
A Parallel Smart Candidate Adding Algorithm

for Soft-Output MIMO Detection

Ernesto Zimmermann and Gerhard Fettweis David L. Milliner and John R. Barry

Vodafone Chair Mobile Communications Systems School of Electrical and Computer Engineering

Technische Universität Dresden Georgia Institute of Technology

D-01062 Dresden, Germany Atlanta, Georgia 30332–0250

Email: zimmere,fettweis@ifn.et.tu-dresden.de Email: dlm,barry@ece.gatech.edu

Abstract

Tree search schemes are an efficient means for solving the detection problem in multiple-input multiple-output

systems. One option for implementing such a tree search is the smart candidate adding approach: using first

an unconstrained search for the MAP estimate and then multiple constrained searches for counter-hypotheses.

An inherent disadvantage of this strategy is that tree nodes might be visited multiple times, resulting in high

detection complexity. This paper presents a parallel smart candidate adding algorithm, where the initial and the

constrained searches are combined into a single detection step. Thus, complexity can be significantly reduced

compared to previous proposals, at the cost of a minor performance loss. Furthermore, the algorithm has fixed

detection complexity as opposed to most prior smart candidate adding proposals.

1 Introduction

Future wireless communications systems will make use

of multiple antennas at the transmitter and the receiver

to increase spectral efficiency. The main challenge for

such MIMO systems lies in the nonorthogonality of

the transmission channel, which renders difficult the

calculation of reliability information (soft output) on

the transmitted bits. In this context, tree search based

detection techniques are known to enable a perfor-

mance close to the optimal a posteriori probability

(APP) detector while avoiding its prohibitively high

complexity. Sphere [1], sequential [2] and M-algorithm

based detection [3] are representative examples of such

schemes. However, in order to ensure a highly accurate

soft output, the “list” versions of the aforementioned

algorithms need to generate a very large number of

hypotheses on the transmit sequence – which obviously

entails high detection complexity. Therefore, different

authors [4]–[6] proposed to generate the soft output by

using multiple instances of a Schnorr-Euchner sphere

detector, each of which searches only for a single leaf

node (list size 1). At first, a search for the MAP estimate

is performed, followed by a set of searches for counter-

hypotheses to this estimate. The term smart candidate

adding (SCA) has been coined for this strategy in [4].

Recently [7], the authors extended and applied the

SCA approach to other tree search detection algorithms,

including the classical M-algorithm [8], yielding the

SCA-M algorithm. An obvious disadvantage of the

SCA strategy is that the different searches might visit

similar parts of the detection tree – the total tree search

complexity is thus somewhat higher than necessary to

solve the task set to it.

Motivated by the above arguments, this contribution

presents a Parallel SCA (PSCA) algorithm which avoids

the aforementioned problem. Specifically, we propose

to perform a single tree search which conveniently

combines both the search for the MAP estimate and the

constrained searches for appropriate counter-hypotheses

to it. By removing the redundancy between the different

tree searches, this approach allows for substantially

reduced detection complexity.

The remainder of this paper is structured as fol-

lows: after discussing the employed system model in

Section 2, Section 3 provides an introduction to tree

search based MIMO detection. This is followed by a

description of smart candidate adding and the proposed

parallel algorithm in Section 4. Section 5 presents per-

formance and complexity results. Finally, conclusions

are drawn in Section 6.

2 System Model

Consider a NT ×NR MIMO system based on a BICM

transmit strategy as depicted in Figure 1: the vector u

of i.i.d. information bits is encoded and interleaved. The

resulting code bit stream is partitioned into blocks c of

NT · L bits and mapped onto a vector symbol x ∈ X
whose components are taken from some complex con-

stellation C (e.g. Gray mapped 64-QAM). Here, L
denotes the number of bits per symbol, resulting in

Q = |C| = 2L different constellation points.

We consider transmission over a flat fading channel.

In the equivalent discrete-time base-band model, the

received signal y is given by:

y = Hx + n (1)

where H ∈ C
NR×NT is the channel transfer matrix

which is assumed to be perfectly known at the receiver.

The entries of H are realizations of zero mean i.i.d.

complex Gaussian random processes of variance 1
(passive subchannels). The average transmit energy is

normalized such that E{xxH} = Es/NT I. The vec-

tor n ∈ C
NR×1 represents the receiver noise whose

components are zero mean i.i.d. complex Gaussian ran-

dom variables with variance N0/2 per real dimension:

E{nnH} = N0 I. The signal-to-noise ratio (SNR) at

each receive antenna is hence given by SNR = Es/N0.

Outer

Encoder

u

Constellation

Mapper

MIMO

Detector

SISO

Decoder

Binary

Sink

Binary

Source

e
 c

AWGN
 n

H

x

y

L

A,Dec

L

E
,
Dec

L

E
,Det

L

A
,
Det

Interleaver
Rate R

-1

. . .

. . .

Hard Decision

Figure 1. System model using a BICM transmit strategy.

3 Tree Search MIMO Detection

3.1 Fundamentals

The task of the detector is to calculate the a poste-

riori probability for each of the code bits cm,l in x,

where m ∈ {1, . . . , NT } is the symbol index, and

l ∈ {1, . . . , L} is the bit index in the m-th symbol.

Since we are dealing with binary numbers, this infor-

mation is conveniently expressed in the form of log-

likelihood ratios (LLRs):

L(cm,l|y) := ln
P [cm,l = +1|y]

P [cm,l = −1|y]
(2)

≈ max
x∈X

+1

m,l

{

−‖y − Hx‖2

N0

+

NT
∑

m=1

L
∑

l=1

lnP [cm,l]

}

− max
x∈X

−1

m,l

{

−‖y − Hx‖2

N0

+

NT
∑

m=1

L
∑

l=1

lnP [cm,l]

}

,

where the second line follows from the application

of the so-called max-log approximation. Here, X±1

m,l

denotes the set of 2NT ·L−1 symbols x ∈ X for

which cm,l = ±1. Evaluating (2) by a brute-force

approach (maxLogAPP detection) is well known to

require an effort growing exponentially in the number

of transmitted bits per vector symbol. However, only

a few hypotheses in X±1

m,l actually maximize each of

the respective terms in (2). Several close-to-optimal

detection strategies therefore construct a subset list

L ⊂ X from which the LLRs are determined. The

subset should on the one hand include only a fraction

of the elements from X to minimize complexity. On

the other hand, it should be large enough to allow

one to approximate the true detector LLRs as closely

as possible, to maximize performance. Let the size of

the list L be denoted as M = |L|. Tree search based

MIMO detection techniques construct L using a back-

substitution approach. After a QR-decomposition of the

channel matrix, H = QR, the LLRs can be determined

using the per-antenna metric increments Λm:

L(cm,l|y) ≈ max
x∈L∩X

+1

m,l

{

NT
∑

1

Λm

}

− max
x∈L∩X

−1

m,l

{

. . .

}

which are referred to as branch metrics and given by

Λm = −
1

N0

∣

∣

∣

∣

ỹm −
NT
∑

j=m

rm,jxj

∣

∣

∣

∣

2

+

L
∑

l=1

ln Pr[cm,l] (3)

with ỹ = QHy. The detector starts in layer m = NT

and works its way up until layer m = 1 is reached. For

each branch in the tree, Q different choices are possible

for the signal estimate xm. The detection process can

hence be interpreted as a search for leaf nodes in

a tree structure. Different types of tree search based

detectors can be implemented by using the path metrics
∑NT

m=n Λm to control which tree nodes are added to the

working stack and in which order. Tree search schemes

can generally be broken down into three representative

classes of algorithms (see, e.g. [8]): depth-first search,

metric-first search and breadth-first search.

Depth-first schemes (such as the sphere decoder [1])

consider only a single tree node at a time, whose path

metric is checked against a certain threshold (the sphere

radius), to prune paths from the search tree which

are unlikely to produce leaf nodes with good metrics.

Metric-first schemes (with the sequential decoder [2] as

classical representative) keep multiple nodes in parallel

in a stack structure and always extend the node with

the currently best path metric. A detailed description

and analysis of these two schemes is beyond the scope

of this paper. An overview of the performance and

complexity of all three tree search approaches in the

context of MIMO detection is given in [7].

3.2 Breadth-First Tree Search

In this work, we will focus on breadth-first search

algorithms. These algorithms extend the detection tree

layer-by-layer. At each depth, the M nodes with the

largest path metrics are retained and all other nodes are

dropped. The classical example for this approach is the

M-Algorithm [3]. The advantage of this technique, over

depth-first or metric-first search techniques, is the fixed

detection complexity. However, the achievable perfor-

mance is limited by error propagation, particularly for

low values of M .

One approach for improving the performance of

the M-algorithm is the channel-based level-adaptive

M-algorithm (CLAM) [9], which is similar to the

M-algorithm for searching the detection tree, except

that it varies from one stage to the next the number

of children extended from each retained node. These

numbers are optimized based on knowledge of the

channel at the receiver. This simple enhancement not

only reduces complexity, it also enables the CLAM

algorithm to significantly outperform the M algorithm

in both hard-detection and soft-detection systems. An-

other breadth-first algorithm of interest is the fixed-

complexity sphere decoder (FSD) [10]. Similar to the

CLAM algorithm, the FSD determines the number of

candidates to extend from each retained node from the

previous stage in the detection tree. Unlike the CLAM

algorithm, these numbers are not based on the detection

layer SNRs.

An analysis of the CLAM and FSD algorithms

reveals in both cases that the number of candidates

extended from each retained node from the previous

detection stage should be largest early in the detection

tree. This is because more candidates need to be consid-

ered in the first detection levels due to interference from

the other levels, while decision-feedback equalization

(DFE) reduces the number of candidates that need to

be considered in the last levels [10]. We will exploit

this observation in the PSCA algorithm.

4 Parallel Smart Candidate Adding

4.1 Fundamentals

A major problem for all “conventional” tree search

schemes are missing counter-hypotheses: whenever

L ∩ X±1

m,l = ∅, the magnitude of the LLR for the corre-

sponding bit cannot be determined from the entries of

L. To avoid this situation (and thus ensure a reasonable

quality of the soft output) the size of L must be

chosen large enough. However, this often requires an

undesirably high detection effort. Another solution is to

simply clip the magnitude of the soft output to a certain

predefined value [1]. But the system performance will

then be very sensitive to the choice of the clipping level

[3], particularly for small list sizes.

The alternative is to directly address the counter-

hypothesis problem using smart candidate adding [4]–

[6]. From (2) it is easily seen that the LLRs at the

output of the maxLogAPP detector may also be written

as the difference between the metric of the MAP esti-

mate xMAP (i.e., the hypothesis which maximizes the a

posteriori probability) and the metric of an appropriate

counter-hypothesis for each bit:

L(cm,l|y) ≈ cMAP
m,l

(

NT
∑

1

Λm

(

xMAP
)

. . .

− max
x∈X

−MAP

m,l

{

NT
∑

1

Λm (x)

})

. (4)

with cMAP as the bit pattern of the MAP estimate

and X−MAP
m,l the set of potential counter-hypotheses,

for which cm,l = −cMAP
m,l . The maxLogAPP detection

problem may hence be solved by first finding the MAP

estimate and then performing NT · L searches which

cover only a subset of the transmitter signal set. It

should be noted that bounding the complexity of the

different tree searches may still lead to overestimated

LLR magnitudes – which would necessitate the use of

LLR clipping. Fortunately, the performance of reduced

complexity Smart Candidate Adding has been found to

be very robust to the choice of the clipping level [7].

4.2 SCA M-Algorithm

Applying SCA techniques to the classical M-algorithm

yields the SCA-M algorithm [7]. This algorithm serves

as motivation for our parallel breadth-first search algo-

rithm and can be broken down into two stages:

• Stage 1: The search for the MAP estimate covers

the entire signal set X and should be constructed

such that errors in the hard output of the MIMO

detector are avoided, i.e., the MAP estimate has

to be found with high probability. This stage is

implemented using an M-algorithm with a suffi-

ciently large list size (denoted as M1).

• Stage 2: Each search for a counter-hypothesis

covers only a constrained signal set X−MAP
m,l , and

is referred to as a constrained search. This is

the computationally most expensive part, since the

number of constrained searches scales with the

number of transmitted bits per vector symbol. An

M-Algorithm with M2 is used for this task.

Reducing the complexity of the search for counter-

hypotheses is thus crucial to achieving a good

performance-complexity trade-off. In this respect,

breadth-first search algorithms offer a major advantage:

Due to their layer-by-layer operation, constraints on

certain bits don’t propagate root-wards in the tree

structure. Therefore, it is possible to build up a “tree

of search trees” for the second stage, such that no

tree node is visited twice over the set of all searches

for counter-hypotheses. In [7] it was shown that good

performance is achievable when the constrained search

list length is very small (i.e. M2 = 1). The redundancy

between the first and the second search stage can be

reduced by exploiting the fact that the initial search

produces M1 leaf nodes, some of which already provide

a counter-hypothesis for certain bits. The constrained

searches have to be performed only for a subset of

the transmitted bits. However, this approach leads to a

slightly variable complexity for the SCA-M algorithm.

Compared to conventional tree search schemes, the

complexity in terms of the number of branch metric

computations was reduced by a factor of 1.5-2 in an

iterative detection-decoding setup [7]. Yet, there is still

redundancy between the first and the second stage,

which motivates the design of more efficient schemes.

4.3 Parallel SCA Algorithm

The principal difference between the parallel SCA algo-

rithm and the SCA-M algorithm is that the constrained

searches for counter-hypotheses are found concurrently

with the MAP estimate as the breadth-first search

proceeds through the detection tree, rather than through

supplemental searches. This is similar to the “parallel

sphere detector” approach taken in [11]. However,

since the search tree is constructed layer-by-layer, the

counter-hypothesis for a bit of interest can only be

found relative to the best partial MAP estimate at the

current level in the detection tree – as opposed to the

full MAP estimate for the traditional approach. The

price paid for the complexity savings realized by the

PSCA algorithm is thus a small loss in performance.

Two further important modifications to the SCA-M

algorithm are necessary: firstly, to avoid the complexity

of checking all nodes in the detection tree whether they

already constitute a counter-hypotheses, the counter-

hypotheses are created by enumerating appropriate

“sibling nodes” of the current partial MAP estimate.

As a positive side-effect, the generated nodes will very

likely have good metrics as they are “close” to the node

in the tree with the metric which is currently the best.

Secondly, it must be avoided that any path providing a

counter-hypothesis is pruned during the search process.

This is done by extending all generated nodes until

they have reached full length, by employing a Schnorr-

Euchner/SIC-like strategy (i.e., at each depth only the

child node with the best metric is retained; the other

child nodes are not considered). The sort-and-select

stage of the M-Algorithm can thus be omitted. This

is similar to the approach followed by the FSD [10].

The growth rate of the search tree is controlled by the

number of child nodes which are enumerated per parent

node retained from the previous level. We denote this

(level-dependent) figure by bm, which is summarized in

the parameter vector b ∈ Z
NT ×1, where bm ≥ 1∀m.

Tuning b allows trading tree search complexity for

detection performance. An appropriate choice of b

can be found by using an approach similar to the

generate_b function of the CLAM algorithm [9].

A pseudo code description of the PSCA algorithm is

provided in Fig. 2. Let Sm denote the set of retained

(survivor) nodes at level m of the tree, with SNT +1

initialized to the root node. Furthermore, SPMAP
m denotes

the partial MAP estimate at level m, and C−PMAP
l is the

set of symbols which can potentially provide a counter-

hypotheses for bit l of this estimate. The algorithm

starts at the root node and finds its bNT
best children,

yielding SNT
. The best child (SPMAP

NT
) is defined to be

the one possessing the branch metric with the minimum

value. The additional child nodes (optionally) enu-

merated beyond SPMAP
NT

will already provide counter-

hypotheses for some of the bits. For the remaining bits

in SPMAP
NT

, the node with the best metric emanating from

the root and having the bit of interest flipped w.r.t.

SPMAP
NT

is found and added to SNT
. In this contribution,

we constrain ourselves to the case bNT
≤ 2 and Gray

mapping. The branch enumerated beyond the partial

MAP estimate thus provides a counter-hypothesis only

for a single bit – which can be easily identified.

Input: y,H, C, L,b
Output: L

HP = QR, ỹ = QHy1

SNT +1 = root node with metric of 02

SNT
= {bNT

best children of SNT +1},3

SPMAP
NT

= best of SNT

for l = 1 : L do4

node = best child of SNT +1 ∈ C−PMAP
l5

SNT
= SNT

∪node6

end7

for m = NT − 1 : −1 : 1 do8

Sm = ∪node∈Sm+1
{bm best children9

of node}10

SPMAP
m = best of Sm11

for l = 1 : L do12

node = best child ∈ C−PMAP
l of parent13

of SPMAP
m

Sm = Sm∪node14

end15

end16

L = PS117

Figure 2. Parallel SCA Algorithm. Depending on bm, some
counter-hypotheses are already available and do not have to
be added explicitly (lines 4-7,12-15) – see text.

The algorithm continues to the next level by ex-

tending exactly bNT −1 children (the ones with the best

metrics) from each node in SNT
, yielding SNT −1. The

best node in this set becomes SPMAP
NT −1

. The PSCA algo-

rithm continues by finding the remaining 1 + L− bNT

counter-hypotheses to this partial MAP estimate (and its

bNT −1−1 siblings), and appends them to SNT −1 before

advancing to the next detection level. This process

continues until the layer m = 1 is reached, at which

point the full candidate list L is available, without the

need for a second stage search for counter-hypotheses.

A common metric for quantifying the complexity

of a tree search algorithm is the number of visited

nodes (or branch metric computations) nc [7], [9]. If we

consider an equivalent real-valued system model with

N2T = 2NT and NB = L/2 and set bm = 1 ∀m, the

PSCA algorithm considers precisely

nc =

N2T
∑

m=1

1+mNB = N2T +NB

N2T (N2T + 1)

2
(5)

nodes and the final list size is |L| = 1 + NT · L. Due

to its recursive nature, the expression for the number

of visited nodes is slightly more involved for a general

b, but it is easily seen that nc is deterministic as well.

As will be shown in the next section, the number of

nodes visited by the PSCA-M is generally lower than

that of the M-Algorithm or the SCA-M achieving the

same performance. Furthermore, the PSCA-M does not

require any list sorting and is easier to parallelize – a

major advantage for practical implementation.

5 Results

To ensure comparability of results, we use a setup

equivalent to the one in [1]: A rate 1/2 PCCC based

on (7R, 5) convolutional codes is employed for trans-

mission over a 4× 4 MIMO channel which is spatially

and temporally i.i.d. fading. The information block size

(including tail bits) is 9216 bits. The PCCC decoder

uses 8 internal iterations (logMAP decoding). Detection

is performed based on the equivalent real-valued system

model. The LLRs were clipped at a magnitude of ±6
for all investigated techniques.

Figure 3 shows results for the case for 4-QAM

transmission. As for all tree search schemes with fixed

(or tightly bounded) detection complexity [12], both the

SCA-M and the PSCA-M benefit significantly from the

use of MMSE preprocessing. This enables the SCA-M

algorithm with M1 = 4 and M2 = 1 (square markers)

to achieve a performance 0.2dB from MaxLogAPP

detection. The average number of visited nodes for this

algorithm is nc = 84, the upper bound is at nmax
c = 97.

The least complex version of the PSCA-M algorithm

(bm = 1 ∀m, circle markers) suffers a performance

loss of 0.2dB, but visits only nc = 44 nodes – a

complexity reduction by a factor of roughly 2. The

loss in performance can be decreased to below 0.1dB

by choosing bm = 2 for the first 3 detected layers

(diamond markers), at the cost of nc = 69 visited tree

nodes. Note that all schemes operate within 0.5dB of

MaxLogAPP detection which visits nAPP
c = 510 nodes.

2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0 [dB]

MMSE

ZF

PSCA-M, b = [1 1 1 1 1 1 1 1]
PSCA-M, b = [2 2 2 1 1 1 1 1]
SCA-M (M1 = 4,M2 = 1)

MaxLogAPP

Figure 3. Performance of SCA-M and PSCA-M tree search detection
(4×4 MIMO, 4-QAM). Dashed lines: ZF-SQRD, solid lines: MMSE-
SQRD preprocessing (unbiased, cf. [12]).

The case of 64-QAM transmission depicted in

Figure 4 is more challenging: The MaxLogAPP de-

tector would perform nAPP
c ≈ 19 · 106 branch metric

computations – which is clearly infeasible. Performance

reasonably close to MaxLogAPP detection can be

achieved with an M-Algorithm with M = 64. The

number of visited nodes is nc = 3144. This figure can

be reduced to slightly above 1, 000 nodes1 by employ-

ing the pragmatic Schnorr-Euchner-like enumeration

strategy proposed in [7]. However, this approach has

no longer fixed tree search complexity. Although the

variation is minimal, this might be undesirable from an

implementation perspective.

For the PSCA-M algorithm, the use of MMSE pre-

processing provides a performance gain of almost 1dB,

comparable to the 4-QAM case. The configuration with

bm = 1 ∀m then achieves performance within 0.2dB

of the SCA-M algorithm with M1 = 4,M2 = 1 and

within roughly 0.7dB for the SCA-M algorithm with

M1 = 16,M2 = 1. Enumerating a greater number of

tree nodes in the first detected layers again improves

performance (by 0.5dB for bm = 2 in the first 4 layers).

11 12 13 14 15 16
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0 [dB]

MMSE

ZF

PSCA-M, b = [1 1 1 1 1 1 1 1]
PSCA-M, b = [2 2 2 1 1 1 1 1]
PSCA-M, b = [2 2 2 2 1 1 1 1]
SCA-M (M1 = 4,M2 = 1)
SCA-M (M1 = 16,M2 = 1)
M-Alg., M=256

Figure 4. Performance of SCA-M and PSCA-M (4 × 4 MIMO,
64-QAM). Dashed lines: ZF-, solid lines: MMSE-SQRD (unbiased).

The performance and complexity of the investigated

schemes, in terms of the number of visited tree nodes

vs. the SNR required to achieve a BER of 10−5 is

summarized in Figure 5 for the 64-QAM case. Here,

N2 denotes the number of levels from the root in which

bm = 2 for the PSCA-M algorithm. For the SCA-M

and the M-Algorithm, both the figures for the stan-

dard approach (triangle markers) and for the Schnorr-

Euchner approach (square and + markers, respectively)

are given. In order to ensure a fair comparison, we

consider only schemes with fixed complexity in the

following, i.e., the standard M-Algorithm and the upper

bound on the SCA-M complexity.

The SCA-M based on the standard M-algorithm and

using M1 = 4 and M2 = 1 visits nmax
c = 347 nodes in

the worst case. This is to be compared with the PSCA-

M algorithm with N2 = 0 (i.e., bm = 1 ∀m) which

visits only nc = 116 nodes – a complexity reduction

by a factor of 3 – and suffers a performance loss of

roughly 0.2dB.

1The average number of child nodes per parent node is b̄ = 2.7.

12.5 13 13.5 14 14.5 15 15.5

N
u
m

b
er

o
f

v
is

it
ed

tr
ee

n
o
d
es

n
c

Eb/N0 required for BER 10−5 [dB]

PSCA-M

SCA-M (std)

SCA-M (SE)

M-Algorithm (std)
M-Algorithm (SE)

N2 ∈ {0, 2, 3, 4}

M = 64

M = 16

M = 4

M1 = 16

M1 = 4

0

4

103

102

Figure 5. Performance-complexity trade-off for different tree search
techniques (4× 4 MIMO, 64-QAM, unbiased MMSE-SQRD).

This loss can be removed by setting N2 = 2 which

increases nc to 137. Choosing N2 = 4 increases

performance to within 0.2dB of the SCA-M algorithm

with M1 = 16. The number of visited tree nodes

is nc = 301 and nc = 940, respectively – again a

complexity reduction by a factor of 3. Note that the

PSCA approach with N2 = 3 gains almost 1.5dB over

the standard M-Algorithm with M = 4, at roughly a

20% lower number of visited visited tree nodes.

Algorithm Setup 4-QAM 64-QAM

M-Algorithm M = 4 744 1912

M = 16 – 6600

SCA-M M1 = 4, M2 = 1 1244 3228

M1 = 16, M2 = 1 – 7640

PSCA N2 = 0 700 1668

N2 = 2 791 1937

N2 = 3 1032 2658

Table I
TREE SEARCH COMPLEXITY (NUMBER OF OPERATIONS)

However, the number of nodes visited during the tree

search tells only part of the story. This is illustrated by

the complexity figures2 given in Table I: comparing the

PSCA-Algorithm with N2 = 2 and the SCA-M with

M1 = 4,M2 = 1 shows that the complexity saving re-

duces from a factor of 2.5 (if nc is considered) to 1.7 (in

terms of the operation count). This is due to the fact that

the search tree of the PSCA-M is constantly growing in

width, in contrast to the M-Algorithm: Nodes visited in

the last detected layers cost more effort for calculating

the interference reduced received signal ỹm−
∑

rm,jxj .

Hence, the complexity savings achieved by the reduced

sorting effort are overcompensated by the added effort

in metric calculation. This fact should be taken into

account in the design of efficient tree search schemes

and is the subject of ongoing research.

2The figures include calculating ỹ, the tree search stage and the
LLR calculation. Multiplication, addition, comparison each count as
one operation. The overhead for sorting is included.

6 Conclusions

In this contribution, we presented the parallel smart

candidate adding algorithm as an efficient way to

achieve near-capacity performance in MIMO systems.

By performing a single directed search, rather than

multiple directed searches, we substantially reduced the

complexity compared to previous, serial, versions of

the smart candidate adding approach, at the cost of a

minor performance loss. It was shown that for a PCCC

coded 4 × 4 MIMO system with 4-QAM modulation,

the PSCA approach requires only half the number of

branch metric computations of its serial counterpart,

at only a 0.2dB loss in performance. For the case

of 64-QAM modulation, the number of visited nodes

could be reduced by a factor of 3, at the same low

performance loss. The PSCA-M algorithm offers sev-

eral advantages which render it particularly attractive

for real-time implementation: it has a fixed complexity,

requires no sorting and also offers a very high potential

for parallelization.

References

[1] B. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Transactions on Communica-

tions, vol. 51, pp. 389–399, Mar. 2003.
[2] J. Hagenauer and C. Kuhn, “The List-Sequential (LISS) Algo-

rithm and Its Application,” IEEE Transactions on Communica-

tions, vol. 55, pp. 918–928, May 2007.
[3] S. Haykin, M. Sellathurai, Y. de Jong, and T. Willink, “Turbo-

MIMO for wireless communications,” IEEE Communications

Magazine, vol. 42, pp. 48– 53, Oct. 2004.
[4] P. Marsch, E. Zimmermann, and G. Fettweis, “Smart Can-

didate Adding: A new Low-Complexity Approach towards
Near-Capacity MIMO Detection,” in 13th European Signal

Processing Conference (EUSIPCO’05), Antalya, Turkey, Sept.
2005.

[5] M. S. Yee, “Max-log-MAP sphere decoder,” in Proceedings of

the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP’05), vol. 3, Mar. 2005, pp. 1013–
1016.

[6] R. Wang and G. Giannakis, “Approaching MIMO channel
capacity with Soft Detection Based on Hard Sphere Decoding,”
IEEE Transactions on Communications, vol. 54, pp. 587–590,
Apr. 2006.

[7] E. Zimmermann and G. Fettweis, “Generalized Smart Candidate
Adding for Tree Search Based MIMO Detection,” in ITG/IEEE

Workshop on Smart Antennas (WSA’07), Vienna, Austria, Feb.
2007.

[8] J. Anderson and S. Mohan, “Sequential coding algorithms: A
survey and cost analysis,” IEEE Transactions on Communica-

tions, vol. 32, pp. 169–176, Feb. 1984.
[9] D. Milliner and J. R. Barry, “An Adaptive M-Algorithm

for Detection of Multiple-Input Multiple-Output Channels,” in
IEEE Signal Processing Advances in Wireless Communications,

(SPAWC’07), Helsinki, Finland, 17.-20. June 2007.
[10] L. G. Barbero and J. S. Thompson, “A Fixed-Complexity

MIMO Detector Based on the Complex Sphere Decoder,” in
IEEE Workshop on Signal Processing Advances for Wireless

Communications (SPAWC 06), Cannes, France, July 2006.
[11] J. Jalden and B. Ottersten, “Parallel Implementation of a Soft

Output Sphere Decoder,” in Conference Record of the 39th

Asilomar Conference on Signals, Systems and Computers, Oct.
2005, pp. 581–585.

[12] E. Zimmermann and G. Fettweis, “Unbiased MMSE Tree
Search MIMO Detection,” in International Symposium on Wire-

less Personal Multimedia Communications (WPMC’06), San
Diego, USA, Sept. 2006.

