
1 Introduction
In multiple-input multiple-output
communications,the detectorthat minimizesthe
joint errorprobability is themaximum-likelihood
(ML) detector. Unfortunately, the complexity of
theML detectorincreasesexponentiallywith the
number of channel inputs, and is often
prohibitively complex. The decision-feedback
(DF) detector trades performancefor reduced
complexity; it is outperformed by the ML
detector, but requiresfewer computations.The
DF detector emerges as a popular detection
strategy in a wide range of multiple-input
multiple-output (MIMO) applications. For
example, in the context of a wirelesspoint-to-
point link with antenna arrays at both the
transmitterandreceiver theDF detectoris known
as the BLAST nulling and cancelling detector
[1]; in CDMA applicationsit is known astheDF
multiuserdetector[2]; andin packet transmission
it is known as a generalized DFE [3].

The performanceof the DF detectoris strongly
impactedby the order in which the inputs are
detected.Unfortunately, optimizing thedetection
order is a difficult problemthat often dominates
theoverall receiver complexity. It is commonand
practicalto defineasoptimal the detectionorder
that maximizes the worst case post-detection

SNR. This ordering, known as the BLAST
ordering,approximatelyminimizesthejoint error
probability of the DF detector. The BLAST
ordering algorithm of [4] uses repeated
computationsof a matrix pseudoinverseto find
this orderingwith a complexity of O(N4), where
N is the numberof channelinputs.ThreeO(N3)
reduced-complexity ordering algorithms have
alsobeenproposed:the zero-forcing(ZF) noise-
predictive algorithmof [5], the ZF decorrelating
algorithm of [6], and the minimum-mean-
squared-error(MMSE) square-rootalgorithm of
[7]. Other algorithms settle for a suboptimal
ordering in order to reduce complexity [8–9].

In [2] an architecturefor implementingthe DF
detectorbasedon linear predictionof the noise
waspresented.The noise-predictive DF detector
consistsof a linear detectorfollowed by a linear
prediction mechanismthat reduces the noise
variancebefore making a decision. In [5], we
showed that this noise-predictive DF detector
facilitates a low-complexity algorithm for
determiningthe BLAST ordering.The resulting
ordered zero-forcing noise-predictive DF
(O-ZF-NP-DF) detector is mathematically
equivalentto the orderedZF-DF detectorsof [4]
and [6], but is least complex BLAST ordered
ZF-DF detector reported so far.
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In this paper, we proposethe BLAST ordered
minimum-mean-squared-error noise-predictive
DF (O-MMSE-NP-DF) detector, which is the
MMSE version of the O-ZF-NP-DF detector.
Through simulations we find that the
performance difference between the BLAST
ordered MMSE-DF detector and the BLAST
orderedZF-DF detectorvariesfrom enormousto
zero, dependingon the system parameters.In
addition, we proposean approximateBLAST
ordered MMSE-NP-DF (A-MMSE-NP-DF)
detectorthatrequireslessapriori knowledgethan
theO-MMSE-NP-DF detector, while maintaining
most of the performanceadvantage over the
O-ZF-NP-DF detector.

We begin by establishingthe channelmodeland
describing the MMSE noise-predictive DF
(MMSE-NP-DF) detectorin Section2. Section3
describesa low-complexity implementationof
the optimally orderedMMSE-NP-DF detector,
andSection4 analyzesits complexity. Section5
proposesthe A-MMSE-NP-DF detector. Finally,
the performanceof the two proposeddetectors
and the O-ZF-NP-DF detectorare comparedin
Section 6.

2 MMSE Noise-Predictive DF
Detection

In thissectionwederiveanimplementationof the
MMSE-DF detectorbaseduponlinearprediction.
This detectoris an improvementover the ZF-DF

detector becauseit strikes an optimal balance
between interference surpression and noise
enhancement[10]. Linear prediction is usedto
estimatetheerroraftertheMMSE lineardetector.
This estimate is subtractedfrom the MMSE
linear detectoroutputto reduceits variance.The
errorbeingestimatedconsistsof coloredadditive
Gaussian noise and residual intersymbol
interference(ISI), however, throughoutthis paper
we will refer to this error simply asnoise.Fig. 1
shows the block diagramof the minimum-mean-
squared-error noise-predictive DF
(MMSE-NP-DF) detector which employs this
linear-prediction strategy; the filters ci and pi,j
will be definedshortly. The notion of ordering
(thepermutationblock) is neglectedmomentarily
by assuming an identity permutation.

In this paperwe considerthe following modelof
a MIMO channelwith N inputsa = [ a1, … aN]T

andM outputsr = [r1, … rM]T:

r = Ha + w , (1)

whereH is a complex M × N channelmatrix and
where w = [w1, … wM]T is additive noise.We
assume that the columns of H are linearly
independent,which implies that thereareat least
as many outputsas inputs, M ≥ N. We assume
that the noisecomponentsareuncorrelatedwith
complex variance σ2, so that E[ww* ] = σ2I,
wherew* denotesthe conjugate transposeof w.
Further, we assumethat the inputs are chosen
from the sameunit-energy alphabetA and are
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Fig. 1. The noise-predictive DF detector.
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âi1
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uncorrelated, so thatE[aa* ] = I.

As depicted in Fig. 1, the noise-predictive
MMSE-DFdetectorbeginswith anMMSE linear
detector [11], which computes y = Cr, where
C = [c1, c2, … cN]T is defined as:

C = H*, (2)

where:

 = H*H + σ2I. (3)

This choice for C minimizes the total MSE
E[ ||ε ||2], whereε = Cr – a is thevectorof errors
after the linear filter. From (1), the error at the
output of this filter is:

ε = (H*H + σ2I – σ2I) a + Cw – a

 = – a + Cw. (4)

Thiserrorconstitutesthe“noise” beingpredicted.
The linear predictormustminimize the variance
of this noiseby exploiting its correlation,defined
by the autocorrelation matrixRεε = E[ εε*]:

Rεε = + σ2CC*. (5)

The correlation of the noise can be exploited
using linear predictionto reduceits variance.If
the first elementsof the error vector were
known, we could form an estimate i of the i-th
elementεi and subtractthis estimatefrom yi to
reduce its variance. Specifically, given
{ε1, … εi − 1}, a linear predictor estimates εi
according to:

i = pi,jεj , (6)

or equivalently = Pε, whereP is astrictly lower
triangularprediction filter whoseelementat the
i-th row and j-th column is pi,j. This processis
complicatedby thefact that thereceiver doesnot
have accessto εi directly, but rather to the sum
yi = ai + εi. However, as shown in Fig. 1, the
decisionabout ai can be subtractedfrom yi to
yield εi as long as the decisionis correct.The
MMSE-NP-DF detector of Fig. 1 can be
summarized succinctly by the following
recursion:

= dec yi − pi,j (yj − j ) , (7)

wheredec{x} denotesthequantizationof x to the
nearest constellation point inA .

We now derive the linear predictionfilter P that
minimizes the total MSE E[ || e ||2 ], where
e = (I − P)ε denotes the error of the linear
prediction. First we reduceRεε as follows:

Rεε = + σ2 (H*H + σ2I – σ2I) –1

= . (8)

Since is Hermitian and positive definite, Rεε
has the following Cholesky factorization:

Rεε = σ2M−1D−2M−*, (9)

where M−1 is a lower triangular matrix with
diagonalelementsof one,andwhereD−2 is a real
diagonalmatrix with positive diagonalelements.
The total MSE is related toRεε by:

E[ || e ||2] = trace{ ( I – P ) Rεε ( I – P*) }. (10)

It is easyto show [12] that the bestchoice for
(I − P) cancelsM−1:

P = I – M. (11)

Therefore, the effective front-end filter of the
noise-predictive MMSE-DF (NP-MMSE-DF)
detector is given by:

(I – P)C = H*

= –*H*. (12)

This forwardfilter is identicalto theforwardfilter
of the conventionalMMSE-DF detectordefined
in [13]. With this forward filter, the
correspondingfeedbackfilter is –P, which is
identicalto thefeedbackfilter of theconventional
MMSE-DF detectordefinedin [13]. Therefore,
we concludethat the NP-MMSE-DF detectoris
equivalent to the conventional MMSE-DF
detector.
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σ4R̃ 2– R̃ 1– R̃

σ2R̃ 1–

R̃

M̃ R̃ 1–

D̃ 2– M̃



3 Ordered MMSE
Noise-Predictive DF Detector

To implement the MMSE-NP-DF detector of
Fig. 1, thereceiver mustfirst determinethelinear
detectionfilter C, thesymboldetectionorder, and
the linear predictionfilter P. In this sectionwe
show how to calculateboth the detectionorder
and the prediction filter assumingthat C and

 are already known.

We first describea low-complexity algorithmfor
finding the best detectionorder. As implied by
Fig. 1, this sortingalgorithmoccursafter y = Cr
hasbeencalculated.Thepermutationin theblock
diagramof Fig. 1 givesthedetectortheflexibility
to use any symbol detection order, but we
consideronly theBLAST ordering.Let ik denote
the index of the k-th symbol to be detected,so
that {i1, i2, … iN} is a permutation of
{1, 2, … N}.

The noise-predictive view of the DF detector
leads to a simple algorithm for finding the
orderingthat is optimal with respectto the MSE
of each symbol when symbol decisions are
assumedto be correct. As proven in [1], this
BLAST ordering can be found in a recursive
fashionby choosingeachik soasto maximizethe
post-detectionSNR of the k-th symbol, or
equivalentlyminimizeits MSE.TheMSE for the
first detectedsymbol is equal to [Rεε] i1,i1, for
convenience we define a matrix
B = [b1, b2, … bN]T such thatRεε = σ2BB*:

B = C , (13)

In termsof this new matrix, the MSE of the first
detected symbol is σ2|| bi1 ||2. Therefore, we
choose the symbol with minimum MSE by:

i1 = || bj ||2. (14)

In other words, the row of B with the smallest
norm determines which symbol to detect first.

Once i1 is chosen,and assuming i1 is correct,
the MSE for the second symbol is:

E[ | εi2
– i2

|2] = E[ | εi2
– p2,1εi1

|2]

= E[ | ci2
w –σ2

i2
a – p2,1ci1

w + σ2 p2,1 i1
a|2]

= σ2||ci2
– p2,1ci1

||2 + σ2|| i2
– p2,1 i1

||2

= σ2||bi2
– p2,1bi1

||2, (15)

where j is the j-th row of . The last line of
(15) results from straight forward algebraic
manipulation. When the prediction coefficient
p2,1 is chosento minimize the MSE, the term
p2,1bi1 reducesto the projectionof bi2 onto the
subspacespannedby bi1, whichwedenoteas i2.
Hence, the optimali2 satisfies:

i2 = || bj – j ||2. (16)

Repeatingthe above procedurerecursively leads
to the following simpleandsuccinctdescription
of an optimal ordering algorithm:

ik = || bj – j ||2, (17)

where j is the projectionof bj onto the spanof
{bi1

, … bij – 1
}. This is akey resultthatis thebasis

of thisnew orderedDF detector. In words,finding
the BLAST ordering amountsto choosing the
rowsof the augmentedmatrix B, where the best
choicefor thek-th rowis theunchosenrowthat is
closest to the subspacespannedby the rows
already chosen.

A computationallyefficient implementationof
thesortingalgorithmof (17) is given in Fig. 2. It
is basedon anadaptationof theHouseholderQR
decomposition[14]. The algorithm acceptsthe
matrixB asaninput,andit producestwo outputs:
the BLAST ordering {i1, … iN}, and an
intermediate matrix F that can be used to
determine the linear prediction filter P. The
Householderprocedureof the sorting algorithm
operatesontherowsof B, {bi1

, … bik}. Duringthe
first iteration(k = 1), line (A-4) choosesthe row
nearestto thenull space,thenline (A-8) removes
the portionsof the remainingrows of B that are
parallel to bi1

. When this is donethe remaining
row elementsof thefirst columnof B arezero,so
we no longerneedthem.Therefore,theeffective
dimensions of B are (N − k + 1)×(M − k + 1)
during the k-th iteration. In the next iteration
(k = 2) each of the candidate rows of B is
orthogonalto bi1

. Consequently, the remaining
row closest to the subspacespannedby the
previously chosenrow is the row with minimum
norm. As before, line (A-8) ensuresthat the
remainingrows of B are orthogonalto bi2

. The
iterations continue until k = N − 1, when the
BLAST ordering is determined.
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Given the output F of the sorting algorithm just
described, calculating the linear prediction filter
P is straightforward. To avoid confusion, let Π
denote an N × N permutation matrix whose j-th
column is the ij-th column of the identity matrix.
In Fig. 1, the ordering is accounted for by
permuting the rows of the linear detector, so that
the cascade of the linear filter and the
permutation leads to an effective front-end filter
of:

C′ = Π*C. (18)

This order also affects the autocorrelation matrix:

Rεε′ = Π*RεεΠ (19)

When performed on Rεε′, the decomposition of
(9) yields the matrices D′ and M′. From (11), and
in these new terms, the ordered prediction filter
is:

P = I – M′. (20)

The output matrix F is closely related to (M ′)−1.
To calculate (M ′)−1 from F, divide the j-th
column of F by the element fij, j, then permute the
rows such that the result is lower triangular. Next,
simply invert (M ′)−1 using back substitution and

use (20) to get P. Fig. 3 gives the pseudocode for
calculating P from F.

In [5] we proposed an algorithm to implement the
O-ZF-NP-DF detector that is functinally
equivalent to Function A. Here, we have shown
that the O-ZF-NP-DF detector is a special case of
the O-MMSE-NP-DF detector, where the final N
columns of the augmented matrix B are zero and
are not used. Therefore, the sorting algorithm for
both detectors may be implemented using
Function A, by adjusting the input.

In summary, the BLAST ordered MMSE noise-
predictive DF (O-MMSE-NP-DF) detector
implementation has four steps. First, the MMSE
linear detection filter is applied to the received
vector. Next, the optimal symbol order is
calculated from the MMSE linear detection filter
using the Householder sorting algorithm. Then,
the linear prediction filter is calculated from the
output of the sorting algorithm. After these
calculations the detector can be implemented
using (7), as illustrated in Fig. 1.

4 Complexity Analysis
We now give a complete description of the
complexity of the O-MMSE-NP-DF detector. In
this section we continue to assume that the
MMSE linear detection filter C, and have
been perfectly estimated before detection begins.
In practice linear detectors can be estimated using
adaptive techniques [11, p. 306], [15]. The
complexity of these estimations is not counted in
the complexity of the detector.

Several notes are appropriate regarding the
complexity analysis. First, we measure

Function A.  Input: B, Output: {i1, i2, … iN},
and F

(A-1) U = {1, 2, … N} = the set of unchosen rows.
(A-2) Ej = ||bj ||2, j ∈U.
(A-3) for k = 1 to N–1,

(A-4) ik = Ej

(A-5) U = U – ik; remove chosen row from U.

(A-6) v = bik
; d = ; v1 = v1 + dv1 ⁄ |v1|

(A-7) x = Bv*

(A-8) B = B – xv ⁄ xik

(A-9) Ej = Ej – |bj,1|2, j ∈U
(A-10) Delete first column from B;
               store it as k-th column of F

(A-11) end

(A-12) iN = U.

argmin
j ∈U

Eik

Fig. 2. The noise-predictive sorting algorithm using
Householder orthogonalization.

Fig. 3. Calculation of the prediction filter P from
the output of the noise-predictive sorting
algorithm F. In the end, T=(M ′)−1.

Function B.  Input: F, Output: P

(B-1) P = 0N×N

(B-2) for k = 2 to N,

(B-3) for j = (k – 1) downto 1,

(B-4) tk,j = fik,j /fij,j
(B-5) pk,j = tk,j – ∑k-1

m=j+1 tk,m pm,j

(B-6) end

(B-7) end

σR̃ 1–



complexity as the total number of complex
additions, subtractions, multiplications, divisions,
and square-roots required each time the detector
is calculated. Second, in the context of DF
detectors, MIMO systems with N and M as low
as two are of interest. As a result, lower-order
complexity terms are not always negligible.
Finally, the complexity of the quantization
operation is ignored since it is the same for all DF
detectors, and it depends on the symbol
constellation.

The complexity analysis begins with the
proposed ordered MMSE noise-predictive DF
(O-MMSE-NP-DF) detector. The line-by-line
complexity of Function A, the total complexity of
Function B, and the total complexity of the
detection process (after {ci} and {pi,j} are
known) are given in Table 1, where we assume
that the detection filters are recalculated every L
symbol periods. The complexity of the
O-MMSE-NP-DF detector is approximately 1.9
times as complex as the O-ZF-NP-DF detector
[5], and roughly 15% less complex than the ZF-
MDDF detector [6].

5 Approximate
MMSE-DF Detection

In this section we show the performance of the
MMSE-NP-DF detector when it has perfect

knowledge of C and σ, but not of . We
show through simulation that this lack of
information is not detrimental to the performance
of the O-MMSE-NP-DF detector. In fact, an
approximate ordered MMSE-NP-DF
(A-MMSE-NP-DF) detector can significantly
outperform the O-ZF-NP-DF detector in some
cases. The A-MMSE-NP-DF detector is also only
fractionally more complex than the O-ZF-NP-DF
detector.

The matrix that must be estimated is
proportional to the autocorrelation matrix of the
error following the MMSE linear detector, Rεε. It
can be written as:

= σ CC* + . (21)

The most significant elements of come
from the diagonal elements of CC*. Therefore we
propose the following estimate:

≈ σ diag{ CC* }, (22)

where diag{ CC* } is a diagonal matrix whose
diagonal elements are the squared row norms of
C.

Using this estimation technique the last N
columns of the augmented matrix B will have
many zeros. If this fact is exploited, the
complexity of the A-MMSE-NP-DF detector can
be significantly less than the complexity of the
O-MMSE-NP-DF detector itself.

6 Simulation Results
In this section we compare the performance of
the three detectors: the A-MMSE-NP-DF
detector (given C and σ), the O-MMSE-NP-DF
detector (given B), and the O-ZF-NP-DF detector
(given the channel pseudoinverse = CZF). We
simulate various M×N MIMO systems where the
detection filters are recalculated for every symbol
period (L = 1). For each simulated channel the
elements of H are statistically independent
Gaussian random variables whose variance is
normalized to one. In this way, we simulated 105

Rayleigh fading channels. We use SNR per
symbol, per receive antenna to quantify the
amount of transmit power used by the system:
SNR = 1/σ2.

Table 1: O-MMSE-NP-DF detector complexity

Number of Operations

(A-2) 2MN + N2 – N

(A-6) 5N – 5

(A-7) MN2 + 2N3 ⁄ 3 + MN + N2 ⁄ 2
− 2M − N ⁄ 6 − 1

(A-8) MN2 + 2N3 ⁄ 3 + 2MN
+ 3N2 ⁄ 2 − 3M + 5N ⁄ 6 – 3

(A-9) N2 – N – 2

Function B N3 ⁄ 3 − N2 ⁄ 2 + N ⁄ 6

Eq. (7) 2MN + N2 – N – 1 L

Total
Complexity

2MN2 + 5N3 ⁄ 3 + 5MN +
9N2 ⁄ 2 – 5M + 23N ⁄ 6 – 11

+ 2MN + N2 – N – 1 L

 
 

 
 

 
 

 
 

σR̃ 1–

σR̃ 1–

σR̃ 1–
 
  σ2R̃ 2–

 
 

σR̃ 1–

σR̃ 1–



To highlight the effect of the approximation
proposed in Section 5, we first consider two
systems that have M = N = 2, and M = N = 4,
respectively. Each system uses a 4-QAM
constellation. Fig. 4 shows the bit error rate
(BER) for these MIMO systems of the three
detectors under consideration. To compare the
performance of the detectors we consider the
SNR they require to reach a BER = 10−3. In the
4×4 MIMO system, using (22) to estimate
causes an SNR penalty of approximately 2.9 dB
for the A-MMSE-NP-DF detector. Even with this
penalty the A-MMSE-NP-DF detector still
outperforms the O-ZF-NP-DF detector by
7.3 dB! For the 2×2 MIMO system, using the
estimate of (22) causes only a 0.3 dB penalty, and
the A-MMSE-NP-DF detector (given C and σ)
outperforms the O-ZF-NP-DF detector (given
CZF) by 3.7 dB.

The O-MMSE-NP-DF detector does not maintain
this performance improvement over the
O-ZF-NP-DF detector for all MIMO systems.
The performance gap closes quickly as the
minimum distance of the symbol constellation A
decreases. Fig. 5 shows this performance gap
versus the number of bits per symbol. We see that
the performance gap depends on the number of
bits per symbol and the dimensions of the MIMO
system.

The O-MMSE-NP-DF detector, the
A-MMSE-NP-DF detector, and the O-ZF-NP-DF
detector each have the same diversity order.
When M = N these DF detectors have an overall
diversity of one, and their performance is
bounded by the first symbol detected [16]. The
performance difference between these DF
detectors is less dramatic for MIMO systems with
increased diversity. This explains why the SNR
improvement for the 4×3 system in Fig. 5 is much
smaller than for the 4×4 MIMO system.
Likewise, the penalty incurred as a result of using
the estimation of (22) is smaller when M > N.

7  Conclusion
The noise-predictive DF detector consists of a
linear detector and a linear prediction mechanism
that reduces noise variance. We showed that the
noise-predictive view of the MMSE-DF detector
leads to a simple and computationally efficient
way of finding the BLAST detection ordering. A
key advantage of the noise-predictive detector is
that it can begin with knowledge of the MMSE
linear detection filter and the autocorrelation
matrix of the noise instead of knowledge of the
channel itself. In fact, the ordered MMSE noise-
predictive decision-feedback (O-MMSE-NP-DF)
detector has no need for the channel matrix at all.
We also showed through simulation that an
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approximateorderedMMSE-NP-DF detectorcan
outperformtheO-ZF-NP-DF detectorgivenonly
the MMSE linear detectionfilter and the noise
variance.Finally, we showed with simulations
thatin somecasesthereis noperformancebenefit
gained by using the O-MMSE-NP-DF detector
instead of the O-ZF-NP-DF detector.
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