
Abstract — Blind source separation cannot generally be
performed using second-order statistics alone because of a
unitary matrix ambiguity. We present the multidimensional
phase-locked loop (MPLL) as a blind algorithm for resolving
this ambiguity. The MPLL is a multidimensional generaliza-
tion of the scalar decision-directed PLL for resolving phase
rotations in scalar digital communication systems, and as
such is applicable only to discrete-alphabet sources. We com-
pare the MPLL to other known unitary source separation
algorithms, and find that the MPLL compares favorably in
terms of both performance and complexity.

I. INTRODUCTION

We consider blind source separation for a multiple-input,
multiple-output (MIMO) channel in whichn independent
digital source signals are observed by a receiver with m sen-
sors, as shown in Fig.1(a). The channel is characterized by an
m × n convolutive transfer functionH(z). The channel input
xk is a vector sequence representing the discrete symbol
sequences ofn different users. The objective of a blind source
separator is to recover these sequences from the channel
output rk without a priori knowledge of the channel or its
input.

It is often convenient to decompose the source separation
process into three steps, as illustrated in Fig.1(b): eliminate
memory using anm × m filter B(z), whiten using ann × m
matrix W, androtate using a unitary matrixU (or UdU when
necessary). The purpose of the first filterB(z) is to eliminate
memory, so that the cascadeH = B(z)H(z) is a memoryless

mixing matrix. The purpose of the memoryless whitenerW is
to eliminate the mixing matrix up to an arbitrary unitary
matrix, so that the cascadeF = WB(z)H(z) is a unitary matrix.
The first two steps can be accomplished by either a one-step
linear predictor (ifm > n) followed by a spatial whitener [1]
or by the vector CMA algorithm [2].

The first two steps reduce the problem to a blind unitary
source separation problem, which is the topic of this paper.
Since bothH andHU produce the same covariance matrix for
any unitary matrixU, second-order statistics are insufficient
for resolving the unitary ambiguity [3-5]; higher-order statis-
tics are necessary.

Cardoso [3,4] showed that the columns of the unitary
matrix are the eigenvectors of then × n cumulant matrix
Q(M) for a particular matrixM. The cumulant matrix can be
estimated by time-averaging the moments of the output of the
whitening matrix. Cardoso and Souloumiac [6] have pro-
posed an improved algorithm called the joint approximate
diagonalization of eigenmatrices (JADE) algorithm, that
jointly and approximately diagonalizes a set of matricesQ(M)
for different values ofM. JADE is a batch-oriented algorithm
with a relatively high computational complexity of O(n5) [7].

Cardoso and Laheld [8] have recently introduced a class of
algorithms called equivariant adaptive separation via indepen-
dence (EASI) that are based upon a serial update equation:

Ck+1 = Ck – µG( )Ck, (1)

where is the output of the separating matrixCk, G( ) is a
function defined to be the “relative gradient,” andµ is a small
positive constant. These EASI algorithms perform both the
whitening and rotation functions, so thatC = UW in Fig. 1(b).
The EASI algorithms are attractive because they are adaptive
and have low complexity, O(n3).

Both JADE and EASI generate a rotation matrixU which
diagonalizesF but may result in a residual phase error for
each component. To compensate, a bank of scalar phase-
locked loops (represented by the diagonal matrixUd in
Fig. 1(b)) is needed. Both JADE and EASI are flexible blind
unitary separators because they make no assumptions about
the structure of the input signals, only that they are indepen-
dent. In contrast, we propose an adaptive blind unitary sepa-
rator algorithm that exploits the discrete nature of digital
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 Fig. 1. (a) MIMO communications channel model;
(b) the three-step blind source separator.
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communications signals[9]. We view the unitary matrix as a
constant rotation akin to a constant phase offset in a scalar
communication system.

In section II we review the multidimensional phase-locked
loop. In section III we compare the performance and com-
plexity of the multidimensional phase-locked loop to that of
JADE and EASI.

II. MULTIDIMENSIONAL PHASE-LOCKED LOOP

In analogy to a decision-directed phase-locked loop (PLL)
for eliminating phase ambiguity in scalar digital communica-
tions systems, the multidimensional PLL (MPLL) is a blind
decision-directed equalizer that generates an estimateUk of
the unitary matrix ambiguityF = WB(z)H(z) [9]. The block
diagram of the MPLL is shown in Fig.2. The inputyk to the
MPLL is the whitener output, which we assume has the form:

yk = Fxk + nk, (2)

where F is unitary andnk represents noise. IfUk is an accu-
rate estimate ofF, then the productzk = Uk

*yk [where (⋅ )*

denotes conjugate transpose] reduces tozk ≈ xk at high SNR;
the receiver can then produce an accurate estimatek of xk by
quantizingzk. The MPLL generatesUk in a way similar to the
scalar PLL. The key component of the MPLL is the rotation
detector which generates a unitary rotation matrixTk that
approximately rotates k to zk. This rotation is necessarily
approximate because the noise causesk andzk to have dif-
ferent norms.

Because of noise and occasional decision errors, a first-
order scalar PLL typically employs a loop filter with gain λ
less than unity; this choice improves robustness and stability
at the expense of slower convergence. Extending the loop
filter to multiple dimensions requires that we raise the rota-
tion matrixTk to the power λ ∈(0, 1). Tk

λ is a partial rotation
matrix, rotating k a fraction of the way to zk. Later in this
section we will explicitly determineTk

λ to avoid the compu-
tationally complex task of raising a matrix to a fractional
power.

The MPLL accumulates the partial rotation matrices, so
that the estimate of the overall rotation matrix at timek is
given by:

Uk = Ti
λ , (3)

which can be implemented recursively:
U–1 = I,

Uk = Uk – 1Tk – 1
λ. (4)

To deal with the noisy case whenk andzk may have dif-
ferent lengths, we normalize both to have unit norm before
estimating the rotation matrix. Definex andz by:

x = k ⁄ || k || and z = zk ⁄ ||zk||. (5)

We then defineTk as a unitary matrix mappingx to z. It is
important to note thatTk is not unique. A good choice forTk
was derived in [9], which we review here in a slightly modi-
fied form. Letp denote the inner product:

p = x*z. (6)

Becausex and z are of unit length,p satisfies|p|≤ 1. We
consider the cases|p| = 1 and|p| < 1 separately.

If |p| = 1 thenz = px, and we have:

Tk = I + (p – 1)xx* (when|p| = 1). (7)

Becausex and z convey information about the one-dimen-
sional subspace spanned byx only, we have chosen not to
affect the vectors orthogonal to this subspace. The partial
rotation matrix for|p| = 1 is then given by:

Tk
λ = I + (pλ – 1)xx*. (8)

On the other hand, if|p| < 1, then the span ofx andz is a
two-dimensional subspace. Let us introduce a basis{x, y} for
this subspace, where the Gram-Schmidt procedure yields:

y = (z – px) ⁄ . (9)

In terms of this basis,x andz are given by the vectors[1, 0]T

and[p, ]T, respectively. It can be shown that any unitary

matrix mapping[1, 0]T to [p, ]T must have the form:

 = , (10)

for someβ ∈(–π, π]. As argued in [9], a good choice forβ is
∠p, which leads to:

Tk = I +  (|p| < 1). (11)

Finally, the partial rotation matrix for|p| < 1 becomes:

Tk
λ = I + , (12)
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 Fig. 2. The decision-directed multidimensional PLL.

( ⋅ )λ

x̂

x̂

x̂
x̂

x̂

Π
i = 0

k – 1

x̂

x̂ x̂

1 p 2
–

1 p 2
–

1 p 2
–

R
~

p*

p

1 – |p|2

1 – |p|2–

e jβ

1

0

0

x , y
|p|– 1

p – 1

1 – |p|2

1 – |p|2– p
|p|

x*

y*

x , y
d1

λ|v|2 + d2
λ – 1 (d1

λ – d2
λ) v

(d1
λ – d2

λ) v* d1
λ + d2

λ|v|2 – 1

x*

y*



where d1 = 0.5(p +|p|+ s), d2 = 0.5(p +|p|– s), v = ,
ands = .

In summary, the MPLL of Fig.2 is defined by (4), (8), and
(12), together with (5), (6), and (9), and is parameterized by
the constantλ.

We remark that, whenn = 1, the partial rotation matrixTk
λ

reduces toe jλθ, whereθ is the angle betweenk ⁄| k| and
zk ⁄|zk|, and that the MPLL reduces to the conventional
first-order decision-directed scalar PLL.

III. PERFORMANCE AND COMPLEXITY

In this section we compare the performance and com-
plexity of three unitary source separators: JADE [6], EASI [8]
(with G(z) = zz* – I + g(z)z* – zg(z)*  and g(z) = z ⊗ z∗⊗ z,
where ⊗ indicates a component-wise product), and the
MPLL. The performance criteria used in this comparison is
the mean-squared error: MSE = E[||Pxk – zk ||2], whereP is a
complex permutation matrix that reorders the sources and
rotates the phase of each source by a multiple of 90˚; this per-
mutation is necessary to account for the inherent ambiguity
that exists in any blind separation problem.

We next present simulation results from three experiments.
In all cases we assume that the channel inputs are selected
independently and uniformly from a 16-QAM alphabet.

2 × 2 Memoryless Unitary Channel

In the first experiment we consider a noiseless 2× 2
systemyk = Fxk with a memoryless unitary channel matrixF.
The step size for EASI decreased with time according toµk =
0.1 ⁄(1 + k ⁄50), the step size for the MPLL decreased with
time according toλk = 0.9 ⁄(1 + k ⁄1000), and the bank of
second-order scalar PLLs (required by both JADE and EASI)
had proportional-plus-integral parametersα1 = 0.1 andα2 =
0.005. The parameters for each algorithm were optimized to
provide the fastest rate of convergence.

In Fig.3 we plot MSE versus time for each algorithm,
averaged over 1000 random unitary channelsF. To produce
these random channels, we generated a memoryless Gaussian
channel matrixH having i.i.d. real and imaginary components
normally distributed with zero mean and unit variance, and
then appended the whitening matrixW = D–1 ⁄2V* , where the
diagonal matrixD and unitary matrixV are defined by the
eigendecompositionHH*  = VDV* . This yields the random
unitary matrixF = D–1 ⁄2V*H. Fig. 3 shows that the MPLL
converges much faster than the other algorithms. Observe that
the steady-state performance of the MPLL is far superior to
that of the other blind algorithms; this superiority is because
of the decision-directed nature of the MPLL.

3 × 3 Memoryless Unitary Channel

In the second experiment we again consider the noiseless
systemyk = Fxk with unitaryF, only this time the dimension
of F is 3× 3. Again the parameters for each algorithm were
optimized for fast convergence: the EASI step size at time k
was µk = 0.1 ⁄(1 + k ⁄50), the MPLL step size was λk =
0.65 ⁄(1 + k ⁄1000), and the scalar PLL bank (used by both
JADE and EASI) had parametersα1 = 0.1 andα2 = 0.0005.

In Fig.4 we plot MSE versus time for each algorithm,
averaged over 750 random unitary channels, generated in a
manner analogous to experiment one. Fig.4 shows that both
JADE and EASI offer fast initial convergence, but the MPLL
outperforms them both after 600 symbols. The slower rate of
initial convergence for the MPLL is likely due to the fact that
at each iteration the MPLL is able to compensate for a rota-
tion in two dimensions only, whereas the unitary ambiguity is
a 3 × 3 matrix.

Noisy 3 × 2 Memoryless Gaussian Channel

In the third experiment we illustrate the effects of noise by
considering a noisy 3× 2 systemrk = Hxk + nk with a memo-
ryless channel matrixH. We assume the noisenk has inde-
pendent Gaussian real and imaginary parts, each with
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 Fig. 3. Performance comparison of the three unitary source
separators for experiment one.
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 Fig. 4. Performance comparison of the three unitary source
separators for experiment two.



covariance matrixσ2I. The 3× 2 Gaussian channel matrixH
is normalized to have unity Frobenius norm. To make a fair
comparison, we assume all three unitary source separators use
the same whitening filterW = [D2×2]

–1 ⁄ 2[V3×2]
* , whereHH*

= [V3×2][D2×2][V3×2]
*  is a truncated SVD.

In Fig.5 we plot the convergence time versus the per-user
SNR = E[||rk

(i) ||2] ⁄E[||nk ||2] = 1 ⁄(2mnσ2), whererk
(i) is the

contribution ofrk due to thei-th source only. We define algo-
rithm convergence as when the signal component of the
squared-error ||Fxk – Pxk ||2 is less than– 12dB for 40 con-
secutive symbols. This plot is generated by averaging over
100 random Gaussian channels at each SNR. Although the
parameters could have been optimized at each value of SNR,
the same values were used for all SNR values. The EASI step
size decreased with time according toµk = 0.01 ⁄(1 + k ⁄500),
the MPLL step size wasλk = 0.3 ⁄(1 + k ⁄500), and the scalar
PLL bank had parametersα1 = 0.1 andα2 = 0.0005.

At low SNR, the JADE algorithm converges faster than the
MPLL and EASI. The convergence speed of the MPLL
approaches that of JADE at high SNR. The MPLL conver-
gence time can be improved further, especially at high SNR,
by optimizing the step sizeλ at each SNR value. It should be
noted that the behavior of the curves in Fig.5 depends radi-
cally on the MSE threshold that defines convergence. Modi-
fying the threshold from –12dB to –30dB, for example,
would cause the MPLL to “converge” much faster than the
other algorithms, as is evident from Fig.3 and Fig.4.

Complexity Comparison

Finally, to demonstrate the low complexity of the MPLL,
we plot in Fig.6 the number of floating point operations
required per iteration for each algorithm versus the number of
users for a 20 sensor system. The figure shows that EASI and
the MPLL have equivalent complexity, O(n3). The high com-
plexity of the JADE curve is misleading because we made no
attempt to optimize the JADE computer code; code optimiza-
tion can reduce the complexity to O(n5) [7].

IV. SUMMARY

We have presented the multidimensional PLL as a blind
decision-directed algorithm for unitary source separation. The
MPLL exploits the discrete nature of digital communication
signals and compares favorably in terms of both performance
and complexity to other known source-separation algorithms.
The MPLL offers fast convergence, excellent steady-state
performance, and low complexity. Because the MPLL is a
generalization of the scalar PLL, it is subject to false lock
when the SNR is high and the step size is small. But just as in
the scalar case, the probability of false lock can be minimized
through careful choice of the step size.
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 Fig. 5. Convergence time versus SNR for experiment three.
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 Fig. 6. Floating point operations versus the number of users.
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