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Abstract - Three desirable properties of a four-antenna space
time block code are full rate, full diversity, and single-symbol
decodability. Previously reported space-time codes that achieve all
three properties do so at the expense of the peak-to-average power
ratio (PAPR). A fourth desirable property of a space-time block
code is that its PAPR be the same as that of the underlying
quadrature-amplitude modulation alphabet. In this paper we
introduce space-time codes for three and four transmit antennas
that achieve all four properties; these codes use a diversity
technique based on constellation stretching. Numerical results for
quasistatic Rayleigh-fading channels show that the proposed codes
are comparable in SNR performance to the best-performing
single-symbol decodable space-time codes for three and four
transmit antennas.
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I. INTRODUCTION

The orthogonal space-time block codes of Alamouti [1] and
Tarokh et ale [2] attain full diversity with low decoding
complexity, but they suffer a rate loss when there are more than
two transmit antennas. A quasiorthogonal code relaxes the
orthogonality constraint to enable full rate, at the expense of an
increase in decoding complexity. For example, quasiorthogonal
codes for four antennas were proposed independently by
Jafarkhani [3], Tirkkonen-Boarin-Hottinen [4] and Papadias
Foschini [5]; these full-rate codes have two drawbacks: they are
not full diversity, and they require pair-wise complex symbol
decoding. The first drawback can be eliminated by constellation
rotation. For example, full-rate and full-diversity
quasiorthogonal codes with rotation were proposed by
Tirkkonen [6], Sharma-Papadias [7] and Su-Xia [8]. While
these quasiorthogonal codes outperform orthogonal codes at all
spectral efficiencies for four transmit antennas, they still require
pair-wise complex symbol decoding.

Recent work has shown that low decoding complexity is
possible even with nonorthogonal codes. For example, a
combination of constellation rotation and coordinate
interleaving was proposed by Yuen et ale [9] and Khan-Rajan
[10] to achieve full rate and full diversity for four transmit
antennas with ML decoding that requires only pair-wise
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decoding of real symbols. Since a pair of real symbols defines a
single complex symbol, these codes are said to be single-symbol
decodable.

Another important property of a space-time block code is its
peak-to-average power ratio (PAPR). The PAPR is important
for several reasons. First, a high-PAPR signal is susceptible to
clipping and other nonlinear distortion by the power amplifier,
leading to detection errors as well as out-of-band interference.
Second, power consumption of the power amplifier depends
mainly on the peak power rather than average power, and hence,
high PAPR results in high power consumption. Finally, the
transmission of a signal with high PAPR requires the use of a
power amplifier with large back off, resulting in inefficient,
bulky and expensive power amplifiers [11].

In this paper, we present single-symbol-decodable space
time block codes based on the coordinate interleaving technique
of [9][10] but coupled with constellation stretching rather than
constellation rotation. The new code is not only single-symbol
decodable, it also maintains the same PAPR as the underlying
QAM alphabet. While this paper was under review, we
discovered that the concept of constellation stretching was
proposed previously and independently by Marsch et ale in [12],
albeit with a different motivation and construction.
Nevertheless, our paper is unique in at least two respects: we
derive the optimal stretching factor for maximizing the coding
gain, and we quantify the PAPR benefits of the proposed code,
which is the main motivation behind our construction.

The remainder of the paper is organized as follows.
Section II presents the system model, relevant definitions, and a
brief overview of existing single-symbol-decodable space-time
block codes. Section III describes the proposed code along with
its decoder, and compares it to existing codes. Section IV
presents numerical results and Section V concludes the paper.

II. SYSTEM MODEL AND PRIOR SSD CODES

A. System Model and Definitions

We consider a transmitter with N antennas transmitting K
complex information symbols over T symbol periods, so that
the rate-KIT space-time block code is represented by a Tx N
matrix X. Letting Yi denote the sample received at time i by a
receiver with a single antenna, we can write:
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where the maximum and the expectation operators are taken
over all possible codeword matrices. In all the space-time codes
considered in this paper, the PAPR is the same for all the
antennas, so that the subscript on PAPR in (2) may be dropped.
The coding gain ofa full-diversity space-time code is [10]:

where b is a vector of channel gains between the N transmit
antennas and the receive antenna, and where w is the complex
Gaussian noise with i.i.d. CN(O, No) entries. We assume a
quasistatic Rayleigh-fading channel, so that the entries ofb are
i.i.d. CN(O, 1) and constant over the duration of the T symbol
periods. The results are easily extended to an arbitrary number
of receive antennas.

The PAPR for the m-th transmit antenna of a space-time
code is [13]:

(4)

[ Yl' ... YT]T = Xh + w,

max- r-T~~IXX". 122

PAPR=~
m T-lLtE {I•...• T}E(/Xt•m I2) ,

(l) single-symbol decodability. The final step is to encode s using a
conventional space-time block encoder G( . ), yielding X =
G(s).

In terms of Fig. 1, the Khan-Rajan code of [10] is specified
by q> = ~ tan-1

( 2), 0 = [e 1 , e6' e3, es, es' e 2 , e7, e4], where
ei is the i-th column ofthe 8 x 8 identity matrix, and:

G( s) = 12 [A( 8 l' 8 2 ) 0 ],o A( 8
3

, 8
4

)

where A( 8 11 8 2 ) = [_::* ::*]
(2) is the Alamouti space-time code [1]. The constant J2 ensures

that the average transmit energy per transmitted symbol
(namely the denominator in (2)) is identical to the energy of the
underlying alphabet A. As noted in [9], a drawback of this code
is that half of its entries are zero, which leads to a high PAPR.

The Yuen-Guan-Tjhung code of [9] can also be defined in
terms of Fig. 1, with a rotation angle of q> = 1t/4 - ~ tan-1

( 2),
an interleaver of 0 = [e 1 , es' e3, e7, -e2 , e6' -e4, es], and:

(
_ _ ) 1/N

r=minx*xdet (X-X)*(X-X) , (3)
(5)

III. CODE CONSTRUCTION AND DECODING

w 00 ~

Fig. 2. 16-QAM (a); (b) rotated; (c) stretched.

A. Code Construction and Optimization

We propose a new code based on the same architecture of
Fig. 1 but differing in an important way from [9] and [10]:
rather than distorting the alphabet by a rotation, so that ai =
ej<l>xi' we instead propose to distort it by stretching it vertically,
using:

(6)a· = J 2 (KxJ?- + JOx!)
1, 1+K2 1, 1,'

•• • • • • • • • •
• •

• • • • • • • • • •• ••• • • • • • • • • ••• •• • • • • • • • ••

where K E (0, 1] is a stretching parameter to be specified later.
The constant J2 /(1 + j(2) ensures that the stretched alphabet
has the same energy as the original. Scaling the real and
imaginary parts ofthe symbol by different amounts stretches the
square constellation into a rectangle, as illustrated in Fig. 2(c).
After stretching, we propose the interleaver n = [el' e6' e3,
es, e 2 , es' e4, e7] and the same encoder G( s) from (5) that is

Fig. 1. Encoding architecture.

where the minimum is taken over all distinct codeword matrices
X#X.

B. Single-Symbol-Decodable Space-Time Codes

Single-symbol-decodable space-time bock codes for four
transmit antennas were proposed in [9] and [10]. In both cases
the encoder decomposes into a concatenation of three steps, as
shown in Fig. 1. The encoder starts with a vector x E A4 of
information symbols chosen from a conventional M-ary QAM
alphabet A. The first step is to distort the alphabet in some way;
the codes of [9] and [10] rotate each alphabet by an angle of q>,
producing a E ej<l>x, as shown in Fig. 2-(b). The purpose of the
rotation is to ensure full diversity. The second step is to
interleave the coordinates of a, yielding s = n( a). The
interleavers of [9] and [10] act on the real and imaginary parts

I h ~
R I R I R Iseparate y, so t at 8 1 , 8 1 , 8 2 , 8 2 , 8

3
, 8

3
,

R I] [R I R I I R I]IT hIT·8 4 ' 8 4 = aI' a l' a2 , a2, a3 , a3 , a4 ' a4 ,were IS

an 8 x 8 permutation matrix (so that its columns are a
permutation of the columns of the identity matrix), and where
8iR and 8{ denote the real and imaginary parts, respectively, of
8i. The interleaver ensures full diversity without sacrificing
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where the second equality follows from the fact that 1m 2 - 2n 21
must be a nonnegative integer, and it cannot be zero because ./2
is irrational; therefore, min(m,n)eMlm2

- 2n 2
1 = 1. ~

2d 2 • { IK2(1)2-(O)21 1K2(1)2-(1)21}. ·mIn
mIn 1 + K2 ' 1 + K2

< 2d 2 • {K2 1 - K2}
- min·maxK> 0 mIn 1 + K2' 1 + K2 (13)

(12)

(14)

(15)

2 2

= 3dmin .

where we have introduced M ~ {-1M + 1, ... , 1M- I}2 
{(O, O)} as the set of all possible integer pairs (m, n), with the
(0, 0) pair excluded.

The remaining problem is to find the value ofK that maximizes
(12). We proceed in two steps: first, we establish the bound
r(K) ~ 2d~in/3; then,weshowthatK= 1/./2 achieves the
bound with equality.

To establish the bound, let us introduce £ ~ {(I, 0), (1, I)} c
M. Because £ is a subset of M, it clearly follows that
minM{ . } ~ min.c{ . }, so that the coding gain of (12) can be
bounded by:

2. IK2 m 2- n 21
r( K) ~ 2dmin ·mIn(m n)e.c 2

, I+K

The inequality of (13) follows from the fact that
9( K) ~ maxK > 0{g ( K)} for any function 9( K) and for any
K > O. The equality in (14) follows because, for K > 0, the
functions K 2/ (1 + K 2) and (1 - K 2)/ (1 + K 2) are
monotonically increasing and decreasing, respectively, so that
the maximum of the minimum occurs at the intersection,
namely at K = 1/./2.

The bound r( K) ~ 2d:nin/3 of(14) is in fact achievable with
K=I/./2, since from (12):

_ 2... Im 2 j2 -n 21
r( 1/./2) - 2dmm mm(m,n)eM 1 + 1/2

= ~ d';in ,
(10)

K:J!;+ jX~ K:4+j~ x{+jKX: X;+jK~

J1 +2J<2
-K:4+j~ K:J!;-jX~ -X;+jK~ x{-jKX:

. (7)
x{+jKX: x;+jK~ K:J!;+ j~ K:4+j~

X;+jK~ x{-jKX: -K:4+j~ K:J!;- jX~

Proposition J. The stretching parameter K E (0, 1] that
maximizes the coding gain (3) for the space-time code in (7)
with QAM is K = 1/)2. The resulting asymptotic coding gain
is 2d:nin/ 3, where dmin is the minimum distance of the QAM
alphabet A.

Proof' Substituting from the definition of G( s) in (5), the

asymptotic coding gain of (3) is:

used in the Yuen-Guan-Tjhung code. Thus, in terms of the
original information symbols, the proposed code for four
transmit antennas is:

where now the minimization is over all nonzero error symbols
Aai. But from (6) we can write:

(
_ * _ )1/4

r(K)= mindet (X-X) (X-X)

[

a 0 ~ 0] 1/4
= min det 0 a 0 ~

~ 0 a 0
o ~ 0 a

= min (a 2
- ~2)1/2, (8)

where we have introduced a = L1=11Asi 1
2 = LilAail2, ~ =

2Re{As1As; + As2AsZ} = 2LiAafAaf, ASi = si - si' and
Aai = ai - ai· The expressions for a and ~ in terms of Aai
follow from s = n( a). The minimization in (8) is over all
nonzero vectors [Aa1 , ... Aa

4
]. But

a2 _ ~2

= (a + ~)(a - ~)

= {Li (I Aai1 2 + 2AafAaf)}{Lj (IAaj12 - 2AafAaJ)}

= {Li(Aaf + Aal)2}{Lj(AajR- AajI)2}. (9)

Because both factors in (9) are the sum of squares, the nonzero
vector [Aa1 , ••• Aa

4
] that minimizes the product will have only

one nonzero element, say Aai' so that the gain (8) reduces to:

(17)

(16)maxA(IKxf+ jx{1 2) = (1+ ~)(IM-l)2,

E( IKxf + jxf 1
2

) = (1 + K 2 )(M - 1)/3.

L\ai = J 2 2 (Km + jn)dmin (11) We make two important remarks regarding the PAPR of the
1 + K proposed code. First, stretching the alphabet according to (6)

for some pair of integers (m, n) E {-1M + 1, ... , 1M_1y, does not alter its PAPR. Indeed, it is easily verified that the
stretched alphabet has the same PAPR as the original one, since:

where dmin is the minimum Euclidean distance of the
(unstretched) alphabet A. Plugging (11) into (10) yields the
following expression for the coding gain, as a function of the
parameter K:
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Taking the ratio of these two yields 3(J'M-l)/(J'M+l),
which is precisely the PAPR of the underlying QAM alphabet.

Second, our particular choice for coordinate interleaving
does not alter the PAPR; this latter fact can be seen by observing
that the elements of (7) all have the same PAPR as the stretched
alphabet. Together, these two facts imply that the PAPR of the
proposed code is identical to that of the underlying QAM
alphabet, regardless of the value of K.

The proposed space-time code for three antennas is obtained
by deleting the fourth column of X in (7). The proof that the
space-time code obtained by deleting the fourth column is still
fully diverse follows directly from Theorem 3 and Theorem 4 in
[14]. For two antennas, an equivalent form of the Alamouti
code [1] can be obtained by deleting columns three and four (or
two and three) and setting K = 1.

We will see in the next section that the proposed code is
quasiorthogonal and single-symbol decodable.

B. Single-Symbol ML Decoding of Proposed Code

By conjugating two of its elements, the received vector in
(1) can be rewritten as

YI hI h2 h3 h4 81 WI

* h; -h; h: -h; *Y2 82
+

W2

Y3 h3 h4 hI h2 83 W3

* h: -h; h; -h; 84 *Y4 W4

or y=Hs+w'. (18)

The ML decision is the symbol vector s that minimizes

lIy-Hsl1 2 = IIyl12 + s*H*Hs - 2Re{s*v}, (19)

where we have introduced the vector v = H*y, which can be
interpreted as the output of a filter matched to H. Let
11 = Lil hil 2 and p = 2Re{h 1h; + h2 h:}. Then H*H is a
circulant matrix whose first row is [11, 0, p, 0], so that (19)
reduces to:

Ily-Hsll2 =llyl12 + 11Li1 8i1 2

+ 2pRe{818; + 828:}- 2Re{s*v}. (20)

Already we can see that the symbols 8 1 and 8
3

can be decoded
separately from 8 2 and 8

4
. However, the decoding complexity

reduces even further when we substitute s = n( a) into (20),
yielding:

where f( Zi Iai) = ,,1 ai 12 + pIm{ ai} - 2Re{atzi }, (22)

where we have introduced z = n-1 (v) = [v~+ jv:,
v~+jv:, vi+jv{, vi+jv~]. Because each f(zilai)
depends on z and a only through Zi and ai, ML decoding

reduces to separate decoding of the four transmitted symbols.
Specifically, as illustrated in Fig. 3, the ML decision about ai
(and ultimately Xi) can be found by minimizing the
corresponding f( Zi Iai) metric of (22).

In Table I we compare the proposed code with other single
symbol decodable codes in terms of decoding complexity and
PAPR for four transmit antennas. We see that the PAPR of the
proposed code is significantly smaller than that of the Khan
Rajan code [10], and that it has the same PAPR as the Su-Xia
code [8] but at a reduced decoding complexity.

IV. NUMERICAL RESULTS

In this section we compare the bit-error rate performance of
the proposed space-time code with the Su-Xia code [8] and
Yuen-Guan-Tjhung code [9] over a quasistatic Rayleigh-fading
channel with additive Gaussian noise. To avoid clutter we do
not include the Khan-Rajan code [10] in our comparison; we
simply note that it performs comparably to the Yuen-Guan
Tjhung code with four transmit antennas, and slightly worse
with three antennas. In Fig.4 we show the bit-error rate
performance for three antennas, while in Fig. 5 we show the
performance for four antennas. Results are shown for 4-QAM,
16-QAM and 64-QAM Gray-coded alphabets.

Fig. 4 shows that, for three antennas, the proposed code
performs only 0.5 dB worse than the Yuen-Guan-Tjhung code,
and 0.6 dB worse than the Su-Xia code. For four antennas, the
proposed code suffers a 0.7 dB and 0.8 dB loss compared with
the Yuen-Guan-Tjhung code and Su-Xia code, respectively. The
proposed code, however, has a lower decoding complexity than
the Su-Xia code and maintains the same PAPR. The proposed
code has a significantly lower PAPR than the Yuen-Guan
Tjhung code while suffering only a slight performance loss.

Fig. 3. The ML decoder for the proposed space-time code
decomposes into a MF bank, a deinterleaver, and a
bank of four independent complex-symbol quantizers.

Table I: A COMPARISON OF DECODING COMPLEXITY AND

PAPR OF FOUR-ANTENNA SPACE-TIME BLOCK CODES.

Number symbols
PAPR (dB)

Code for joint detection 4-QAM 16-QAM 64-QAM

Su-Xia [8] 4 0 2.55 3.68

Yuen et al.[9] 2 1.61 4.16 5.29

Khan-Rajan [10] 2 5.79 8.34 9.47

Proposed 2 0 2.55 3.68
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We introduced a novel space-time block code for three and
four transmit antennas that combines coordinate interleaving
with constellation stretching. The stretching parameter was
chosen analytically to maximize the coding gain. The resulting
code has a quasiorthogonal structure that makes it single
symbol decodable, meaning that the jointly maximum- ffi
likelihood decoder may be implemented using a bank of ttl

independent quantizers, one for each complex information
symbol. The proposed codes for three and four antennas achieve
full rate, full diversity, and single-symbol decodability without
sacrificing the peak-to-average power ratio.

v. CONCLUSIONS
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