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Abstract — Although many space-timecodessacrifice their rate
in order to achieve a high diversity order, such a sacrifice is not
necessary Recentwork has reported two instancesof a linear
space-timecodethat achievesboth afull rate of min(¢, r) and a
full diversity order of ¢&r over a¢-input r-output Rayleigh-fading
channel [1][2]. We show that such full-rate full-di versity codes
are plentiful and can, in fact, be found with probability one by
randomly choosing an encoding matrix from an ensembleof
matrices with orthonormal columns. However, full rate and full

diversity does not guarantee good error-rate performance.
Different encoding matrices with the samerate and diversity
order can have markedly different error rates. We proposethe
union bound on word-error rate asan optimization metric and
perform constrained optimization to find good space-timecodes.
For the two-input, two-output Rayleigh channel, we presentan
optimized codethat outperforms the previously reported codes
of [1][2] by 1.25 dB at 4 b/s/Hz and a frame-error rate of 1073.

. INTRODUCTION

We studythedesignof linearspace-timeodeq3] with the
aim of optimizing performance.Specifically we aim to
minimize the error rate while operatingat a given data-rate
andsignal-to-noisg@ower ratio (SNR) over a Rayleigh-ading
Gaussian-noisechannel, assuming no other errorcontrol
codingis used.Two crucial parametersf a space-timecode
arethe rate, definedasthe numberof complex information
symbols corveyed per signaling interval, and the raw
diversity order, as determinedoy the rank criterion [4]. The
rate measureghe amountof redundang introducedby the
space-timecode, and the raw diversity order quantifiesthe
effectivenesof the redundang. Both high rateandhigh raw
diversity order are desirable since high raw diversity order
helps to mitigate fading, and high rate enablesthe use of
small constellationsto achieve a given data rate, thus
increasing the ralstness to noise [4].

When linear codes are used over a ¢-input, r-output
Rayleigh fading channel,the maximum achievable rate is
min(¢, r), asdeterminedby the nominalrank of the channel
matrix [3], and the maximumraw diversity orderis ¢r [4].
Although some space-timecodessacrificerate in order to
achieve high diversityorder thereis nofundamentateasorto
trade-of one against the other For example, algebraicand
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numbertheoretictechniquedhave beenusedto developlinear
encodersvhich simultaneoushachiese bothfull rateandfull
raw diversity order[1][2]. In this paper we prove that full-
rate, full-diversity codesare plentiful. Specifically we showv
that when the block length N satisfiesN = ¢, a randomly
chosen Nt x Nmin(¢, r) matrix with orthonormal columns
achievesarateof min(¢, r) andaraw diversityorderof ¢ with
probability one.

The rate and raw diversity order determine only the
asymptotigperformancedrends.Codeswith the samerateand
raw diversity order may have markedly different errorrate
performanceandit is a nontrivial problemto find, among
codeswith the samerate and raw diversity order one that
minimizesword-errorrateat a given SNR anddatarate. This
problemwas earlier addressedn [5], whererandomsearch
and its variantswere usedto obtain encodingmatriceswith
high codinggain. In this paper we proposethe union bound
as an optimization metric, sinceit is known to be a more
reliable predictor of performancethan the coding gain [6].
Furthermore,we proposethe use of constrainedgradient
descentto perform fast and reliable optimization. Using a
combination of random searchand gradient descent,we
obtain a high-performancencodingmatrix for the 4-QAM
alphabet.

The resultsof our optimizationindicatethat the number
theoreticspace-timecodesof [1][2] arenotoptimumin terms
of errorrate.In fact,for thetwo-inputtwo-outputchannelthe
two codesoutperforma randomlygeneratec&ncodetby only
0.5dB at 4 b/s/Hz. In contrast,the code we obtain by
optimizingthe unionboundoutperformghe numbertheoretic
codesby 1.25 dB at the samedatarate. The union boundis
difficult to computefor large channeldimensions However,
the results of optimization for low channel dimensions
indicatesthat somesetsof matricesare likely to yield good
space-timeencodersRestrictingthe searchto thesesmaller
sets makes optimization easier even for large channel
dimensions.

In Sectionll, we describethe channelmodeland present
somebackgroundin Sectionlll, we shav thatrandomlinear
space-timecodesachiese full rate and full diversity order
with probability one.In SectionlV, we discussthe problem
of optimizing performancéeyond merelyachieving full rate
and raw diversity order Simulation results shov the
adwantage of optimizing the encoding matrix. Section V
summarizes the conclusions from this paper

210



Il. SYSTEM MODEL AND BACKGROUND

We consider a ¢-transmit, r-receive antenna static wireless
narrowband MIMO channel, modeled as
yr=Hx, +ny, (1)
where x;, isthe ¢ x 1 channel input and y,, the r x 1 channel
output at time k. The entries of the r x ¢ Rayleigh-fading
channel matrix H are independent, circularly symmetric, unit-
variance Gaussian random variables. We assume that H is
unknown to the transmitter, but known to the receiver. The
noise n; is spectraly and temporaly white, so that
Eln,,m;*1 = §NylL,.. The SNR S is defined as the ratio of the
average received signal energy to the average noise energy at
any receive antenna, namely S = E[|| x;, |[21/No.

A rate-K /N space-time encoder takesin a K x 1 complex
vector u and generates a ¢ x N transmit matrix X from the
elements of u. Thei" column of X isthe ¢ x 1 channel input
x; a timei. We restrict attention to strictly linear space-time
codes which obtain each complex output symbol by some
linear combination of the K elements of the input w. To obtain
a convenient representation of the encoding process, for any
m xn Matrix A, let a = vec(A) bethemn x 1 vector formed by
stacking the n columns of A one below the other, and let
mat(a) represent the reverse operation, the values of m and n
being implicit in the definition. Now, the encoding process is
defined by

X = mat(Lu), @)
where the encoding matrix L. completely specifies the code.
The restriction to strictly linear codes instead of the more

genera linear dispersion codes [3] does not lead to
significant lossin achievable performance [5].

For every code, if there is a discrete alphabet U of all
possible K x 1 input vectors, there is a corresponding discrete
alphabet X of all possible ¢ x N transmit matrices. The raw
transmit diversity order of the code is defined as

d, = rank(X - X') . 3

min
XzX'0X
Defining the difference alphabet D = {d = u — u'{u # '
00U}, we netice that if X and X' are two different code
matrices, then X — X' = mat(L(u — u')) = mat(Ld) for somed
09D. Using this fact, the transmit diversity order of (3) can be
rewritten as:

d, = min rank(mat(Ld)) . 4
a0 D

Clearly, d, < min(¢, N). If the transmitter uses a space-time
code with transmit diversity order d, and the receiver does
ML decoding, the total raw diversity order isd = d,r [4]. In
order to attain the maximum possible raw diversity order of
tr, the code length must be at least as great as the number of
transmit antennas, or N = ¢.

I1l. FULL-RATE, FULL-DIVERSITY CODES ARE PLENTIFUL

In this section, we use probabilistic arguments to show that
FRFD codes are easy to find. Specifically, suppose one is
giventhevaluesof N, t and K satisfying K < Nt. Let L denote
the ensemble of all Nt x K matrices with orthonormal
columns. We will show that for any discreteinput alphabet €/,

a matrix L drawn randomly from L achieves transmit
diversity order d;, = min({, N) with probability one. The
following lemmawill prove useful.

Lemmal. Foranyd # 0, if L is chosen uniformly from L,
the t x N matrix V = mat(Ld) has full rank min(z, N) with
probability one.

Proof: Since L is random, so is the vector v = Ld. Since
L*L =1 for all LOL, we have ||v|?=d*L*Ld=d"d =
|| d ||?. Denote the Nz-dimensional complex sphere of radius
p by S, The random vector v always lies on .5 q). Further,
for any unitary matrix ©, the random matrix OL has the
same uniform distribution as L, therefore the vector ©v has
the same distribution as v. In other words, the pdf of v is
invariant to al rotations, leading to the fact that v is
uniformly distributed on $}q;. Consequently, the matrix V =
mat(v) is uniformly distributed over the set of al ¢ x N
matrices whose elements lie on S q.

Now, let G be at x N Rayleigh-fading matrix. The random
vector vec(G)/||G |4 has elements that are uniformly
distributed on §; [7]. Therefore, thematrix R = G/|| G ||z is
uniformly distributed over the set of all ¢t x N matrices
whose elements lie on $;. Further, since G is full-rank with
probability one, R is also full-rank with probability one.
Comparing the random variablesR and V, we see that V has
the same distribution as || d |[R. Therefore,

Pr[V hasfull rank] = Pr[R hasfull rank] = 1. 5)
We can now prove the main theorem of this section.

Theorem 1. For any countable input alphabet U, an
encoding matrix drawn uniformly from L achieves a
transmit diversity order of min(¢, N) with probability one.

Proof: A space-time code with encoding matrix L achieves
transmit diversity d, = min(¢, N) if and only if mat(Ld) has
full rank for al d O9D. The probability that d; = min(, N) is

Pr{ N Fy}, (6)
doop
where Fq is the event that mat(Ld) has full rank. Since the
input alphabet is countable, so is the difference aphabet D.
Therefore, the intersection in (6) is taken over a countable
set. From Lemma 1, Fg is a set of probability one for any
non-zero d OD. It is well-known that the intersection of
countably many probability one events also has probability
one. Therefore, the probability that d;, = min(¢, N) reduces
to unity, proving the theorem.

To achieve full rate we need K = Nmin(t, r). Further, to
achieve full raw diversity order, it is necessary to maked, = ¢
by choosing N = ¢. Thus, for N = ¢ and any countable input
alphabet, arandomly chosen N¢ x Nmin(z, r) encoding matrix
with orthonormal columns achieves both full rate and full
diversity with probability one, according to Theorem 1. In
particular, one can let U = (Ck, the set of all K-dimensional
vectors of complex numbers whose real and imaginary parts
are integers. This ensures full diversity over al finite QAM
alphabets, since these are a subset of (k.
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IV. OPTIMIZATION OF THE ENCODING MATRIX

Themainresultof the previous sectionis thatFRFD codes
arevery common.However, rateandraw diversity orderonly
determineasymptotictrendsand not the exact performance.
Codeswith the samerate andraw diversity order can have
drasticallydifferenterrorrateperformanceA comprehensee
designobjective shouldbeto find, from the family of space-
time encodingmatricesof a given dimension,at leastone
specific matrix which minimizes the error rate while
transmittingat a givendatarateatagivenSNR.Theerrorrate
itself is not amenableo analysis.Instead,onecanusesome
relatedquantity like the coding gain or the union boundon
errorrate,asmetricsfor the optimization.In [5], codinggain
was used as the optimization metric, and numerical
optimizationwas performedfor someinstancef ¢, N, K, r
and . It hasbeenestablishedhat the union boundreflects
actualperformancenorecloselythanthe codinggain [6]. In
the following we proposea combinationof randomsearch
andgradientdescento find encodingmatriceswhich have a
low union bound, gien the data rate and SNR.

The union boundAL) on the word error rateis a smooth,
continuous function of the encoding mattixnamely [6]:
min(¢, N)D |)\ |2D—r

ﬂL)=1z |‘| m+4NOD ,

dOD i=1
where {A;} are the singular values of mat(Ld). Since the
summationin (7) is over the differencealphabet?, it is
necessaryto keep the input alphabetsmall in order to
maintainlow compleity. We chosethe input alphabet to
bethesetof all K x 1 vectorswhoseelementsaredravn from
aunit-enegy 4-QAM alphabetOptimizationfor larger QAM
constellationgand for large valuesof K) becomedifficult

(@)

primarily due to the difculty in computing the union bound.

In orderto fix thetransmitenegy, we constrainthe Nt x K
encodingmatrix L to have a squared-robeniusnormequalto
K, so that the total transmitenegy per signalinginterval is
E = K/N. In terms of the SN = E/N,, (7) reduces to:

min(¢, N)
fL) = zz [ H+ K|A| :
d0D i=1

which clearly showvs the dependencef AL) on SNR. To get
meaningfulresults,the SNR at which optimizationis done
mustbe chosercarefully In whatfollows, for agivenN andt,
we first simulateda random code and chosethe SNR of
optimizationto bethe point at which the frame-erroratewas
around1073,

(8)

For the optimizationresultsin this paper we fix K = Nt,
giving arateof ¢. Let F denotethe setof all Nt x Nt matrices
with squaredFrobeniusnormis N¢. Further let G be the set
of all Nt x N¥ matriceswith unit-normcolumns Finally, let £
denote, as before, the set of all N¢ x N¢ matrices with
orthonormalcolumns.Clearly £ O G O % The optimization
problemamountsto a searchfor a matrix L. with low AL)
amongall L O % However, we heuristically find that the
smallersets G and L yield matriceswith low union bound
fasterandcanbeusedasconstraintsetsfor fastoptimization.

We useda combinationof randomsearchandconstrained
gradientdescento performthe optimization.First, arandom
searchwasperformedover oneof the constraintsetsuntil an
encodingmatrix Ly with low union boundwas found. Then
constrained gradient descent was performed with the
initialization L. Let L;_; bethe matrix obtainedatthe endof
the (i- 1)th iteration. The ;" iteration of constrainecdescent
consists of tw steps:

Stepl I:i = Li -1

Step2. L; =f,i roundedoff to its closestapproximation
in the constraint sef, G or .

MOAL,;—;), for some step-size.

As statedearlier the setsG and L containmatriceswith low
union bound.In particulay amongthe three constraintsets,
the set L leadsto the fastestcorvergenceto a nearoptimum
L. Interestingly if constrainedyradientdescenis performed
onsomematrix in the set G, the stableresultis usuallyfound
to be in L. This obsenation suggeststhat L is likely to
contain at least one globally optimum encoding matrix.
Unfortunately we hae no proof for this proposition.

Somemore structurecan be obsened for the caseN = 2.
Consider the seK [0 L of 2¢ x 2¢ matrices of the form

1 It e iT[/4It

—_— ki

A/é Q —e i'lT/4Q

for some ¢ x¢ unitary matrix Q. In the course of our
optimization,we find that the set & containsnearoptimum
matricesandcanbe usedasthe constraintsetfor anefficient
search.In particular for ¢t =r =N =2, the following 4 x 4
matrix in K hadthelowestunionboundat an SNR of 23 dB
among all the matrices found in the course of our search:

1 0 eilv4 0
Ky o= —=| 0 1 0 A
S [2] 04456 -0.8952i —0.4456e V4 0.8952¢ 8TV 4
0.8952i —0.4456 -0.8952¢3V4 (.4456¢™4

At anSNRof 23 dB, Kj 5 5 hasa unionboundof 6.9 x 1075

In comparisonthe encodingmatricespresentedor the same
valuesof ¢, r and N in [1] and[2] have union boundsof

1.43 x 10~* and1.56 x 10~4, respeciiely.

To demonstratéhe value of optimization,we comparethe
performancef several FRFD space-timecodesof lengthtwo
(N = 2) operatingover a two-input two-output Rayleigh-
fadingchannelwith 4-QAM. Framesconsistingof 50 coded
blocks (or equvalently 100 signaling intervals) were
transmittedand ML decodingwasperformedat the recever
using the spheredecoder[8]. We comparefour space-time
codestheoptimizedcodeKy o o proposedn this paperthe
numbertheoretic(NT) codeof [1] the linear comple field
(LCF) codeof [2] andarandomlygeneratecdtodein L. The
parametersf theNT andLCF codesvereassuggesteth the
respectie sources.The frame-errorratesachieved by these
codesare shavn in Fig. 2. At a frameerrorrateof 1072, the
FRFD codesof [1] and[2] outperformthe randomcodeby
only 0.5 dB. Obsene from the slopethat the randomcode
doesachieve full diversity, as predictedby Theoreml. The
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optimizedcode Kj 5 o outperformsthe previously reported
codes byl.25 dB.

Optimizedcodesfor someothervaluesof ¢, r andN canbe
foundin a similar mannerFor example,nearoptimumcodes
Lgss(fort=r=3N=3)andKy 4o (fort=r=4,N=2)
areshown in Fig. 1. Themajorproblemwith the optimization
approachs thatcomputatiorof the unionboundis infeasible
for large valuesof Nt. While restrictionto the smallersets L
and X does reduce the computationalburden someavhat,
developing more tractable optimization metrics and more
efficient optimization techniques is an open problem.

FRAME-ERROR RATE

16

17 18

SNR (dB)

Fig. 2. Comparing the proposed space-time code to the NT [1] ar
LCF [2] codes as well as to a code randomly selected from

L33 3=

i

S O
S = O
= o o
(=N

1lo 0 0 1
Kya2= 7
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0.7206e70-0687i ( 6045070-5798 () 8545¢0-783% (198812204 (60106700744 0.4126¢1-1102
0.2019¢70-5233 ( 5383¢70-8568i () 3360e0-53761 (.9212e71-0618i ( 449412754 (572111590
0.488161'2558i 0.391161'3722i 0.803160'4948i 0.161061'4392i 0.24826_0'2113i 0.430361'0108i
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1.013661'3700i 0.58816_1'1922i 0.521060'4492i 0.541860'5426i 0.65696_1'2601i 0.110560922& 0.297560'0361i 0.432760'8139i 0.585061'4539i

0_1541e—0.0418i 0_5637e—0.6031i 0_5285e—1.36161: 0_6158e—0.49781: 0_1541e—0.74361: 0.5637e1'3885l:
0.6748e70-04151 ( 5453¢70-99860 ( 4909¢714821i ¢ (791051461
0_0649e—1.3155l 0_5572e—1.47201, 0.638691‘055%

0.5723e 704376 (. 6313713119 (0 51106015950 (.1134e%-1551 (5723122300 (.6313e0-52650 (.5110e0-625%

V. CONCLUSION

We showed that full-rate, full-diversity codesare easyto
find. In particular a randomlychosenencodingmatrix with
orthogonal columns will do. Among FRFD codes, some
codesperform betterthan others,and finding a codewhich
minimizes error rate given the data rate and SNR is a
nontrivial optimization problem. We proposedthe union
boundasan optimizationmetric, and useda combinationof
randomsearchand constrainedyradientdescento minimize
the union bound. The results of our searchindicated that
encoding matrices with orthonormal columns have near
optimum union bounds. Further when the code length is
N =2, the set K of 2t x 2¢ unitary matriceswith a special
structurewas experimentallyfound to containnearoptimum
encoding matrices. Simulation results confirmed the
adwantage of using optimized encoding matrices. An
interesting area of future work is to explain why the
heuristically obtainedsets £ and X contain nearoptimum
matrices.
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Fig. 1. Nearoptimum encoding matricdss 3 3t =r=3,N=3)andKy 4 ot =r=4,N=2).
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