
Abstract— We optimize linear space-time codes for the case
when the receiver uses successive cancellation decoding.
Specifically, the proposedcodesminimize the perfect cancellation
bound on word error probability, which assumeserror-fr ee
cancellation of previously detected symbols. Assuming perfect
cancellation,we prove that to minimize the error probability in
each stage of decoding, the encoding matrix must have
orthogonal columns, regardless of the channel matrix.

Given the encoding matrix, the average of the perfect
cancellationbound over the random channelmatrix servesasan
upper bound on word error probability. The bound is minimized
by numerically optimizing the distrib ution of data rate and
energy among the various inputs to the space-time code.
Simulation results for a 4-input, 4-output Rayleigh fading
channel show that, at 12 b ⁄ s ⁄ Hz, optimizing the data rate and
energy allocations for a linear complex field code leads to a
performance improvement of nearly9 dB.

I. INTRODUCTION

The performanceof communicationsystemsoperatingover
multiple-input, multiple-output (MIMO) fading channels
dependsstronglyon the typeof decoderemployed.Decoders
that minimize error probability (for example, sphere
decoders),have high computationalcomplexity when the
number of channel inputs is large. One low-complexity
alternative is the class of successive cancellation (SC)
decoders,popularizedby the V-BLAST architecture[2]. SC
decodersdetectonesymbol in every stageof decoding,after
cancellingthe contribution of alreadydetectedsymbolsand
nulling out the interference from other undetected symbols.

Over fading channels,SC decodershave low diversity
order[2], leadingto poorperformanceat high signal-to-noise
energy ratio (SNR). One method to improve the diversity
orderis to usespace-timecodesat thetransmitter. Generalized
layered space-time(LST) codes [6] divide the transmit
antennasinto groups,eachof which is independentlyspace-
time encoded.Correspondingly, successive cancellation is
extendedsothateachstagedetectsanentirespace-timecoded
group instead of just one transmit symbol.

An alternativemethod,which is thefocusof this paper, is
to uselinear dispersion codes[1] at the transmitter. Symbol-
by-symbol successive cancellation is run on the effective
channelformed by the combinationof the linear space-time
codeandtheunderlyingMIMO channel.If thecancellationof
past (detected) symbols is correct, this amounts to
transmittingeachinput symbolacrossa scalaradditive noise
channel, allowing one to employ AWGN channel

architectures.Thus,onecantransmituncodedQAM symbols
or use a near-capacity code in every stage. In practice,
cancellation from past stages is error-prone. However,
assuming error-free cancellation gives the useful perfect
cancellation (PC) bound on actual performance.The PC
boundis a decreasingfunction of the effective SNR at each
stage,which in turn dependsstronglyon the randomchannel
matrix and the encoding matrix used by the space-time code.

We show that to maximize the effective SNR at each
stage (and hence minimize the PC bound), the encoding
matrix musthave orthogonalcolumns.Remarkably, this holds
for every realizationof thechannelmatrix, irrespective of the
codingarchitectureusedat eachstage,or of theaverageSNR.
Unfortunately, getting the optimum orthogonal-column
encodingmatrix is anopenproblem.Onepossiblecandidate,
though not necessarilyoptimal, is the recently developed
linearcomplex field codes[8][9], which achieve full rateand
full diversity with sphere decoding.

Assumingthat the encodingmatrix hasbeenchosen,for
every codingarchitectureonecancomputethe PC boundon
the error probability by averagingover the randomchannel
matrix. TheaveragePCbounddependson thebit andenergy
distributionsamongthevariousstages,aswell astheaverage
SNR of operation.Consequently, the averagePC boundon
error probability canbe minimizedby optimally distributing
thetotal numberof bits andthetotal energy perblock among
the inputs to different stages.When no space-timecode is
used(asin theV-BLAST transmitter),optimalbit andenergy
loadinghasbeendonein [3] for uncodedQAM transmission
on eachstage.Subsequently, in [4] (seealso [5]), an upper
bound to the word error probability was used to optimize
allocationsfor uncodedQAM transmissionusing Alamouti-
based GLST space-time codes.

However, the techniquesof [3] and [4] do not extend
directly to any generallinearspace-timecode.To computethe
averagePC bound,one requiresthe distribution of effective
SNRat every stage.Unfortunately, thedistribution is strongly
dependenton theencodingmatrix,andis difficult to obtainin
closed form. In this paper, we proposeto circumvent this
problemby empirically obtainingdiscreteapproximationsof
thenecessarydistribution.Theempiricalapproximationneeds
to be obtainedonly oncefor every encodingmatrix, andcan
be re-used for optimization at different SNR.

It is well established[7][9] that the restriction to SC
decodingleadsto a rate-diversity tradeoff for linear space-
time codes.Consequently, an interestingproblem in code
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designfor SCdecodersis to find theratethatminimizeserror
probability, at a givendatarateandSNR.Thebit andenergy
allocationin theseconddesignstepabove implicitly optimizes
the rate by making some of the inputs carry zero bits,
effectively reducing the rate of the space-time code.

In SectionII, we presentthechannelmodelanddescribe
successive cancellationdecodingfor linear space-timecodes.
In SectionIII, we derive the perfectcancellationbound,and
show the optimality of using encoding matrices with
orthonormalcolumns.SectionIV describesthe optimization
of the input bit and energy allocations,given the encoding
matrix. SectionV presentssimulation resultsdemonstrating
the benefits of optimization. Finally, in SectionVI, we
summarize our conclusions.

II. SYSTEM MODEL AND THE SUCCESSIVECANCELLATION

ALGORITHM

We considera t-transmit, r-receive antennastatic wireless
narrowband MIMO channel, modeled as

yk = Hxk + nk, (1)

wherexk is the t × 1 channelinput andyk the r × 1 channel
output at time k. The noisenk is spectrallyand temporally
white, so that E[nk+lnk

H] = δlN0Ir. The entriesof the r × t
Rayleighfadingchannelmatrix H areindependent,circularly
symmetric, unit-variance Gaussianrandom variables. We
assumethatH is unknown to thetransmitter, but known to the
receiver. In every block of encoding,a rate-K/N space-time
encodertakesin a K × 1 complex vectoru andgeneratest × 1
transmitvectorsxi for N consecutive signalingintervals. We
restrict attention to strictly linear space-timecodeswhich
obtain each complex output symbol by some linear
combinationof theK elementsof theinput u. More precisely,
considerthe Nt × 1 compositetransmit vector x formed by
stackingthe N transmitvectorsin the code-blockonebelow
theother, namelyx = [x1

T, x2
T,…, xN

T]T. For a strictly linear
space-time code,x is related to the input vectoru by

x = Mu, (2)

wheretheNt × K encoding matrix M completelyspecifiesthe
code.We assumethattheelementsof u have unit energy, and
M is chosensothatits energy, givenby ||M||F

2, is equalto one.
Thus, the averagetransmitenergy per block is E[||x||2] = 1.
The SNR S is definedas the ratio of the averagereceived
signalenergy to theaveragenoiseenergy. It is easyto seethat
S = E[||x||2] ⁄ (NN0) = 1 ⁄ (NN0), whereN is the lengthof the
space-time code block.

The compositereceived vectory of dimensionNr × 1 is
obtainedby stackingthereceivedvectorsonebelow theother.
From the channel model (1), we get

y = x + n = x + n, (3)

wherewe have definedtheblock diagonalmatrix , andn is
thecompositenoisevector. Substitutingtheencodingrule (2)
in the above and definingG = M, we get the relation

y = Mu + n = Gu + n. (4)

Given H, the successive cancellation (SC) decoding
algorithm is based on the so-called QL decomposition
G = QL, whereQ hasorthonormalcolumnsandL is a K × K
lower triangular matrix with real, non-negative diagonal
entries.The decompositioncan be done,for example,using
GramSchmidtorthonormalizationof thecolumnsof G. Now,
the SC algorithm obtainsthe effective received vector y′ =
QHy. Substituting fory from (4) and usingQHG = L, we get

y′ = QHy = Lu + n′, (5)

wherewehavedefinetheeffectivenoisevectorn′ = QHn. The
orthonormalityof thecolumnsof Q ensuresthat theelements
of n′ are independent complex Gaussians of varianceN0.

SC detectionproceedsin K stages.In the ith stage,the
decoder obtains theslicer input zi according to

zi = (yi′ − ), (6)

where lij denotesthe (i, j)th entry of L. Then zi is usedto
obtain the ith symbol decision using the conventional
AWGN channelmodelzi = liiui + ni′. Startingfrom the first
stagei = 1, notethatpastdecisions arealwaysavailablefor
cancellation in (6).

III. THE PERFECTCANCELLATION BOUND AND OPTIMALITY

OF ORTHOGONAL ENCODING MATRICES

We now derive anupperboundfor theword errorprobability
undersuccessive cancellationfor a givenvalueof therandom
channelmatrix H. Let E i denotethe event that there is an
error in the ith stage,namelythat ≠ ui, and let C i denote
the complementary event = ui. It is easy to see that

Pr( ≠ u|H) =  =

. (7)

By neglectingthesecondterm in eachproductabove, we get
theperfect cancellation (PC) bound

Pr( ≠ u|H) ≤ . (8)

Eachtermon theright handsideis theprobabilityof error in
theith stage,assumingerror-freecancellationof symbolsfrom
previous stages.Under the assumption,the scaledAWGN
channelmodelzi = liiui + ni′ holds.Sinceui hasunit average
energy, the effective SNR at stagei is lii

2 ⁄ N0.

Theeffective SNRat variousstages— andhencethePC
boundon decoding— dependson thechoiceof theencoding
matrix M. We now show that to maximizetheeffective SNR,
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M should have orthogonal columns. Let the QL
decomposition of M be M = PK, where P has orthonormal
columns and the lower triangular matrix K has non-negative
diagonal entries. For a given channel matrix H, let the QL
decomposition of P be QL′. Then, it is easy to show that
the unique QL decomposition of M = PK is QL′K. In
particular, L = L′Κ and the diagonal entries lii which
determine the PC bound (8) are given by lii = lii′kii. To
maximize the effective SNR, one needs to maximize kii under
the energy constraint ||K||F = ||M||F = 1. Clearly, this is done
by concentrating all the energy on the diagonal of K. When K
is diagonal, the columns of M are proportional to the
orthonormal columns of P and are therefore orthogonal,
proving the following result.

Theorem 1. To maximize the effective SNR of a
successive cancellation decoder, the encoding matrix of a
linear space-time code should have orthogonal columns,
irrespective of the average SNR and the channel matrix.

According to Theorem 1, the optimum encoding matrix
must be of the form M = PD, where P is an Nt × K matrix
with orthonormal columns, and D is a K × K diagonal matrix.
Finding the optimum orthonormal component P is an
interesting open problem. The diagonal component D
determines the energy distribution among the various
symbols. The ith symbol is transmitted with energy Ei = dii

2.

IV. OPTIMIZATION OF BIT AND ENERGY ALLOCATIONS

In this section, we will assume that the matrix P in M = PD is
fixed, and discuss ways of minimizing the average PC bound
by optimally distributing data rate and energy among the
various inputs to the space-time code. First, we will change
notation slightly and let P = QL. Now, the perfect
cancellation assumption yields an effective AWGN channel in
stage i, whose error probability Pr(E i|C i−1, …,C 1, H) depends
on the bit rate bi and the effective SNR Si = Eilii

2 ⁄ N0 =
NSEilii

2 (using 1 ⁄ N0 = NS). Averaging over H amounts to
averaging over lii, giving

Pr( ≠ u) ≤ E lii g(bi, NSEi lii
2 ) . (9)

The error function g(bi, Si) quantifies the variation of error
probability with bit rate bi and effective SNR Si, and depends
on the architecture used. For example, if each transmit symbol
ui were independently drawn from a square QAM
constellation and detected by conventional slicing, the error
function is closely approximated by

g(bi, Si) = 4(1 – 2–bi ⁄ 2)Q . (10)

On the other hand, when each stage is equipped with an
encoder-decoder pair that achieves capacity over an AWGN
channel, errors occur only in the case of an outage. In this
case,

g(bi, Si) = 1 if log2(1 + Si) < bi, and 0 otherwise. (11)

For brevity, we will hereafter focus on uncoded square-
QAM transmission. To obtain the average PC bound (9), we
need to average the error function (10) over lii. Getting a
closed form expression for the probability density function of
lii is a difficult open problem. Instead, we suggest a discrete
numerical approximation. For a given trial value of the
channel matrix H, the value of lii is computed, and rounded
off to the nearest discrete value in a finite set L . Given a
sufficient number of randomly generated trial values of H and
a sufficiently large set L , the discrete pdf on L so obtained,
say pi( l ), closely approximates the unknown pdf of lii.

Using the discrete approximation to average out the
perfect cancellation bound (9), we get the approximate PC
bound on Pr( ≠ u), namely

f({bi}, {Ei}, S) = pi( l ) g(bi, NSEil
2). (12)

The approximate PC bound depends on the distribution of the
bit rates {bi} and energies {Ei}, setting up the following
optimization problem.

Problem Statement: Given the SNR S and the Nt × K
encoding matrix P of a linear space-time code transmitting
B bits per block, find the bit rate and energy distributions
{bi}, {Ei} that minimize the upper bound f({bi}, {Ei}, S)
subject to the constraints

= B, bi ∈{0, 2, 4, 6, …}, and = 1, Ei ≥ 0. (13)

We propose the following numerical solution.

Step 1. From the matrix P, use Monte Carlo simulation
to obtain the approximate discretized pdf of the effective
scaling factor lii for all stages i = 1, 2, …, K.

Step 2. For all valid bit sequences {bi} with non-
negative even integer values summing to B, use standard
constrained gradient descent to find the values of {Ei},
which minimize (12) while satisfying (13).

Step 3. Pick the combination of {bi
∗} and {Ei

∗} that has
the lowest average PC bound (12).

Intuitively, since the first few stages typically have lower
effective SNR, it is better to allocate lesser bit rate and/or
higher energy to these. In particular, it is sometimes optimum
to allocate zero bits to the first few symbols. This amounts to
not using the corresponding inputs of the space-time code, or
equivalently reducing the effective number of inputs and
hence the rate of the space-time code. Thus, the bit-loading
procedure described above also optimally trades off rate for
diversity.

We emphasize that to optimize the bit and energy
allocations, the transmitter needs to know only the statistical
properties of the channel and not the channel itself. Also,
though the optimization metric (13) depends on the SNR S,
note that the numerical estimation of the pdf in Step 1 needs to
be performed just once for every P, and can be re-used for
optimization at different SNR.
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Onefinal remarkrelatesto detectionorderat thereceiver.
Thoughthetransmitteris optimizedassumingthatthereceiver
doesnot do any ordering,the receiver canuseits knowledge
of the channelto obtain a detectionorder that reducesthe
probability of error. The V-BLAST ordering algorithm
maximizesthe lowest value of lii among all the detection
stages.However, taking the bit and energy allocation into
account,we suggestthat the symbol error probability g(bi,
NSEilii) from (10) should be optimized insteadof lii. To
achieve this, the decodershould use lii to compute g(bi,
NSEilii) for all undetectedsymbols,andpick thesymbolleast
susceptible error for subsequent detection.

V. SIMULATION RESULTS

In this section,we presentsimulationresultsto illustrate the
benefitsof the design processdescribedin this paper. We
comparespace-timecodestransmitting12 b ⁄ s ⁄ Hz over a 4-
transmit,4-receive antennaRayleighfadingchannel.We start
with a linearcomplex field (LCF) code[9] of lengthN = 2 and
K = 8 inputsperblock, with parametersα = e0.5 andβ = e2.0

(see [9] for details). The encodingmatrix has orthogonal
columnsand satisfiesthe optimality criterion in Theorem1.
Without thebit-loadingstep,all the inputsto this codewould
bedrawn from an8-QAM alphabetandtransmittedwith equal
energy. This leads to poor performancewith SC at the
receiver, as seenfrom the curve labeled “unoptimized” in
Fig. 1. However, optimizationatSNR= 27.5 dB yieldsbit and
energy allocationsof {bi

∗} = {0, 0, 0, 4, 4, 4, 6, 6} and
{Ei

∗} = {0, 0, 0, 0.2278, 0.1402, 0.1353, 0.2718, 0.2249},
respectively. Using the optimized allocations leads to a
performanceimprovementof nearly 9 dB at 1% word error
probability. Note that optimization leads to three zero bit
allocations,thus reducingthe rate of the space-timecodeto
5 ⁄ 2 from its original value of 8 ⁄ 2 = 4. The rate reduction
resultsin increaseddiversity gain, as seenfrom the steeper
error curve of the optimized code.

We alsocomparetheoptimizedLCF codewith a layered
space-time(LST) code consistingof two parallel Alamouti
codes transmitting symbols from a unit-energy 64-QAM
alphabet,soasto maintaina total datarateof 12 b ⁄ s ⁄ Hz. In
every stageof successive cancellationdecodingof the LST
code,a group of two Alamouti-codedsymbols is detected.
Remarkably, the optimized LCF codeoutperformsthe LST
codeby 4.5 dB, despitethe fact that layeredspace-timecode
usesthemoresophisticatedgroupdetectioninsteadof symbol
detection at every stage.

VI. CONCLUSIONS

We optimized linear space-time codes for successive
cancellation decoding. We showed that to maximize the
effective SNR at every stageof SC decoding,the encoding
matrix of the space-time code should have orthogonal
columns. Further, given such an encoding matrix, we
optimized the bit and energy distribution amongthe space-
time codeinputs,so as to minimize the perfectcancellation
boundon word error probability. The distributionsnecessary
for optimization were estimated empirically. Simulation
results showed the benefitsof the bit and energy loading,
which alsoimplicitly determinestheoptimumrateof a linear
space-timecodeatagivenSNRanddatarate.Further, thebit-
loadingprocedurecanbeextendedto optimally designcodes
for othercodearchitecturesin eachstage,andalsoto MMSE-
based successive cancellation decoders.
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Fig. 1. Comparing space-time codes transmitting12 b / s / Hz over
4-input,4-output Rayleigh fading channel.
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