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Abstract— We optimize linear space-time codes for the case
when the recever uses successie cancellation decoding
Specifically, the proposedcodesminimize the perfect cancellation
bound on word error probability, which assumeserror-free
cancellation of previously detected symbols. Assuming perfect
cancellation, we prove that to minimize the error probability in
each stage of decoding, the encoding matrix must have
orthogonal columns, egardless of the channel matrix.

Given the encoding matrix, the average of the perfect
cancellationbound over the random channelmatrix servesasan
upper bound on word error probability. The bound is minimized
by numerically optimizing the distribution of data rate and
energy among the various inputs to the space-time code
Simulation results for a 4-input, 4-output Rayleigh fading
channel show that, at 12 b/s/Hz, optimizing the data rate and
energy allocations for a linear complex field code leads to a
performance improvement of nearly9 dB.

. INTRODUCTION

The performanceof communicationsystemsoperatingover

multiple-input, multiple-output (MIMO) fading channels
dependsstronglyon the type of decoderemployed. Decoders
that minimize error probability (for example, sphere
decoders),have high computationalcompleity when the
number of channel inputs is large. One low-compleity

alternatve is the class of successive cancellation (SC)

decoderspopularizedby the V-BLAST architecture[2]. SC
decoderdetectone symbolin every stageof decodingafter
cancellingthe contritution of alreadydetectedsymbolsand

nulling out the interference from other undetected symbols.

Over fading channels,SC decodershave low diversity
order[2], leadingto poor performanceat high signal-to-noise
enegy ratio (SNR). One method to improve the diversity
orderis to usespace-timeodesatthetransmitterGeneralized
layered space-time(LST) codes [6] divide the transmit
antennasnto groups,eachof which is independentlyspace-
time encoded.Correspondingly successie cancellationis
extendedsothateachstagedetectsanentirespace-timeoded
group instead of just one transmit symbol.

An alternatve method which is the focusof this paperis
to uselinear dispersion codeg[1] at the transmitter Symbol-
by-symbol successie cancellationis run on the effective
channelformed by the combinationof the linear space-time
codeandtheunderlyingMIMO channellf the cancellatiorof
past (detected) symbols is correct, this amounts to
transmittingeachinput symbolacrossa scalaradditive noise
channel, allowing one to employ AWGN channel
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architecturesThus,onecantransmituncodedQAM symbols
or use a nearcapacity code in every stage.In practice,
cancellation from past stages is errorprone. However,
assuming errorfree cancellation gives the useful perfect
cancellation (PC) bound on actual performance.The PC
boundis a decreasingunction of the effective SNR at each
stagewhich in turn dependsstrongly on the randomchannel

matrix and the encoding matrix used by the space-time code.

We shawv that to maximize the effective SNR at each
stage (and hence minimize the PC bound), the encoding
matrix musthave orthogonakolumns.Remarkablythis holds
for every realizationof the channelmatrix, irrespectve of the
codingarchitecturaisedat eachstage or of the averageSNR.
Unfortunately getting the optimum orthogonal-column
encodingmatrix is an openproblem.Onepossiblecandidate,
though not necessarilyoptimal, is the recently developed
linear comple field codeg[8][9], which achieve full rateand
full diversity with sphere decoding.

Assumingthat the encodingmatrix hasbeenchosen for
every coding architectureone can computethe PC boundon
the error probability by averagingover the randomchannel
matrix. The averagePC bounddependn the bit andenegy
distributionsamongthe variousstagesaswell asthe average
SNR of operation.Consequentlythe averagePC boundon
error probability can be minimized by optimally distributing
the total numberof bits andthe total enegy perblock among
the inputs to different stages.When no space-timecode is
used(asin the V-BLAST transmitter) optimal bit andenegy
loadinghasbeendonein [3] for uncodedQAM transmission
on eachstage.Subsequentlyin [4] (seealso [5]), an upper
bound to the word error probability was usedto optimize
allocationsfor uncodedQAM transmissiorusing Alamouti-
based GLST space-time codes.

However, the techniquesof [3] and [4] do not extend
directly to ary generalinearspace-timeode.To computethe
averagePC bound, one requiresthe distribution of effective
SNRat every stage Unfortunately the distribution is strongly
dependenbn the encodingmatrix, andis difficult to obtainin
closedform. In this paper we proposeto circumwent this
problemby empirically obtainingdiscreteapproximationsof
thenecessardistribution. Theempiricalapproximatiomeeds
to be obtainedonly oncefor every encodingmatrix, andcan
be re-used for optimization at féifent SNR.

It is well established7][9] that the restrictionto SC
decodingleadsto a rate-dversity tradeof for linear space-
time codes. Consequentlyan interesting problem in code



designfor SCdecoderss to find the ratethatminimizeserror
probability, at a givendatarateand SNR. The bit andenegy
allocationin thesecondiesignstepabove implicitly optimizes
the rate by making some of the inputs carry zero bits,
effectively reducing the rate of the space-time code.

In Sectionll, we presenthe channelmodelanddescribe
successie cancellationdecodingfor linear space-timecodes.
In Sectionlll, we derive the perfectcancellationbound,and
shav the optimality of using encoding matrices with
orthonormalcolumns.SectionlV describeghe optimization
of the input bit and enegy allocations,given the encoding
matrix. SectionV presentssimulation resultsdemonstrating
the benefits of optimization. Finally, in SectionVl, we
summarize our conclusions.

Il. SYSTEM MODEL AND THE SUCCESSIVECANCELLATION
ALGORITHM

We considera t-transmit, r-receve antennastatic wireless
narravband MIMO channel, modeled as

Y. = HXk + ng, (1)

wherex; is the¢ x 1 channelinput andy;, ther x 1 channel
outputat time k. The noiseny, is spectrallyand temporally
white, so that E[ny,,m;"] = §N,I,. The entriesof the r x ¢
Rayleighfadingchannelmatrix H areindependentgircularly
symmetric, unit-variance Gaussianrandom variables. We
assumehatH is unknavn to thetransmitteybut known to the
recever. In every block of encoding,a rateX/N space-time
encodetakesin aK x 1 comple vectoru andgenerates x 1
transmitvectorsx; for N consecutie signalingintenvals. We
restrict attentionto strictly linear space-timecodeswhich
obtain each complex output symbol by some linear
combinationof the K elementf theinputu. More precisely
considerthe N¢ x 1 compositetransmitvector x formed by
stackingthe N transmitvectorsin the code-blockone belov
the other namelyx = [x;7T, x,7,..., x5 1%. For astrictly linear
space-time code is related to the inputectoru by

x = Mu, 2
wherethe Nt x K encoding matrix M completelyspecifieghe
code.We assumehatthe elementof u have unit enegy, and
M is chosersothatits enegy, givenby |[M||72, is equalto one.
Thus, the averagetransmitenegy per block is E[||F] = 1.
The SNR S is definedas the ratio of the averagereceved
signalenengy to theaveragenoiseenenpy. It is easyto seethat
S = E[|lx||2]/(NNO) = 1/(NNy), whereN is the length of the
space-time code block.

The compositereceived vectory of dimensionNr x 1 is
obtainedby stackingtherecevedvectorsonebelow the other
From the channel model (1), we get

HO0..0
y= 0 H"™ |xin=Hx+n, 3)
0 0 H

wherewe have definedthe block diagonalmatrix H, andn is
the compositenoisevector Substitutingthe encodingrule (2)
in the aboe and definings = HM, we get the relation

y=fIMu+n=Gu+n. 4)

Given H, the successie cancellation (SC) decoding
algorithm is based on the so-called QL decomposition
G = QL, whereQ hasorthonormalcolumnsandL isaK x K
lower triangular matrix with real, non-ngative diagonal
entries.The decompositioncan be done,for example, using
GramSchmidtorthonormalizatiorof the columnsof G. Now,
the SC algorithm obtainsthe effective receved vectory' =
QMy. Substituting foy from (4) and usin@"G = L, we get

y =Q%y=Lu+n, (5)
wherewe have definethe effective noisevectorn’ = QHn. The

orthonormalityof the columnsof Q ensureghatthe elements
of n' are independent compl&aussians ofarianceN,.

SC detectionproceedsin K stagesin the it stage,the
decoder obtains thebicer input z; according to

i-1
2= = Y i), (6)
i1

wherel;; denotesthe (i, A entry of L. Thenz; is usedto
obtain the i** symbol decision &; using the corventional
AWGN channelmodelz; = [;u; + n;'. Startingfrom the first
stage = 1, notethatpastdecisionsi ; arealwaysavailablefor
cancellation in (6).

I1l. THE PERFECTCANCELLATION BOUND AND OPTIMALITY
OF ORTHOGONAL ENCODING MATRICES

We now derive anupperboundfor theword error probability
undersuccessie cancellatiorfor a givenvalueof therandom
channelmatrix H. Let Z; denotethe event that thereis an
errorin theith stage,namelythat @; # u;, andlet ¢; denote
the complementaryentzz; =u;. It is easy to see that

K
Pr(@ #ulH) = > Pr(Z;, C; 1, -, C1|H) =

i=1
K

S Pr(%|Ciy, s 1 H)PE(Cizy, oo, €1 [H). (7)
i=1
By ngglectingthe secondermin eachproductabove, we get
the perfect cancellation (PC) bound
K
Pr(d #ulH)< Y Pr(£[C;_y, ..., (1, H). (8)
i=1
Eachtermon theright handsideis the probability of errorin
theit stageassumingerrorfreecancellatiorof symbolsfrom
previous stages.Under the assumption the scaled AWGN
channelmodelz; = [;;u; + n;' holds.Sinceu; hasunit average
enepy, the efective SNR at stageis ;;2/ N,.

The effective SNR at variousstages— andhencethe PC
boundon decoding— dependson the choiceof the encoding
matrix M. We now shawv thatto maximizethe effective SNR,



M should have orthogonal columns. Let the QL
decomposition of M be M = PK, where P has orthonormal
columns and the lower triangular matrix K has non-negative
diagonal entries. For a given channel matrix H, let the QL
decomposition of HP be QL' Then, it is easy to show that
the unique QL decomposition of HM = HPK is QLK. In
particular, L = L'K and the diagonal entries I;; which
determine the PC bound (8) are given by /; = [;;'k;. To
maximize the effective SNR, one needs to maximize &;; under
the energy constraint |[K|| = |[M]|,; = 1. Clearly, this is done
by concentrating al the energy on the diagonal of K. When K
is diagonal, the columns of M are proportional to the
orthonormal columns of P and are therefore orthogonal,
proving the following result.

Theorem1. To maximize the effective SNR of a
successive cancellation decoder, the encoding matrix of a
linear space-time code should have orthogona columns,
irrespective of the average SNR and the channel matrix.

According to Theorem 1, the optimum encoding matrix
must be of the form M = PD, where P is an Nt X K matrix
with orthonormal columns, and D isaK x K diagonal matrix.
Finding the optimum orthonormal component P is an
interesting open problem. The diagona component D
determines the energy distribution among the various
symbols. The i symbol is transmitted with energy E; = d;;2.

V. OPTIMIZATION OF BIT AND ENERGY ALLOCATIONS

In this section, we will assume that the matrix P in M = PD is
fixed, and discuss ways of minimizing the average PC bound
by optimaly distributing data rate and energy among the
various inputs to the space-time code. First, we will change
notation dlightly and let HP =QL. Now, the perfect
cancellation assumption yields an effective AWGN channel in
stage i, whose error probability Pr(E;|C;-1, -..,C1, H) depends
on the bit rate b; and the effective SNR S; = E;l;2/N, =
NSE;l;? (using 1/N, = NS). Averaging over H amounts to
averaging over [;;, giving

A K
Pr( 2w < 5 Ep g0, NSE;1?) . 9)

The error function g(b;, S;) quantifies the variation of error
probability with bit rate b; and effective SNR S;, and depends
on the architecture used. For example, if each transmit symbol
u; were independently drawn from a sguare QAM
constellation and detected by conventional dlicing, the error

function is closely approximated by

g(b;, 8) =41 - 2429|250 (10)
2 -1
On the other hand, when each stage is equipped with an
encoder-decoder pair that achieves capacity over an AWGN
channel, errors occur only in the case of an outage. In this
case,

g(b;, S;) = 1if logy(1 + S;) < b;, and 0 otherwise. (12)

For brevity, we will hereafter focus on uncoded square-
QAM transmission. To obtain the average PC bound (9), we
need to average the error function (10) over [;. Getting a
closed form expression for the probability density function of
I;; is a difficult open problem. Instead, we suggest a discrete
numerical approximation. For a given trial value of the
channel matrix H, the value of [;; is computed, and rounded
off to the nearest discrete value in a finite set £. Given a
sufficient number of randomly generated trial values of H and
a sufficiently large set £, the discrete pdf on £ so obtained,
say p;(1), closely approximates the unknown pdf of Z;;.

Using the discrete approximation to average out the
perfect cancellation bound (9), we get the approximate PC
bound on Pr(@ # u), namely

fQbi}, {E}, 8) = Zilzm Pillg(b;, NSEZ®).  (12)

The approximate PC bound depends on the distribution of the
bit rates {b;} and energies {E;}, setting up the following
optimization problem.
Problem Statement: Given the SNR S and the Nt x K
encoding matrix P of alinear space-time code transmitting
B hits per block, find the bit rate and energy distributions
{b;}, {E;} that minimize the upper bound f({5,}, {E;}, S)
subject to the constraints
K K
z b, =B, b; {0, 2,4,86, ...}, and Z E, =1,E;20. (13
i=1 i=1
We propose the following numerical solution.

Step 1. From the matrix P, use Monte Carlo simulation
to obtain the approximate discretized pdf of the effective
scaling factor ;; for al stagesi =1, 2, ..., K.

Step 2. For al valid bit sequences {b;} with non-
negative even integer values summing to B, use standard
constrained gradient descent to find the values of {E;},
which minimize (12) while satisfying (13).

Step 3. Pick the combination of {5,7} and {E;3} that has
the lowest average PC bound (12).

Intuitively, since the first few stages typically have lower
effective SNR, it is better to alocate lesser bit rate and/or
higher energy to these. In particular, it is sometimes optimum
to alocate zero bits to the first few symbols. This amounts to
not using the corresponding inputs of the space-time code, or
equivalently reducing the effective number of inputs and
hence the rate of the space-time code. Thus, the bit-loading
procedure described above also optimally trades off rate for
diversity.

We emphasize that to optimize the bit and energy
alocations, the transmitter needs to know only the statistical
properties of the channel and not the channel itself. Also,
though the optimization metric (13) depends on the SNR S,
note that the numerical estimation of the pdf in Step 1 needsto
be performed just once for every P, and can be re-used for
optimization at different SNR.



Onefinal remarkrelatesto detectionorderattherecever.
Thoughthetransmitteris optimizedassuminghattherecever
doesnot do ary ordering,the recever canuseits knowledge
of the channelto obtain a detectionorder that reducesthe
probability of error The V-BLAST ordering algorithm
maximizesthe lowest value of /;; amongall the detection
stages.However, taking the bit and enegy allocation into
account,we suggestthat the symbol error probability g(b;,
NSE;l;) from (10) should be optimized insteadof [;;. To
achiese this, the decodershould use /;; to compute g(b;,
NSE;l;) for all undetectegymbolsandpick the symbolleast
susceptible error for subsequent detection.

V. SIMULATION RESULTS

In this section,we presentsimulationresultsto illustrate the
benefitsof the design processdescribedin this paper We

comparespace-timecodestransmitting12 b/s/Hz over a 4-

transmit,4-receve antenneRayleighfadingchannel We start
with alinearcomple field (LCF) code[9] of lengthN = 2 and
K = 8 inputsperblock, with parameterst = ¢%® andp = ¢

(see[9] for details). The encoding matrix has orthogonal
columnsand satisfiesthe optimality criterionin Theorem1.

Without the bit-loadingstep,all theinputsto this codewould

bedrawvn from an8-QAM alphabetndtransmittedwith equal
enegy. This leads to poor performancewith SC at the
recever, as seenfrom the curve labeled “unoptimized” in

Fig. 1. However, optimizationat SNR = 27.5 dB yieldsbit and
enegy allocations of {biE} ={0, 0, 0, 4, 4, 4, 6, 6} and
{E,-E} ={0, 0, 0, 0.2278, 0.1402, 0.1353, 0.2718, 0.2249},

respectiely. Using the optimized allocations leads to a

performancemprovementof nearly9 dB at 1% word error
probability Note that optimization leadsto three zero bit

allocations,thus reducingthe rate of the space-timecodeto

5/2 from its original value of 8/2 = 4. The rate reduction
resultsin increaseddiversity gain, as seenfrom the steeper
error cure of the optimized code.
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Fig. 1. Comparing space-time codes transmitt2gb / s/ Hz over
4-input, 4-output Rayleighdding channel.

We alsocomparethe optimizedLCF codewith alayered
space-time(LST) code consistingof two parallel Alamouti
codes transmitting symbols from a unit-enegy 64-QAM
alphabetso asto maintaina total datarateof 12 b/s/Hz. In
every stageof successie cancellationdecodingof the LST
code, a group of two Alamouti-codedsymbolsis detected.
Remarkably the optimized LCF code outperformsthe LST
codeby 4.5 dB, despitethe factthat layeredspace-timecode
useshe moresophisticatedyroupdetectioninsteadof symbol
detection at\eery stage.

VI. CONCLUSIONS

We optimized linear space-time codes for successie
cancellation decoding. We showved that to maximize the
effective SNR at every stageof SC decoding,the encoding
matrix of the space-timecode should have orthogonal
columns. Further given such an encoding matrix, we
optimized the bit and enegy distribution amongthe space-
time codeinputs, so asto minimize the perfectcancellation
boundon word error probability. The distributions necessary
for optimization were estimated empirically Simulation
results shaved the benefitsof the bit and enegy loading,
which alsoimplicitly determineghe optimumrateof a linear
space-timeodeat a given SNRanddatarate.Further the bit-
loadingprocedurecanbe extendedto optimally designcodes
for othercodearchitecturesn eachstage andalsoto MMSE-
based succes& cancellation decoders.
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