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Abstract — We present a metechnique for blind equaliza- vector CMA cost function in an attempt to force each component
tion of multiple-input multiple-output (MIMO) communication of the \ectorvalued signal to hee a constant modulus. This
channels. In scalar channels it is common to ¥ol® blind pointwise technique is directly analogous to the scalar algorithm
equalizer adapted according to the constant-modulus algorithrof [12]. In contrast, in this paper we propose to identify the uni-
(CMA) by a phase-load loop to compensate for carrier fre- tary rotation using a multidimensional phase-kxtkoop (PLL).
gueny offset. We generalize this structure to multiple dimen- This approach is a multidimensional generalization of the
sions, and propose to folloa blind MIMO equalizer adapted common scalar recgir consisting of a CMA equalizer folled
according to the ector CMA by a multidimensional phase- by a decision-directed carrier loop [13].
locked loop. V¢ shev through simulations that the wetech-

’ ) ! In Sect.ll we review two blind equalization algorithms for
nigue can coverge much éster than prior techniques.

MIMO channels: the ector CMA [11] and the combination
CMA [10]. In Sectlll we review the structure of a scalar PLL,
and in SectlV we derve the multidimensional PLL. In Seit.
we present numericakamples.

I. INTRODUCTION

A multiple-input, multiple-output (MIMO) channel model
arises whener a receier obseres signals from multiple trans-
mitters through multiple sensors. Depending on the application
the interference among the transmitted signals may be called ct
channel interference, crosstalk, or multiuser interference, and th

Il. BLIND EQUALIZATION FOR MIMO CHANNELS

Consider the adapg MIMO linear equalizer structure

mitigation of this interference has matted atensive research
[1-9].

A simple MIMO channel model is stvm in Fig. 1. The
channel input, is a sequence of x 1 vectors whose compo-
nents represent the symbol sequences different users. The
channel transfer function i#(z). For simplicity we neglect
noise, and we assume tH#(z) is square, so that the dimension
of the channel output, is alson.

The objectve of a MIMO equalizeras shan in Fig. 1, is to

shavn in Fig. 1; it is a tran®rsal filter withL matrix-valued
taps described by the matiy” = [Cy;, Cy;, ... C1_14]. LetR,T

= [r,T rp4T... 7,171 be a ector of equalizer inputs, so that
the equalizer output at tinkeisy;, = C,TRy,.

A. Vector Constant Modulus Algorithm

As described in [11], theeetor CMA for blind equalization
is a natural etension of the carentional CMA [14] to MIMO
channels. Theactor CMA cost function is:

J = El(||yy, |B - M), )

mitigate both intersymbol interference and co-channel interfer-

ence. Most prior wrk in MIMO equalization theory has
assumed that the channel responses armerkioo that a training
sequence isvailable. Only recently has the problem of blind
MIMO equalization (without training) been addressed, and se
eral blind algorithms based oeator generalizations of the con-
stant-modulus algorithm (CMA) ke been proposed [10,11].

Just as the scalar CMA isvariant to phase rotations, the
vector CMA [11] is ivariant to unitary transformations. In
[10,11], this unitary rotation as &oided by modifying the
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Fig. 1. A MIMO channel and a blind MIMO equalizer
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whereM = E[||x;, |"1/El|| 2 |21, and the weight update equation
for the \ector CMA is:

Cp1= Cp— R} e, )
where is the step size and the error signal is defined as:

er = (lyy IF - M. (3)

The cost function (1) is w@riant to unitary transformations.
In other words, if F(z) = C(z)H(z) is the werall system transfer
function from the channel input to the equalizer output, then the
cost function will be minimized whek is ary unitary matrix.

If the components af;, are selected from an alphabet with
constant modulus, thdnneed not be unitary to minimize For
example, a diagonal matrik = diagfA1, Ag, ..., A,] will minimize
J when z IA;12=n and the alphabet is constant modulus. In
addition, if thek-th row of F contains only one nonzero entry of
the forme/® for some8,, such aﬁ 0], thenF will also mini-

0
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However, if the alphabet is not constant modulus and theboth to hae unity magnitude before estimating the phaseif
channel is memoryless, then wgpbthesize that only a unitary ence, yielding an estimate of [15]:
matrix will minimize the ector CMA cost function: £ = 0’2} = sin! [Im{x'2)], 5)
Conjecture. If the components of are independent wherex = %,/ 1% ,1 andz =z,/ |z, 1.
and uniformly distribted wer a discrete alphabet with
non-constant modulus, ther- Fx minimizes the cost
functiond = E[(||y |P - M)?] if and only ifF is unitary

The phase estimagg is then passed through a loop filter with
constant transfer functiailz) = K. (A constant loop filter is suf-
ficient to track a constant phase ertmt a higherorder filter is
B. Combination of Vector and Pointwise CMA necessary to track a constant freqyeeoor) The loop filter
output drives a VCO whose outputls,. By definition, the VCO

To prevent the equalizer from coarging to a unitary matrix . o
P a 19ing y outputUy, is related to its inpuKe, by:

rather than the identity matrix, Oda and Sato modified ¢atov
cost function by adding a pointwise component, yielding the so-

k k
calledcombination CMA cost function [10]: Uy, = explj ZOKe,-} = 'Ijloexp{ JKe}. (6)
n _ Therefore, a VCO can be wed in two ways: as a sum-accumu-
J, = AE[(|ly; [E- M2+ B Y El(1y,212 - M2, (4) lator followed by a compbe exponentiator or as a compile
i=1 exponentiator follaved by a product-accumulatde choose the
where M; = E[ 1x,?14/E[1x,?12] andA and B are positie second vierpoint to fcilitate its generalization teeetor signals.
constants. The purpose of the first term in (4) is to fgfcto As shavn in the figure, we define thietation detector as the

have a constant modulus, and the purpose of the second term iiscade of the phase detectioop filter, and &ponentiatorIt's
to force each component® of y, to have a constant modulus. OuUtputT}, = exp{;jKe,} rotates a fractiok of the vay from , to

minimize the second term. The combination CMA reduces to thé\igte that, using (5)1, can also bex@ressed ag), = (x"2)X.

pointwise CMA whenA =0 [11].

Although originally defined for multidimensional systems, V. A MULTIDIMENSIONAL PHASE-LOCKED LooP
the combination CMA can be used in a complalued scalar
system by vieing it as tw-dimensional realalued system.
Indeed, this viepoint is adopted in [12] to eliminate carrier
phase dbet. Havever, it is much more common to append a
phase-lockd loop after a carentional scalar CMA equalizer to
eliminate carrier phasefeét [13].

The simplicity and déctiveness of the CMA equaliz&LL
cascade in scalar systems has vatéid us to propose a similar
structure for MIMO systems, as described in S&ctBefore
describing the MIMO PLL, heoever, we first reiew the compo-
nents of a scalar PLL.

We nav propose a ne blind equalization technique for
MIMO channels by generalizing the scalar PLL of thevimes
section to multiple dimensions. Specificaltgther than modi-
fying the vector CMA equalizer towid unitary rotations, we
propose to append a multidimensional PLL to identify and elimi-
nate am rotation.

Because theactor CMA cost function is irariant to unitary
transformations, the equalizer outpytafter conergence may
be related to the transmitted symbdactor x;, by a unitary
matrix. W& propose to append a multidimensional generalization

1. A SCALAR PHASE-LOCKED LOOP - £ o A 2,
Perhaps the most popular structure for blind equalization of " CR) Y "PECIT™
scalar channels is a CMA equalizer felled by a decision- f. *
directed PLL to track phase errais illustrated in Fig. 2-a [13]. Ty £ y
The scalar CMA cost function is insensdito the phase of the U,—| N [= e/tD §qu§$0r|
receved signal, so that grcarrier frequeng offset between the K _
. : : : : —————— Rotation Detector
recever local oscillator and the transmitter oscillator will cause VeO
the constellation after the equalizer to rotate.d,dte the phase @
offset at timek, so that after carergence the equalizer outpyt
is related to the transmitted symbgloy y;, = e/%x,. The carrier r 4 Ut o
recavery loop generates), = e/%, whereg, is the recaier’s esti- b Yk o = kO > k
C(2) ) DEC
mate off;. If @, = 8, then the produet, = Uy, reduces te, = ¥ T
x,, and decisions based gnwill be accurate. r Y
As shavn in Fig. 2-a, the decision-directed carrier loop gen- Uu—n - Rotation Detector
eratesU,, by first estimating the phaseféifenceg, between the
slicer inputz; and slicer output ;, using a phase detectdio (b)

deal with the noisy case whep and %, may hae different

magnitudes, it is common for the phase detector to normaliz Fig-2. A CMA equalizer follaved by a decision-directed PLL for

(a) scalar channels; (b) MIMO channels.



of the scalar decision-directed phase-txtkoop to generate an
estimateU, of this unitary matrix. If this estimate is accurate,
then the produet, = U, 'y, [where( D) denotes conjuage trans-
pose] reduces tg, = x;, so that decisions based gnwill be
accurate.

As shavn in Fig. 2-b, the MIMO receer generate#/,, in a
way similar to the scalar recer. The ley component of the loop
is the rotation detectowhose outpufl, is a unitary rotation
matrix that approximately rotates a fraction of theyvirom x ;,
to z,,. Specifically letz” be a ector betweerk , andzy:

(7)
whereA 0 (0, 1), and define the unit-lengtlestorsxy andz by:
(8)

Z,=)\Zk+(1—)\)£‘k,

x=x,/||%,]|l and z=2"/||2"||.
Then we defind, as a unitary matrix mappingto z.

Unlike the scalar cas&;, is not unique. & nav derive the
family of unitary matriceq’, mapping the unit-lengthectorx to
the unit-length gctorz. Letp denote the inner product:

9)
Becauser andz are unit lengthp satisfieslp < 1. We consider
the casesp | =1 andlipl < 1 separatelystarting withip| = 1.

p=xlz.

If Ipl =1thenz =px. LetV =[x, vy, v3, vy, ..., v,,] be a uni-

tary matrix whose columns form a basis for the entire space. InT, =1+ |x, y

this case, the set of all unitary matricBs mappingx to z is
given by:

(10)

whered is an arbitrary(n — 1) x (n — 1) unitary matrix. Because

x andz corvey information about the one-dimensional subspace
spanned by only, we should choosd so as not to &fct the
vectors orthogonal to this subspace; in otherds, we should
chooseJ = I, in which case (10) reduces to:

T,=I+(@-1xx' (whenlpl =1). (11)

On the other hand, ifp| < 1, then the span of andz is a
two-dimensional subspace. Let us introduce a Basis for this
subspace, where from the Gram-Schmidt procedure we ha

y=(z—px)/1-|p®. (12)

(The basis &ctory should not be confused with the equalizer
outputy,.) LetV =[x, y, vs, vy, ..., v,] be a unitary matrix whose
columns form an orthonormal basis of the entire space. In term
of this basisx andz are gven by the ectors [1, 0, ..., 017 and

Ip, «/1—|p|2, 0,0, ..., 017, respectiely. It can be shen that ay

unitary matrix mapping1, 017 to [p, 41— |p|*1T must hae the
form:

. P —J1-1p1?| 1 0
R = , 13)
NJ1-1pl2 p* 0 e/P

for somef C(-1g, 1. Therefore, the set of all unitary matric@®s
mappingx to z is given by:

(14)

where3 O(-t, 1 andd is an arbitrary(n — 2) x (n — 2) unitary
matrix.

Again, becausa andz corvey information about the sub-
space spanned lyand z only, we choosef so as not to &ct
the \ectors orthogonal to this subspace; in otherds, we
chooseJ = 1. The choice of3 is not as obious. Obserg from
(13) and (14) thafletT}, = e/® whend =T and Ip| < 1. On the
other hand, from (11) we see tldatT, = p whenlpl| = 1. This
suggests that, to be consistent in our choice3oés Ipl
approaches unityve should choosg= Op = sin™ (Im{p/ |pI}].
The choice3 = Op also minimizes the Frobenius normRf-1I,
which is intuitvely pleasing because wepectT}, to approxi-
matel near comergence. br these reasons we chodsse Op in
our algorithm. Vith = I andp = Op, (14) reduces to:

p-1 L)p,«/1—|p|2{ xf }
' | (pl <. (15)
Ji-1pl2 Ipl-1

In summary the rotation detector of Fig. 2-b is defined by
(15) and (11), together with (7) — (9) and (12), and is parameter-
ized by the constait

As in the scalar case of (6), the MIMO VCO accumulates the

rotation \ectors, so that the rewer’s estimate of thewerall
rotation matrix at time is given by:

U, = iIfIOTi , (16)
which can be implemented recwedly:
U, =1,
U, =T,Up, . 7

We remark that a second-order loop is not necessadythat
the first-order MPLL described abm is suficient for our pur-
poses, because the unitary matrix being estimated afteercon
gence will be a constant.

V. SIMULATION EXAMPLES

S In this section we present simulation results for thrgee-
ments, and compare the performance of the multidimensional
PLL with that of the combination and pointwise CMA equal-
izers. In all cases we assume a noisetesg system, with the
two transmitters being independent and uniformly distad
over a 16-QAM alphabet. ®assume that the combination CMA
parameters ark = 4 andB = 1, and that each equalizer is initial-
ized to the identity matrix. The modulus parameters fora tw
user 16-QAM system aM = 23.2 andM; = 13.2.



A. Experiment One: Memoryless Unitary Channel output one ersus time for the three algorithms. (The results for

In the first aperiment we consider a channel matrix that is the imaginary part and those for outpubtare not shan but are
unitary, so as to demonstrate the speed with which the multidigqualitatvely similar) In Fig. 5 we she the constellation dia-
mensional PLL can identify and eliminate unitary transforma-grams (for time 200 to 400) before the PLL, after the PLL, for
tions. Specificallyconsider a memoryless avuser system with ~ the pointwise CMA, and for the combination CMA. These fig-
a unitary channel matriif = R, whereR is defined in (13) with ~ ures shw that the MPLL cowverges quicler and more abruptly
parameterg = 0.5 + ji* andp = 7/In2. Assume that the equal- than the other techniques.
izer has one tap, and assume a zero step sizedwnCMA and
a step size gfi = 10* for both pointwise and combination CMA. B. Experiment Two: Memoryless Near-Singular Channel
(A nonzero step size foreetor CMA will not appreciably &ct In this eperiment we consider a memorylessotuser
the results, because the output of a unitary channel already mingystem with the follwing channel matrix:

mizes the gctor CMA cost function; hence, a nonzero step size { o

will merely cause the equalizer to vew about the identity 1 os

matrix.) The MPLL parameteras chosen to be=0.1.

In Fig. 3 we plot the eight MPLL cdefients {RelU;],
Im[Uyl, i,j = 1,2} versus time. Obseevthat the MPLL coverges
after only about 100 iterations. In Fig. 4 we plot the real part o

. (18)

Although there is no crosstalk for the first yske crosstalk for

the second user is particularlyveee, with the interference
power exceeding the signal peer by 6dB. With this channel

f . . L :

there is a tendemcfor some blind equalization algorithms to
converge to an undesirableverall transfer function of:

1
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In Fig. 6-a we plot the eight vector CMA equalizer coeffi-
cients {Re[C;;], Im[C;;], i,j = 1,2} versustime, and in Fig. 6-b we
plot the MPLL coefficients {RelU;;1, Im[Ul, i,j = 1,2} versus
time. Observe that the PLL achieves lock near time 500.

In Fig. 7 we show the constellation diagrams (from time 1000
to 1200) for the different algorithms. The constellations after the
MPLL are clean, and the overall transfer function UTC,H con-
verges approximately to the identity matrix. On the other hand,
despite the fact that the constellations for the pointwise algo-
rithm appear to be clean, the overall transfer function C,H con-
verges approximately to the undesirable matrix of (19); thus, the
pointwise equalizer is a failure, because both of its outputs lock
onto the signal of user 1, ignoring the signal of user 2.

C. Experiment Three: Channel with Memory
Consider a system with the following channel matrix:

Hey=| ¢ 07799 103070700

0.3¢/12™ 0.9¢/09T | | 0.4¢ 01T (. 1¢/0-4T
Assume afive-tap equalizer, and assume step sizesof 104, 105,

and 2 x 10 for vector CMA, pointwise CMA, and combination
CMA, respectively. Assume a MPLL parameter of A = 0.03.

1. (20)

In Fig. 8 we plot the real part of output 1 versus time for the
vector CMA with MPLL and combination CMA algorithms. In
Fig. 9 we show the constellations for the various a gorithms from
time 4600 to 5000. As before, the MPLL converges faster than
the other equalizers.

In each of the above experiments, the vector CMA with a
multidimensional PLL converged faster than the combination
CMA or the pointwise CMA. Although the simulations consid-
ered only a few sample channels, we expect faster convergence
on a broad class of channels. Intuitively, this is because the
channel matrix will almost always be closer to a unitary matrix

EQ. COEFFS

MPLL COEFFS

0 500
Time

Fig. 6. Experiment two: (a) Equalizer coefficientsfor vector CMA
versustime; (b) MPLL coefficients versus time.
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(of which there are infinitely mah than to the identity matrix.
Therefore, if the equalizer is initialized to the identity matrix, the
overall transfer function starts out much closer to a unitary
matrix than to the identity matrix; thus, the equalizer can con-
verge much dster if it need only force theverall transfer func-
tion to be unitaryAs illustrated dramatically in Sedt.A, the
MPLL is able to eliminate unitary transformations muesttér
than the pointwise and combination CMA equalizers.

(1]

(2]
(3]

VI. SUMMARY

4

After corvergence of the ector CMA, the werall transfer “
function from the channel input to the equalizer output may be
an arbitrary unitary matrix. dridentify and eliminate this rota-
tion matrix, we generalized the decision-directed phasestbck 5
loop to ‘\ectorvalued signals. The cascade of a blind MIMO
equalizer adapted according to thector CMA and a multidi-
mensional PLL is a naturalxinsion of a commonly used g
stratgy for blind equalization of scalar channels. Simulation
results she that the ector CMA with a multidimensional PLL
can conerge must éster than other kmo blind MIMO equal-

ization algorithms. 7]

Output 1 Output 2
< [8]
=
(@)
14
= [9]
(@)
L
>
[10]
_ | T
| vaeaw || T® o -
E_%*z*& RN S
< ¥ o 'f.’:" % o} i‘{ e W [12]
| |
w [13]
n
=
l_
£ [14]
O
Qo
[15]
pd
®
|_
<
Z
m
=
@)
O

Fig. 9. Constellations forxperiment three (time 4600 to 5000).
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