
Abstract

Although multiple pulse-position modulation performs well
on ideal channels, its performance on multipath channels is
degraded significantly. In an attempt to quantify the inherent pen-
alty due to multipath dispersion, we evaluate upper bounds for
the error probability of each modulation scheme in the presence
of intersymbol interference, considering both an unequalized
receiver and the optimal maximum-likelihood sequence detection
receiver. We also present upper and lower bounds of the channel
capacity for multiple pulse-position modulation and its variants,
PPM and overlapping PPM. Numerical results show that the
PPM-based schemes are significantly more sensitive to multipath
dispersion than is on-off keying.

I. Introduction

Non-directed infrared radiation offers several advantages
over radio as a medium for indoor wireless networks, including
an immense window of unregulated bandwidth, immunity to
multipath fading (but not multipath distortion), and a lack of
interference from one room to another [1]. But the intense back-
ground light of typical indoor environments is a severe impedi-
ment, and power-efficient modulation is needed to achieve high
data rates or long range.

The wireless infrared channel is accurately modeled by the
following baseband AWGN model [2]:

y(t) = x(τ)h(t – τ) dτ + n(t), (1)

wherex(t) represents the instantaneous optical power of the trans-
mitter, y(t) represents the instantaneous current of the receiving
photodetector, h(t) represents the multipath impulse response,
and n(t) is white Gaussian noise with two-sided power spectral
densityN0. The high intensity of the background light makes the
Gaussian noise model extremely accurate.

Becausex(t) represents optical power, it must satisfy:1

x(t) ≥ 0 and 〈x(t)〉 ≤ P, (2)

whereP is the average optical power constraint of the transmitter.

A recent paper [3] examined the performance of multiple
PPM on the wireless infrared channel assuming no multipath dis-
persion. Audeh and Kahn [4] examined the effects of intersymbol
interference (ISI) on PPM. We extend these results by examining
the effects of ISI on multiple PPM and overlapping PPM.

The channel capacity is considered to be a fundamental limit
for reliable transmission over a given channel [5]. Georghiades

∞–
∞∫

[6] considered the channel capacity for MPPM over a photon
counting channel, without intersymbol interference. Hirt [7] cal-
culated the channel capacity for a binary discrete-time Gaussian
channel using a Monte Carlo approximation. Shamai [8]derived
lower and upper bounds of the channel capacity with i.i.d. input
symbols for a scalar discrete-time Gaussian channel. In this
paper, we examine the channel capacity of various modulation
schemes on the channel (1) under the constraints of (2).

In Sect.II, we develop the general system model for multiple
PPM and its variants. In Sect.III, we analyze the performance of
the unequalized receiver and the maximum-likelihood sequence
detector. In Sect.IV, we present the expression for channel
capacity on the ideal channel and bound the channel capacity of
PPM-based schemes over ISI channels. We present numerical
results in Sect.V.

II. System Model

Consider the system model shown in Fig.1(a). Information
bits with rateRb b ⁄ s enter the encoder, which groups the bits into
blocks of lengthlog2L and maps each block to one ofL code-
wordsc0 … cL – 1, where each codeword is a binaryn-tuples of
weight w. The set of allowable codewords is what distinguishes
the different modulation schemes. When all () n-tuples of
weight w are valid codewords, the resulting modulation scheme
is called multiple PPM (MPPM). When the only valid codewords
are those binaryn-tuples of weightw in which thew ones are
consecutive, the result is overlapping PPM (OPPM). Finally,
whenw is restricted to unity, both MPPM and OPPM reduce to
conventional PPM modulation. Note that the number of code-
wordsL for MPPM, OPPM, and PPM is (), n – w + 1, andn,
respectively. The output of the encoder is a sequence of code-
words{xk} with rate1 ⁄ T = Rb ⁄ log2L. This sequence is serialized
to produce the binary chip sequence {xj} with rate n ⁄ T, where
xk = [xkn, xkn + 1, … , xkn + n – 1]T. The binary chip sequence
drives a transmitter filter with a rectangular pulse shapep(t) of
durationT ⁄ n and unity height. To satisfy the power constraint of
(2), the filter output is multiplied by(nP ⁄ w) before the signal is
sent across the channel.

As shown in Fig.1(a), the receiver uses a unit-energy filter
f(t) and samples the output at the chip raten ⁄ T producingyj. The
receiver groups the samplesyj into blocks of lengthn, producing
a sequence of observation vectors {yk}, where yk = [ykn,
ykn + 1, … , ykn + n – 1]T. The receiver passes each observation
vector through a decision device to form an estimate k of xk.
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The equivalent discrete-time channel between transmitted
and received chips is:

yj = hi xj – i + nj = sj + nj, (3)

wherehj is the equivalent chip-rate impulse response:

hj = p(t) ∗ g(t) ∗ f(t) , (4)

and wheresj is defined by (3).

We assume thatf(t) * f(– t) is a Nyquist pulse, which will be
true whenf(t) is matched top(t) or when f(t) is a whitened-
matched filter. In this case, the noise samples{nj} will be inde-
pendent zero-mean Gaussian random variables with varianceN0.
As shown in Fig.1(b), the equivalent vector channel between
transmitted codewordsxk and observation vectorsyk is given by:

yk = Hl xk – l + nk = sk + nk, (5)

where the channel impulse response is a Toeplitz sequenceHk,
with [Hk]ij = hkn + i – j, sk = [skn, skn + 1, … , skn + n – 1]T is the
signal component,nk = [nkn, nkn + 1, … , nkn + n – 1]T is the noise
component andµ is the number of memories in vector ISI
channel. Throughout this paper we constrain the input symbols
xk to be independent and uniformly distributed over a MPPM or
OPPM alphabet.

III. Performance Analysis

III-A. Without Equalization

By definition, the unequalized receiver uses the decision
device that would be optimal were there no ISI. In other words, it
decides on the codewordcl that maximizes the correlation:

Λl = cl
Tyk for l = 0, …, L – 1. (6)

If we knew thatxk = ci, and if we knew all past and future code-
wordsX´ = {…, xk–2, xk–1, xk+1, xk+2, …}, then the probability of
error k ≠ xk can be bounded using the union bound:

Pr[error |xk = ci, X´] ≤ Pr[Λi ≤ Λj | xk = ci, X´] (7)

= Pr[(ci − cj)Tnk > (ci − cj)Tsk| xk = ci, X´].

But (ci – cj)
Tnk is a zero-mean Gaussian random variable with

variancedijN0, wheredij = dH(ci, cj) is the Hamming distance
between codewordsci andcj. Therefore, (7) reduces to:

Pr[error |xk = ci, X´] ≤ . (8)

Averaging overall all possible codeword sequences gives:

Pr[error] ≤ , (9)

where the first summation is over all X´ ∈C M, whereC is the set
of L valid codewords andM + 1 is the number of nonzero terms
in the impulse response {Hk}. Finally, the bit-error probability is:

Pr[bit error] = 1 – (1 – Pr[error]) . (10)

For on-off keying (OOK), the bit stream, symbol stream, and
chip stream are all one in the same. By averaging over all pos-
sible bit streams {x´}, the total bit error probability is:

Pr[bit error] = , (11)

where the summation is overall all binaryM-tuples {x´}, where
M + 1 is the number of nonzero terms inhj.

Hereafter, we present simplified expressions for the symbol
error probability for the special case of an ideal channel, without
ISI. First, consider multiple PPM: when the channel has no ISI,
the expression (9) simplifies to:

Pr[error] ≤ , (12)

whereak = ( )( ) is the number of codewords with mutual
distance2k, and s = (P ⁄w) . This expression fol-
lows from the ISI-free results for the photon counting channel of
[6]. Whenw = 1, (i.e., for PPM), (12) simplifies further to:

Pr[error] ≤ (L – 1)Q , (13)

wheres = P . Next, consider ( ) OPPM: when the
channel has no ISI, the expression (9) simplifies to:
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Fig. 1.  (a) Block diagram of multiple PPM system; (b) equivalent vector model.
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Pr[error] ≤ , (14)

where bk = , (15)

and s = (P ⁄w) . This result uses the photon-counting
results of [6]. Finally, consider OOK: when the channel has no
ISI, then hj from (4) reduces to (2P ⁄ )δj, and so the error
probability from (11) simplifies to Q(P ⁄ ).

III-B. ML Sequence Detection

The maximum-likelihood (ML) sequence detector for PPM
is derived in [9], and it easily generalizes to multiple PPM and
overlapping PPM. The receiver filter is the whitened-matched
filter, so that hj is causal and minimum phase. The probability of
a symbol (block) error for the ML sequence detector is well
approximated at high SNR by:

Pr[error] ≈ Q(dmin ⁄2 ), (16)

where dmin is the minimum distance between received sequences:

dmin
2 = || Hm ek – m ||2. (17)

The above minimization is performed over all possible error
sequences {ek} starting at time zero, using an error alphabet of
{u – v: u ≠ v; u, v ∈C}, where C is the set of valid multiple PPM
codewords.

IV. Channel Capacity

IV-A. Memoryless Channel

If the channel is memoryless (ISI-free), so that H0 = I, Hl = 0
for all l ≠ 0 in (5), then the channel capacity (in bits per code-
word) under the i.i.d. constraint is [5]:

Iiid = I(x; x + n) =

log2

dy. (18)

Following [10], we substitute z = (y – xl) / σ and vm = xm / σ, so
that (18) reduces to:

Iiid = log2L –

log2

dz. (19)

The above equation contains an n dimensional integral and has
no simple closed form solution. As a consequence, we shall use
the Monte Carlo method to estimate Iiid in Sect. V.

IV-B. Multipath Channel

Following [8], we can also represent the channel (5) using
matrix notation:

Y = HX + N = S + N, (20)

where Y = [y0
T, y1

T, ..., yN– 1
T]T, X = [x0

T, x1
T, ..., xN– 1

T]T, S =
[s0

T, s1
T, ..., sN– 1

T]T, and N = [n0
T, n1

T, ..., nN– 1
T]T are Nn × 1

column vectors. The two equations (5) and (20) are equivalent as
N → ∞, and the rows of H are specified by circular shifts of
{Hi}:

. (21)

The channel capacity for (20) under the i.i.d. constraint is
[5][7]:

Iiid = (22)

= log2L –

log2

dz (23)

Exact evaluation of this expression is not possible, so we
resort to upper and lower bounds. In the following discussion, we
present lower and upper bounds for the channel capacity under
the i.i.d. constraint. Our presentation is a straightforward general-
ization of the scalar results of Shamai [8] to the vector channel
(5).

Following [8], we represent the entropy of the output vector
in (20) using the chain rule:

. (24)

Since conditioning decreases the entropy:

h(Y) ≥

= , (25)

where the last equality follows because sl, nl, nl–1 , …, n0 are
independent. Since sl = , (25) reduces to:

h(Y) ≥ . (26)

The mutual information between the input and output vectors is:

. (27)

This leads to the following lower bound IL for the channel
capacity under the i.i.d. constraint:
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(28)

We can evaluate (28) by replacingx with H0x in (18). As pointed
out in [9], the lower bound of the channel capacity is equivalent
to the mutual information between the input and the output of an
error-free block zero-forcing decision feedback equalizer.

We now present an upper boundIU for the capacityIiid of
(23). By the chain rule, we can represent the mutual information
between the input and output of (20) as:

I(Y; X) = =

. (29)

Since{xk} are i.i.d. and conditioning decreases the entropy:

=

=

= I(xl; ), (30)

where = xl + , and where = [H0
T, H1

T, ..., Hµ
T]T and

= [n0
T, n1

T, ..., nµ
T]T.

Let V = T = Bxl + w, where T is a matched filter, so

that B = Hm
THm andw is a zero-mean Gaussian vector

with correlation matrixE[wwT] = σ2B. SinceB is positive defi-
nite, it can be factored intoB = ΓΓT for some matrixΓ. We can
whiten the noise by applyingΓ -1 to V, yieldingZ = Γ -1V = ΓTxl
+ n, wheren has the same distribution asnl, a zero-mean Gaus-

sian vector with correlation matrixσ2I. Since both the matched
filter and noise whitener are information lossless, we have

I(xl; ) = I(xl; V) = I(xl; Z). Therefore, (30) reduces to:

I(Y; X) ≤ I(xl; ΓTxl + nl). (31)

Finally, taking the limit asN →€ ∞€yields our upper boundIU of
the channel capacity under the i.i.d constraint:

. (32)

We can evaluate (32) by replacingx with ΓTx in (18). Note that,

for the scalar case, the matrixΓT reduces to , and the

upper bound (32) reduces to the matched filter bound [8].

V. Numerical Results

To generate numerical results, we assume that the underlying
continuous-time channel in Fig.1 has impulse response
g(t) = We– Wtu(t), a first-order low-pass filter with a 3-dB band-
width of W, whereu(t) is the unit step function. Observe that the
channel has unity d.c. gain. We also assume that the receive filter
f(t) is a unit-energy whitened-matched filter.To reduce computa-
tional complexity, we truncate the vector channel of (5) to four
terms, so thatyk = Hl xk – l + nk. This truncation will have
no appreciable effect whenn is large or whenRb ⁄W is small,
although it may not be accurate for smalln and large Rb ⁄W.
Observe that the channel has unity d.c. gain.

We calculated the optical power required to achieve a 10-6

bit-error rate over this ISI channel. The results are summarized in
Fig. 2, where the normalized power requirement is plotted versus
the bit-rate-to-bandwidth ratioRb ⁄W. The power requirements
are normalized byPOOK = Q–1 (10–6 ), the power required
by OOK in the ideal case (W = ∞) to achieve a 10-6 bit error rate.

In Fig.2(a) we plot power requirement versusRb ⁄W when
equalization is not used. We see that some modulation schemes
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are more sensitive to ISI than others. At large bandwidth (Rb ⁄W
< 0.1), the ISI penalties are small. At one extreme is OOK (repre-
sented by the symbol ‘×’), with a power requirement increasing
slowly with decreasing bandwidth. At the other extreme is
OPPM, for which the power requirement grows rapidly with
decreasing bandwidth. It is thus highly desirable to use signal
processing at the receiver to mitigate ISI, either equalization or
maximum-likelihood sequence detection.

In contrast to the unequalized results of Fig.2(a), the results
of Fig. 2(b) are based on the maximum-likelihood sequence
detector (MLSD). Comparing Fig.2(a) and Fig.2(b), we see that
MLSD offers significant improvement. The power requirements
do not grow as rapidly as in the unequalized case, and the nor-
malized power requirement is always less than 12dB, even when
Rb ⁄W = 1. We note that MLSD is much more effective in
reducing the power requirement for OOK than for other modula-
tion schemes.

The exact capacityIiid of (23) is difficult to evaluate, but we
can form an estimate iid by choosingN suitably large in (23)
rather than lettingN → ∞, and by using the Monte Carlo method
with Q sample vectors to approximate the multiple integral. In
Fig. 3, Iideal (19), IL (28), and IU (32) are shown for 2 PPM, and
compared to the approximate channel capacityiid (based on
N = 6, Q = 1000). Our results show that IL and IU are 0.5dB
apart at moderate SNR whenRb ⁄W = 0.5.

When SNR= 3.3dB, the channel capacity is 0.95 bits⁄ code-
word when the channel is ideal, but is only 0.18 bits⁄ codeword
whenRb ⁄W = 0.5. To achieve a capacity of 0.95 bits⁄ codeword
using 2 PPM atRb ⁄W = 0.5, the required SNR is 9.5dB. In con-
trast, we see from Fig.2(b) that an uncoded 2-PPM system with
MLSD requires an additional 3.3dB, or 12.8 dB SNR, to achieve
10-6 BER atRb ⁄W = 0.5. Thus, the coding gain for a code based
on 2-PPM can be at most 3.3dB in this case. Higher coding gains
are possible for higher-order alphabets.

VI. Conclusions

We have examined the performance of multiple PPM and its
variants PPM and OPPM on ISI channels with additive white
Gaussian noise. We have derived the channel capacity over ISI
channels of multiple PPM and its variants PPM, OPPM, and
OOK with additive white Gaussian noise, assuming the code-
words are independent and uniformly distributed. For numerical
comparisons we considered a first-order low-pass filter channel
with bandwidthW. The error probability and channel capacity
results indicates that, although PPM modulation schemes are
extremely power efficient across ISI-free channels, their power
efficiency drops dramatically on ISI channels.
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