
Abstract — The BLAST ordered decision-feedback (ODF)
detector is a nonlinear detection strategy for multiple-input
multiple-output channels that can significantly outperform a
linear detector, at the expense of increased computational
complexity. We propose the partial decision-feedback (PDF)
detector, a simplified version of the ODF detector that only feeds
back one decision. The PDF detector reduces complexity
significantly compared to the ODF detector while suffering
limited performance loss. For example, over a 5 × 5 Rayleigh
fading channel with 64-QAM inputs, the PDF detector is one-
third as complex as the ODF detector, yet it requires only 0.5 dB
more average signal energy to reach a symbol-error rate of 10–3.

I.  INTRODUCTION

Multiple-input multiple-output (MIMO) communications
systems have generated a flurry of research recently because
of their promise of high spectral efficiency and spatial
diversity [1]. The maximum-likelihood (ML) detector
minimizes the word-error probability for the MIMO channel,
but its complexity increases exponentially with the number of
channel inputs and is often prohibitively complex. 

The BLAST ordered decision-feedback (ODF) detector
[2] achieves only a fraction of the diversity available in the
MIMO channel. However, as demonstrated in [3], the ODF
detector can still achieve high capacity with low complexity.
This motivated the development of various algorithms that
reduce the complexity of the ODF detector by an order of
magnitude [4–7], as well as algorithms that sacrifice
performance in order to reduce complexity further [8,9]. 

The linear detector [10] is implemented with a single
matrix-vector multiplication followed by a slicer. When the
channel pseudoinverse is estimated directly rather than
computed from an estimate of the channel [10, 11], the linear
detector requires an order of magnitude fewer computations
than the least complex ODF detector [4]. In fact, the ODF
detector can be viewed as a two stage process, where the first
stage is the linear detection filter [12]. In the second stage, a
decision-feedback mechanism improves performance, but also
increases complexity.

We propose the partial decision-feedback (PDF) detector,
which functions like the ODF detector, except that it cancels
interference from only one symbol decision. This allows the
PDF detector to attain an attractive balance between the
performance of the ODF detector and the low complexity of
the linear detector. Using the noise-predictive implementation
proposed in this paper, the PDF detector can achieve nearly
the same performance as the ODF detector with significantly
fewer computations. In fact, for sufficiently high signal-to-
noise ratio (SNR), the word-error rate of the PDF detector
approaches that of the ODF detector. 

The PDF detector is related to the group detector [13–15],
which divides symbols into two groups, and then detects the
first group using ML detection. After cancelling the
interference due to the first group of symbols, the second
group of symbols is detected using a suboptimal technique.
The PDF detector can be viewed as a special case of the group
detector where the first and second groups are both detected
using linear detection. In this paper we focus specifically on
the case where the first group contains only a single symbol.

Like the PDF detector, the multiuser detector of [16] also
cancels the interference of only a subset of available
decisions. It first divides the users into groups according to
their signal energies. Then, the detection strategy for each user
group is different, but a given user always uses every decision
from stronger users for interference cancellation. The PDF
detector not only differs in how it orders the users, but it also
removes the interference from only a subset of the stronger
users. 

The remainder of this paper is organized as follows. The
PDF detector is presented in Section II. In Section III we show
how the word-error probability of the PDF detector
approaches that of the ODF detector at high SNR. Finally, in
Section IV we use simulations to compare the performance
and complexity of the PDF, ODF, and linear detectors. 

II.  PARTIAL NOISE-PREDICTIVE DF 

This paper considers a MIMO channel with N inputs
a = [a1, … aN]T and M outputs r = [r1, … rM]T:

r = Ha + w , (1)

where H = [h1, … hN] is a complex M × N channel matrix,
and where w = [ w1, … wM]T is additive white noise. We
assume that the columns of H are linearly independent, which
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implies that there are at least as many outputs as inputs,
M ≥ N. We assume that the noise components are uncorrelated
with complex variance σ2, so that E[ ww*] = σ2I, where w*
denotes the conjugate transpose of w. Further, we assume that
the inputs are chosen from the same unit-energy alphabet A
and are uncorrelated, so that E[aa*] = I. 

The PDF detector can significantly reduce complexity
relative to the ODF detector while suffering limited
performance loss. Before comparing the two detectors, we
first describe the PDF detector. Following a noise-predictive
implementation [12,4], the PDF detector begins with a
permuted version of the zero-forcing linear detection filter:

y = ΠCr , (2)

where C = (H*H)–1H* is the channel pseudoinverse, and
where Π is a permutation matrix that moves the first symbol
to be detected into the first row of y. The effective front-end
filter is G = ΠC, which removes intersymbol interference,
yielding:

y = + n , (3)

where y = [y1, … yN]T, = Πa is a reordered version of the
channel inputs, and where the noise n = [n1, … nN]T = Gw
is no longer white; instead, it has autocorrelation matrix
E[nn*] = σ2Π(H*H)–1Π*. 

The first step in the PDF detector is to decide which
symbol to detect first, and define Π accordingly. To minimize
error propagation, we propose that the symbol with the
smallest noise variance be detected first. Since the noise
variance of the first symbol is proportional to the squared
norm of the corresponding row of the channel pseudoinverse,
the index of the first symbol is:

i = || cj ||2, (4)

where cj is the j-th row of C. The permutation matrix Π is then
defined by swapping the first and i-th rows of the identity
matrix.

The first decision, 1, is found by quantizing y1 to the
nearest element of A . Observe that whenever the first decision
is correct, 1 = 1, the receiver can recover the first noise
sample by subtracting the quantizer output from its input,
according to:

n1 = y1 − 1. (5)

Since the other noise samples {nk} are correlated with n1, we
can exploit knowledge of n1 to predict {nk} for k > 1. Let
pk( y1 – 1) denote the predicted value of the noise nk, where
pk is the prediction coefficient. The PDF detector subtracts
this estimate from yk before making a decision, yielding:

k = dec{yk – pk( y1 − 1)}, (6)

where dec{x} rounds x to the nearest element of A , and where
p1 = 0. Finally, in order to deliver its estimate of a, the PDF
detector must swap the 1-st and i-th elements of .

Just as i was chosen to minimize the noise variance of the
first symbol, the best prediction coefficients also minimize the
noise variance of the remaining symbols. This criterion leads
to a simple equation for calculating {pk}. When 1 is correct,
the noise variance for the k-th symbol reduces to:

E[| nk – pkn1 | 2] = E[| gkw – pkg1w | 2] 
= σ2|| gk – pkg1||2, (7)

where gk is the k-th row of G. The noise variance is
minimized when the term pkg1 is the projection of gk onto the
subspace spanned by g1, so the k-th prediction coefficient is
given by:

pk = gk g1* ⁄ || g1||2. (8)

The noise-predictive ODF detector proceeds in a similar
fashion, but it improves performance by using {n1, …, nk–1}
along with k – 1 prediction coefficients to estimate nk more
accurately [4]. Calculating the extra prediction coefficients to
achieve this improved noise estimate requires significantly
more complexity. We will see later that this extra complexity
does not always buy a significant gain in performance.

An efficient implementation of the PDF detector is given
in Fig. 1. Assuming that the detector knows the channel
pseudoinverse, the total number of complex operations
required by the PDF detector per detected word is the sum of
the computations in Fig. 1, namely 6MN – 2M – N + 1.
Table 1 compares this complexity to that of the ODF and
linear detectors, where we see that the complexity of the PDF
and linear detectors increases at a slower rate, O(MN), than
that of the ODF detector, O(MN2). 
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ã

argmin
j ∈{1, 2, … N}

â
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PDF algorithm:  Input: C, r; Output:           Complexity

(A-1) G = C
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(A-3) i = Ej 

(A-4) swap 1-st and i-th rows of G

(A-5) y = Gr (2M – 1)N

(A-6) 1 = dec{y1}
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 Fig. 1.  The partial DF detector algorithm and its complexity. 
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III.  PERFORMANCE ANALYSIS

The word-error rate (WER) of the PDF detector
converges to that of the ODF detector at high SNR because the
error rate of the first symbol detected dominates the WER of
both detectors. In order to see this, let us consider the
probability of error on the first symbol compared to the
probability of error on the remaining symbols. Let Ej
represent the event of an error on the j-th symbol detected, so
that  E = Ej represents the occurrence of a word error.
For the two detectors, the probabilities of word error are given
by the following expressions:

Pr[E | PDF] = Pr[E1| ODF] + Pr[ | ODF]Pr[E | , ODF], (9)

Pr[E | PDF] = Pr[E1| ODF] + Pr[ | ODF]Pr[E | , PDF],(10)

where  is the complement of E1, and we used the fact that
Pr[E1 | PDF] = Pr[E1 | ODF]. In the absence of error
propagation, the symbol-error rate of the j-th symbol of the
ODF detector has diversity order M – N + j [17], meaning that
it decays asymptotically as SNR–(M – N + j). In (9), this means
that Pr[E1 | ODF] decays as SNR–(M – N + 1), and further that
Pr[E | , ODF] decays as SNR–(M – N + 2), as argued in
Theorem 1 of [17]. Similarly, since Pr[E | , PDF] behaves
like the WER of a linear detector applied to an M × (N – 1)
channel, it also decays asymptotically as SNR–(M – N + 2).
Therefore, the second terms in (9) and (10) converge to zero
faster than the first terms:

, (11)

. (12)

In other words, the error rate of the first symbol dominates at
high SNR. It follows that the WER of the PDF detector
converges to that of the ODF detector at high SNR: 

. (13)

IV.  NUMERICAL RESULTS

In this section, we compare the performance and
complexity of the PDF, ODF and linear detectors. We will
show that the performance-complexity trade-off depends on
the dimensions of the channel, as well as the size of the input
alphabet. Although the previous section predicts identical
performance for the PDF and ODF detectors at high SNR, we
will see that there can be a significant gap at low SNR. 

We consider noise-predictive implementations of the PDF
and ODF detectors that append add-on processing after the
channel pseudoinverse has been applied to the channel output.
Therefore, in our comparison we assume that the channel
pseudoinverse is known to both detectors. In the simulations
shown here, the SNR is taken as the average energy per bit on
each receive antenna divided by the noise power:
SNR = N (2 σ2 log2|A |)–1. 

A. Performance Comparison

In order to compare the performance of the ODF and PDF
detectors, we simulated 106 Rayleigh fading 6 × 6 and 6 × 5
channels with 64-QAM inputs. Fig. 2 shows the average
symbol-error rate (SER) curves of the ODF, PDF, and linear
detectors as measured on these channels. For the 6 × 6
channel, the SER of the PDF detector approaches that of the
ODF detector at SER = 10–3, as predicted in Section III, while
for the 6 × 5 channel the SER of both detectors fall well below
10–4 before converging.

The reason the SER of the PDF and ODF detectors do not
converge sooner can be clearly demonstrated by extracting the
SER of the i-th symbol. To do so, Fig. 3 shows the SER of the
PDF detector for the i-th symbol, P1 = Pr[ E1 | PDF ], and the
remaining symbols when the i-th symbol was correctly
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Table 1: Number of operations per detected word.
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 Fig. 2.  Overall SER curves averaged over 106 different 6 × 6 and
6 × 5 Rayleigh fading channels with 64-QAM inputs. 
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detected, PR = Σ Pr[ Ej | , PDF ] / N, as measured over
the same 6 × 6 and 6 × 5 channels as before. Observe that PR
decreases faster than P1 for both the 6 × 6 and 6 × 5 channels,
therefore P1 will eventually dominate PR. For the 6 × 5
channel, the overall SER of the ODF and PDF detectors fall
below 10–6 before the SNR is sufficiently high for
convergence. 

B. Performance Versus Complexity

Fig. 4 shows the complexity of the linear, PDF, and ODF
detectors for M × M, M × (M – 1), and M × (M – 2) channels,
where complexity is taken from Table 1. We see that the PDF
detector complexity increases at the same rate as that of the
linear detector as M increases, but it is approximately three
times as large. On the other hand, the ODF detector is
significantly more complex than the PDF detector, even for
small M, and its complexity increases at a faster rate.

In order to see how much performance improvement the
additional processing of the ODF and PDF detectors delivers,
we compare the SNR they require to reach a target SER to that
of the linear detector. Fig. 5 shows SNR improvement as
averaged over 105 realizations of Rayleigh fading channels
with the same dimensions considered in Fig. 4, with 4 QAM
inputs. We see that the SNR improvement of the PDF detector
decreases as the diversity M – N + 1 of the channel increases.
While the SNR improvement of the ODF detector is
increasing with M for every channel dimension, the SNR
improvement of the PDF detector is increasing with M only
for square channels.

In order to see the trade-off between performance and
complexity, we can combine the information presented in
Fig. 4 and Fig. 5. Fig. 6 shows this performance-complexity
trade-off for the same channel dimensions considered before
with 4 and 64 QAM inputs, where the performance and

complexity are measured relative to the ODF detector. The
vertical axis shows the SNR penalty, how much more SNR the
linear and PDF detector require than the ODF detector. The
horizontal axis shows the complexity of the linear and PDF
detectors normalized by the complexity of the ODF detector.
This graph allows us to easily see the performance-complexity
trade-off between the ODF, PDF, and linear detectors. For
example, consider the 5 × 5 channel with 64-QAM inputs, the
graph shows that the PDF detector is about one third as
complex as the ODF detector, yet suffers only 0.5 dB of
penalty in SNR.

The PDF detector always gives the designer the ability to
trade performance for reduced complexity, but in some cases
it has a better return. For example, the size of the alphabet
affects performance but not complexity. Specifically, for the
6 × 6 channel, a 4-QAM alphabet incurs 1.5 dB more
performance loss than a 64-QAM alphabet but their

N
j 1= E1

 Fig. 3.  The SER P1 of the i-th symbol and the SER PR of the remaining
symbols, both for the PDF detector, the latter assuming no
error propagation from the i-th symbol.
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 Fig. 4.  Complexity of the ODF, PDF, and linear detectors for M × M,
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channels with 4-QAM inputs. 
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complexities are the same. Also, for the PDF detector, the
M × M channels incur less performance loss and decrease
complexity more than the M × (M – 1) channels. Specifically,
for the 6 × 6 channel with 64-QAM inputs, the SNR penalty is
0.7 dB and the normalized complexity is 32% for the PDF
detector. Meanwhile, for a channel with one less input, the
PDF detector suffers an SNR penalty of 2.7 dB and has a
normalized complexity of 38%.   

V.   CONCLUSION

The partial decision-feedback detector combines the
strategies of the BLAST ordered decision-feedback detector
and the linear detector. We have shown that, by feeding back
only one decision, the PDF detector can significantly reduce
complexity while incurring minimal performance loss relative
to the ODF detector. This leads to an impressive performance-
complexity trade-off. For example, simulations of a 5 × 5
Rayleigh fading channel with 64-QAM inputs show that the
PDF detector is one third as complex as the ODF detector, yet
suffers only 0.5 dB of penalty in SNR.
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