
Abstract— Recent research has shown that second-order sta-
tistics (SOS) are sufficient to blindly identify or equalize a broad
class of channels. We consider the effects of carrier frequency
offset and determine the criteria under which SOS are still suffi-
cient for channel identification, equalization, and carrier
recovery. We show that while equalization may still be possible,
channel identification and carrier recovery require use of higher-
order statistics. We show that SOS-based channel identification is
possible only with knowledge of the carrier frequency offset, and
conversely, that SOS-based carrier-offset identification is pos-
sible only with knowledge of the channel. We describe algo-
rithms and present simulation results to demonstrate these
claims.

I. I NTRODUCTION

It is well known that higher-order statistics (HOS) are neces-
sary to blindly identify a channel when its input is stationary [1-
4]. However, when the channel input is cyclostationary, as is
common in digital communications, recent research has shown
that second-order statistics (SOS) are sufficient to blindly iden-
tify a broad class of channels [5-7]. SOS-based algorithms
exploit cyclostationarity by making multiple observations per
baud [8]. Because SOS generally require less data than HOS to
estimate accurately, SOS-based algorithms can have fast conver-
gence. For example, Tong, Xu, and Kailath [6] have proposed an
algorithm (the TXK algorithm) requiring on the order of 100
symbols for accurate channel estimation. Furthermore, SOS-
based algorithms permit the use of Gaussian or near-Gaussian
input statistics, a necessity at transmission rates approaching
capacity.

Classical blind equalization techniques in the presence of
frequency offset exploit the HOS of the channel output. For
example, a popular technique is first to eliminate the intersymbol
interference using a blind equalizer adapted according to the con-
stant modulus algorithm (CMA) [9], and then to track the fre-
quency offset using a carrier recovery loop [10].

In this paper we introduce a carrier frequency offset into the
channel model and consider whether SOS alone are sufficient for
channel identification, equalization, and carrier recovery in the
presence of this offset. In the baud-spaced, stationary case, we
can adopt a frequency-domain perspective. Frequency offset
shifts the channel output spectrum. It is a simple result that, pro-
vided the channel input is white, shifting the channel output spec-
trum and shifting the spectrum of the channel itself will produce
identical spectra at the receiver. Thus, observation of this
received spectrum alone will not permit a receiver to distinguish
between the two scenarios. This intuition can be extended to the

fractionally-spaced, cyclostationary case as well.
We show that identification of the channel or the frequency

offset requires knowledge of HOS, but that channelequalization
(removal of intersymbol interference) is still possible. We show
that, in a second-order statistical framework, the tasks of channel
identification and carrier recovery are coupled. SOS-based
channel identification is possible if and only if the carrier fre-
quency offset is known; and conversely, SOS-based carrier
recovery is possible only with knowledge of the channel.

We demonstrate the first claim by analyzing the well-known
TXK algorithm in the presence of carrier drift and show that it
converges not to an estimate of the channel, but rather to an esti-
mate of what we term theimpairment function. We propose mod-
ifications to TXK that make implicit use of HOS to determine the
carrier frequency offset, and then use this information to correct
the channel estimate.

We also present novel and purely SOS-based algorithms for
estimating offset when the channel is known. While using knowl-
edge of the channel, these techniques do not exploit the discrete
nature of the constellation, and thus are applicable to dense con-
stellations or even a Gaussian distribution. This technique is
applicable to baud-spaced systems as well.

This paper is organized as follows. In section II we describe
the channel model with carrier frequency offset. In section III we
present theoretical results establishing the criteria under which
second-order statistics are sufficient for channel identification,
equalization, and carrier recovery. In section IV we analyze the
behavior of the TXK algorithm in the presence of carrier offset,
and propose a modification to the TXK algorithm to account for
the offset. In section V, we propose two second-order offset esti-
mation algorithms for cases in which the channel is known. In
section VI we present simulation results.

II. CHANNEL M ODEL

Assume the output of a noisy channel with carrier frequency
offset is oversampledL times per baud, and the equivalent base-
band discrete-time channel is FIR with impulse responsehi
having n taps, as shown in Fig.1. To model carrier offset, the FIR
filter output is multiplied bye jθi, whereθ = 2π∆fT ⁄ L is the
phase drift per sample,∆f is the carrier offset between the modu-
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Fig. 1. Channel model with carrier offset.
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lating and demodulating oscillators, andT is the baud interval.
Thus, the carrier drift per baud isω = Lθ. If θ happens to be a
rational multiple of π, the channel outputx(i) will be strictly
cyclostationary. In any case, if the channel input has zero mean,
the output will be wide-sense cyclostationary. The symbol
sequences(k) and additive noisen(i) are assumed to be sta-
tionary, white, and statistically independent.

As shown in Fig.1, assume the receiver operates on a batch
of m samples and groups them into a vector:

x(k) = [x(kL), x(kL – 1), … x(kL – m + 1)]T. (1)

Following the development in [11],x(k) can be expressed as:

x(k) = e jθkΘHs(k) + n(k), (2)

where

Θ = diag[1, e –jθ, e –j2θ, … e –j(m – 1)θ], (3)

H = , (4)

s(k) = [s(k), s(k – 1), … s(k – d + 1)]T, (5)

n(k) = [n(kL), n(kL – 1), … n(kL – m + 1)]T. (6)

The channel matrixH is of dimensionm × d, whered is the
number of scalar input samples contributing tox(k). It can also
be viewed as the dimension of the signal space defined by the
span ofH. The advantage of this model is thatx(k) is wide-sense
stationary when the channel input is zero mean. For the model to
be valid, we require thatm ≥ L ≥ 2. Givenm and the number of
channel tapsn, the length of the vectors(k) is given by [11]:

. (7)

We will say more about the proper choice ofm in the discussion
of the algorithms in section IV.

III. SUFFICIENCY OF SECOND-ORDER STATISTICS

We will show that second-order statistics are not sufficient
for joint or independent identification of the channel and the car-
rier frequency offset. First, to illustrate this point we consider a
simple noiseless 4-tap channel with impulse responseh(1) = [h0
h1 h2 h3] = [1 2 3 4] with oversampling factorL = 2 andfre-
quency offset θ1 = π ⁄ 2. Define a second channelh(2) = [h0
h1e jθ h2e j2θ h3e j3θ] = [1, 2j, –3, –4j], with no carrier fre-
quency offset (θ2 = 0). Choosingm = 2 results in a signal space
of dimensiond = 3. From (3) and (4) we have

H1 = , Θ = , andH2 = . (8)

Both systems {h(1), θ1} and {h(2), 0} have an identical output
autocorrelationRx(k) = E[x(l)xH(l – k)] given by

Rx(k) = δ(k + 2) + δ(k + 1) +

δ(k) + δ(k – 1) + δ(k – 2), (9)

whereδ(k) is the Kronecker delta function. This example sug-
gests the following theorem.

Theorem 1: Second-order statistics are insufficient for inde-
pendent or joint identification of the channel and the carrier
frequency offset.

Proof: See Appendix A.

We can define an impairment function incorporating the effects of
the channel and the offset which is identical for both systems,
i = 1 and i = 2:

g(h(i),θ) =  = [1 2j –3 –4j].(10)

In terms of our model, observe that the following matrix product
is identical for both systems:

.(11)

This matrix product is generalized in the following lemma.

Lemma: Second-order statistics, specificallyRx(0) and
Rx(1), are sufficient to identify (to arbitrary phase) the
impairment matrix G(H,θ) = ΘHΩH, if and only ifH is full
rank, where

Ω = diag[1, e –jω, e –j2ω, … e –j(d – 1)ω]. (12)

Proof: See Appendix B.

SOS cannot identifyH and θ independently, only the product
matrix G(H,θ) = ΘHΩH. Obviously, we can determineH from
G if θ were known, becauseθ determinesΘ andΩ, which are
invertible. Less obvious is the fact that we can determineθ from
G if H were known; see section V. These observations and the
lemma lead to the following theorem.

Theorem 2: (a) Second-order statistics are sufficient for
channel identification if and only if the carrier frequency
offset is known andH is full rank; (b) they are sufficient for
carrier recovery if the channel is known andH is full rank.

Note that part (b) is true in the symbol-spaced case as well,
except for the notable case when . We also state an
additional corollary that will be useful later.

Corollary: Higher-order statistics are required to factor the
impairment matrix G(H,θ) = ΘHΩH.

Observe that the impairment matrixG (for any θ) has the same
Toeplitz-like structure asH, as defined by (4). Intuitively, it
should therefore not be possible by inspection to distinguish
between a given G1 = ΘH1ΩH and a second channelG2 = H2
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with no offset. This is just as it was in our previous scalar
example. Therefore, in a second-order statistical framework, the
tasks of channel estimation and carrier recovery are necessarily
coupled. To estimate the channel requires knowledge of the fre-
quency offset; and conversely, to estimate the offset requires
some knowledge of the channel. To decouple these tasks neces-
sarily involves the use of higher-order statistics, and requires that
the channel input be non-Gaussian.

Even though we cannot explicitly identify the channel, we
can still equalize it. Observe that ifH is full rank, so isG. There-
fore, following [6], we can use the Moore-Penrose pseudo-
inverse of the impairment matrix to form

z(k) = †x(k) = e jβΩH†ΘH(e jkLθΘHs(k) + n(k))
= e j(β+kLθ)Ω (k). (13)

whereβ is the arbitrary phase ambiguity in our estimate ofG.
Then, reverting to scalar notation, we see that this equalizer pro-
duces a spinning estimate of the transmitted sequence:

z(k) = e j(β + kLθ) (k). (14)

Unfortunately, becauses(k) is white, the second-order statistics
of z(k) contain no information aboutθ. Therefore, any subse-
quent carrier recovery requires higher-order statistics, as stated
below.

Theorem 3: (a) Second-order statistics are sufficient for
channel equalization, independent of carrier recovery, if and
only if H is full rank; (b) Second-order statistics are insuffi-
cient for joint equalization and carrier-recovery.

In Fig.2 we present a pictorial summary of our results.

IV. THE EFFECT OF CARRIER FREQUENCY OFFSET ON

THE TXK ALGORITHM

In this section we analyze the effect of carrier frequency
offset on the TXK algorithm. We show that TXK actually esti-
mates the impairment function rather than the channel.We then
develop a modification that corrects this estimate.

A. Analysis of TXK Algorithm with Carrier
Fr equency Offset

We now briefly review the TXK algorithm found in [6,11]
and examine the effect of frequency offset at each step.
Throughout this section, we denote quantities for the case with

ideal carrier recovery (no offset) with a tilde (~) and relate them
to the quantities computed by TXK with offset.

1. Choosem. L is a known system parameter, and usually we
can upper bound the number of tapsn in the unknown
channel. We want to choosem > d so that we can separate
the signal and noise subspaces. With knowledge ofL and an
upper bound onn, choosem sufficiently large based on (7).

2. EstimateRx(0) andRx(1) by time averaging:

x(k) = x(i)xH(i – k). (15)

Relating the values with offset to the case with no offset, we
haveRx(k) = e jkLθΘ x(k)ΘH.

3. From x(0), estimate the noise covarianceσ2I and the
dimensiond of the signal space. Recall that the singular
value decomposition (SVD) ofRx(0) has the following
form:

UHRx(0)U = diag , (16)

where . We can relate the unitary
matrixU to the ideal case as . The singular values
for the two cases are identical:  and .

4. Compute the SVD ofR0 = , and formUs, a
matrix whose columns are the singular vectors associated
with the d largest singular values (i.e. they span the signal
space), andΣ, a diagonal matrix of the positive square roots
of the d largest singular values. The carrier offset does not
affect the noise subspace so we have .

5. Define F = Σ–1Us
H, and compute the SVD ofR =

, where . Let yd and
zd denote the left and right singular vectors corresponding to
the smallest singular value. Again, comparing to the ideal
case we have  and .

6. Let V = [yd, Ryd, … R(d–1) yd] or V = [(R†)(d–1) zd,
(R†)(d–2 )zd, … zd], and compute the matrixUsSV. Thus t

, and thus

, (17)

the impairment matrix. The arbitrary phase factorα is due to
the fact that the singular value decompositions in steps 3, 4,
and 5 are not unique. The singular vectors are specified only
to some arbitrary rotation.

B. Modified TXK using Decision-Directed Carrier
Recovery

We now propose a simple modification to the TXK algo-
rithm to account for frequency offset. The proposed technique
uses a decision-directed carrier recovery loop, and thus relies on
the discrete nature of the constellation. We have already observed
from equations (13) and (14) that a TXK-based equalizer can
recover a spinning estimatez(k) of the transmitted sequence. As
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Fig. 2. The relationship among identification, equalization, and
carrier recovery.
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shown in Fig. 3, a conventional decision-directed phase-locked
loop operating on z(k) can generate an accurate estimate of the
phase offset θ. The TXK algorithm also produces an estimate of
the impairment matrix G. As shown in Fig. 3, we can correct the
channel estimate using

. (18)

V. CARRIER RECOVERY USING ONLY SOS

We now present a SOS-based method for recovering the car-
rier offset when the channel is known and H is full rank. Such a
method is promised to exist from Theorem 2-b. As shown above
we can use the TXK algorithm to estimate the channel impair-
ment matrix G with purely second-order statistics. Compare the
SVD of the channel impairment matrix, G = UGSVG

H =
(ΘU)S(VHΩH), with that of channel, H = USVH. We can esti-
mate the offset by

, (19)

or alternatively by

. (20)

These estimates should be approximately diagonal with the struc-
ture of (3) and (12), respectively.

As a second method, we can extract the impairment function
 from G, where

[GL-1,1 GL-2,1 … G1,1 GL-1,2 … G1,2 … GL-1,d-1 …
G1,d-1] = [0 … 0 g0 g1 … gn – 1 0 … 0]. (21)

With gk and hk, θ can be estimated by averaging the difference of
the angles produced by gk ⁄ hk. This works in the symbol-spaced
(L = 1) case as well, in which the channel matrix would have a
Toeplitz structure, again excluding the case . This
method does not require that the constellation be discrete. Indeed,
the channel input could be Gaussian with a continuum of allow-
able phase transitions.

VI. SIMULATION RESULTS

The first simulation experiment compares the original TXK
algorithm to our modified one in the presence of carrier fre-
quency offset. The channel is the 3-ray, oversampled (L = 4)
raised cosine from [6]. The autocorrelation estimates were based
on 100 symbols, and the amount of carrier frequency offset was
0.75 radian per sample. We ran Monte-Carlo simulations of 100

independent trials of each algorithm. Fig. 4 (a) shows the sample
means of channel estimates provided by each algorithm. The
original algorithm converges to the impairment function as
expected. Our modified algorithm correctly identifies the fre-
quency offset information from HOS and uses it to correct the
channel estimate.

We repeated the experiment using a ramp channel. The
results are shown in Fig. 4 (b), where the estimated provided by
the unmodified algorithm are clearly modulated by a complex
sinusoid.

The next simulation verifies the SOS-based carrier recovery
algorithm of section V. In this experiment, the transmitted sym-
bols were Gaussian to simulate a highly coded input. The fre-
quency offset θ was 0.08. In each run the autocorrelation was
estimated by averaging N = 500 symbols in (13). Fig. 5 shows a
histogram of 500 Monte Carlo runs. The algorithm appears to
work quite well. The estimate in this figure appears to be unbi-
ased with reasonable variance, and this variance can be reduced
by increasing N.
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θ
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Fig. 3. Modified TXK using a carrier loop.
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VII. CONCLUSIONS

We have shown that second-order statistics are not sufficient
to jointly (or independently) perform blind channel identification
and blind carrier recovery. We presented an analysis of the TXK
algorithm in the presence of carrier frequency offset and sug-
gested a method to decouple these tasks involving implicit use of
HOS. We found that second-order blind carrier recovery is pos-
sible, but only with channel knowledge.

We found that second-order blind channel equalization is
possible, even in the presence of carrier frequency offset, but any
subsequent blind carrier recovery requires HOS. One can there-
fore expect that, for systems with near-Gaussian input statistics
(such as highly coded and shaped systems), the problem of joint
blind equalization and carrier recovery will be a difficult one.

APPENDIX A: PROOF OF THEOREM 1

Choose two arbitrary and distinct carrier frequency offsetsθ1
andθ2, with corresponding matricesΘi andΩi as defined in (3)
and (12) respectively. Choose an arbitrary channel matrixH1, of
full rank with the structure of (6). LetH2 = PH1QH, with

, (22)

, (23)

and δ = θ1 - θ2. The output autocorrelation of the second system

is given by  = E[x(l) xH(k–l)] = Θ2H2Rs(k)H2
HΘ2

H

= Θ1 H1QHRs(k)QH1
HΘ1

H + Rn(k). The autocorrela-

tion of the channel input data from [6,11] is given by

, (24)

where

(25)

is a d × d shifting matrix. Observe thatQHRs (k)Q = ejLδkRs (k)
because of the special structure ofRs (k). Thus, we have that

, and the two systems, {H1, θ1} and {H2, θ2},
have identical second-order statistics.

APPENDIX B: PROOF OF LEMMA

The sufficiency of the rank condition follows closely the
proof in [6]. We assume two systems have identical autocorrela-
tion functions at lags 0 and 1. Equating at lag 0 yields
Θ1H1H1

HΘ1
H = Θ2H2H2

HΘ2
H. This impliesΘ2H2 = Θ1H1U,

where U is some unknown unitary matrix. At lag 1 we have
. Substituting, we

get thatUJ = JUejLδ. Using the shifting structure ofJ and the

fact that the columns ofU have unit length, we get that

, (26)

whereα is some arbitrary phase. Finally we have that

. (27)

Thus the impairment matrices differ only by the arbitrary phase
α. With no carrier drift, (26) reduces toU = ejαI, in agreement
with [6].

The necessity of the rank condition follows from the obser-
vation thatG andH have equal rank and the arguments in [7].
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