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Abstract — The performance of a decision-feedback
detector on a fading multiple-input multiple-output
channel is limited by the low diversity of the first symbol
detected. We propose a new family of detection techniques
which overcomes this bottleneck by using a list detector
for the first symbol; the list detector is then combined
with a parallel bank of decision-feedback detectors, one
for each element of the list. The detector family is
parameterized by the length of the list, which can be
adjusted to achieve a wide range of attractive trade-offs
between performance and complexity. For example, on a
4-input 4-output Rayleigh-fading channel with uncoded
16-QAM inputs, one version of the proposed detector
outperforms the popular minimum-mean-squared-error
BLAST-ordered decision-feedback detector by 1.5 dB,
while simultaneously requiring 6% fewer computations.

I. INTRODUCTION

The promise of both high spectral efficiency and
diversity to fading has led to a flurry of recent research in
multiple-input multiple-output (MIMO) communication
systems. A practical obstacle to the realization of a MIMO
system is the complexity of MIMO detection. Specifically,
the complexity of the maximum-likelihood (ML) detector [1],
which minimizes word-error probability, grows exponentially
with the number of channel inputs.

The BLAST-ordered decision-feedback (BDF) detector
(also known as a successive interference canceller [2]) is a
popular reduced-complexity detector for MIMO channels. It
can approach the performance of the ML detector when there
are many more channel outputs than inputs [2], but otherwise
the BDF detector is significantly inferior to the ML detector.

The large gap in both performance and complexity
between the ML and BDF detectors has motivated the search
for alternative detection algorithms. Various combinations of
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the ML and BDF detectors have been proposed that improve
on the performance of the BDF detector at the cost of
increased complexity [3,4]. The minimum mean-squared-
error (MMSE) sphere detector of [5] and the MMSE-BDF
detector combined with lattice reduction of [6] both achieve
near ML performance while reducing the average complexity.
The B-Chase detector of [7] implements multiple BDF
detectors in parallel, and can approach ML performance with
even lower complexity. The L-Chase detector of [7] further
decreases complexity by implementing multiple linear
detectors in parallel. The L-Chase and B-Chase detectors are
so-named because of their close ties to the well-known Chase
algorithm for soft decoding of error-control codes [8].

In this paper, we propose the S-Chase detector that
implements multiple suboptimally ordered decision-feedback
(DF) detectors in parallel. A key problem for all DF detectors
on fading channels is the minimal diversity gain for the first
symbol detected; this leads to a large probability of error that
can dominate the overall error rate. The proposed S-Chase
detector overcomes this bottleneck by considering multiple
possibilities for the first symbol, running a separate DF
detector for each possibility, and choosing the best of the
resulting candidate hard decision vectors.

A key benefit of considering multiple possibilities for the
first symbol is that it drastically reduces the importance of
optimizing the detection ordering. Indeed, we will see that a
easily computed but suboptimal ordering is sufficient to
achieve good performance. This makes the overall
complexity of the S-Chase detector very low, despite the bank
of DF detectors. The suboptimal ordering used by the S-
Chase detector is based on the sorted-QR decomposition of
[9]. We will see that this S-Chase detector has an improved
performance-complexity trade-off relative to the B-Chase [7]
and lattice-reduced MMSE BDF (LR-BDF) [6] detectors.

Section II introduces the MIMO channel model,
describes the zero-forcing and MMSE S-Chase detectors, and
describes a computationally efficient implementation.
Section IIT quantifies both the performance and complexity of
the new detector. Finally, in Section IV we make concluding
remarks.



II. THE S-CHASE DETECTOR

This paper considers a memoryless channel with N

inputs @ = [aj, ... ay] and M outputs r = [r, ... rp,]%:

r=Ha+n, (1)

where H=[h,, ... hy] is a complex M x N channel matrix
whose i-th column is h; and where n=[n,,...ny]" is
additive white Gaussian noise. We assume that the columns
of H are linearly independent, which implies that there are at
least as many outputs as inputs, M > N. We assume that the
noise components are uncorrelated circularly symmetric
Gaussian random variables with complex variance 62, so that
E[ nn*] = 6°I, where n* denotes the conjugate transpose of
n. Further, we assume that the inputs are chosen from the
same unit-energy alphabet A, and are uncorrelated, so that
Elaa*] =1

The S-Chase detector is basically an efficient way to
implement multiple DF detectors in parallel. It can be broken
down into five steps:

Step 1. Identify the index i of the first symbol detected.

Step 2. Calculate a list of the g “most likely” tentative
decisions for the i-th symbol.

Step 3. Implement g DF detectors in parallel, one for
each element of the initialization list.

Step 4. Of the q decision vectors, pick the “best.”

The S-Chase detector is parameterized by the list length q.
When the list length is unity (g = 1), the S-Chase detector
reduces to a conventional DF detector with a suboptimal
ordering based on the sorted-QR decomposition [9]. Fig. 1
shows a block diagram of steps 2 through 4. In the following
we provide the details of each of the five steps.

Step 1. The S-Chase detector breaks down the ordering
problem into two smaller problems: selecting the index 7 of
the first symbol to detect, and choosing the order of the
remaining symbols.

Consider first the problem of choosing i. The solution is
well-known when g =1, since in this case the S-Chase
detector reduces to a DF detector. Therefore, a good choice
for the first symbol would be the one with the largest post-
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Fig.1.  Block diagram of the S-Chase detector.

detection SNR, as found using the BLAST ordering. On the
other hand, when q is large it is better to choose the symbol
with the smallest SNR [7]. One could formulate an optimal
method for selecting i for a given g [7]. However, to keep
complexity at a minimum, we propose instead a simple and
low-complexity heuristic that does not require evaluation of
the post-detection SNR values: choose the index of the
column of H with either the minimum or maximum norm,
depending on the list length q. This selection strategy can be
summarized succinctly as follows:

i= argmax | h;||™, )
jef{L...N}

where m = —1 when ¢ > 3|A|/4 ,andm =1 when g < 3|A|/4 .
Once the first symbol to detect has been selected, we

propose that the order of the remaining symbols be defined by
the following sorted-QR decomposition [9]:

HII=QG, (3)

where the N x N permutation matrix IT represents the symbol
ordering, Q=[q;,...qn] is an MxN matrix with
orthonormal columns, and G =[g;, ... gy is an N x N lower
triangular matrix with real and positive diagonal elements
{911, --- gn.N}- To preserve the selection made by (2), the
first column of IT is the i-th column of the identity matrix.
The final N—1 columns of IT are chosen according to the
sorted-QR decomposition [9], which attempts to place weaker
symbols later in the detection order. Implementing the
selection heuristic (2) requires no additional floating-point
operations because the QR decomposition already requires
the column norms of H. Fig. 2 gives the pseudocode of a
computationally efficient algorithm that finds I, Q, and G.
Fig. 2 also notes the number of floating-point operations
required by each line.

Step 2. The S-Chase detector applies the whitened-matched
filter to the observation, producing z = Q*r, which reduces to:

z=Ga tv

=3 a9 tv. 4)

where a =IT*a is a permuted version of the transmitted
symbol vector. The traditional DF detector would make the
symbol nearest z /g, ; its first decision. The S-Chase detector
generalizes this idea by producing a /ist of tentative symbols
{81, .- 84}, defined as the g symbols nearest to z /g, ;.

Step 3. Given the decision list from step 2, The S-Chase
detector next implements a bank of g DF detectors in parallel,
one for each element of the list, with the first decision of each
DF detector hard-wired to the corresponding element of the
list {sy, ..., 8¢} Specifically, the I-th DF detector is succinctly
described by:



s k=1

a = s
k, 1 dec{(zk—ngJ&j’J/gk,k} ,k=2,...,N
j<k

)

where dec{x} quantizes x to the nearest element of A, and gy ;
is the element of G at the k-th row and j-th column. The DF
detectors produce a set of candidate decision vectors
{a,...., &q}, whose k-th elements are ay 1-

Step 4. The S-Chase detector chooses the candidate decision
vector from step 3 with the minimum cost:

argmin || r—HIlq||* = argmin

| z—Ga|f. (6)
le {1,2,..,q} le {1,2,..,q}

The latter is easier to implement because the I-th DF detector
has already calculated most of the elements of Ga; in (5).

Function SortedQR. Inputs: (H, m); Outputs: (Q, G, d, IT)

Actually, the k-th element of z— G @, is simply a normalized
version of the difference between the input and output of the
k-th slicer.

Two simple enhancements reduce complexity even
further. First, with the first candidate decision vector we can
establish a threshold for the cost function. Subsequent DF
detectors can be aborted whenever their cost exceeds the
threshold. Second, the threshold can be reduced each time a
candidate’s cost is below the threshold. This shrinking
threshold is reminiscent of a sphere detector [5], and suggests
that we can reduce complexity by sorting the candidates
according to their likelihood of being correct, i.e., according
to their distance from z, /g, ;.

The pseudocode of an efficient implementation of the S-
Chase detector is given in Fig. 3. Note that the lines (B-7),
(B-12), and (B-13) may be omitted when g = 1, since in this
case the one and only candidate vector is the final output.

Function DF. Inputs: (z, I, ¢, G, d); Output: @

Computations

A-1) II= INX N
(A2) Q=H
A3) E; ;;M|qk,j|2,j =1loN, Mag: %(JJ\\IL 5
(A-4) i=argmax{E;":j=1...N}
(A-5) t=max{E,, ... Eyx}
(A-6) E;=0
(A-7) for k = Ndownto 1
(A-8) ifk>1
(A-9) i=argmin{Ej:j=1,...k,Ej>0}
(A-10) Swap the i-th and k-th columns of Q, G, and I
(A-11) Swap the i-th and k-th elements of E.
(A-12) else
(A-13) E . =E.+t Add: 1
(A-14)  end
A-15)  grx= JEx sqgrt: 1
(A-16)  d=1/gp Div:1
(A-17)  qr=qp dy Multg: 2M
(A-18)  forj=k—1downto 1
(A-19) Ikj= qk*qj Mult: M, Add: 2M — 2
(A-20) q; = gj— gk jAN Mult: M, Add: 2M
(A21)  Ej=Ej— |gg,l® Mag: 1, Add: 1
(A-22) end
(A-23) end

Fig.2. A modified version of the sorted-QR decomposition [9].

The modifications are lines (A-4)-(A-6), and (A-13).

Computations

(B-1) s=[s;...s,],gsymbols in A nearest z,d;, sorted by

increasing distance,
Multg: 2,Add: q

(B2) T=o0

(B-3) fork=1togq

B4  fik=9j:5k-J=1t0N Multg:2,Mult: N—1
(B-5) ﬁl’ =Sk

(B-6) rj,k:zj—ﬁk,j=1toN Add: 2

(B-7) er=|ryk |2 Mag: 1

(B-8) forn=2to N

(B-9) ife,<T

(B-10) t= Zjnz ; In,j4 Dﬁg %1 t 4 Fn_fzé)
(B-11) dn’k =dec{(rpx—1t)dy}, Multg:2,Add:2
(B-12) Sk =fak+t+9nnd, » Multg:2,Add:4
(B-13) er=ertlzp—furl? Mag: 1, Add: 3
(B-14) end

(B-15)  end

(B-16) ife<T

(B-17) T=ep

(B-18) a; = fzj,k,j= 1toN

(B-19) end

(B-20) end

B-21) a =1la

Fig.3.  Decision-feedback algorithm for the S-Chase detector.



A. The MMSE S-Chase Detector

The MMSE version of the S-Chase detector follows from
typical MMSE derivations, which we omit here. We only
show how the algorithms provided for the zero-forcing S-
Chase detector can be used to implement its MMSE
counterpart. The only difference is in the QR decomposition;
steps 1 through 4 do not change. Specifically, instead of
decomposing the channel matrix itself as in (3), the MMSE
version is based on a decomposition of the concatenation of
the channel matrix and the cI matrix [10]:

g o
ol Q,

where Q is an M x N matrix, and G is an NxN lower
triangular matrix. The SortedOR function in Fig. 2 is easily
modified to calculate Q and G from (7) instead of from (3); it
requires only two changes. The first change is to input
[HT 6I]7 instead of H. With this input, the SortedOR function
outputs the matrices [Q” Q,7]” and G. Therefore, the second
change is to define the matrix Q in (7) as the first M rows of
the first matrix output by the SortedOR function.

ITI. NUMERICAL RESULTS

In this section we quantify the performance and
complexity of the proposed detector over a 4-input 4-output
Rayleigh-fading channel. We assume H and ¢ are known
perfectly by the receiver. We only present numerical results
for the MMSE detectors, since they can significantly
outperform their zero-forcing counterparts with little
additional complexity. The SNR is defined as the average
energy per signaling interval divided by the two-sided noise
power spectral density at each receive antenna,
SNR = E[|| Ha |P]/E[|| n|?]. All results are based on an
average of 10° independent channel realizations. Throughout
this section we use the notation S-Chase(q) to denote an S-
Chase detector with parameter g, where g is both the length of
the list and the number of DF detectors implemented in
parallel.

We begin by showing how the performance of S-
Chase(q) improves as g increases. Fig. 4 shows the bit-error
rate (BER) of the S-Chase detector when the inputs are 4-
QAM. Even small increases in g can lead to significant
performance gains. For example, S-Chase(2) outperforms S-
Chase(1) by 4.7 dB at a BER of 1073. A longer list length
yields even better performance; S-Chase(4) outperforms S-
Chase(1) by 5.6 dB.
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Fig.4. Bit-error rate versus SNR for MMSE S-Chase(q) with

q €11, 2, 3, 4}. The channel is 4 X 4 with 4-QAM inputs.

Also shown in Fig. 4, for the sake of comparison, is the
BER performance of the ML, MMSE BDF, and MMSE LR-
BDF [6] detectors. We see that the S-Chase detector
outperforms the MMSE-BDF detector whenever the list
length is two or more, g=2. The S-Chase(4) detector
outperforms the LR-BDF detector of [6] at low SNR, when
SNR <16 dB, but for higher SNR the LR-BDF performs
better.

The complexity of detection can be decomposed into
preprocessing complexity and core-processing complexity.
Preprocessing refers to those operations that are performed
only once per channel estimation, while the core-processing
is repeated every symbol period. We assume that the detector
updates its channel estimate every L symbol periods, such
that the core processing occurs L times for each occurrence of
the preprocessing.

In order to quantify the performance-complexity trade-
off, we define our measure of complexity as the number of
real multiplications required in the worst case. Only real
multiplications are counted to avoid defining the relative
complexity of the different operations. This is a reasonable
simplification since the total complexity is dominated by the
number of multiplies. Each complex multiply is counted as
three real multiplies, and each magnitude is counted as two
real multiplies.



TABLE 1: WORST-CASE COMPLEXITY OF S-CHASE DETECTION WHEN q > 1.

Number of Real Operations

ZF S-Chase

3MN?2+ MN+N2-N+(3MN+2)L+q(3N?/2+9N/2-2)L

MMSE S-Chase

3MN?2+ N3+ MN+N?-2N+(3MN+2)L+q(3N?/2+9N/2-2)L

It is easy to express the total number of real
multiplications as a function of N, g, and L. Table 1
summarizes the total number of real multiplications required
by the S-Chase detector assuming that all g > 1 costs must be
completely calculated, i.e. e, <T is always true in (B-9).
These complexity expressions follow in a straightforward
manner from the algorithms given in Fig. 2 and Fig. 3, which
also include the number of operations required at each line.
To calculate Q and G (Fig. 2), the ZF S-Chase detector
requires 3MN2 + MN + N2 - N multiplications. Calculating z
in (4) requires 3MNL real multiplications. Finally, the DF
detectors and the process of choosing the final decision
(Fig. 3) require q(3N2/2+9N/2)L+2L multiplications.
Compared to its ZF counterpart, the only difference in
implementing the MMSE S-Chase detector is in the
calculation of Q and G. For the MMSE implementation, the
vector gy, in lines (A-17)-(A-20) has M + N -k +1 non-zero
elements so the number of real multiplies to find Q and G
increases to 3MN?2+ N3+ MN + N2-2N.

It is important to consider the value of L when comparing
the complexity of different detectors. For example, the B-
Chase detector [7] uses a better selection algorithm to achieve
better performance than the S-Chase detector, but this
requires more complex preprocessing. Therefore, the S-Chase
detector can reduce overall complexity due to its low
preprocessing complexity, but for large values of L it is more
complex than B-Chase detection. Fig. 5 illustrates the relative
complexity of the S-Chase and B-Chase detectors when the
inputs are 4-QAM versus the frame length L. The main point
of this graph is to demonstrate that when g > 1, the S-Chase
detector is less complex than the B-Chase detector only for
small L. Specifically, the S-Chase(2) detector is less complex
than the BDF detector as long as L < 5. Also, the S-Chase(4)
detector is less complex than the B-Chase(4) detector as long
asL<o.

A good means for comparing MIMO detectors is through
their performance-complexity trade-off. Fig. 6 shows this
trade-off for the S-Chase, B-Chase, and LR-BDF detectors
for L=4 when the inputs are 4-QAM. The performance
measurement is the SNR these detectors need to reach BER
1073, For this frame length, the S-Chase(4) detector is 76%
less complex than the LR-BDF detector while outperforming
it by 0.2 dB. On the other hand, the B-Chase(4) detector
outperforms the S-Chase(4) detector by 0.4 dB, but also
increases complexity by 13%. The S-Chase detector has a
particularly good performance-complexity trade-off when g
is small, or when complexity is at a premium. For example,
with g = 2 it outperforms the MMSE BDF detector by 1.1 dB
while simultaneously reducing complexity by 6%. Not shown

in Fig.6 is the sphere detector, which achieves ML
performance and has an SNR requirement of 14.1 dB, but is
off the scale in complexity; it is six times as complex as S-
Chase(4). Also not shown is the MMSE sphere detector, a
near-ML detector with an SNR requirement of 14.1 dB that is
more than three times as complex as S-Chase(4).

The performance-complexity trade-off of the S-Chase
detector is a strong function of the alphabet size. Fig. 7
illustrates the trade-off with 16-QAM inputs. In this case,
when ¢q>4, the B-Chase detector achieves better
performance with less complexity than the S-Chase detector.
However, the S-Chase detector maintains its advantage when
q is small. For example, the S-Chase(2) detector outperforms
the MMSE-BDF detector by 1.5 dB while simultaneously
reducing complexity by 6%. Perhaps more impressive is S-
Chase(4), which outperforms the MMSE-BDF detector by
5.1 dB while increasing complexity by only 30%. Not shown
in Fig. 7 is the sphere detector, with an SNR requirement of
22 dB, which is 71 times as complex as the S-Chase(4)
detector. Also not shown is the MMSE sphere detector, which
requires an SNR of 22.5dB, and which is 6.5 times as
complex as the S-Chase(4) detector.
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Fig.5. Worst-case complexity of the MMSE S-Chase and B-

Chase detectors over 4 X 4 channels with 4-QAM inputs.
The complexity is measured as the number of
multiplications, normalized by the complexity of B-



IV. CONCLUSIONS

We have proposed a new detection strategy for fading
MIMO channels called the S-Chase detector, which combines
a list detector and a parallel bank of suboptimally ordered DF
detectors to achieve an attractive performance-complexity
trade-off. For example, on a 4-input 4-output Rayleigh-fading
channel with 16-QAM inputs, one version of the MMSE S-
Chase detector outperforms the MMSE BLAST-ordered
decision-feedback detector by 1.5 dB, while requiring 6%
fewer computations.
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