fractionR ⁄m of the channel’s outage capacity is achieved.

A low capacity order results in a shallow capacity
asymptote.Similarly, a low diversity order resultsin a lower
offsetof thecapacityasymptote,andhencea capacitylossthat
saturatesat high SNR. However, it is very uncommonfor
space-timecodesto have low diversityorder. Theraw diversity
order, obtainedusingthe rank criterion assumingindependent
inputs to the space-timecode, is only a lower bound to the
diversity order achievable by the use of well-designedouter
codes.For example,considertheK = t, N = 1 serial-to-parallel
converterwhich takesits t complex inputsover the t transmit
antennaseverysignalinginterval; it hasaraw diversityorderof
r, since it provides no transmit diversity. But since the S/P
converterdoesessentiallyno space-timecoding,the effective
channelis the sameas the underlyingMIMO channelitself,
andtheachievable diversityorderof theeffectivechannelis tr.
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Since it is the achievable diversity order that directly affects
capacity, the raw diversity order of a space-time has a much
less dramatic impact on the outage capacity than does its rate.

We will close the section with an example of the effect of
rate and diversity order on the outage capacity of space-time
codes. We consider a Rayleigh fading channel with t = 2
transmit antennas, and either 1 or 2 receive antennas. We
consider two rate-1 space-time codes: the Alamouti code of
[10], and the repetition code, which takes in one complex
symbol every signaling interval and transmits it from both
antennas. The 1% outage capacity is plotted vs. SNR in Fig. 2.

Consider first the case of r = 1 receive antenna. In this case,
both the Alamouti code and the repetition code have full
capacity order; this follows because they both have rate 1, so
that their effective capacity order is meff = min(2, 1, 1) = 1,
which matches the capacity order m = min(2, 1) = 1 of the
underlying 1 × 2 channel. This result is verified by Fig. 2,
where the asymptotic slopes of the Alamouti and repetition
capacity curves matches that of the underlying channel itself.
In addition to full capacity order, the Alamouti code has full
diversity order as well, so we expect it to lose very little
capacity. Remarkably, as observed in the figure and proven in
[5], the Alamouti code suffers no capacity penalty when there
is only one receive antenna. The pathological repetition code,
on the other hand, offers no transmit diversity even with an
outer code, and its diversity order is just 1, a loss from the
channel’s diversity order of 2. The effect of the lower diversity
order is the constant capacity loss at high SNR seen in Fig. 2.

When the receiver has two antennas, the diversity order
increases to 4, and more importantly, the capacity order
increases to 2. Meanwhile, Theorem 3 shows that the capacity
order of both codes remain fixed at min(2, 2, 1) = 1. Both codes
can achieve at most 50% of the outage capacity of the
underlying channel at high SNR. The capacity difference, in
bits ⁄ s ⁄ Hz, grows without bound as SNR increases. As seen in
Fig. 2, the outage capacity curve corresponding to the
underlying channel has a slope that is twice as steep as those
corresponding to the two space-time codes. Also notice that the
repetition code, due to its lower diversity order (2 compared to
4), suffers an additional offset loss when compared to the
Alamouti code.

IV. WEAK OUTER CODES: THE RATE-DIVERSITY TRADE-OFF

The outage capacity analysis so far implicitly assumes the
presence of outer codes designed to achieve near-optimum
performance. However, practical constraints on latency and
complexity often prevent the use of strong outer codes. In this
section, we examine the implications of the absence of outer
codes on performance metrics for space-time codes. As
mentioned in the previous section, the outage capacity depends
directly on the achievable diversity order, and not the raw
diversity order. When there is no outer code, the raw diversity
order, by definition, determines the diversity gain and is clearly
a crucial measure of performance. Since capacity is blind to so

critical a parameter as the raw diversity order, the results
obtained from a capacity-based analysis are not directly
meaningful for stand-alone space-time codes.

The crucial determinants of performance of stand-alone
codes are rate and raw diversity order. A high raw diversity
order reduces error rates by protecting against deep fades. A
high rate enables the use of a smaller constellation while still
maintaining the same information rate, resulting in an increase
of the minimum distance and lower susceptibility to additive
noise. In other words, a higher raw diversity order increases
diversity gain, and a higher rate increases the coding gain [2].
Ideally, one would like to have the best of both worlds by using
space-time codes with high raw diversity order and high rate.
(A high rate also leaves open the possibility of approaching
capacity by using strong outer codes.) While it is theoretically
possible to design codes with both these desirable properties,
such codes have only been developed for a small range of
channel dimensions [6]. Linear dispersion codes [4] are a
promising high-rate option, but they do not necessarily have
high raw diversity order, and also suffer from high decoding
complexity when the channel dimensions are large.

Thus there is a trade-off between rate and raw diversity
order. The question is: Given a target error probability and
information rate, what combination of rate and raw diversity
order minimizes the required SNR? In other words, is the
reduction of coding gain caused by lowering rate compensated
by the higher diversity gain obtained in the process? An exact
answer to the above question depends on the dimensions of the
channel and the class of space-time codes used. We provide a
heuristic answer here.

Extrapolating Theorem 3 to the uncoded case, increasing the
rate beyond min(t, r) does not buy any additional capacity
order. So our first rule is that the rate need not be higher than
min(t, r). The second heuristic rule is that beyond a total raw
diversity order of 4, diminishing returns sets in and the
additional diversity gain obtained by increasing the raw
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Fig. 2. Outage capacity versus SNR at 1% outage, assuming t = 2
transmit antennas.
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diversity order is offset by the lossof codinggain due to the
concomitant rate reduction. Combining the two rules, our
designprocedureis to startwith a rateof min(t, r), andreduce
therateonly somuchasis necessaryto obtaina raw diversity
order equal to min(tr, 4), where the tr term accountsfor
channels whose full diversity order is less than4.

With ML decodingat thereceiver, theraw diversityorderis
guaranteedto be at least equal to the number of receive
antennas.If the receiver has4 or moreantennas,the heuristic
thresholdon diversity order is met even without any transmit
diversity. Therefore,accordingto our rule, one shouldusea
space-time code with rate equal tomin(t, r).

To supportour heuristicrule, we presentsimulationresults
comparing two space-timecodes operating over an 8 × 8
Rayleigh fading channel. The first encoder is a serial-to-
parallelconvertersimilar to theV-BLAST encoder[11], with a
rate equalto the numberof transmitantennas(8), and a raw
diversity order equal to the numberof receiver antennas(8).
The GLST encoder, on the otherhand,consistsof a serial-to-
parallel converter followed by four Alamouti [10] codes
operatingindependentlyin parallel. (The 8 transmitantennas
aredividedinto 4 two-antennagroups,with oneAlamouti code
for eachgroup.)Thetotal rate,equalto thesumof theratesof
the four rate-1Alamouti encoders,is equalto 4. The transmit
diversityis 2, resultingin a total raw diversityorderof 2r = 16.

The GLST encoderis basedon the generalizedlayered
space-timearchitecture proposed in [1] as a method of
achieving near-optimum performanceon MIMO channelsby
using high diversity space-timecodes. However, from the
analysisin thispaper, weknow thatthelow rateGLSTencoder
incursa heavy capacitypenalty. In fact,evenwhenthereis no
outercode,thenumberof receiveantennasis largeenoughthat
the ratelossof theGLST encoderis moresignificantthanthe
additional diversity gain obtained.So we expect the GLST
encoder to perform worse than the VBT encoder.

Simulation results in Fig. 3 confirm this prediction.
Independently fading blocks of 3200 uncoded bits are
transmittedat an information rate of 32 bits per signaling
interval, with 100 signalingintervalsperblock. To achieve the
required information rate, the rate-8 VBT encoderuses16-
QAM, while the rate-4 GLST encoderuses256-QAM. At the
receiver, exact ML decodingwasperformedby the useof the
sphere decoder [12].

With successive cancellationinsteadof ML decoding,the
relativeperformanceof thetwo decoderschangesdramatically.
With successivecancellation,thereceivediversityorderis only
1, andtheraw diversityordersof VBT andGLST encodersare
1 and2 (insteadof 8 and16 with ML decoding),respectively.
Now, the rule of thumbwould in facthave calledfor reducing
the rate even further to obtain a diversity order of4.

V. CONCLUSIONS

We studiedthe impact of the rate and diversity order of a
space-timecodeon its performance.The outagecapacityof a
space-timecodedoesnot dependstronglyon its raw diversity
order, but a codewith rate R < min(t, r) achieves at most a
fraction R ⁄min(t, r) of the outagecapacityof the underlying
channelathighSNR.Withoutanoutercode,bothhighrateand
high raw diversity order are desirablebut difficult to find,
implying a trade-off betweenrateandraw diversity order. We
proposeda heuristicrule of thumbto strike a balancebetween
rate and diversity order. In particular, when there are many
receive antennas,we claimedthat it is moreimportantto usea
high-rate code than a high-diversity-ordercode. Simulation
results were shown to support this claim.
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