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Abstract:
Iteratively decodable error correction codes enable

operation at very low SNR, which exacerbates the
timing recovery problem. We describe a scheme for
joint timing recovery and turbo equalization that sig-
nificantly lowers the SNR requirement when compared
to a conventional receiver that separates timing re-
covery and turbo equalization. We also investigate
the Cramér-Rao bound as a tool for evaluating the
performance of iterative timing recovery schemes.
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1. Introduction

Conventional timing recovery assumes that the
data symbols are uncoded, as it usually operates at
high enough SNR so that the instantaneous decisions
are reliable enough. The introduction of iterative er-
ror correction codes [1] [2] has enabled reliable opera-
tion at significantly lower SNR. The iterative decod-
ing technique has been extended to turbo equaliza-
tion [3], where the equalizer and the decoder cooper-
ate, improving performance further. Consequently,
timing recovery now has to operate at an SNR lower
than ever before. An example of where this holds
is digital magnetic recording, where iterative codes
have been proposed to increase the data density.

At low SNR, timing recovery and decoding are in-
tertwined; timing recovery must exploit the structure
of the code to get more reliable decisions. Ideally, one
would like to jointly perform timing recovery, equal-
ization and decoding. Unfortunately, the complexity
would be prohibitive.

Iterative timing recovery presents a viable ap-
proximation to the joint problem, where the timing
recovery process is embedded inside the turbo equal-
izer, and the timing recovery process and the turbo
equalizer cooperate [4]. Each iteration of the en-
hanced turbo equalizer is only marginally more com-
plex than that of the conventional turbo equalizer.

We present the system model under considera-
tion in Section 2. Next, we describe conventional
PLL-based timing recovery in Section 3. We present
the enhanced turbo equalizer which jointly performs

timing recovery and turbo equalization in Section 4.
Simulation results for the enhanced turbo equalizer
are presented in Section 5. We present the Cramér-
Rao bound (CRB) for the system model under con-
sideration, and describe the maximum-likelihood tim-
ing estimator that achieves the CRB in Section 6.
Finally, we conclude in Section 7.

2. System Model
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Figure 1: Encoding and partial response channel.

We consider the partial-response system shown in
Figure 1 [5], where the readback waveform is

y(t) =
∑
k

akh(t− kT − τk) + n(t), (1)

where T is the bit period, ak ∈ {±1} are the pre-
coded symbols, h(t) = p(t)− p(t− 2T ) is the perfect
PR-IV pulse, p(t) = sin(πt/T )/(πt/T ) is a 0% ex-
cess bandwidth pulse, n(t) is additive white Gaussian
noise, and τk is the unknown timing offset for the kth

symbol. We model the timing offset as a frequency
offset, according to

τk = τ0 + k∆T. (2)

As shown in Figure 1, message bits are encoded
by a serial concatenation of an LDPC encoder and a
1/(1⊕D2) precoder.

3. Conventional Timing Recovery

The readback waveform is first filtered by a front-
end filter to eliminate out-of-band noise, and the re-
sulting waveform r(t) is sampled according to the
output of the timing recovery block to produce sam-
ples {rk}. Conventional timing recovery is based on
a phase-locked loop (PLL). A timing error detector
(TED) operates on the previous samples and deci-
sions on these previous samples to estimate the tim-
ing error. The output of the TED is accumulated by
a PLL, as shown in Figure 2.
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Figure 2: Conventional timing recovery.

A second-order PLL updates according to

τ̂k+1 = τ̂k + αε̂k + β

k−1∑
l=0

ε̂l, (3)

where α and β are the PLL gain parameters, and ε̂k
is the output of the TED which estimates the timing
error εk = τk − τ̂k.

The widely used Mueller and Müller TED gener-
ates this estimate according to [7]:

ε̂k =
3T
16

(rkd̂k−1 − rk−1d̂k), (4)

where d̂k is an estimate of dk = ak−ak−2 ∈ {0,±2},
typically obtained by a memoryless three-level quan-
tization of rk. The constant 3T/16 ensures that there
is no bias at high SNR, so that E[ε̂k] = εk. Perfor-
mance can be improved by using soft estimates d̃k in
place of hard estimates d̂k in (4) according to

d̃k = E[dk|rk] =
2 sinh(2rk/σ2)

cosh(2rk/σ2) + e2/σ2 . (5)

To extract the two parameters of interest τ̂0 and
∆̂T from the N outputs of the PLL {τ̂k}, we use
least squares estimation. Specifically,

∆̂T =
〈kτ̂k〉 − 〈k〉〈τ̂k〉
〈k2〉 − 〈k〉2

,

τ̂0 = 〈τ̂k − k∆̂T 〉, (6)

where 〈x(k)〉 = 1
N

N−1∑
k=0

x(k).
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Figure 3: Trained PLL 2 dB away from CRB.

Figure 3 shows the RMS estimation error for the
PLL-based system averaged over 10000 blocks of length
N = 250, ∆T/T ∼ unif[0, 0.005], τ0/T ∼ unif[0, 0.1],
α chosen to minimize the RMS estimation error, and
β = α2/4. Also shown is the Cramér-Rao bound, de-
scribed in Section 6. The trained system is about 2
dB away from the CRB. For low SNR with no train-
ing, we observe a significant performance penalty.

4. Iterative Timing Recovery

A turbo equalizer consists of a soft-in soft-out
(SISO) equalizer and a SISO decoder for the LDPC
code. The equalizer is based on the BCJR algorithm
[9], whereas the LDPC decoder is implemented using
the message passing algorithm [2]. A conventional
receiver implements the PLL-based timing recovery
of Section 3 followed by a turbo equalizer.
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Figure 4: Iterative timing recovery.

We now describe the proposed receiver, which is
shown in Figure 4. It begins with a real-time PLL
feeding samples {rk} to a turbo equalizer, which
feeds soft estimates {d̃k} to a second PLL which
produces improved timing estimates {τ̂newk }. The
readback waveform is then effectively resampled at
the improved sampling instants using interpolation
of the original samples according to

rnewk =
∑

l
rlp(kT − lT + τ̂newk − τ̂l). (7)

These new samples are then used in the second itera-
tion of the turbo equalizer. The process then repeats:
after each iteration of the turbo equalizer, soft esti-
mates from the turbo equalizer are used to improve
the timing estimates, which are then used to interpo-
late the original samples before going on to the next
turbo iteration.

The proposed receiver of Figure 4 is essentially a
modified turbo equalizer, with an interpolation step
inserted between consecutive iterations. The com-
plexity increase is marginal, because the complexity
of interpolation is usually negligible relative to each
turbo iteration. It is worth noting that although
we perform timing recovery and turbo equalization



jointly, the front-end has remained unchanged, and
we still sample the continuous time waveform only
once. The modified turbo equalizer is able to correct
for poor timing at the front-end PLL.

5. Simulation Results

We consider a rate-8/9 regular (3,27) code of block
length 4095, the parity check matrix of which has
3 ones in each column and 27 ones in each row.
The channel is precoded PR4, as shown in Figure 1,
and we assume AWGN. We assume perfect acquisi-
tion, i.e., τ0 = 0. The frequency offset parameter is
∆T = 0.2%. A cycle slip is defined to have occured
when the timing estimate τ̂ is off from the actual τ
by a non-zero integral multiple of T . Within the du-
ration of a block, the τ waveform varies by as much
as 8T , and therefore, cycle slips are quite likely.

Iterative timing recovery corrects cycle slips on
its own [4], but convergence can be speeded up sig-
nificantly by using the following cycle slip detection
and correction mechanism. We declare a slip when-
ever the magnitude of ζk = τ̂k− τ̂k−d exceeds a given
threshold H, for some delay d. If a slip is detected,
then we use portions of the τ̂ waveform for that it-
eration not affected by the slip to estimate the fre-
quency offset by the least squares method, and use
this estimate to correct the slipped region. After this
is done, we revert to memoryless soft-slicer decisions
for further timing recovery as opposed to using soft
decisions from the turbo equalizer.

If the number of iterations exceeds a certain thresh-
old Ni, we assume the presence of an undetected cy-
cle slip and use the following procedure:
• Construct {ζk} where ζk = τ̂k − τ̂k−d,
• Compute the mean mζ and the standard devi-

ation σζ of the sequence {ζk},
• Compute mean mp

ζ of those ζk that lie in the
interval [mζ − σζ ,mζ + σζ ],

• Set ∆̂T = mp
ζ/d,

• Use ∆̂T to resample the whole block.
By doing this, in effect, we exclude the outliers (cor-
responding to the cycle slip) from the frequency off-
set computation. This procedure is more computa-
tionally intensive than the earlier one.

Figure 5 shows word-error rate vs. SNR for the
proposed system with α = 0.04, β = α2/4, H =
0.75T , d = 100, with a maximum of 3× 106 packets
being simulated. The threshold Ni was 100 itera-
tions, and after Ni iterations, the more complicated
cycle-slip correction algorithm was implemented for
at most 25 more iterations. We use the notation
x/y to denote the scheduling of iterations, where
we have y LDPC iterations before returning to the
equalizer block, and we have a total of x such outer
iterations, each involving timing recovery followed
by turbo equalization. The proposed system gains
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Figure 5: Proposed system 3 dB better.

around 3 dB when compared to the conventional
system and is around 1 dB away from the system
with perfect timing. Also shown in the same fig-
ure is the performance of the genie-aided system,
where the PLL has access to the data bits. In ef-
fect, this system has a trained timing recovery block
followed by a turbo equalizer, and its performance
gives a heuristic lower bound to the performance of
PLL-based systems. The proposed enhanced turbo
equalizer is within 0.5 dB of the genie-aided system.

6. Cramér-Rao Bound and the ML Es-
timator

For our channel setting and assuming no outer
code, the timing recovery problem can be rephrased
as follows. Given r = [r0 r1 . . . rN−1]T , where rk is
the kth uniform sample

rk =
∑

alh(kT − lT − τl) + nk, (8)

we need to estimate ∆T and τ0. A natural question
that arises is what is the best performance we can
expect from any estimator? Cramér-Rao bound an-
swers this question by providing a lower bound on
the error variance of unbiased estimators.

In general, the CRB on the error variance of any
unbiased estimator θ̂(x) of a parameter θ based on
some observations x is given by

E[(θ̂i(x)− θi)2] ≥ J−1
θ (i, i), (9)

where θ̂i(x) and θi denote the ith element of θ̂(x)
and θ respectively, the expectation is taken over x
and θ, and J−1

θ (i, i) is the ith diagonal element of
the inverse of the Fisher information matrix

Jθ = E

{[
∂

∂θ
ln fx,θ(x,θ)

] [
∂

∂θ
ln fx,θ(x,θ)

]T}
,

(10)
where the expectation is over x and θ, and fx,θ(x,θ)
is the joint probability density of x and θ [6].



In our case, the parameter to be estimated is θ =
[∆T τ0]T . The Fisher information matrix is

Jθ =
1

σ2T 2

(
2π2

3
− 1
)[ (N−1)N(2N−1)

6
N(N−1)

2
N(N−1)

2 N

]
,

(11)
where σ2 is the variance of the noise {nk}.

Therefore, the CRB is given by

E[(∆T − ∆̂T )2]
T 2

≥ 12σ2(
2π2

3 − 1
)

(N − 1)N(N + 1)

E[(τ0 − τ̂0)2]
T 2

≥ 2σ2(2N − 1)(
2π2

3 − 1
)
N(N + 1)

. (12)

The CRB can be achieved in the trained case by
an ML estimator that chooses τ̂0 and ∆̂T to minimize

J(τ̂0, ∆̂T ;a) =
∫ ∞
−∞

(r(t)−
∑

akp(t−kT−k∆̂T−τ̂0))2 dt,

(13)
where a = [a0 a1 . . . aN−1]T . This minimization
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Figure 6: Gradient descent not suitable.

can be implemented by gradient descent. The cost
function is plotted as a function of ∆̂T in Figure 6
for values of τ̂ from −0.5T to 0.5T . Along the other
direction, i.e., along the τ̂0 axis, the cost function
is parabolic in nature. It is evident that gradient
descent is not suited for minimization along ∆̂T be-
cause of its sensitivity to initialization, and also be-
cause the minimum occurs in a narrow valley.

In the trained case, these issues can be addressed
by using the Levenberg-Marquardt (LM) method,
which is a combination of gradient descent and New-
ton’s method [8]. As opposed to gradient descent,
the LM method moves farther in directions where
the magnitude of the gradient is lesser, thus reduc-
ing rattling in the long, narrow valley. The LM iter-
ations are initialized using the estimates ∆̂T and τ̂0
as described in Section 3. Let

r = f(a;θ) + n, (14)

where f is some function that satisfies Equation 8
and n = [n0 n1 . . . nN−1]T . Denote the kth element

of f by fk. At the ith iteration, let θi be the current
estimate. To get the next estimate θi+1,
• compute d =

∑
k(fk(a;θi)− r̂k)[∇f(a;θi)]k,

• compute H =
∑
k[∇f(a;θi)]k[∇f(a;θi)]Tk ,

• update θi+1 = θi − (H + λdiag[H])−1d,
• compute E(θi+1) =

∑
k(fk(a;θi+1)− r̂k)2,

• update λ: if E, the error, has increased, retract
the step and increase λ by a significant factor; if
E has decreased, accept the step and decrease
λ by the same factor.

Here, [∇x]k denotes the gradient of the kth element
of x. λ controls the relative weight we give to gradi-
ent descent and to Newton’s method. More weight
is given to the Newton’s method when we are in the
right direction, and to gradient descent otherwise.

7. Conclusion

We proposed an iterative timing recovery scheme
for LDPC-encoded PR channels that jointly performs
timing recovery and turbo equalization by embed-
ding the timing recovery block inside the turbo equal-
izer. Simulation results show that iterative timing
recovery significantly outperforms a conventional re-
ceiver that separates timing recovery and turbo equal-
ization. The enhanced turbo equalizer performs to
within 0.5 dB of a genie-aided conventional receiver
where the timing recovery block has access to the
transmitted data. We also presented the Cramér-
Rao bound as a means for evaluating the efficacy of
timing recovery schemes, and described the trained
ML estimator that achieves the CRB.
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