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Abstract— Recent research has shothat second-order sta- fractionally-spaced,yclostationary case as well.
tistics (SOS) are sfi€ient to blindly identify or equalize a broad We shov thatidentificationof the channel or the frequsnc
class of channels. &/consider the &dcts of carrier frequegc  offset requires kneledge of HOS, bt that channedqualization
offset and determine the criteria under which SOS are stfit suf (removal of intersymbol interference) is still possiblee\&hav
cient for channel identification, equalization, and carrietthat, in a second-order statistical framoek, the tasks of channel
recovery. We shav that while equalization may still be possible, identification and carrier rewery are coupled. SOS-based
channel identification and carrier reeoy require use of higher channel identification is possible if and only if the carrier fre-
order statistics. W shav that SOS-based channel identification isqueny offset is knevn; and cowrersely SOS-based carrier
possible only with kn@ledge of the carrier frequepoffset, and  recovery is possible only with knadedge of the channel.
conversely that SOS-based carrieffset identification is pos- We demonstrate the first claim by analyzing the wellwkmo
sible only with knavledge of the channel. &/describe algo- TXK algorithm in the presence of carrier drift and whihat it
rithms and present simulation results to demonstrate theservermges not to an estimate of the channaet,rather to an esti-
claims. mate of what we term thmpairment functionWe propose mod-
ifications to TXK that mad implicit use of HOS to determine the
. INTRODUCTION carrier frequeng offset, and then use this information to correct

It is well knovn that higheworder statistics (HOS) are neces- the channel estimate.

sary to blindly identify a channel when its input is stationary [1- _We.also present el and purelly SOS-ba§ed a]gonthms for
. . . . estimating dket when the channel is kmo. While using knal-
4]. However, when the channel input isycostationary as is

common in digital communications, recent research hasrsho edge of the channel, these techniques do xuloi the discrete

that second-order statistics (SOS) ardigight to blindly iden- nature of the constellation, and thus are applicable to dense con-

ify a broad class of channels [5-7]. SOS-based algorithmséte"atlons or een a Gaussian distiabion. This technique is

. i X i . ; applicable to baud-spaced systems as well.
exploit cyclostationarity by making multiple obsations per : . ! . .
X This paper is @anized as follas. In section Il we describe

baud [8]. Because SOS generally require less data than HOS to . . .

. : the channel model with carrier frequgraffset. In section Il we
estimate accuratelysOS-based algorithms carnvhdast coner- ; 2 S .

. present theoretical results establishing the criteria under which

gence. Br example, Dng, Xu, and Kailath [6] ha proposed an second-order statistics are fazient for channel identification
algorithm (the TXK algorithm) requiring on the order of 100 '

oS qualization, and carrier regary. In section IV we analyze the
symbols for accurate channel estimation. Furthermore, SOS-', . . 4 .
. ) . ; ehaior of the TXK algorithm in the presence of carriefsef,
based algorithms permit the use of Gaussian or-@aassian e O :
.and propose a modification to the TXK algorithm to account for

input statistics, a necessity at transmission rates approachlﬂ% ofset. In section V, we proposedvsecond-order tfet esti-

capacity . . - . . r?ation algorithms for cases in which the channel isvkndn
Classical blind equalization techniques in the presence of .. . .
Section VI we present simulation results.

frequeny offset eploit the HOS of the channel outputorF
example, a popular technique is first to eliminate the intersymbol
interference using a blind equalizer adapted according to the con-
stant modulus algorithm (CMA) [9], and then to track the fre-  Assume the output of a noisy channel with carrier frequenc
guengy offset using a carrier recery loop [10]. offset is wersampled. times per baud, and the egalent base-

In this paper we introduce a carrier frequen@fset into the  band discrete-time channel is FIR with impulse respdnse
channel model and consider whether SOS alone dieisnff for  having n taps, as shan in Fig.1. To model carrier déet, the FIR
channel identification, equalization, and carrier vecp in the filter output is multiplied byzfe‘, where® = 2T/ L is the
presence of this tfet. In the baud-spaced, stationary case, wehase drift per sampléf is the carrier déet between the modu-
can adopt a frequepalomain perspeate. Frequeng offset
shifts the channel output spectrum. It is a simple result that, pro-
vided the channel input is white, shifting the channel output spec-

Il. CHANNEL MODEL

e/% n(@)

o . . i x(k)
Frum_and shifting the spectrum pf the channel |ts_elf will pr(_)duce S(Ai, AL > _,(%_,M, S/P i
identical spectra at the reeei Thus, obsemtion of this
receved spectrum alone will not permit a reaaito distinguish
between the tov scenarios. This intuition can betended to the Fig. 1. Channel model with carrier fsgt.

As appeared in | EEE I nternational Conference on Communications, vol 2, pp. 959-999, Dallas, June 1996.



lating and demodulating oscillators, afidis the baud intend. - -

Thus, the carrier drift per baud és= L6. If 6 happens to be a R, (k) ={O 41} ok +2) + {_3 _141} ok + 1)+
rational multiple ofm, the channel output(i) will be strictly 00 0 -8
cyclostationary In ary case, if the channel input has zero mean, -

the output will be wide-senseydostationary The symbol {10 61} 5(k) + {—3 0} 5k —1) + { 0 0}5(]3 ~92), (9)
sequences(k) and additie noisen(i) are assumed to be sta- —6j 20 14j -8 -4 0

tionary, white, and statistically independent.
As shavn in Fig.1, assume the reeeir operates on a batch
of msamples and groups them intoextor:

x(k) = [x(RL), x(kL — 1), ... (kL —m + DIT. (1)

where &(k) is the Kroneckr delta function. Thisxample sug-
gests the folling theorem.

Theorem 1: Second-order statistics are irfstiént for inde-
pendent or joint identification of the channel and the carrier

Following the deelopment in [11]x(%) can be gpressed as: frequeng offset.
x(k) = e /" OHSs(R) + n(k), 2) Proof: See Appendix A.
where We can define aimpairment function incorporating the éécts of
0 _i99 . 18 the channel and the feét which is identical for both systems,
O =diag[l,e 7", e” ,...e_J(m_ )], 3) i=1andi=2:
h, h, hyy o hgon g(h(i),9)= [hg) h(li)eje‘ h(zi)ejzei hg)ej39E| =[12j—3-451.(10)
0 h._, hy g - h(d—l)L—l

H= | hi_a Moo o Ng_pyi_z | 4) In terms of our model, obsexthat the follaving matrix product
. . ) ) is identical for both systems:

0 hL—m+l h2L—m+1 h(d—l)L—m+1_

o 0 o0
) 1 0 |[h R o » _

s(k) = [s(k), s(k - 1), ... stk —d + DI, (5) L _w] 0 2) ol [0 S0 g | = E; 2? _ZJ .(11)
n(k) = [n(kL), n(kL - 1), ... n(kL —m + DI~ (6) © 0 hz'hy 0 0 e

The channel matriH is of dimensionm x d, whered is the
number of scalar input samples conitibg tox(k). It can also o s
be viaved as the dimension of the signal space defined by the Lemma: Second-order statistics, specificali,(0) and

This matrix product is generalized in the faliog lemma.

span off. The adantage of this model is thatk) is wide-sense Ry(1), are sufcient to identify (to arbitrary phase) the
stationary when the channel input is zero meanttfe model to impairment matrix G(H,8) = ©HQ", if and only ifH is full
be \alid, we require that: = L = 2. Givenm and the number of rank, where
channel tapg, the length of theectors(%) is given by [11]: Q = diagl1, e 7© ¢ 729 ¢ (d~Dw} (12)
d = {”J'_m—z + 1J @) Proof: See Appendix B.
3 )

SOS cannot identifff and 8 independentlyonly the product
We will say more about the proper choicenofn the discussion matrix G(H,0) = GHQH. Ohviously, we can determin® from

of the algorithms in section IV. G if 8 were knavn, becaus® determine€® and Q, which are
invertible. Less olious is the éct that we can determirfiefrom
I1l1. SUFFICIENCY OF SECOND-ORDER STATISTICS G if H were knavn; see section V. These obsaions and the

We will shav that second-order statistics are noffisignt lemma lead to the folleing theorem.

for joint or independent identification of the channel and the car- Theorem 2: (a) Second-order statistics are fignt for
rier frequeny offset. First, to illustrate this point we consider a channel identification if and only if the carrier frequenc
simple noiseless 4-tap channel with impulse respftSe= [hg offset is knavn andH is full rank; (b) thg are suficient for
hq hg hgl = [1 2 3 4] with oversampling &ctorL = 2 andfre- carrier recgery if the channel is kwen andH is full rank.

_ : 2

queneg/ oﬁszee'[ 91—.5[6/2- Define a second ghannbf ) = [ho  Note that part (b) is true in the symbol-spaced case as well,
hie’” hoe’™ hge!™™] = [1, 2Zj, -3, —4jl, with no carrier fre-  except for the notable case when O 5(i) . We also state an
queng offset @, = 0). Choosingn = 2 results in a signal space aqdgitional corollary that will be useful later

f di iod=3.F 3) and (4 .
ot dimensio om (3) and (4) we a Corollary: Higherorder statistics are required tacfor the

~Oro : 4 2
Hoo 130 g_[10] jgm._[1-3 0 @© impairment maiix G(H,0) = ©HQ".
1" lo24 0-j|’ 27 0 2j —4j| Obsere that the impairment matri& (for ary 6) has the same

D @ _ _ Toeplitz-like structure add, as defined by (4). Intuitely, it
Both systems &', 61} and {r'*, O} have an identical output should therefore not be possible by inspection to distinguish
autocorrelatiorR,(k) = Elx()x"(l - k)] given by between a gien Gy = ©H;QF and a second chann@l, = Hy



with no ofset. This is just as it & in our preious scalar
example. Therefore, in a second-order statistical freonle, the

coupled. © estimate the channel requires kiedge of the fre-
gueny offset; and cowversely to estimate the tdet requires
some knwledge of the channel.oTdecouple these tasks neces-
sarily involves the use of higharder statistics, and requires that
the channel input be non-Gaussian.

Even though we cannotxplicitly identify the channel, we 2.

can still equalize it. Obsesvthat ifH is full rank, so igG. There-
fore, following [6], we can use the Moore-Penrose pseudo-
inverse of the impairment matrix to form

2(k) = G Tx(k) = e PQHTOH(e *L90Hs (k) + n(k))

= e JBELOG & (R). (13)
wheref3 is the arbitrary phase ambiguity in our estimateésof
Then, reerting to scalar notation, we see that this equalizer pro-
duces a spinning estimate of the transmitted sequence:

2(k) = e/ B+ ELOg(p), (14)

Unfortunately because(k) is white, the second-order statistics
of z(k) contain no information abow. Therefore, ap subse-
guent carrier reaeery requires higheorder statistics, as stated
below.

Theorem 3 (a) Second-order statistics are fmignt for
channel equalization, independent of carrier veog if and
only if H is full rank; (b) Second-order statistics are ifisuf
cient for joint equalization and carriezcovery.

In Fig. 2 we present a pictorial summary of our results.

IV. THE EFFECT OF CARRIER FREQUENCY OFFSET ON

THE TXK ALGORITHM >
In this section we analyze thefesft of carrier frequenc
offset on the TXK algorithm. &/ shev that TXK actually esti-
mates the impairment function rather than the chaneeth&n
develop a modification that corrects this estimate.
6.

A. Analysis of TXK Algorithm with Carrier
Frequency Offset

We naw briefly review the TXK algorithm found in [6,11]
and eamine the déct of frequeng offset at each step.
Throughout this section, we denote quantities for the case with

HOS % x S0S

Equalization

Identification

Carrier HOS

Recovery

Fig. 2. The relationship among identification, equalization,
carrier recoery.

B.
Recovery

ideal carrier receery (no ofset) with a tilde (~) and relate them
to the quantities computed by TXK withfet.
tasks of channel estimation and carrier vecy are necessarily 1

Choosem. L is a knevn system parameteand usually we
can upper bound the number of tapsin the unknwn
channel. V& want to choosen > d so that we can separate
the signal and noise subspace#hWnowvledge ofL and an
upper bound on, choosen suficiently lage based on (7).

EstimateR,(0) andR,(1) by time aeraging:

NE
N > 202G - E).

R (k) = (15)
Relating the alues with dfset to the case with nofsét, we
have R (k) = e/*LP0QR ,(k)OH.

From Rx(O), estimate the noise wariancec?l and the
dimensiond of the signal space. Recall that the singular
value decomposition (SVD) aR,(0) has the follaing
form:

UR,(0)U = diag [)\1 +0% . Ag+ 0%, 0% ...02} , (16)

where A;2A,2...2A;3>0. We can relate the unitary
matrix U to the ideal case & = OU . The singular alues
for the two cases are identical; = A;lJi ando = ©.

Compute the SVD oR, = R, (0) ~6°I, and formUs,, a
matrix whose columns are the singulactors associated
with the d largest singular alues (i.e. thg span the signal
space), and, a diagonal matrix of the posié square roots
of thed largest singular @lues. The carrier_fsfet does not
affect the noise subspace so wedl; = OU..

Define F= > UJH, and compute the SVD oR =
F(Rx(1)-Rn(1))F", where Ry(1) = 6°3". Lety, and
24 denote the left and right singulagators corresponding to
the smallest singularalue. Agin, comparing to the ideal
case we h&e F = FO" andR = ¢"°R.

Let V = [yg Rys ... Ry, or V= (RN 2,
(R"N@2)z,, ... 2,1, and compute the matr8{,SV. Thus t
V = VQH, and thus

UgV= eUgsva" = eefAq" = 6, an

the impairment matrix. The arbitrary phaaetbra is due to
the fact that the singularalue decompositions in steps 3, 4,
and 5 are not unique. The singulactors are specified only
to some arbitrary rotation.

Modified TXK using Decision-Directed Carrier

We nawv propose a simple modification to the TXK algo-

rithm to account for frequegcoffset. The proposed technique
uses a decision-directed carrier negxy loop, and thus relies on
the discrete nature of the constellatiore ide already obseed

from equations (13) and (14) that a TXK-based equalizer can
recover a spinning estimatgk) of the transmitted sequence. As



shown in Fig. 3, a conventional decision-directed phase-locked
loop operating on z(k) can generate an accurate estimate of the
phase offset 8. The TXK algorithm also produces an estimate of
the impairment matrix G. As shown in Fig. 3, we can correct the
channel estimate using

H = 0"6Q. (18)

V. CARRIER RECOVERY USING ONLY SOS

We now present a SOS-based method for recovering the car-
rier offset when the channel is known and H is full rank. Such a
method is promised to exist from Theorem 2-b. As shown above
we can use the TXK agorithm to estimate the channel impair-
ment matrix G with purely second-order statistics. Compare the
SVD of the channel impairment matrix, G = UgSVg =
(OU)S(VHQH), with that of channel, H = USV*. We can esti-
mate the offset by

6 = ¢%Ug)U", (19)
or alternatively by
o = eV (Vg). (20)

These estimates should be approximately diagonal with the struc-
ture of (3) and (12), respectively.
As a second method, we can extract the impairment function
_ o jOk
g = € he " from G, where

[GL_Ll GL-2,1 Gl,l GL'LZ G1’2 GL-l,d-l
Gl’d_1]=[0...Ogogl...gn_lo...O]. (21)

With g, and A, 6 can be estimated by averaging the difference of
the angles produced by g3,/ k. This works in the symbol-spaced
(L = 1) case as well, in which the channel matrix would have a
Toeplitz structure, again excluding the case h, 0 &(i). This
method does not require that the constellation be discrete. Indeed,
the channel input could be Gaussian with a continuum of allow-
able phase transitions.

VI. SIMULATION RESULTS

The first simulation experiment compares the original TXK
algorithm to our modified one in the presence of carrier fre-
quency offset. The channel is the 3-ray, oversampled (L = 4)
raised cosine from [6]. The autocorrelation estimates were based
on 100 symbols, and the amount of carrier frequency offset was
0.75 radian per sample. We ran Monte-Carlo simulations of 100

2@ | TxK-based| 2(8)_| Decision-Directed
Equalizer "1 Carrier Loop
1(‘; b
\
H=0"Ga

‘1}

Fig. 3. Modified TXK using acarrier loop.

independent trials of each algorithm. Fig. 4 (a) shows the sample
means of channel estimates provided by each algorithm. The
original algorithm converges to the impairment function as
expected. Our modified algorithm correctly identifies the fre-
quency offset information from HOS and uses it to correct the
channel estimate.

We repeated the experiment using a ramp channel. The
results are shown in Fig. 4 (b), where the estimated provided by
the unmodified algorithm are clearly modulated by a complex
sinusoid.

The next simulation verifies the SOS-based carrier recovery
algorithm of section V. In this experiment, the transmitted sym-
bols were Gaussian to simulate a highly coded input. The fre-
quency offset 8 was 0.08. In each run the autocorrelation was
estimated by averaging N = 500 symbolsin (13). Fig. 5 shows a
histogram of 500 Monte Carlo runs. The algorithm appears to
work quite well. The estimate in this figure appears to be unbi-
ased with reasonable variance, and this variance can be reduced
by increasing N.
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Fig. 4. Comparison of the original and modified TXK
algorithms: (a) 3-ray channel from [6] and (b) ramp channel.

Frequency of
Occurrence

o
0.04 0.06 0.08 0.1 0.12
Offset (Radians/ Sample)

Fig. 5. Histogram of phase estimates.



VII. CONCLUSIONS fact that the columns &f have unit length, we get that
_ We have _shcwn that second-order s_tatistics are_notis_iqafnt_ U = ejO‘QH - ejaQTQz’ (26)
to jointly (or independently) perform blind channel identification
and blind carrier reaeery. We presented an analysis of the TXK wherea is some arbitrary phase. Finally wevaahat
algorithm in the presence of carrier frequemdfset and sug- H ia H
gested a method to decouple these taskahiimg implicit use of (OGHQ )2 = 7 (OHQ )1. (27)

HOS. We found that second-order blind carrier K&y is pos-  Thys the impairment matrices fif only by the arbitrary phase

sible, ut only with channel knoledge. ~ a. With no carrier drift, (26) reduces to = €%, in agreement
We found that second-order blind channel equalization igitn [6].

possible, gen in the presence of carrier frequgndfset, lut ary The necessity of the rank condition folle from the obser-
subsequent blind carrier re@y requires HOS. One can there- \5tion thatG andH have equal rank and theqaments in [7].

fore expect that, for systems with ne@aussian input statistics

(such as highly coded and shaped systems), the problem of joint

blind equalization and carrier ra@ry will be a dificult one. ]
1

APPENDIX A: PROOF OF THEOREM 1

Choose tw arbitrary and distinct carrier frequgnaffsetsd, 2]
and®,, with corresponding matrices; andQ; as defined in (3)
and (12) respeately. Choose an arbitrary channel matrx, of
full rank with the structure of (6). Lét, = PH,Q¥, with 3]
P = diag|; g1 120 lin-19) = 030, (22)
[4]
Q= diag[l SIS 2 e—i(d—l)m] = ola,, 3 8]

andd = 0, - 6,. The output autocorrelation of the second system
is given by R, (k) = E[x(1) x(k-D)] = €' @H,R(WH 0 O]
S 0, H1QPR(KQH 70,7 + Ry(k). The autocorrela-

tion of the channel input data from [6,11] isen by
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APPENDIX B: PROOF OF LEMMA

The suficiengy of the rank condition folls closely the
proof in [6]. We assume tw systems hae identical autocorrela-
tion functions at lags 0 and 1. Equating at lag 0 vyields
@1H1H1H®1H = eszHZHGZH. This implies@2H2 = 61H1U,
where U is some unknen unitary matrix. At lag 1 we ka
¢ o,H,aHte! = &%e,H,dH e} . Substituing, we
get thatUJ = JUELd. Using the shifting structure df and the



