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Abstract  

 

— Soft-output equalizers that exploit 

 

a priori

 

information on the channel inputs play a central role in turbo
equalization. Such equalizers are traditionally implemented with
the forward-backward or BCJR algorithm, whose complexity is
prohibitive for channels with large memory. Many reduced-
complexity alternatives to the BCJR algorithm have been
proposed that use a linear equalizer and use the 

 

a priori

 

information to perform soft intersymbol interference cancellation.
In this work, we propose a soft-feedback equalizer (SFE) that
combines the equalizer output and the 

 

a priori 

 

information to
improve interference cancellation. Also, by assuming a statistical
model for the 

 

a priori 

 

information and the SFE output, we obtain
an equalizer with linear complexity, as opposed to the quadratic
complexity of some similar structures. Simulation results show
that the SFE may perform within 1 dB of a system based on an
BCJR equalizer, within 0.3 dB of quadratic complexity schemes,
and consistently outperforms other linear complexity schemes.

 

I.   I

 

NTRODUCTION

 

Soft-output equalizers that exploit 

 

a priori

 

 information on
the channel inputs are useful in a variety of applications. Most
notably, such equalizers play a central role in turbo
equalization, where soft equalizer outputs are fed to a soft-
input channel decoder, and where soft decoder outputs are used
by the equalizer as 

 

a priori

 

 information in subsequent
iterations [1]. Traditionally, the soft outputs take the form of 

 

a
posteriori

 

 probabilities (APP) for each transmitted symbol,
given the channel outputs and the 

 

a priori

 

 information.

The APP may be computed exactly by the forward-
backward or BCJR algorithm [2]. However, the computational
complexity of BCJR is exponential in the channel memory, so
it is not practical when the channel memory is large. This has
motivated the development of reduced-complexity alternatives
to the BCJR algorithm, such as the equalizers proposed in [3-
8]. These structures use a linear filter to equalize the received
sequence. The output of this linear filter contains residual
intersymbol interference (ISI), which is estimated based on the

 

a priori

 

 information, and then cancelled.

In this work, we propose the 

 

soft-feedback equalizer

 

 (SFE),
which combines the soft equalizer outputs and the 

 

a priori

 

information to form more reliable estimates of the residual ISI.
A similar system is proposed in [7] that uses hard decisions on
the equalizer output to help estimate the residual ISI. However,
because hard decisions are used and because the 

 

a priori

 

information is not combined with the equalizer output before a
decision is made, the system with feedback of [7] performs
worse than schemes without feedback.

As in [5-8], the SFE coefficients are computed to minimize
the mean squared error (MSE) between the equalizer output
and the transmitted symbol. By assuming a statistical model
for the 

 

a priori

 

 information and the equalizer output, we obtain
a linear complexity equalizer, 

 

i.e.

 

, the complexity is
proportional to the number of taps. A similar statistical model
is assumed in [9] to obtain a linear complexity hard-input hard-
output equalizer with ISI cancellation (IC). The minimum-
MSE (MMSE) schemes in [5-8] have quadratic complexity.

We will see that in special cases, the SFE reduces to a
MMSE linear equalizer (LE), an MMSE-decision-feedback
equalizer (DFE) or an IC. We will show that the SFE performs
reasonably well when compared to the BCJR and quadratic-
complexity algorithms, while it consistently outperforms other
linear-complexity structures proposed in the literature.

 

II.   C

 

HANNEL

 

 M

 

ODEL

 

 

 

AND

 

 P

 

ROBLEM

 

 S

 

TATEMENT

 

This paper considers the transmission of a sequence of
symbols 

 

a

 

 = [

 

a

 

0

 

, 

 

…

 

, 

 

a

 

L

 

–1

 

] 

 

through a channel with output

 

r

 

k

 

 = 

 

h

 

m

 

a

 

k–m

 

 + 

 

n

 

k

 

,

 

(1)

 

where the channel has memory 

 

µ

 

 and impulse response 

 

h

 

 =
[

 

h

 

0

 

, 

 

…

 

, 

 

h

 

µ

 

]

 

, and where 

 

n

 

k

 

 ~ 

 

N 

 

(0, 

 

σ

 

2

 

)

 

 is real white Gaussian
noise. For notational ease, we restrict our presentation to a
BPSK alphabet, with 

 

a

 

k

 

 

 

∈

 

{

 

±

 

 

 

1}

 

. The results can be extended to
other alphabets using the techniques of [8].

In contrast to a classical equalizer, which assumes that the
channel inputs are uniformly distributed, we assume that the
receiver has 

 

a priori

 

 information about the channel inputs. For
binary alphabets, this information is captured by the logarithm
of the ratio of the 

 

a priori

 

 probabilities:

 

λ

 

p
k

 

 = log .

 

(2)

 

Given  = 

 

[

 

λ

 

p

 

0

 

, 

 

…

 

 

 

λ

 

p
L

 

–1

 

]

 

, the goal of a soft-output equalizer
is to compute the APPs 

 

{

 

p

 

(

 

a

 

k

 

|

 

r

 

)

 

}

 

, where 

 

r

 

 = 

 

[

 

r

 

0

 

, 

 

…

 

 

 

r

 

L + 

 

µ

 

 – 

 

1

 

]

 

.
For binary alphabets, this is equivalent to computing the log-
APP ratio 

 

L

 

k

 

, which we loosely refer to as a 

 

log-likelihood
ratio 

 

(LLR), defined by:

 

L

 

k

 

 = log .

 

(3)

 

The LLR may be written as 

 

L

 

k

 

 

 

=

 

 λ

 

k

 

 + 

 

λ

 

p
k

 

, where 

 

λ

 

k

 

 is termed

 

extrinsic LLR

 

 because it is not a function of the 

 

a priori

m 0=

µ∑

Pr ak 1=( )
Pr ak 1–=( )
------------------------------

λp

Pr ak 1 r=( )
Pr ak 1 r–=( )
-----------------------------------
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information 

 

λ

 

p
k

 

 [1]. The concept of extrinsic information is
crucial to turbo systems. Indeed, the components of a turbo
system only exchange extrinsic information. This fact, and the
independence between 

 

a priori

 

 information and extrinsic
information, avoids positive feedback of information.

 

III.   P

 

RIOR

 

 W

 

ORK

 

 

 

ON

 

 S

 

OFT

 

 ISI C

 

ANCELLATION

 

In this section, we describe the low-complexity algorithms
proposed in [3-8] to compute approximate values of 

 

λ

 

k

 

. The
general structure of these algorithms is illustrated in Fig. 1. In
this figure, the received signal is filtered by a linear filter 

 

f

 

. The

 

a priori

 

 information is used to produce soft estimates 

 

{

 

l

 

≠ 

 

k

 

}

 

of the interfering symbols

 

 

 

{

 

a

 

l

 

 ≠ 

 

k

 

}

 

, according to:

 

l

 

 = E[

 

a

 

l

 

|

 

λ

 

p

 

l

 

] = tanh(

 

λ

 

p

 

l 

 

⁄ 2) . (4)

These estimates are then fed to a linear filter g whose output is
an estimate of the residual ISI at the output of f. Thus, the
subtraction in Fig. 1 reduces this residual ISI. Notice that, since
the equalizer output zk is used to estimate ak, the influence of
ak on zk should not be cancelled. Hence, the zero-th coefficient
of g is constrained to be zero.

Since the zero-th tap of g is zero, zk is not a function of λp
k.

Thus, zk can only be used to produce extrinsic information,
which can be done by writing

zk = A ak + vk, (5)

where A is a gain and vk an equivalent noise with variance .
Although this noise includes residual ISI, the computation of
λk from zk is easy when vk is assumed to be Gaussian and
independent of ak. In this case, we find that

λk = 2 A zk / . (6)

The equalizers proposed in [3] and [4], which are referred to
as decision-aided equalizers (DAE), choose f under the
assumption that k  = ak, which leads to the matched filter
(MF) solution fk = h–k. Equalizers proposed in [5-8] choose f
as an MMSE-LE that depends on the a priori information and
must be computed for every transmitted symbol. The result is a
time-varying equalizer (TVE) whose computational
complexity is quadratic in the length of f. Also proposed in [5-
7] are approximations that yield time-invariant filters f and g.
In particular, the switched-equalizer (SE) strategy proposed in
[7] chooses f as either an MF or a traditional MMSE-LE,

depending on the quality of the a priori information. In all
cases [3-8], the interference cancellation filter g is designed
under the assumption that its inputs are equal to the transmitted
symbols, yielding gk = ∑∑∑∑ lhlfk – l when k ≠ 0.

IV.   THE SOFT-FEEDBACK EQUALIZER

We now propose the SFE, a soft-output equalization scheme
that shares many similarities with the schemes of [3-8].
However, our approach differs in two substantial ways.

First, at time k, when computing zk, the previous equalizer
outputs {λk – j: j > 0} are already known. With these values, we
may compute the full LLR Lk – j = λp

k  – j + λk – j, which
provides a better estimate of ak – j than λp

k  – j alone. Thus,
instead of using k  – j to cancel interference, we propose to use

k  – j = E[ak – j|Lk – j] = tanh(Lk – j ⁄ 2) , (7)

for j > 0. This is similar to the principle behind a DFE. A DFE-
based system is also proposed in [7]. However, this system
feeds back hard decisions on the equalizer output, without
combining them with the a priori information, and it performs
worse than the schemes described in section III.

Second, as in [5-8], we pass  and  through linear filters
whose coefficients, along with f, are computed to minimize the
MSE E[|zk – ak|2]. However, following [9,10], we use a
Gaussian approximation to λp

k  and to zk that leads to time-
invariant coefficients, resulting in a complexity that is
proportional to the length of f.

Applying the above two changes to Fig. 1 leads to the
proposed SFE structure shown in Fig. 2, where the filters g1
and g2 are strictly anticausal and strictly causal, respectively,
and the filters f, g1 and g2 are chosen to minimize the MSE.
The thicker line in the feedback loop represents the only actual
change from Fig. 1.

A.  Computing the Coefficients

To find the MMSE values of f, g1 and g2, we write:

zk = f Trk –  – , (8)

where f = [ , … ]T, rk = [ , … ]T, g1 =
[ , … g–1]T, g2 = [g1, … ]T,  = [ , …

]T,  = [ , … ]T, the superscript T denotes
transpose, and M1 and M2 determine the lengths of the filters.
Also, we write:

 Fig. 1. Interference canceller with a priori information.
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Fig. 2. The proposed SFE.
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rk = Hak + nk, (9)

where nk = [ , … ]T, ak = [ , … ]T

and H is the M × (M + µ) channel convolution matrix:

H = , (10)

where M = M1 + M2 + 1. Note that, from (9), the output of f
suffers the interference of ak – j, j = –M1, … M2 + µ. This
explains the index range of the IC vectors  and .

Now, assume that E[ aj] = E[ aj] = E[ ] = 0 when
k ≠ j. This is reasonable, since  and  are both
approximately ak, and the transmitted symbols are
uncorrelated. Using this assumption, it can be shown [11] that
the filters that minimize E[|zk – ak|2] are given by:

f = (HHT – H1  – H2  + σ2I)–1h0, (11)

g1 = (α1 ⁄ E1) f, (12)

g2 = (α2 ⁄ E2) f, (13)

where

E1 = E[| |2], (14)

E2 = E[| |2], (15)

α1 = E[ ak], (16)

α2 = E[ ak]. (17)

The vector h0 is the 0-th column of H, where the columns of H
are numbered as H = [ , … ]. Also, H1 = [ , …
h–1] and H2 = [h1, … ]. Note that g1 and g2 are
proportional to the strictly causal and anticausal portions of
∑lhlfk – l.

B.  Computing the Expected Values

We now compute the values of E1, α1, E2 and α2 needed in
(11)-(13). Exploiting symmetries, it is not hard to see that these
values may be computed by conditioning on ak = 1. For
instance, E1 = E[| |2|ak = 1] and α1 = E[ |ak = 1].

Now, assume, as in [10], that λp
k = γp(ak + wk), where wk is

AWGN with variance , assumed to be independent of the
transmitted sequence, the actual channel noise and the
equalizer output, and where γp = 2 ⁄ . Then, conditioning on
ak = 1, λp

k ~ N  (γp, 2γp), so

α1 = ψ1(γp), (18)

E1 = ψ2(γp), (19)

where

ψ1(γ) = E[tanh(u ⁄ 2)], u ~ N (γ, 2γ), (20)

ψ2(γ) = E[tanh2(u ⁄ 2)], u ~ N (γ, 2γ). (21)

Unfortunately, there are no closed-form formulas for ψ1(γ) and
ψ2(γ). However, these are well-behaved functions that may be
tabulated or computed by simple numerical algorithms.
Furthermore, since λp

k ~ N  (γp, 2γp), the ML estimate of γp
needed in (18) and (19) is given by

 = . (22)

Also, consider the Gaussian approximation to λk in (5) and
(6), and let γe = 2A2/ . Then, since Lk = λk+ λp

k,

Lk = (γp + γe)ak + γpwk + γevk, (23)

so that, conditioning on ak = 1, Lk ~ N (γp + γe, 2(γp + γe)).
Thus, E2 and α2 are given by

α2 = ψ1(γp + γe), (24)

E2 = ψ2(γp + γe). (25)

In addition, it can be shown [11] that the value of γe needed in
(24) and (25) is given by γe = 2 f Th0 ⁄ (1 – f Th0). However,
note that we need γe to compute f, but we need f to compute γe.
To solve this problem, we propose that, given an initial value of
γe, we compute:

f = (HHT – H1  – H2  + σ2I)–1h0 (26)

γe = 2 f Th0 ⁄ (1 – f Th0), (27)

iteratively. It can be shown [11] that this procedure converges
very quickly, often after three iterations with γe initialized to
zero.

C.  Special Cases

Note that γp = 2 ⁄  and γe = 2A2/  are proportional to the
SNR of the equivalent channels that generate λp

k and λk,
respectively, and hence reflect the quality of these channels.
Careful inspection of (11) – (13) reveals that, for certain values
of γp and γe, the SFE behaves intuitively and reduces to well-
known equalizers.

In the limit as γp and γe grow small, we have  → 0 and
 → 0, so that the SFE reduces to a linear equalizer f. This is

intuitively pleasing, since small values of γp and γe suggest low
reliability, so no interference cancellation should be attempted.
We also have that  ⁄ E1 → 0 and  ⁄ E2 → 0, so that f of
(11) reduces to a traditional MMSE LE.
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In the limit as γp → 0 and γe → ∞, the SFE reduces to a
conventional MMSE-DFE. This is intuitive, since small γp
implies unreliable a priori information, and hence no
cancellation of precursor ISI should be performed.
Furthermore, large γe implies reliable equalizer outputs, in
which case postcursor ISI can be effectively cancelled using
decision feedback.

In the limit as γp → ∞, the SFE reduces to a traditional IC.
This is intuitive because when γp is large, the equalizer has
access to reliable estimates for all interfering symbols. In this
case, the IC is known to be optimal. 

V.   APPLICATION TO TURBO EQUALIZATION

Turbo equalizers [1] are a common application of soft-
output equalizers with a priori information. In turbo
equalizers, the transmitted signal is encoded and interleaved
with an interleaver π before transmission. The receiver
iteratively exchanges extrinsic information between the soft-
output equalizer and the decoder, as seen in Fig. 3. The
extrinsic information provided by the decoder is used as a
priori information by the equalizer, and vice-versa. In this
section, we discuss the application of the SFE in turbo
equalization.

At the first turbo iteration, there is no a priori information
available at the equalizer, so that γp = 0, yielding E1 = α1 = 0.
To avoid the indeterminate α1 ⁄ E1 in (11) and (12), we
artificially set E1 = 1, α1 = 0, resulting in an equalizer that is
between an MMSE-LE and an MMSE-DFE, depending on γe.
Algorithms based solely on IC have a problem at the first turbo
iteration. For instance, to solve this problem, the DAE in [4]
uses the BCJR algorithm in the first iteration.

Also, at the first turbo iteration, γe is computed with the
iterative procedure described in (26) and (27). In later turbo
iterations, the equalizer coefficients may be computed with the
value of γe from the previous turbo iteration. An updated value
of γe is then computed using (27) and passed on to the next
turbo iteration. We have observed that performance does not
improve if the iterative procedure in (26) and (27) is used in
every turbo iteration to recompute γe.

Finally, we have observed that performance can be improved
if γp and γe are estimated using the scalar channel estimator
proposed in [12], instead of using (22) and (27). Given an
initial estimate , the estimator of [12] computes

 = ,

 = ,

 = 2 / , (28)

where the index i > 1 refers to the turbo iteration. If we replace
zk by λp

k  in the equations above, we obtain an estimate for γp.
The initial value  is obtained from the iterative procedure in
equations (26) and (27). Also, reflecting our initial belief that
λp

k obeys the Gaussian approximation, we set  = 1.

VI.   SIMULATION RESULTS

In this section we compare the performance of turbo
equalizers based on different soft-output equalizers. In all
simulations, we use a rate-1 ⁄ 2 recursive systematic
convolutional encoder with parity generator
(1+ D2) ⁄ (1 + D + D2) followed by a random interleaver whose
length is equal to the block length. Channel knowledge is
assumed. Furthermore, the primary application of the SFE is
with channels with long memory, for which the BCJR
equalizer is not practical. However, the BCJR equalizer is
traditionally used as a benchmark. To facilitate comparison of
the SFE with the BCJR equalizer, we only consider short
channels in this section.

We begin with the simulation scenario of [7], in which
K = 215 message are encoded and transmitted through the
channel h = [0.227, 0.46, 0.688, 0.46, 0.227]. The equalizers
use M1 = 9, M2 = 5, and the SNR per message bit is
Eb ⁄ N0 =  ⁄ σ2. In Fig. 4, we show the BER performance
of turbo equalizers based on the BCJR, TVE, SE and the SFE,
after 14 turbo iterations, averaged over 100 trials. For
comparison purposes, we also show the performance of the
coded system for a channel that does not introduce ISI. As we
can see, the SFE performs almost as well as the TVE (which
has quadratic complexity), while its complexity is comparable

 Fig. 3. A turbo equalizer.
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to that of the SE (which has linear complexity). It is interesting
to point out that, for high enough 

 

E

 

b

 

 ⁄ N

 

0

 

, the performance of
all systems approaches that of the coded system in an ISI-free
channel.

The performance gap between the different techniques is a
strong function of the channel. To see this, we simulate the
transmission of 

 

K

 

 = 2

 

11

 

 

 

encoded bits through 

 

h

 

 = [0.23, 0.42,
0.52, 0.52, 0.42, 0.23]

 

, which introduces severe ISI [13]. We
used 

 

M

 

1

 

 = 15

 

 and 

 

M

 

2

 

 = 10

 

. For each 

 

E

 

b

 

 ⁄ N

 

0

 

, the number of
blocks detected in error was computed every 30 blocks. If this
number exceeded 100, or the number of blocks exceeded
1,000, we would stop running the simulation for that 

 

E

 

b

 

 ⁄ N

 

0

 

.

The performance of the turbo equalizers based on BCJR,
DAE of [4], SE and the SFE, is shown in Fig. 5, where we plot
the BER versus

 

 E

 

b

 

 ⁄ N

 

0

 

 for the turbo equalizers. The maximum
number of iterations shown for each scheme is that after which
the equalizers stopped improving. For the DAE, error
propagation is a problem for 

 

E

 

b

 

 ⁄ N

 

0

 

 < 10 dB

 

, as evidenced by
its poor performance in this SNR range. Also the first turbo
iteration of the DAE is done with a BCJR equalizer, which
precludes its application to channels with long memory. We
can also see in Fig. 5 that, for 6 iterations and a BER of 

 

10

 

–3

 

,
the SFE is around 

 

2.6 dB

 

 better than the SE. However,
performance cannot be further improved with the SE. With the
SFE, on the other hand, a gain of 

 

0.65 dB

 

 is possible with 2
extra iterations, and a 

 

1.4 dB

 

 gain is possible with 10 more
iterations. One possible explanation for this performance gap is
that all the zeros of the channel are on the unit circle, so that
decision feedback structures such as the proposed algorithm
tend to perform better than linear filters. The gap between the
SFE- and BCJR-based systems is roughly 3 dB.

 

VII.   S

 

UMMARY

 

We proposed the SFE, a low-complexity soft-output
equalizer that exploits 

 

a priori

 

 information about the

transmitted symbols to perform soft interference cancellation.
The SFE achieves a compromise between linear equalization,
decision feedback equalization and IC by choosing the
equalizer coefficients according to the quality of the 

 

a priori
information and of the equalizer output. Since the SFE exploits
a priori information, it is well-suited for turbo equalization for
channels with large memory.

The SFE differs from similar structures [3-8] in two ways.
First, it successfully combines the soft equalizer outputs and
the a priori information to improve IC. In contrast, the
decision-feedback structure proposed in [7] uses only hard
decisions on the equalizer output, and performs worse than its
linear counterpart. Also, by assuming a statistical model for the
a priori information, we obtain a time-invariant, linear
complexity equalizer, as opposed to the quadratic complexity
of the MMSE structures in [5-8]. Simulation results
demonstrate that the SFE outperforms other structures of
comparable complexity by as much as 3 dB at a BER of 10–3.
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 Fig. 5. BER performance of some turbo equalizers.
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