
Abstract —  We consider a wireless communication system over a
multiple-input multiple-output Rayleigh-fading channel with
successive-cancellation detection. The outage probability of such
a system is strongly dependent on two choices: the order in which
the layers are detected, and the rate-allocation strategy at the
transmitter. We propose the rate-normalized ordering algorithm,
a generalization of the BLAST ordering algorithm that is shown
to minimize outage probability. We further optimize the
allocation of rate and energy at the transmitter, for a variety of
receiver ordering strategies. Finally, we jointly optimize the
receiver ordering and transmitter rate and energy allocations.
Our main conclusion is that, for a wide range of data rates and
SNR, the outage probability is minimized by a combination of
rate-normalized ordering and a partially uniform rate and energy
(PURE) allocation strategy. The jointly optimum system
outperforms the Bell Labs layered space-time (BLAST)
architecture by 15 dB at 8 b/s/Hz and an outage probability of
10−3, when operating over a 4-input 4-output Rayleigh-fading
channel. Also, the jointly optimum system shows an
improvement of 1.5 dB over a recently proposed combination of
optimum allocation and fixed ordering.

I.  INTRODUCTION

The use of multiple transmit and receive antennas in
wireless communication systems offers dramatic multiplexing
and diversity gains, enabling high spectral efficiencies and
low error rates over wireless fading channels. The transmitter
and receiver should be appropriately designed to exploit the
gains offered by multiple-input, multiple-output (MIMO)
systems. Further, system design should aim for low
computational complexity.

The BLAST architecture [1][2] achieves a high
multiplexing gain by transmitting independent data streams,
possibly coded, from each transmit antenna. The BLAST
receiver employs the ordered successive cancellation (SC)
decoding algorithm, which maximizes the minimum SNR
among all stages of decoding. The SC receiver is much less
complex than the optimum joint ML decoder, but it does not
fully exploit the diversity gain offered by the MIMO channel.
Consequently, the BLAST system suffers from high error
rates, even at high SNR.

The error performance of the SC decoder can be improved
by rate and energy allocation across the various antennas.
Ideally, the optimum allocation is obtained through a feedback
path from receiver to transmitter, where either the channel
itself or the optimum allocation, computed by the receiver, is
fed back [3][4][5]. Transmitter allocation strategies based on
receiver feedback are effective, but such feedback is not
always available in practical systems.

Instead of relying on feedback, one can allocate rates and
energies based on the statistics [6][7] of the random channel,
which may be known to the transmitter even if the
instantaneous channel is not. The loading strategy that
minimizes the error probability, for the fixed case where the
receiver performs no ordering, was obtained in [6]. The
outage capacity of such a system was analyzed in [8]. A
strategy which selects a subset of the transmit antennas based
on channel statistics was shown [9][10] considerably improve
the performance of the conventional BLAST system.
However, the jointly optimal transmitter receiver structure has
not yet been explored. 

In this work, we aim to minimize outage probability. The
outage probability is a lower bound on the word error rate
achievable by a coded MIMO system. The bound is tight
when the outer error-correcting outer code is powerful, in the
sense that it approaches capacity over an AWGN channel. 

In this paper, we propose the rate-normalized ordering
algorithm, which minimizes the outage probability for any
given transmitter loading strategy. Second, we obtain the
transmitter rate and energy allocation that minimizes the
outage probability with rate-normalized ordering. Our main
conclusion is that, for a wide range of data rates and SNR, the
outage probability is minimized by a partially uniform rate
and energy (PURE) allocation strategy, which distributes the
available rate and energy uniformly over a fraction of the
available transmit antennas.

This paper is organized as follows. In Section II, we
describe the channel model, and the system architecture. In
Section III, we review the BLAST ordering algorithm,
propose our new rate-normalized variation and prove its
optimality. In Section IV, we discuss the problem of optimum
rate allocation for each receiver ordering algorithm. The
analysis is supported by simulation results in Section V.
Finally, Section VI summarizes our conclusions.This research was supported in part by National Science Foundation
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II.  SYSTEM MODEL AND BACKGROUND

We consider a MIMO system with t transmit and r receive
antennas, with the assumption that r ≥ t. In keeping with the
BLAST architecture [1], independent data streams are
transmitted on each transmit antenna. Before transmission,
each data stream is encoded by an error-correcting code that is
designed to approach capacity on an AWGN channel. The i-th
data stream carries an information rate of Ri b/s/Hz with an
average energy of Ei. The total data rate is R = Ri, and the
average transmit energy is E = Ei.

We assume that the channel is linear, flat-fading and
quasistatic, so that the received vector at the k-th signaling
interval is:

yk = Hxk + nk . (1)

The elements of the r × 1 noise vector nk are independent,
circularly symmetric Gaussian random variables with zero
mean and variance N0 so that E[nknl*] = δk – lN0Ir, where A*
denotes conjugate transpose of A. The r × t channel matrix H
is assumed to be a random Rayleigh fading matrix, its entries
being independent, circularly symmetric complex Gaussian
random variables with zero mean and unit variance. The
receiver knows H, but the transmitter has no information
about H. Under these assumptions, the SNR per receive
antenna is given by S = E/N0.

In this paper, we focus on receivers which employ the
successive cancellation (SC) decoding algorithm [1]. SC
decoders decode one data stream at a time, subtracting out the
estimated contribution of previously decoded data streams,
and nulling out interference from undecoded streams. 

An important degree of freedom in the design of SC
decoders is the choice of the order in which the streams are
decoded. Let ij denote the index of the symbol decoded in the
j-th stage. To decode all the symbols { } in the ij-th data
stream, the SC decoder cancels off the estimated contribution
from the previously detected data streams to obtain

rk
( j ) = yk − , (2)

where hi denotes the i-th column of the channel matrix H. If
previous decisions are correct, then {rk

( j )} contains
contributions only from the stream of interest ij, and
interference from the undecoded streams. To null out the
interference, the SC decoder uses the nulling vector wj,
defined as the first row of the Moore-Penrose inverse of the
matrix [hij

, hij + 1, …, hit
] [1]. 

Using the nulling vector, the SC decoder obtains the j-th
decision stream, dk

( j ) = wj*rk
( j ). Assuming perfect decision

feedback, the channel model reduces to

dk
( j ) =  + wj*nk . (3)

The equivalent channel (3) is an AWGN channel with noise
variance N0||wj||2. The estimates { } of the ijth data stream
are obtained from {dk

( j )}.

We now proceed to quantify the error probability of the SC
decoder, as a function of {Ri}, {Ei} and the decision ordering
vector i = [i1, i2, …, it]T. For convenience, define the inverse
ordering vector j = [ j1, j2, …, jt]T such that q =  for q = 1, 2,
…, t. The effective channel corresponding to the i-th symbol
has a noise variance equal to N0/γi, where γi is the SNR
scaling factor given by γi = 1/|| ||2. Recall that the i-th data
stream has an average energy Ei, hence the instantaneous SNR
of the effective channel is Eiγi/N0, and the instantaneous
capacity is log2(1 + Eiγi/N0). Since each data stream is
assumed to have a capacity-achieving code, it is incorrectly
decoded if and only if an outage occurs, i.e., if and only if:

log2(1 + Eiγi/N0) < Ri , (4)

or equivalently if and only if γi is less than 1/ ,
where  is the rate-normalized SNR of the i-th data
stream, as defined by Forney [11]:

. (5)

For notational convenience, we define ρi = .  The
rate-normalized SNR characterizes the error performance of
the system better than just the SNR, since it captures the effect
of the data rate.

The overall SC decoder is a bank of parallel scalar
decoders for each stream. If all data streams are outage-free,
the SC decoder is also error-free. However, if any of the
streams is in outage, the SC decoder is in outage, and hence
has a non-zero probability of frame error. Consequently, the
frame-error rate of the coded system is upper-bounded by the
outage probability

Po(i, { }) = Pr . (6)

In the following sections, we will discuss problem of
minimizing the outage probability by the optimal choice of
{Ri}, {Ei} and the ordering vector i. 

III.  RECEIVER DESIGN: CHOICE OF ORDERING ALGORITHM

For every instance of the channel H, the receiver uses an
ordering algorithm to compute i, which in turn determines the
SNR scaling factors { γi }. Averaging over H, the ordering
algorithm determines the probability distribution of the SNR
scaling vector Γ = [γ1, γ2, … γt]

T, and hence the outage
probability. In this section, we discuss three possible ordering
algorithms and derive the outage probability for each.

i 1=
t

∑
i 1=
t

∑

x̂k

ij( )

l 1=

j 1–
∑ hil

x̂k

il( )

xk

ij( )

x̂k

ij( )

jiq

wji

SNRi
norm

SNRi
norm

SNRi
norm Ei N⁄

0

2
Ri 1–

-----------------=

SNRi
norm

ρi  γji
 

1
ρi
----  <

 
 
 

i 1=

t
∪



III-A.  Fixed Ordering
The simplest ordering algorithm is fixed ordering, where

the streams are decoded simply in the increasing order of their
index, i.e., i = j = [1, 2, …, t]T, irrespective of H. In this case, it
is well known [12] that the SNR scaling factors { γi } are
independent. Thus, the outage probability (6) reduces to 

Pfixed({ }) = 1 − Pr[ γi ≥ ]. (7)

Further, from [12], γi has a χ2-distribution with 2(r − t + i)
degrees of freedom, hence 

Pr[ γi ≥ ] = exp . (8)

Substituting (8) in (7) gives a closed form expression for the
outage probability of fixed ordering.

III-B.  BLAST Ordering
The BLAST ordering algorithm [1] can be summarized as

follows. Given H, the first stream to be decoded, i1, is chosen
as the one with the nulling vector of least magnitude, i.e., the
maximum post-nulling SNR. The next stream, i2, is chosen to
maximize γ2, among the remaining t − 1 choices, and so on. It
was shown in [1] that this greedy ordering algorithm is also
globally optimum, as stated below.

Remark 1. For stages j = 1, 2 … t, the BLAST ordering
algorithm chooses ij so as to achieve the maximum value
of γj among the t – j + 1 possibilities. In the process, it also
maximizes the minimum of SNR scaling factors, namely
min(γ1, γ2, …, γt).

The SNR scaling factors γ1, γ2, …, γt produced by BLAST
ordering are not mutually independent. Therefore, obtaining a
closed form expression for the density function of Γ is an open
problem. However, the following properties hold for the
ordering vector i and the SNR scaling vector Γ.

Theorem 1.  For a Rayleigh fading channel, the ordering
vector i and the SNR scaling vector Γ produced by the
BLAST ordering algorithm are independent. Further, i is
uniformly distributed over the set of all permutations of
[1, 2, …, t]T.

In Section IV-B, we will use the above facts to derive a simple
expression for the union bound on the outage probability (6).

III-C.  Rate-Normalized Ordering
In this section, we propose the rate-normalized (RN)

ordering algorithm which minimizes the outage probability
for any given transmitter rate allocation. First, note from (6)
that an outage occurs if and only if min( ) across all the
decoding stages is less than unity. From this observation, we
state the following lemma.

 Lemma 3.1.  To minimize the outage probability (6), the
ordering vector i should be chosen to ensure that
min( ) is maximized over j = 1, 2, …, t. 

Theorem 2.  At every stage of decoding j = 1, 2, …, t, the
rate-normalized ordering algorithm chooses ij so as to
achieve the maximum value of  among the t – j + 1
possibilities. In the process, it maximizes the minimum of

 across all data streams.

Proof:   Let the scaled channel matrix be H′ = HD, where
D is a t × t diagonal matrix, whose j-th diagonal entry is
djj = . If the QR decomposition of H is given by
H = QR, then the scaled channel matrix can be written as
H′ = QRD = QR′. It is well known [13] that the SNR
scaling factors resulting from SC decoding of H are equal
to the squared diagonal entries of R. Therefore, the SNR
scaling factor for the scaled channel H′ is simply γj′ =
Rjj

2djj
2 = γj . Hence, the minimum of γj′ is maximized by

employing the usual BLAST ordering algorithm of [1] on
H′ instead of H. 
Combining Lemma 3.1 and Theorem 2, we conclude that

the rate-normalized ordering algorithm minimizes the outage
probability among all possible ordering algorithms. 

IV.  TRANSMITTER DESIGN: 
OPTIMAL RATE AND ENERGY ALLOCATION

In this section, we discuss the transmitter optimization
problem, namely to choose the {Ri} and {Ei} to minimize the
outage probability at a given SNR under the constraints that

Ri = R and Ei = E. We begin by stating the
following remark about the optimum energy allocation holds
for all ordering algorithms.

Remark 2. Suppose {Ri
*} and {Ei

*} are the rate and energy
allocations that minimize the outage probability (6). They
are related by:

Ei
*⁄ E = . (9)

This is easily proved using Lagrange multipliers. The proof is
omitted due to space constraints. The implication is that the
transmitter optimization is simplified to one of choosing only
the data rates {Ri}, with the optimum energies Ei
automatically determined by (9). Thus, the number of
variables to be optimized is reduced from 2t to t. 

IV-A.  Fixed Ordering
Transmitter optimization for fixed ordering has already

been solved [6] except that the relation (9) between the
optimum energy and rate allocations was not used. The
optimum allocation is determined by a random search
followed by constrained gradient descent over the space of all
possible data rates {Ri} that sum up to R. For example,
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consider a 4-input, 4-output MIMO system operating at a data
rate of R = 8 b/s/Hz and an SNR of S = 15 dB. Numerical
optimization yields the optimum data rate allocation to be
{Ri} = {0, 1.31, 2.99, 3.70}. From (9), the corresponding
energy allocation is {Ei/E} = {0, 0.25, 0.36, 0.39}. Note that
the streams detected later carry a higher data rate than streams
detected early. This result is intuitively satisfying because,
from (7) and (8), the diversity order of the j-th detected stream
is r – t + j. It is intuitively pleasing that a higher fraction of the
available bits are loaded into streams with higher diversity
orders. 

IV-B.  BLAST Ordering
As stated in Section III-B, the SNR scaling factors

produced by the BLAST ordering algorithm are dependent,
and no closed-form expression is known for their probability
distribution and hence the outage probability. Instead, we
suggest using the union bound in (6) to perform transmitter
optimization. From (6), it is clear that the outage probability is
bounded by

PUB({ }, j) = . (10)

Each term in the summation can be split into an average over
the stage ji in which the i-th stream is decoded, giving

 = Pr(ji = k)Pr[γk < |  ji = k] . (11)

Theorem 1 states that ji is uniformly distributed over {1, … t},
hence Pr( ji = k) = 1/t. Also from Theorem 1, the SNR scaling
factor is independent of ji, thus conditioning on ji does not
change the distribution of γk. Thus, (11) simplifies to

 = Fk , (12)

where we define the left-continuous cumulative distribution
functions by Fk( x ) = Pr[γk < x] for k = 1, 2, …, t. Let F( x )
denote the average of these distribution functions over the t
symbols. From (12), Pr[ < 1/ ] = F(1/ ). Substituting in
(10), we get the union bound on the outage probability to be

PUB-BLAST({ }) = F . (13)

An analytical expression for F( x ) is not known in closed
form, so even the simplified union bound (13) cannot be
evaluated as is. However, the function F( x ) can be
numerically estimated as follows. A large number of Rayleigh
fading matrices are generated, the BLAST algorithm is run for
each one, and the resulting { γi } are rounded off to pre-
selected bins. Averaging this discrete approximation of the
distribution function of { γi }, we get a discrete approximation
to F( x ).

Note that (13) is just the sum of the same function
evaluated for each of the terms {1/ρi}. This implies that
BLAST ordering treats all the data streams identically i.e., if
the data rates and energies of two streams i and i′ are equal,
then they make the same contribution F(1/ρi) to the union
bound (13). From this observation, it is tempting to conclude
that the minimizing solution is to allocate identical data rates
and energies, R/t and E/t respectively, to all the streams.
However, this conclusion is not valid because the function
F( x ) is not necessarily convex. 

For example, consider a 4-input, 4-output MIMO system
operating at 8 b/s/Hz at an SNR of 20 dB. For this system, we
numerically estimated F( x ) and performed a random search
for the optimum rate allocation. The uniform allocation
yielded a union bound (13) equal to 3.4334 × 10–2. However,
the optimum allocation was found to be the partially uniform
rate allocation {0, 0, 4, 4}, which distributes the rate
uniformly over two of the four transmit antennas. This
allocation yielded a union bound of 1.1110 × 10–3, which is
significantly lower. Based on numerical experiments, we
make the following conjecture about the optimal allocation.

Conjecture 1.  The union bound for the BLAST-ordered
SC decoder is minimized by a partially uniform rate and
energy (PURE) allocation, with K streams carrying a data
rate of R/K and energy of E/K, and the remaining t – K
data streams carrying zero data rate and zero energy.

Hence, numerical optimization reduces to finding the optimal
number of active streams K ∈ {1, 2, …, t}. The optimum value
is typically less than t at high SNR, and it decreases with
increasing SNR. This can be explained intuitively by the fact
the diversity order is the key determinant of error performance
at high SNR, and reducing the number of active inputs implies
that the diversity gain of the SC decoded system is enhanced.

IV-C.  Rate-Normalized Ordering
We now aim to find the optimum rate and energy

allocation at the transmitter when the receiver employs the
RN ordering algorithm of Section III-C. 

The analytical expression for outage probability with RN
ordering is intractable. Even the union bound is intractable,
because the distributions of Γ and j for the RN ordering
algorithm depend on the rate allocations. However, based on
heuristic observations, we make the following conjecture
regarding the optimum data rate allocation.

Conjecture 2.  The optimum data rate allocation for the
rate-normalized ordering algorithm is either
• the optimum allocation for the case of fixed ordering,

or

• a partially uniform rate and energy (PURE) allocation,
where K inputs carry a rate of R/K each, and the rest
carry zero data rate. 
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According to Conjecture 2, one can restrict the search for
the optimum data rate allocation to t + 1 possibilities. Of
particular interest in Conjecture 2 is the fact that a partially
uniform allocation is often the optimum solution for RN
ordering. It was discussed in Section IV-B that a PURE
allocation is optimum for BLAST ordering. Note that, with a
PURE allocation, RN ordering amounts exactly to BLAST
ordering and for this reason, the PURE allocation is expected
to be a good solution for RN ordering.

V.  NUMERICAL RESULTS

In this section we present numerical results for a 4 × 4
MIMO system operating at R = 8 b/s/Hz, assuming
independent Rayleigh fading. 

We first consider a fixed ordering [6], and quantify the
benefits of optimizing the rate and energy allocations. At
S = 20 dB with a fixed ordering, the optimal rates and energies
are {0, 0, 3.63, 4.37}, and {0, 0, 0.49E, 0.51E}, respectively,
which leads to an outage probability of 0.002422. In
comparison, a uniform rate allocation with fixed ordering
gives an outage probability of 0.1201, about fifty times larger.

Fig. 1 compares the error performance of three ordering
strategies at R = 8 b/s/Hz: the fixed ordering, the
conventional BLAST ordering, and the rate-normalized
ordering. All three systems use the same rate allocation
{Ri} = {0, 1.31, 2.99, 3.70}, which is a good candidate for
comparison since it minimizes the outage probability of the
fixed-ordering decoder at S = 15 dB. It is seen from Fig. 1 that
the rate-normalized ordering outperforms the optimized fixed
ordered system by 1.5 dB and BLAST ordering by 2 dB at an
outage probability of 10–3. 

Fig. 2 shows the advantage of optimizing the rate and
energy allocations at the transmitter. The lowest curve shows
the error performance with rate-normalized ordering and
optimized transmitter allocations, while the next-lowest curve
shows the performance with a fixed ordering and optimized
allocations. The rate allocations for both cases are calculated
anew at each SNR so as to minimize outage probability.
Hence, these curves represent the best possible outage
probability that can be achieved. For example, the partially
uniform allocation with K = 3 is optimal for rate-normalized
ordering at S = 15 dB, while the partially uniform allocation
with K = 2 is optimal for RN ordering at S = 20 dB and 25 dB.

Comparing the lower two curves in Fig. 2, we see that
transmitter-optimized rate-normalized ordering outperforms
transmitter-optimized fixed ordered receiver by 1.5 dB at an
outage probability of 10–3, underlining the importance of joint
optimization of the transmitter and receiver. 

Also included in Fig. 2, for the sake of comparison, is the
upper gray curve, which shows the performance of a
conventional BLAST system with uniform allocations at the
transmitter. It is seen that the jointly optimal system
outperforms conventional BLAST by 15 dB at an outage
probability of 10–3. 

VI.  CONCLUSIONS

We studied the BLAST system with successive
cancellation decoding with the objective of minimizing the
outage probability. We proposed the rate-normalized ordered
detector and proved that it minimizes the outage probability.
We investigated the optimal rate and energy allocations to
minimize the outage probability for the different variants of
the SC decoder. We argued that the partially uniform rate and

Fig. 1.  Comparison of ordering algorithms for {Ri} = {0.00, 1.31,
2.98, 3.69} for a 4-input, 4-output Rayleigh fading channel
at R = 8 b/s/Hz.
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energy (PURE) allocation is the minimizing solution for
BLAST-ordered detection. In the case of the rate-normalized
ordered decoder, we proposed a rule for rate and power
allocation to minimize the outage probability based on partial
analytical results. Simulation results show that jointly
optimizing the transmitter and receiver, without any form of
channel feedback, improves the performance of SC decoders
significantly. The fact that a PURE allocation is often the
optimum solution with RN ordering validates the importance
of antenna selection schemes with SC decoding. Intuitively,
antenna selection with SC decoding amounts to reducing the
multiplexing gain of the MIMO system in order to improve
the diversity order. Our results show the importance of
achieving the right trade-off in order to minimize the outage
probability of the SC decoder. 

Appendix 1: Proof of Theorem 1

The BLAST ordering algorithm can be viewed as a
function Ψ(H) of the channel matrix H, which outputs the
pair (i, Γ). 

 Lemma 6.1.  For a given channel matrix H, suppose Ψ(H)
= (i, Γ). Then, for all column permutation matrices, Π,

Ψ(HΠ) = (ΠΤi, Γ). (14)

Proof:   Suppose the symbol xq corresponding to i1 = q was
decoded in the first stage with channel H, the same
symbol, re-labelled as i1′ = q′, where i′ = ΠTi will be
decoded in the first stage with the permuted channel HΠ.
Clearly, the value of the maximum SNR scaling factor
remains unchanged for that stage, since it corresponds to
the same symbol. Similarly, proceeding through the stages
k = {2, 3, …, t}, it is clear that the SNR scaling factors
remain invariant to the permutation, and that multiplying
H by Π amounts to re-labelling the index of the symbols,
as determined by Π.

It is well known that permuting the columns of Rayleigh
fading matrices does not change their distribution. More
precisely, the following result holds.

 Lemma 6.2.  Suppose H is a Rayleigh fading matrix.
Then, for all column permutation matrices Π, the random
matrix H′ = HΠ is identical in distribution to H, since H is
circularly symmetric. 

From Lemma 6.2, HΠ is identical in distribution to H. Using
Lemma 6.1, we arrive at the following corollary.

Corollary 1.  Ψ(HΠ) = (ΠΤi, Γ) is identical in distribution 
to Ψ(H) = (i, Γ).

From Corollary 1, since ΠΤi is identical in distribution to
i, we conclude that i is uniformly distributed over all
permutations of [1, 2, …, t]T, as stated in Theorem 1.

Further, from Corollary 1, note that joint density function
of (i, Γ) satisfies p(i, Γ) = p(ΠΤi, Γ). Now, using Bayes’ rule
and the fact i is uniformly distributed over  possibilities, we
obtain the following expression for the joint density function.

p(i, Γ) = p(Γ | i) (15)

In particular, p(i, Γ) = p(ΠTi, Γ) ⇔ p(Γ | i) = p(Γ | ΠTi) for
all Π, implying that Γ and i are independent. This proves the
second claim of Theorem 1.
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