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Abstract

The decision-feedbackletectoris a nonlineardetectionstratgyy for multiple-input multiple-output
channelslt cansignificantly outperforma linear detectoy provided that the inputs are detectedusing
the so-calledBLAST input ordering,which approximatelyminimizesthe joint error probability The
performanceof the decision-feedbackDF) detectorcanbe further enhancedy usingthe minimum-
mean-squared-errdMMSE) criterion. The MMSE-DF detectormaybeimplementedasthe cascad®f
anMMSE lineardetectoywhich mitigatesinterferenceat the expenseof correlatingthe noise followed
by anoisepredictor which exploits the correlationin the noiseto reduceits variance We shav thatthe
noise-predictie implementation facilitates a low-complity algorithm for determining the
MMSE-BLAST input ordering.As a result,the orderedMMSE noise-predictie DF detectorrequires
fewer computationghan previously reportedBLAST orderedDF detectionimplementationsWe also
proposean approximationof the orderedMMSE-DF detectorthat can outperformthe orderedzero-
forcing DF detector Finally, we shav by simulation that for some multiple-input multiple-output
systemghe orderedMMSE-DF detectothasno performanceenefitover the orderedzero-forcingDF

1 | ntroduction SNR. This ordering, known as the BLAST
o _ ordering,approximatelyminimizesthejoint error
In multiple-input multiple-output  yropapility of the DF detector The BLAST

communicationsthe detectorthat minimizesthe ordering algorithm of [4] uses repeated

joint error probabilityis the maximum—lilelﬁhood computationsof a matrix pseudoinerseto find
(ML) detector Unfortunately the compleity of  ihis orderingwith a compleity of O(N4), where
the ML detectorincreasesxponentiallywith the a7 is the numberof channelinputs. Three O(V3)

number of channel inputs, and is often  reqyced-compléty ordering algorithms have
prohibitively comple. The decision-feedback also beenproposedthe zero-forcing(ZF) noise-
(DF) detector trades performancefor reduced  pyegictive algorithmof [5], the ZF decorrelating
complity; it is outperformed by the ML algorithm of [6], and the minimum-mean-
detectoy but requiresfewer computations.The squared-erro(MMSE) square-rootalgorithm of
DF detector emeges as a popular detection (7] other algorithms settle for a suboptimal

stratgy in a wide range of multiple-input ordering in order to reduce compity [8—9].
multiple-output (MIMO) applications. For

example, in the contect of a wirelesspoint-to-  In [2] an architecturefor implementingthe DF
point link with antennaarrays at both the detectorbasedon linear predictionof the noise
transmitterandrecever the DF detectoris knovn ~ Was presentedThe noise-prediciie DF detector
as the BLAST nulling and cancelling detector ~ consistsof a linear detectorfollowed by a linear
[1]; in CDMA applicationst is known asthe DF prediction mechanismthat reducesthe noise

multiuserdetector(2]; andin packettransmission variancebefore making a decision.In [5], we
it is known as a generalized DFE [3]. shaved that this noise-predictie DF detector

_ facilitates a low-complity algorithm for
The performanceof the DF detectoris strongly  geterminingthe BLAST ordering. The resulting
impactedby the order in which the inputsare  ,qered zero-forcing noise-predictie  DF
detectedUnfortunately optimizing the detection (O-ZF-NPDF) detector is mathematically
orderis a difficult problemthat often dominates equivalentto the orderedZF-DF detectorsof [4]

theO\{erallrece_i/ercompledty. Itis com_monand and [6], but is least complex BLAST ordered
practicalto defineasoptimal the detectionorder  7F_pE getector reported sarf

that maximizes the worst case post-detection



In this paper we proposethe BLAST ordered
minimum-mean-squared-error noise-predictie
DF (O-MMSE-NP-DF) detector which is the
MMSE version of the O-ZFNP-DF detector
Through simulations we find that the
performance difference between the BLAST
ordered MMSE-DF detector and the BLAST
orderedZF-DF detectorvariesfrom enormoudo
zero, dependingon the system parametersin
addition, we proposean approximate BLAST
ordered MMSE-NPDF (A-MMSE-NP-DF)
detectorthatrequiredessa priori knowledgethan
the O-MMSE-NP-DF detectorwhile maintaining
most of the performanceadwantage over the
O-ZF-NP-DF detectar

We beagin by establishinghe channelmodeland
describing the MMSE noise-predictie DF
(MMSE-NP-DF) detectorin Section2. Section3
describesa low-compleity implementationof
the optimally ordered MMSE-NP-DF detectoy
and Section4 analyzedts compleity. Section5
proposeghe A-MMSE-NP-DF detector Finally,
the performanceof the two proposeddetectors
and the O-ZF-NP-DF detectorare comparedin
Section 6.

2 MMSE Noise-Predictive DF
Detection

In this sectionwe derive animplementatiorof the
MMSE-DF detectohasediponlinear prediction.
This detectoris animprovementover the ZF-DF

detector becauseit strikes an optimal balance
between interference surpression and noise
enhancemenfl0]. Linear predictionis usedto

estimateheerrorafterthe MMSE lineardetector
This estimate is subtractedfrom the MMSE

linear detectoroutputto reduceits variance.The
errorbeingestimatecconsistof coloredadditive

Gaussian noise and residual intersymbol
interferenceSl), however, throughouthis paper
we will referto this error simply asnoise.Fig. 1

shaws the block diagramof the minimum-mean-

squared-error noise-predictive DF

(MMSE-NP-DF) detector which emplgys this

linearprediction strateyy; the filters ¢; and p; ;

will be definedshortly The notion of ordering
(the permutatiorblock) is neglectedmomentarily
by assuming an identity permutation.

In this paperwe considerthe following model of
aMIMO channewith N inputsa = [ ay, ... ay1”
andM outputsr = [ry, ... 1%

(1)

r=Ha +w,

whereH is a comple M x N channelmatrix and
wherew = [wy, ... wy1T is additive noise. We
assumethat the columns of H are linearly
independentwhich impliesthatthereareat least
as mary outputsas inputs, M 2 N. We assume
that the noise componentsare uncorrelatedwvith
complex variance 02, so that E[ww*] = 021,
wherew* denoteghe conjugate transposef w.
Further we assumethat the inputs are chosen
from the sameunit-enegy alphabet4 and are
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Fig. 1. The noise-prediote DF detector



uncorrelated, so th@tlaa*] = 1.

As depicted in Fig.1, the noise-predictie
MMSE-DF detectobeginswith anMMSE linear
detector [11], which computesy = Cr, where
C=[ey, ¢y, ... ep]" is defined as:

C=R1H* (2)

where:

R = H*H + oL (3)

This choice for C minimizes the total MSE
E[||€]1, wheree = Cr — a is the vectorof errors
after the linear filter. From (1), the error at the
output of this filter is:

e=RIHH+0I-0T)a+Cw-a

=—o’Rla + Cw. (4)

This errorconstituteghe“noise” beingpredicted.
The linear predictormust minimize the variance
of this noiseby exploiting its correlation,defined
by the autocorrelation matrR,, = E[ ee*]:

R, = o"R-1R1+ 02CC*. 6

The correlation of the noise can be exploited
using linear predictionto reduceits variance.If
thefirst i —1 elementsof the error vector were
known, we could form an estimateg; of the i-th
elemente; and subtractthis estimatefrom y; to
reduce its variance. Specifically given
{€1, ... €§_1}, a linear predictor estimatese;
according to:

or equialently & = Pe, whereP is astrictly lower
triangular prediction filter whoseelementat the
i-th row andj-th columnis p, ;. This processis
complicatedoy thefactthattherecever doesnot
have accesdo g; directly, but ratherto the sum
y; = a; + €. However, as shavn in Fig.1, the
decisionabouta; can be subtractedfrom y; to
yield g; aslong as the decisionis correct. The
MMSE-NPDF detector of Fig.1 can be
summarized succinctly by the following
recursion:

P a} . @

di =dec{ y; = z

j<i

wheredec{x} denoteghe quantizatiorof x to the
nearest constellation point .

We now derive the linear predictionfilter P that
minimizes the total MSE E[ || e | 1, where
e = (I-P)e denotesthe error of the linear
prediction. First we redud,, as follovs:

R, = 0'R2+ 0?R™L(H*H + 02l -’ R !
- o°R1, ®)

Since R is Hermitian and positve definite R,
has the follaving Cholesk factorization:

R, = °M 'D2M*, 9)

where M1 is a lower triangular matrix with
diagonalelementf one,andwhereD 2 is areal
diagonalmatrix with positve diagonalelements.
The total MSE is related B, by:

El ||e |P1=trace{ (I-P) Ry (I-P%}. (10)

It is easyto showv [12] that the bestchoice for
(I-P) cancelM™:

P=1I-M. (11)
Therefore, the effective front-end filter of the
noise-predictie  MMSE-DF (NP-MMSE-DF)
detector is gien by:

I-P)C=MR1H*

= D—2M “*H*. (12)
Thisforwardfilter is identicalto theforwardfilter
of the corventional MMSE-DF detectordefined
in [13]. With this forward filter, the
correspondingfeedbackfilter is —P, which is
identicalto the feedbackilter of the corventional
MMSE-DF detectordefinedin [13]. Therefore,
we concludethat the NP-MMSE-DF detectoris
equivalent to the corventional MMSE-DF
detector



3 Ordered MM SE
Noise-Predictive DF Detector

To implement the MMSE-NP-DF detector of
Fig. 1, therecever mustfirst determinethe linear
detectiorfilter C, thesymboldetectionorder and
the linear predictionfilter P. In this sectionwe
shav how to calculateboth the detectionorder
and the prediction filter assumingthat C and
oR™1 are already knan.

We first describea low-compleity algorithmfor
finding the bestdetectionorder As implied by
Fig. 1, this sortingalgorithmoccursaftery = Cr
hasbeencalculatedThe permutatiorin the block
diagramof Fig. 1 givesthe detectorthe flexibility

to use ary symbol detection order but we
consideronly the BLAST ordering.Let i;, denote
the index of the k-th symbol to be detected,so
that {i, iy, ...ix} IS a permutation of

{1,2, ... N}.

The noise-predictie view of the DF detector
leads to a simple algorithm for finding the
orderingthatis optimal with respecto the MSE
of each symbol when symbol decisions are
assumedto be correct. As proven in [1], this
BLAST ordering can be found in a recursve
fashionby choosingeachi;, soasto maximizethe
post-detection SNR of the k-th symbol, or
equialently minimizeits MSE. The MSE for the
first detectedsymbol is equalto [Rg]; ;,, for
corvenience  we define a matrix
B =[b1, by, ... by]" such thaR,, = 02BB*:

B=|:C cf{_l:|,

In termsof this new matrix, the MSE of the first
detected symbol is o?| b;, |I>. Therefore, we
choose the symbol with minimum MSE by:

(13)

iy= argmin | b;|P. (14)
io{L, ... N}

In other words, the row of B with the smallest

norm determines which symbol to detect first.

Oncei; is chosen,and assumingc”zi1
the MSE for the second symbol is:

is correct,
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where Fj is thej-th row of R™1. Thelastline of
(15) results from straight forward algebraic
manipulation. When the prediction coeficient
P21 Is chosento minimize the MSE, the term
pe, 1b reducesto the projection of b onto the
subspacepannedby bll, whichwe denoteas b
Hence, the optimal, satisfies:

iy = argmin ||b;-b;| (16)
j#ig

Repeatinghe above procedurerecursvely leads
to the following simple and succinctdescription
of an optimal ordering algorithm:
15— b 1%,

argmin a7

® D

wheref) is the projectionof b; onto the spanof
{b;, .. b - Thisis akey resultthatls thebasis
of this new orderedZ)F detectorin words,finding
the BLAST ordering amountsto choosing the
rows of the augmentednatrix B, wheee the best
choicefor thek-th rowis theunchoserrowthatis
closestto the subspacespannedby the rows
already tiosen

A computationally efficient implementationof
the sortingalgorithmof (17) is givenin Fig. 2. It
is basedon anadaptatiorof the HouseholdeQR
decomposition[14]. The algorithm acceptsthe
matrix B asaninput,andit producegwo outputs:
the BLAST ordering {iq, iy}, and an
intermediate matrix F that can be used to
determine the linear prediction filter P. The
Householdemprocedureof the sorting algorithm
operate®ntherowsof B, {b; , ... b; }. Duringthe
first iteration (& = 1), line (A-4) chooseghe row
nearesto the null spacethenline (A-8) removes
the portionsof the remainingrows of B thatare
parallelto b; . Whenthis is donethe remaining
row elementsf thefirst columnof B arezero,so
we no longerneedthem. Therefore the effective
dimensions of B are (N-k+1)x(M -k +1)
during the k-th iteration. In the next iteration
(k=2) each of the candidaterows of B is
orthogonalto b; . Consequentlythe remaining
row closestto the subspacespannedby the
previously chosenrow is the row with minimum
norm. As before, line (A-8) ensuresthat the
remainingrows of B are orthogonalto b;,. The
iterations continue until £#=N-1, when the
BLAST ordering is determined.



Function A. Input: B, Output: {i{, i, ... in},
andF

(A-1) U={1,2, ... N} = the set of unchosen rows.
(A-2) E; = |1b;IF, j DU
(A-3) fork = 1to N,

(A-4) i = ar_gmin Ej

jou
(A-5)
(A-6)
(A-7)
(A-8)
(A-9)
(A-10)

U = U-1ip; remove chosen row from 7L
v=b;,;d= E;
x = Bv*
B=B-xv/x;,
E;=E;— 1b;11%j0U

Delete first column from B;
store it as k-th column of F

(A-11) end
(A-12) iy =U

vV1=V1+ dvl/lvll

Fig. 2. The noise-predictive sorting algorithm using
Householder orthogonalization.

Given the output F of the sorting algorithm just
described, calculating the linear prediction filter
P is straightforward. To avoid confusion, let T
denote an N x N permutation matrix whose j-th
column is the i;-th column of the identity matrix.
In Fig.1, the ordering is accounted for by
permuting the rows of the linear detector, so that
the cascade of the linear filter and the
permutation leads to an effective front-end filter
of:

C' = MN*C. (18)
Thisorder also affects the autocorrel ation matrix:
R, = M*R,M (19)

When performed on R,', the decomposition of
(9) yields the matrices D' and M'. From (11), and
in these new terms, the ordered prediction filter
is:

P=I-M. (20)

The output matrix F is closely related to (M') L.
To caculate (M')™! from F, divide the j-th
column of F by the element £;. ;, then permute the
rows such that the result is lower triangular. Next,
simply invert (M')™! using back substitution and

use (20) to get P. Fig. 3 gives the pseudocode for
calculating P from F.

In [5] we proposed an algorithm to implement the
O-ZF-NP-DF  detector that is functinaly
equivalent to Function A. Here, we have shown
that the O-ZF-NP-DF detector is a specia case of
the O-MM SE-NP-DF detector, where the final N
columns of the augmented matrix B are zero and
are not used. Therefore, the sorting algorithm for
both detectors may be implemented using
Function A, by adjusting the input.

In summary, the BLAST ordered MM SE noise-
predictive DF (O-MMSE-NP-DF) detector
implementation has four steps. First, the MM SE
linear detection filter is applied to the received
vector. Next, the optimal symbol order is
calculated from the MM SE linear detection filter
using the Householder sorting algorithm. Then,
the linear prediction filter is calculated from the
output of the sorting algorithm. After these
calculations the detector can be implemented
using (7), asillustrated in Fig. 1.

Function B. Input: F, Output: P

(B-1) P =0py
(B-2) fork =2to N,

(B-3) forj=(k—1)downto1,

(B-4) thj =Fig.i /1i;j

(B-5) Prj=1trj— Zk'fn=j+1 thom Pm,j
(B-6) end

(B-7) end

Fig. 3. Calculation of the prediction filter P from
the output of the noise-predictive sorting

agorithm F. In the end, T=(M') L.

4 Complexity Analysis

We now give a complete description of the
complexity of the O-MMSE-NP-DF detector. In
this section we continue to assume_that the
MMSE linear detection filter C, and cR™1 have
been perfectly estimated before detection begins.
In practice linear detectors can be estimated using
adaptive techniques [11, p. 306], [15]. The
complexity of these estimations is not counted in
the complexity of the detector.

Severa notes are appropriate regarding the
complexity analysis. First, we measure



Table 1: O-MM SE-NP-DF detector complexity

Number of Operations
(A-2) 2MN + N2-N
(A-6) 5N -5
(A-7) MN?+2N3/3 + MN + N%/2
-2M-N/6-1
(A-8) MN?+ 2N3/3 + 2MN
+3N2/2-3M +5N/6-3
(A-9) N2_N-2
FunctionB | N3/3-N2/2+N/6
Eq. (7) COMN +N2-N-19L
Tota 2MN? + 5N3/3 + 5MN +
Complexity | gnr2/9 _ 5p1 + 23N/6 — 11
+ [2MN + N2-N-1[EL

complexity as the total number of complex
additions, subtractions, multiplications, divisions,
and square-roots required each time the detector
is calculated. Second, in the context of DF
detectors, MIMO systems with N and M as low
as two are of interest. As a result, lower-order
complexity terms are not always negligible.
Finally, the complexity of the quantization
operationisignored sinceit isthe samefor all DF
detectors, and it depends on the symbol
constellation.

The complexity analysis begins with the
proposed ordered MMSE noise-predictive DF
(O-MMSE-NP-DF) detector. The line-by-line
complexity of Function A, the total complexity of
Function B, and the total complexity of the
detection process (after {c;} and {p;;} are
known) are given in Table 1, where we assume
that the detection filters are recalculated every L
symbol periods. The complexity of the
O-MMSE-NP-DF detector is approximately 1.9
times as complex as the O-ZF-NP-DF detector
[5], and roughly 15% less complex than the ZF-
MDDF detector [6].

5 Approximate _
MM SE-DF Detection

In this section we show the performance of the
MMSE-NP-DF detector when it has perfect

knowledge of C and o, but not of oR™1. We
show through simulation that this lack of
information is not detrimental to the performance
of the O-MMSE-NP-DF detector. In fact, an
approximate ordered MM SE-NP-DF
(A-MMSE-NP-DF) detector can significantly
outperform the O-ZF-NP-DF detector in some
cases. The A-MM SE-NP-DF detector is aso only
fractionally more complex than the O-ZF-NP-DF
detector.

The matrix oR™1 that must be estimated is
proportional to the autocorrelation matrix of the
error following the MM SE linear detector, R,;. It
can be written as:

oR™1 =0 [CC*+ 6°R2 §, (21)

The most significant elements of oR™1 come
from the diagonal elements of CC*. Thereforewe
propose the following estimate:

oR1 = 5 diag{ CC*}, (22)

where diag{ CC*} is a diagona matrix whose
diagonal elements are the squared row norms of
C.

Using this estimation technique the last N
columns of the augmented matrix B will have
many zeros. If this fact is exploited, the
complexity of the A-MMSE-NP-DF detector can
be significantly less than the complexity of the
O-MMSE-NP-DF detector itself.

6 Simulation Results

In this section we compare the performance of
the three detectors. the A-MMSE-NP-DF
detector (given C and o), the O-MMSE-NP-DF
detector (given B), and the O-ZF-NP-DF detector
(given the channel pseudoinverse = Czg). We
simulate various MxN MIMO systems where the
detection filters are recal culated for every symbol
period (L = 1). For each simulated channel the
dements of H are dstatitically independent
Gaussian random variables whose variance is
normalized to one. In this way, we simulated 10°
Rayleigh fading channels. We use SNR per
symbol, per receive antenna to quantify the
amount of transmit power used by the system:
SNR = 1/o?.



Bit Error Rate

SNR per symbol per receive antenna (dB)

Fig. 4. Bit error rate of the A-MMSE-NP-DF
detector (given C and o), the
O-MM SE-NP-DF detector (given B), and
the O-ZF-NP-DF detector (given Cp)

using 4-QAM, in various MxN MIMO sys-
tems with Rayleigh fading.

To highlight the effect of the approximation
proposed in Section 5, we first consider two
systems that have M=N=2, and M =N =4,
respectively. Each system uses a 4-QAM
constellation. Fig. 4 shows the bit error rate
(BER) for these MIMO systems of the three
detectors under consideration. To compare the
performance of the detectors we consider the
SNR they require to reach a BER = 1072, In the
4x4 MIMO system, using (22) to estimate R ™1
causes an SNR penalty of approximately 2.9 dB
for the A-MM SE-NP-DF detector. Even with this
penalty the A-MMSE-NP-DF detector till
outperforms the O-ZF-NP-DF detector by
7.3dB! For the 2x2 MIMO system, using the
estimate of (22) causes only a0.3 dB penalty, and
the A-MMSE-NP-DF detector (given C and o)
outperforms the O-ZF-NP-DF detector (given

The O-MM SE-NP-DF detector does not maintain
this performance improvement over the
O-ZF-NP-DF detector for al MIMO systems.
The performance gap closes quickly as the
minimum distance of the symbol constellation 4
decreases. Fig.5 shows this performance gap
versus the number of bits per symbol. We see that
the performance gap depends on the number of
bits per symbol and the dimensions of the MIMO
system.

SNR Gap (dB)

Number of Bits per Symbol = log»(q)

Fig. 5. The SNRimprovement at BER = 1072 of the
O-MM SE-NP-DF detector (given B) over
the O-ZF-NP-DF detector (given C) versus
the number of bits per symbol for MxN sys-
tems using g-QAM in Rayleigh fading.

The O-MMSE-NP-DF detector, the
A-MM SE-NP-DF detector, and the O-ZF-NP-DF
detector each have the same diversity order.
When M = N these DF detectors have an overall
diversity of one, and their performance is
bounded by the first symbol detected [16]. The
performance difference between these DF
detectorsisless dramatic for MIMO systems with
increased diversity. This explains why the SNR
improvement for the 4x3 systemin Fig. 5ismuch
smaller than for the 4x4 MIMO system.
Likewise, the penalty incurred as aresult of using
the estimation of (22) is smaller when M > N.

7 Conclusion

The noise-predictive DF detector consists of a
linear detector and a linear prediction mechanism
that reduces noise variance. We showed that the
noise-predictive view of the MM SE-DF detector
leads to a simple and computationally efficient
way of finding the BLAST detection ordering. A
key advantage of the noise-predictive detector is
that it can begin with knowledge of the MMSE
linear detection filter and the autocorrelation
matrix of the noise instead of knowledge of the
channel itself. In fact, the ordered MM SE noise-
predictive decision-feedback (O-MM SE-NP-DF)
detector has no need for the channel matrix at all.
We aso showed through simulation that an



approximaterderedVIMSE-NP-DF detectorcan
outperformthe O-ZF-NP-DF detectorgiven only
the MMSE linear detectionfilter and the noise
variance. Finally, we shaved with simulations
thatin somecaseghereis no performancédenefit
gained by using the O-MMSE-NP-DF detector
instead of the O-ZINP-DF detectar
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