Blind Unitary Source Separ ation using
a Multidimensional Phase-L ocked L oop

Anuj BatraandJohn R. Barry

School of Electrical and Computer Engineering
Geogialnstituteof TechnologyAtlanta, Geogia 30332-0250

Abstract — Blind source separation cannot generally bemixing matrix. The purpose of the memoryless whitékids
performed using second-order statistics alone because ofi@ eliminate the mixing matrix up to an arbitrary unitary

unitary matrix ambiguityWe present the multidimensional
phase-lockd loop (MPLL) as a blind algorithm for resolving
this ambiguity The MPLL is a multidimensional generaliza-

tion of the scalar decision-directed PLL for resolving phas%
rotations in scalar digital communication systems, and as

such is applicable only to discrete-alphabet sourcesch-
pare the MPLL to other kmen unitary source separation
algorithms, and find that the MPLL comparesofably in
terms of both performance and conxite

. INTRODUCTION

We consider blind source separation for a multiple-input,

multiple-output (MIMO) channel in whiclk independent
digital source signals are obsedvby a rec&er withm sen-

sors, as shen in Fig.1(a). The channel is characterized by an

m % n convolutive transfer functiorH(z). The channel input
x;, IS a \ector sequence representing the discrete symb
sequences of different users. The objeeti of a blind source

separator is to reger these sequences from the channe

outputr, without a priori knowledge of the channel or its
input.

It is often comenient to decompose the source separation

process into three steps, as illustrated in Hig): eliminate
memory using anm x m filter B(z), whiten using ann xm
matrix W, androtate using a unitary matriXJ (or U,U when
necessary). The purpose of the first fiBgz) is to eliminate
memory so that the cascad® = B(z)H(z) is a memoryless

AWGN
X, —f H(z) ry

mXn (a)
Tk Yk i PR
— B(2) w U i Ug -

EQ WHITEN ROTATE  PLL BANK
(b)
Fig. 1. (a) MIMO communications channel model;

(b) the three-step blind source separator
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matrix, so that the cascal'e- WB(z)H(z) is a unitary matrix.

The first two steps can be accomplished by either a one-step
linear predictor (ifn > n) followed by a spatial whitener [1]

r by the ector CMA algorithm [2].

The first two steps reduce the problem to a blind unitary
source separation problem, which is the topic of this paper
Since botfH andHU produce the same eariance matrix for
ary unitary matrixU, second-order statistics are irfgiént
for resolving the unitary ambiguity [3-5]; higherder statis-
tics are necessary

Cardoso [3,4] sheed that the columns of the unitary
matrix are the eigemctors of then Xxn cumulant matrix
@(M) for a particular matriM. The cumulant matrix can be
estimated by timexeraging the moments of the output of the

gYhitening matrix. Cardoso and Souloumiac [6\érgoro-

posed an impneed algorithm called the joint approximate
Piagonalization of eigenmatrices AQE) algorithm, that
Jointly and approximately diagonalizes a set of matr{ggd)

for different \alues ofM. JADE is a batch-oriented algorithm
with a relatvely high computational compligy of On®) [7].

Cardoso and Laheld [8] v recently introduced a class of
algorithms called equariant adaptie separation via indepen-
dence (EASI) that are based upon a serial update equation:

1)

wherez, is the output of the separating matly, G(z,) is a
function defined to be the “relaé gradient,and p is a small
positive constant. These EASI algorithms perform both the
whitening and rotation functions, so tigat UW in Fig. 1(b).
The EASI algorithms are attraeti because tlyeare adaptie

and hae lov compleity, O(n?).

Ck+1 = Ck _IJ.G(ék)Ck,

Both ADE and EASI generate a rotation mattixwhich
diagonalizesF but may result in a residual phase error for
each component.ol compensate, a bank of scalar phase-
locked loops (represented by the diagonal maix in
Fig. 1(b)) is needed. BotlADE and EASI are fbable blind
unitary separators becauseythmale no assumptions about
the structure of the input signals, only thatytlaee indepen-
dent. In contrast, we propose an adaphlind unitary sepa-
rator algorithm that »gloits the discrete nature of digital
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communications signal®]. We view the unitary matrix as a which can be implemented recwedyy:
constant rotation akin to a constant phadsetfin a scalar U,=1,

communication system. A

. _ . _ U,=U, 1T, 1" (4)
In section Il we reiew the multidimensional phase-lost

loop. In section Ill we compare the performance and com- To deal with the noisy case when andz;, may hae dif-

plexity of the multidimensional phase-laett loop to that of ferent lengths, we normalize both tovlaunit norm before

JADE and EASI. estimating the rotation matrix. Defimeandz by:

1. MULTIDIMENSIONAL PHASE-LOCKED LOOP x=%xp/||%; || and z =2z /[|zll. (5)

In analogy to a decision-directed phase-tatloop (PLL)  We then defindl, as a unitary matrix mappingto z. It is
for eliminating phase ambiguity in scalar digital communica/MpPortant to note thel,, is not unique. A good choice fay,
tions systems, the multidimensional PLL (MPLL) is a blindWas dened in[9], which we reiew here in a slightly modi-
decision-directed equalizer that generates an estijaeg 1€ form. Letp denote the inner product:
the unitary matrix ambiguit{f = WB(z)H(z) [9]. The block p=x=z (6)

diagram of the MPLL is shen in _Fig.2. The inputy, to the Becausex and z are of unit lengthp satisfiesipl<1. We
MPLL is the whitener output, which we assume has the formc'Onsider the casdgp | = 1andip| < 1 separately

Ye = Fooy + 1y, &) If 1p| =1 thenz = px, and we hee:
whereF is unitary ands, represents noise. U, is an accu-
rate estimate oF, then the product, = U,"y, [where (O°
denotes conjuate transpose] reduceszp= x;, at high SNR;  Becauser andz convey information about the one-dimen-
the recerer can then produce an accurate estirkatafx, by  sional subspace spanned bynly, we hae chosen not to

quantizingz;. The MPLL generatel, in a way similar tothe  affect the ectors orthogonal to this subspace. The partial
scalar PLL. The &y component of the MPLL is the rotation rotation matrix forlp | = 1 is then gien by:

T,=I+(p-1xx" (whenlipl =1). (7)

detector which generates a unitary rotation maitixthat A A #

. . S . T," =1+ @"-1xx. (8)
approximately rotateg;, to z,. This rotation is necessarily
approximate because the noise caugeandz;, to have dif- On the other hand, ifp | < 1, then the span af andz is a
ferent norms. two-dimensional subspace. Let us introduce a Hasig for

Because of noise and occasional decision errors, a firdfis subspace, where the Gram-Schmidt procedure yields:

order scalar_PLL 'prlcal_ly e_mglre a loop filter with gin )\ o Y Jl—z o
less than unity; this choice impu@s rolustness and stability y=&-px ~lpl”. ©)

at the &pense Of. slwer_ corvergence. Extendlng_ the 100p 1, torms of this basis; andz are gven by the ectors[1, 017
filter to multiple dimensions requires that we raise the rota- 5T ) _
tion matrixT;, to the paverA [0, 1). T, is a partial rotation 2ndlp, [1-1s21", respeciiely. It can be shon that ay unitary
matrix, rotating, a fraction of the &y toz,. Later in this matrix mappind1, 017 to[p, i-1»?17 must hae the form:
section we will &plicitly determineTk)‘ to avoid the compu- Nret

tationally complg task of raising a matrix to a fractional & = A A 0 (10)

pawer ST e o o
The MPLL accumulates the partial rotation matrices, s

that the estimate of theverall rotation matrix at time is or somep LT, 0. As agued in [9], a good choice firis

Op, which leads to:

given by:
— *
ko1 p-1  i-ip? {xi
U,= N T}, 3 Tp=I1+x,y Y 1 (pl<1). (11)
Friso ®) J1-1pl? Ipl-1
Vi 2, = Uy, i, Finally, the partial rotation matrix fop | < 1 becomes:
> DEC > #
A dMul2+d?—1 @ -dMu || %,
Tt =T+ 5 o Yy, (12
Tk}\ T, ’ d*—dM " dt +dMvl?-1
n ( E))‘ Rotation Detector

Fig. 2. The decision-directed multidimensional PLL.



where d1=05@ +Ipl+s), dy=05@+Ipl-s), v= d; |, In Fig.3 we plot MSE ersus time for each algorithm,
ands =/ 2. 1P averaged wer 1000 random unitary channd's To produce
p -
In summarythe MPLL of Fig.2 is defined by (4), (8), and these ra”do”.‘ chanpels_,_we generat(_ad a memoryless Gaussian
. . . channel matriH havingi.i.d. real and imaginary components
(12), together with (5), (6), and (9), and is parameterized bx L - o
the constank ormally distrituted W|t_h zero mean and umgmance, and
' then appended the whitening matix= D12V, where the
We remark that, whem = 1, the partial rotation matrii‘k)‘ diagonal matrixD and unitary matrix¥ are defined by the
reduces te/*®, where8 is the angle betweety, / 1x;1 and eigendecompositioﬂIH* = VDV'. This yields the random
z;,/ |z;1, and that the MPLL reduces to the eentional unitary matrixF = D™2/2V"H. Fig.3 shavs that the MPLL

pI2+2pIpI +p2—4

first-order decision-directed scalar PLL. cornverges muchdster than the other algorithms. Obsettvat
the steady-state performance of the MPLLais Superior to
IIl. PERFORMANCE AND COMPLEXITY that of the other blind algorithms; this superiority is because

In this section we compare the performance and conff the decision-directed nature of the MPLL.
plexity of three unitary source separatosDEE [6], EASI [8]
(With G(z) =22 — I+ g(2)z — 2g(z)" andg(z) =z 0212,
where O indicates a component-wise product), and the In the secondxgperiment we agin consider the noiseless
MPLL. The performance criteria used in this comparison isystemy, = Fx;, with unitaryF, only this time the dimension
the mean-squared error: MSE = B}, — 2, |P], whereP isa  of F is 3x 3. Again the parameters for each algorithm were
complex permutation matrix that reorders the sources and@ptimized for st comergence: the EASI step size at tithe
rotates the phase of each source by a multiple of 90°; this pexas p, = 0.1/(1 + £/50), the MPLL step size @as A; =
mutation is necessary to account for the inherent ambiguit®.65/ (1 + £/1000), and the scalar PLL bank (used by both

3 x 3 Memoryless Unitary Channel

that eists in ay blind separation problem. JADE and EASI) had parameteng = 0.1 anda, = 0.0005.

We next present simulation results from thregeriments. In Fig.4 we plot MSE ersus time for each algorithm,
In all cases we assume that the channel inputs are selec@@raged wver 750 random unitary channels, generated in a
independently and uniformly from a 16-QAM alphabet. manner analogous txgeriment one. Figd shavs that both

JADE and EASI dfer fast initial conergence, ht the MPLL

2 x 2 Memoryless Unitary Channel outperforms them both after 600 symbols. Thevelorate of

initial convergence for the MPLL is ligly due to thedct that
at each iteration the MPLL is able to compensate for a rota-
tion in two dimensions onlywhereas the unitary ambiguity is

In the first &periment we consider a noiseless 2
systemy,, = Fx; with a memoryless unitary channel matfix
The step size for EASI decreased with time according to )
0.1/(1 + £/50), the step size for the MPLL decreased with@3 * 3 matrix.
time according toh, = 0.9/(1 + £/1000), and the bank of

: Noisy 3 x 2 Memoryless Gaussian Channel
second-order scalar PLLs (required by b&bH and EASI) 'Sy y uss!

had proportional-plus-inggal parametersi; =0.1 anda, = In the third &periment we illustrate thefetts of noise by
0.005. The parameters for each algorithm were optimized teonsidering a noisy 8 2 systenry, = Hx;, + n;, with a memo-
provide the &stest rate of cermgence. ryless channel matrilfl. We assume the noisg, has inde-

pendent Gaussian real and imaginary parts, each with
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Fig. 3. Performance comparison of the three unitary soul Fig. 4. Performance comparison of the three unitary sourct

separators fongeriment one. separators forngeriment tvo.



covariance matrix?I. The 3x 2 Gaussian channel matik V. SUMMARY
is normalized to ha unity Frobenius norm.oTmale a fir

comparison, we assume all three unitary source separators u
the same whitening filtaW = [Dy,,] ™Y 2[V3,,]*, whereHH

= [Vaxol[Daxal[ Vaxol  is a truncated SVD.

eWe hare presented the multidimensional PLL as a blind
ecision-directed algorithm for unitary source separation. The
MPLL exploits the discrete nature of digital communication
signals and compareavbrably in terms of both performance
and complgity to other knavn source-separation algorithms.
SNR = El||r,? |B1/El||ny, |P1 = 1/ (2mno?), wherer,@ isthe  The MPLL ofers fast comergence, ecellent steady-state
contrikution ofr, due to the-th source onlyWe define algo- performance, and Vo compleity. Because the MPLL is a
rithm corvergence as when the signal component of theyeneralization of the scalar PLL, it is subject a&sé lock
squared-error fx, — Pxy, |P is less than-12dB for 40 con-  when the SNR is high and the step size is small. But just as in
secutve symbols. This plot is generated bye@aging @er  the scalar case, the probability afde lock can be minimized

In Fig.5 we plot the corergence time &rsus the peuser

100 random Gaussian channels at each SNR. Although tlhierough careful choice of the step size.

parameters could kia been optimized at eachlue of SNR,
the same alues were used for all SNRlues. The EASI step
size decreased with time accordingufo= 0.01/(1 + £/500),
the MPLL step size as\, = 0.3/(1 + £/500), and the scalar
PLL bank had parametens = 0.1 andx, = 0.0005.

At low SNR, the ADE algorithm comerges &ster than the
MPLL and EASI. The coremgence speed of the MPLL
approaches that oADE at high SNR. The MPLL cwoer-
gence time can be impred further especially at high SNR,
by optimizing the step size at each SNRalue. It should be
noted that the bekior of the cures in Fig.5 depends radi-
cally on the MSE threshold that defines we&mgence. Modi-
fying the threshold from —1@B to —30dB, for example,
would cause the MPLL to “ceerge” much &ster than the
other algorithms, as iselent from Fig.3 and Fig4.

Complexity Comparison

Finally, to demonstrate theMocompleity of the MPLL,
we plot in Fig6 the number of floating point operations
required per iteration for each algorithmrsus the number of
users for a 20 sensor system. The figurevshibat EASI and
the MPLL hae equvalent complgity, O»?). The high com-

plexity of the ADE curwe is misleading because we made no

attempt to optimize theAIDE computer code; code optimiza-
tion can reduce the compigy to O»®) [71.
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Fig. 5. Corvergence time @rsus SNR forxgeriment three.
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