
Abstract — We present a new technique for blind equaliza-
tion of multiple-input multiple-output (MIMO) communication
channels. In scalar channels it is common to follow a blind
equalizer adapted according to the constant-modulus algorithm
(CMA) by a phase-locked loop to compensate for carrier fre-
quency offset. We generalize this structure to multiple dimen-
sions, and propose to follow a blind MIMO equalizer adapted
according to the vector CMA by a multidimensional phase-
locked loop. We show through simulations that the new tech-
nique can converge much faster than prior techniques.

I. INTRODUCTION

A multiple-input, multiple-output (MIMO) channel model
arises whenever a receiver observes signals from multiple trans-
mitters through multiple sensors. Depending on the application,
the interference among the transmitted signals may be called co-
channel interference, crosstalk, or multiuser interference, and the
mitigation of this interference has motivated extensive research
[1–9].

A simple MIMO channel model is shown in Fig. 1. The
channel inputxk is a sequence ofn × 1 vectors whose compo-
nents represent the symbol sequences ofn different users. The
channel transfer function isH(z). For simplicity we neglect
noise, and we assume thatH(z) is square, so that the dimension
of the channel outputrk is alson.

The objective of a MIMO equalizer, as shown in Fig. 1, is to
mitigate both intersymbol interference and co-channel interfer-
ence. Most prior work in MIMO equalization theory has
assumed that the channel responses are known or that a training
sequence is available. Only recently has the problem of blind
MIMO equalization (without training) been addressed, and sev-
eral blind algorithms based on vector generalizations of the con-
stant-modulus algorithm (CMA) have been proposed [10,11].

Just as the scalar CMA is invariant to phase rotations, the
vector CMA [11] is invariant to unitary transformations. In
[10,11], this unitary rotation was avoided by modifying the

 Fig. 1. A MIMO channel and a blind MIMO equalizer.
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vector CMA cost function in an attempt to force each component
of the vector-valued signal to have a constant modulus. This
pointwise technique is directly analogous to the scalar algorithm
of [12]. In contrast, in this paper we propose to identify the uni-
tary rotation using a multidimensional phase-locked loop (PLL).
This approach is a multidimensional generalization of the
common scalar receiver consisting of a CMA equalizer followed
by a decision-directed carrier loop [13].

In Sect.II we review two blind equalization algorithms for
MIMO channels: the vector CMA [11] and the combination
CMA [10]. In Sect.III we review the structure of a scalar PLL,
and in Sect.IV we derive the multidimensional PLL. In Sect.V
we present numerical examples.

II. BLIND EQUALIZATION FOR MIMO CHANNELS

Consider the adaptive MIMO linear equalizer structure
shown in Fig. 1; it is a transversal filter withL matrix-valued
taps described by the matrixCk

T = [C0,k C1,k … CL–1,k]. Let Rk
T

= [rk
T rk–1

T… rk–L+1
T] be a vector of equalizer inputs, so that

the equalizer output at timek is yk = Ck
TRk.

A. Vector Constant Modulus Algorithm

As described in [11], the vector CMA for blind equalization
is a natural extension of the conventional CMA [14] to MIMO
channels. The vector CMA cost function is:

J = E[(|| yk ||2 – M)2], (1)

whereM = E[|| xk ||4] ⁄ E[|| xk ||2], and the weight update equation
for the vector CMA is:

Ck+1= Ck – µRk
*ek

T, (2)

whereµ is the step size and the error signal is defined as:

ek = yk (||yk ||2 – M). (3)

The cost function (1) is invariant to unitary transformations.
In other words, if F(z) = C(z)H(z) is the overall system transfer
function from the channel input to the equalizer output, then the
cost function will be minimized whenF is any unitary matrix.

If the components ofxk are selected from an alphabet with
constant modulus, thenF need not be unitary to minimizeJ. For
example, a diagonal matrixF = diag[λ1, λ2, …, λn] will minimize

J when |λi|
2 = n and the alphabet is constant modulus. In

addition, if thek-th row of F contains only one nonzero entry of
the forme jθk for someθk, such as , thenF will also mini-

mizeJ.
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However, if the alphabet is not constant modulus and the
channel is memoryless, then we hypothesize that only a unitary
matrix will minimize the vector CMA cost function:

Conjecture. If the components ofx are independent
and uniformly distributed over a discrete alphabet with
non-constant modulus, theny = Fx minimizes the cost
functionJ = E[(||y ||2 – M)2] if and only ifF is unitary.

B. Combination of Vector and Pointwise CMA

To prevent the equalizer from converging to a unitary matrix
rather than the identity matrix, Oda and Sato modified the vector
cost function by adding a pointwise component, yielding the so-
calledcombination CMA cost function [10]:

Jc = AE[(|| yk ||2 – M)2] + B E[(|yk
(i)|2 – Mi)

2], (4)

where Mi = E[|xk
(i)|4] ⁄ E[|xk

(i)|2] and A and B are positive
constants. The purpose of the first term in (4) is to forceyk to
have a constant modulus, and the purpose of the second term is
to force each componentyk

(i) of yk to have a constant modulus.
Although a unitary matrix will minimize the first term, it will not
minimize the second term. The combination CMA reduces to the
pointwise CMA whenA = 0 [11].

Although originally defined for multidimensional systems,
the combination CMA can be used in a complex-valued scalar
system by viewing it as two-dimensional real-valued system.
Indeed, this viewpoint is adopted in [12] to eliminate carrier
phase offset. However, it is much more common to append a
phase-locked loop after a conventional scalar CMA equalizer to
eliminate carrier phase offset [13].

The simplicity and effectiveness of the CMA equalizer-PLL
cascade in scalar systems has motivated us to propose a similar
structure for MIMO systems, as described in Sect.IV. Before
describing the MIMO PLL, however, we first review the compo-
nents of a scalar PLL.

III. A SCALAR PHASE-LOCKED LOOP

Perhaps the most popular structure for blind equalization of
scalar channels is a CMA equalizer followed by a decision-
directed PLL to track phase error, as illustrated in Fig. 2-a [13].
The scalar CMA cost function is insensitive to the phase of the
received signal, so that any carrier frequency offset between the
receiver local oscillator and the transmitter oscillator will cause
the constellation after the equalizer to rotate. Letθk be the phase
offset at timek, so that after convergence the equalizer outputyk
is related to the transmitted symbolxk by yk = e jθkxk. The carrier
recovery loop generatesUk = e jφk, whereφk is the receiver’s esti-
mate ofθk. If φk ≈ θk, then the productzk = Uk

*yk reduces tozk ≈
xk, and decisions based onzk will be accurate.

As shown in Fig. 2-a, the decision-directed carrier loop gen-
eratesUk by first estimating the phase differenceεk between the
slicer inputzk and slicer output k using a phase detector. To
deal with the noisy case whenzk and k may have different
magnitudes, it is common for the phase detector to normalize

both to have unity magnitude before estimating the phase differ-
ence, yielding an estimate of [15]:

εk = ∠{x*z} = sin–1 [Im{x*z}], (5)

wherex = k ⁄ | k| andz = zk ⁄ |zk|.

The phase estimateεk is then passed through a loop filter with
constant transfer functionL(z) = K. (A constant loop filter is suf-
ficient to track a constant phase error, but a higher-order filter is
necessary to track a constant frequency error.) The loop filter
output drives a VCO whose output isUk. By definition, the VCO
outputUk is related to its inputKεk by:

Uk = exp{ j Kεi} = exp{ jKεi}. (6)

Therefore, a VCO can be viewed in two ways: as a sum-accumu-
lator followed by a complex exponentiator, or as a complex
exponentiator followed by a product-accumulator. We choose the
second viewpoint to facilitate its generalization to vector signals.

As shown in the figure, we define therotation detector as the
cascade of the phase detector, loop filter, and exponentiator. It’s
outputTk = exp{ jKεk} rotates a fractionK of the way from k to
zk. The positive constantK is typically much less than unity.
Note that, using (5),Tk can also be expressed asTk = (x*z)K.

IV. A MULTIDIMENSIONAL PHASE-LOCKED LOOP

We now propose a new blind equalization technique for
MIMO channels by generalizing the scalar PLL of the previous
section to multiple dimensions. Specifically, rather than modi-
fying the vector CMA equalizer to avoid unitary rotations, we
propose to append a multidimensional PLL to identify and elimi-
nate any rotation.

Because the vector CMA cost function is invariant to unitary
transformations, the equalizer outputyk after convergence may
be related to the transmitted symbol vector xk by a unitary
matrix. We propose to append a multidimensional generalization
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 Fig. 2. A CMA equalizer followed by a decision-directed PLL for
(a) scalar channels; (b) MIMO channels.
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of the scalar decision-directed phase-locked loop to generate an
estimateUk of this unitary matrix. If this estimate is accurate,
then the productzk = Uk

† yk [where( ⋅ )†  denotes conjugate trans-
pose] reduces tozk ≈ xk, so that decisions based onzk will be
accurate.

As shown in Fig. 2-b, the MIMO receiver generatesUk in a
way similar to the scalar receiver. The key component of the loop
is the rotation detector, whose outputTk is a unitary rotation
matrix that approximately rotates a fraction of the way from k
to zk. Specifically, let z´ be a vector between k andzk:

z´ = λzk + (1 – λ) k, (7)

whereλ ∈ (0, 1), and define the unit-length vectorsx andz by:

x = k ⁄ || k || and z = z´ ⁄ ||z´ ||. (8)

Then we defineTk as a unitary matrix mappingx to z.

Unlike the scalar case,Tk is not unique. We now derive the
family of unitary matricesTk mapping the unit-length vectorx to
the unit-length vectorz. Let p denote the inner product:

p = x† z. (9)

Becausex andz are unit length,p satisfies|p|≤ 1. We consider
the cases|p| = 1 and|p| < 1 separately, starting with|p| = 1.

If |p| = 1 thenz = px. LetV = [x, v2, v3, v4, …, vn] be a uni-
tary matrix whose columns form a basis for the entire space. In
this case, the set of all unitary matricesTk mappingx to z is
given by:

Tk = V V† , (10)

whereJ is an arbitrary(n – 1) × (n – 1) unitary matrix. Because
x andz convey information about the one-dimensional subspace
spanned byx only, we should chooseJ so as not to affect the
vectors orthogonal to this subspace; in other words, we should
chooseJ = I, in which case (10) reduces to:

Tk = I + (p – 1)xx† (when|p| = 1). (11)

On the other hand, if|p| < 1, then the span ofx andz is a
two-dimensional subspace. Let us introduce a basis{x, y} for this
subspace, where from the Gram-Schmidt procedure we have:

y = (z – px) ⁄ . (12)

(The basis vector y should not be confused with the equalizer
outputyk.) LetV = [x, y, v3, v4, …, vn] be a unitary matrix whose
columns form an orthonormal basis of the entire space. In terms
of this basis,x andz are given by the vectors [[1, 0, …, 0]T and

[p, , 0, 0, …, 0]T, respectively. It can be shown that any

unitary matrix mapping[1, 0]T to [p, ]T must have the
form:

 = , (13)

for someβ ∈(– π, π]. Therefore, the set of all unitary matricesTk
mappingx to z is given by:

Tk = V V† , (14)

whereβ ∈(– π, π] andJ is an arbitrary(n – 2) × (n – 2) unitary
matrix.

Again, becausex and z convey information about the sub-
space spanned byx and z only, we chooseJ so as not to affect
the vectors orthogonal to this subspace; in other words, we
chooseJ = I. The choice ofβ is not as obvious. Observe from
(13) and (14) thatdetTk = e jβ whenJ = I and|p| < 1. On the
other hand, from (11) we see thatdetTk = p when|p| = 1. This
suggests that, to be consistent in our choice ofβ as |p|
approaches unity, we should chooseβ = ∠p = sin–1 [Im{p ⁄ |p|}].
The choiceβ = ∠p also minimizes the Frobenius norm of – I,
which is intuitively pleasing because we expect Tk to approxi-
mateI near convergence. For these reasons we chooseβ = ∠p in
our algorithm. With J = I andβ = ∠p, (14) reduces to:

Tk = I + (|p| < 1). (15)

In summary, the rotation detector of Fig. 2-b is defined by
(15) and (11), together with (7) – (9) and (12), and is parameter-
ized by the constantλ.

As in the scalar case of (6), the MIMO VCO accumulates the
rotation vectors, so that the receiver’s estimate of the overall
rotation matrix at timek is given by:

Uk = Ti , (16)

which can be implemented recursively:

U–1  = I,
Uk = TkUk–1 . (17)

We remark that a second-order loop is not necessary, and that
the first-order MPLL described above is sufficient for our pur-
poses, because the unitary matrix being estimated after conver-
gence will be a constant.

V. SIMULATION EXAMPLES

In this section we present simulation results for three experi-
ments, and compare the performance of the multidimensional
PLL with that of the combination and pointwise CMA equal-
izers. In all cases we assume a noiseless2 × 2 system, with the
two transmitters being independent and uniformly distributed
over a 16-QAM alphabet. We assume that the combination CMA
parameters areA = 4 andB = 1, and that each equalizer is initial-
ized to the identity matrix. The modulus parameters for a two-
user 16-QAM system areM = 23.2 andMi = 13.2.
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A. Experiment One: Memoryless Unitary Channel

In the first experiment we consider a channel matrix that is
unitary, so as to demonstrate the speed with which the multidi-
mensional PLL can identify and eliminate unitary transforma-
tions. Specifically, consider a memoryless two-user system with
a unitary channel matrixH = , where  is defined in (13) with
parametersp = 0.5 + jπ–1  andβ = π ⁄ ln2. Assume that the equal-
izer has one tap, and assume a zero step size for vector CMA and
a step size ofµ = 10–4  for both pointwise and combination CMA.
(A nonzero step size for vector CMA will not appreciably affect
the results, because the output of a unitary channel already mini-
mizes the vector CMA cost function; hence, a nonzero step size
will merely cause the equalizer to hover about the identity
matrix.) The MPLL parameter was chosen to beλ = 0.1.

In Fig. 3 we plot the eight MPLL coefficients {Re[Uij],
Im[Uij], i,j = 1,2} versus time. Observe that the MPLL converges
after only about 100 iterations. In Fig. 4 we plot the real part of

output one versus time for the three algorithms. (The results for
the imaginary part and those for output two are not shown but are
qualitatively similar.) In Fig. 5 we show the constellation dia-
grams (for time 200 to 400) before the PLL, after the PLL, for
the pointwise CMA, and for the combination CMA. These fig-
ures show that the MPLL converges quicker and more abruptly
than the other techniques.

B. Experiment Two: Memoryless Near-Singular Channel

In this experiment we consider a memoryless two-user
system with the following channel matrix:

H = . (18)

Although there is no crosstalk for the first user, the crosstalk for
the second user is particularly severe, with the interference
power exceeding the signal power by 6dB. With this channel
there is a tendency for some blind equalization algorithms to
converge to an undesirable overall transfer function of:

F = . (19)

Assume step sizes of8 × 10–4 , 5 × 10–4 , and 10–4  for vector
CMA, pointwise CMA, and combination CMA, respectively.
Assume a MPLL parameter ofλ = 0.05.

R̃ R̃

 Fig. 3. PLL coefficients versus time for experiment one.
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 Fig. 4. Real part of output 1 versus time for experiment one:
(a) vector CMA after MPPL; (b) pointwise CMA;
(c) combination CMA.
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In Fig. 6-a we plot the eight vector CMA equalizer coeffi-
cients {Re[Cij], Im[Cij], i,j = 1,2} versus time, and in Fig. 6-b we
plot the MPLL coefficients {Re[Uij], Im[Uij], i,j = 1,2} versus
time. Observe that the PLL achieves lock near time 500.

In Fig. 7 we show the constellation diagrams (from time 1000
to 1200) for the different algorithms. The constellations after the
MPLL are clean, and the overall transfer function U† CvH con-
verges approximately to the identity matrix. On the other hand,
despite the fact that the constellations for the pointwise algo-
rithm appear to be clean, the overall transfer function CpH con-
verges approximately to the undesirable matrix of (19); thus, the
pointwise equalizer is a failure, because both of its outputs lock
onto the signal of user 1, ignoring the signal of user 2.

C. Experiment Three: Channel with Memory

Consider a system with the following channel matrix:

H(z) =  + z–1 . (20)

Assume a five-tap equalizer, and assume step sizes of 10–4 , 10–5 ,
and 2 × 10–5  for vector CMA, pointwise CMA, and combination
CMA, respectively. Assume a MPLL parameter of λ = 0.03.

In Fig. 8 we plot the real part of output 1 versus time for the
vector CMA with MPLL and combination CMA algorithms. In
Fig. 9 we show the constellations for the various algorithms from
time 4600 to 5000. As before, the MPLL converges faster than
the other equalizers.

In each of the above experiments, the vector CMA with a
multidimensional PLL converged faster than the combination
CMA or the pointwise CMA. Although the simulations consid-
ered only a few sample channels, we expect faster convergence
on a broad class of channels. Intuitively, this is because the
channel matrix will almost always be closer to a unitary matrix
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 Fig. 6. Experiment two: (a) Equalizer coefficients for vector CMA
versus time; (b) MPLL coefficients versus time.
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 Fig. 7. Constellations for experiment two (time 1000 to 1200).

 Fig. 8. Experiment three: Output 1 versus time for (a) MPLL;
(b) combination CMA.
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(of which there are infinitely many) than to the identity matrix.
Therefore, if the equalizer is initialized to the identity matrix, the
overall transfer function starts out much closer to a unitary
matrix than to the identity matrix; thus, the equalizer can con-
verge much faster if it need only force the overall transfer func-
tion to be unitary. As illustrated dramatically in Sect.V.A, the
MPLL is able to eliminate unitary transformations must faster
than the pointwise and combination CMA equalizers.

VI. SUMMARY

After convergence of the vector CMA, the overall transfer
function from the channel input to the equalizer output may be
an arbitrary unitary matrix. To identify and eliminate this rota-
tion matrix, we generalized the decision-directed phase-locked
loop to vector-valued signals. The cascade of a blind MIMO
equalizer adapted according to the vector CMA and a multidi-
mensional PLL is a natural extension of a commonly used
strategy for blind equalization of scalar channels. Simulation
results show that the vector CMA with a multidimensional PLL
can converge must faster than other known blind MIMO equal-
ization algorithms.
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