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Abstract – Although many space-timecodessacrifice their rate
in order to achieve a high diversity order, sucha sacrifice is not
necessary. Recent work has reported two instancesof a linear
space-timecodethat achievesboth a full rate of min(t, r) and a
full diversity order of tr over a t-input r-output Rayleigh-fading
channel [1][2]. We show that such full-rate full-di versity codes
are plentiful and can, in fact, be found with probability one by
randomly choosing an encoding matrix fr om an ensembleof
matrices with orthonormal columns.However, full rate and full
diversity does not guarantee good error-rate performance.
Differ ent encoding matrices with the same rate and diversity
order can have markedly differ ent error rates. We proposethe
union bound on word-err or rate as an optimization metric and
perform constrainedoptimization to find goodspace-timecodes.
For the two-input, two-output Rayleigh channel,we presentan
optimized codethat outperforms the previously reported codes
of [1][2] by 1.25 dB at 4 b ⁄ s⁄ Hz and a frame-error rate of 10–3.

I. INTRODUCTION

Westudythedesignof linearspace-timecodes[3] with the
aim of optimizing performance.Specifically, we aim to
minimize the error rate while operatingat a given data-rate
andsignal-to-noisepower ratio (SNR)overaRayleigh-fading
Gaussian-noisechannel, assuming no other error-control
codingis used.Two crucial parametersof a space-timecode
are the rate, definedas the numberof complex information
symbols conveyed per signaling interval, and the raw
diversity order, asdeterminedby the rank criterion [4]. The
rate measuresthe amountof redundancy introducedby the
space-timecode,and the raw diversity order quantifiesthe
effectivenessof the redundancy. Both high rateandhigh raw
diversity order are desirable,sincehigh raw diversity order
helps to mitigate fading, and high rate enablesthe use of
small constellations to achieve a given data rate, thus
increasing the robustness to noise [4].

When linear codes are used over a t-input, r-output
Rayleigh fading channel,the maximum achievable rate is
min(t, r), asdeterminedby the nominal rank of the channel
matrix [3], and the maximumraw diversity order is tr [4].
Although somespace-timecodessacrificerate in order to
achievehighdiversityorder, thereis nofundamentalreasonto
trade-off one against the other. For example,algebraicand

number-theoretictechniqueshavebeenusedto developlinear
encoderswhich simultaneouslyachieve bothfull rateandfull
raw diversity order [1][2]. In this paper, we prove that full-
rate,full-diversity codesareplentiful. Specifically, we show
that when the block length N satisfiesN ≥ t, a randomly
chosen Nt × Nmin(t, r) matrix with orthonormal columns
achievesarateof min(t, r) andaraw diversityorderof tr with
probability one.

The rate and raw diversity order determine only the
asymptoticperformancetrends.Codeswith thesamerateand
raw diversity order may have markedly different error-rate
performance,and it is a nontrivial problemto find, among
codeswith the samerate and raw diversity order, one that
minimizesword-errorrateat a givenSNRanddatarate.This
problemwas earlier addressedin [5], whererandomsearch
and its variantswereusedto obtainencodingmatriceswith
high codinggain. In this paper, we proposethe union bound
as an optimization metric, since it is known to be a more
reliable predictor of performancethan the coding gain [6].
Furthermore,we proposethe use of constrainedgradient
descentto perform fast and reliable optimization. Using a
combination of random searchand gradient descent,we
obtain a high-performanceencodingmatrix for the 4-QAM
alphabet.

The resultsof our optimizationindicatethat the number-
theoreticspace-timecodesof [1][2] arenot optimumin terms
of errorrate.In fact,for thetwo-inputtwo-outputchannel,the
two codesoutperforma randomlygeneratedencoderby only
0.5 dB at 4 b ⁄ s ⁄ Hz. In contrast, the code we obtain by
optimizingtheunionboundoutperformsthenumbertheoretic
codesby 1.25 dB at the samedatarate.The union boundis
difficult to computefor large channeldimensions.However,
the results of optimization for low channel dimensions
indicatesthat somesetsof matricesare likely to yield good
space-timeencoders.Restrictingthe searchto thesesmaller
sets makes optimization easier even for large channel
dimensions.

In SectionII, we describethe channelmodelandpresent
somebackground.In SectionIII, we show thatrandomlinear
space-timecodesachieve full rate and full diversity order
with probability one.In SectionIV, we discussthe problem
of optimizingperformancebeyondmerelyachieving full rate
and raw diversity order. Simulation results show the
advantageof optimizing the encoding matrix. Section V
summarizes the conclusions from this paper.This research was supported in part by the National Science
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II. SYSTEM MODEL AND BACKGROUND

We consider a t-transmit, r-receive antenna static wireless
narrowband MIMO channel, modeled as

yk = Hxk + nk , (1)

where xk is the t × 1 channel input and yk the r × 1 channel
output at time k. The entries of the r × t Rayleigh-fading
channel matrix H are independent, circularly symmetric, unit-
variance Gaussian random variables. We assume that H is
unknown to the transmitter, but known to the receiver. The
noise nk is spectrally and temporally white, so that
E[nk+lnk*] = δlN0Ir. The SNR S is defined as the ratio of the
average received signal energy to the average noise energy at
any receive antenna, namely S = E[|| xk ||2] ⁄ N0.

A rate-K/N space-time encoder takes in a K × 1 complex
vector u and generates a t × N transmit matrix X from the
elements of u. The ith column of X is the t × 1 channel input
xi at time i. We restrict attention to strictly linear space-time
codes which obtain each complex output symbol by some
linear combination of the K elements of the input u. To obtain
a convenient representation of the encoding process, for any
m × n matrix A, let a = vec(A) be the mn × 1 vector formed by
stacking the n columns of A one below the other, and let
mat(a) represent the reverse operation, the values of m and n
being implicit in the definition. Now, the encoding process is
defined by

X = mat(Lu) , (2)

where the encoding matrix L completely specifies the code.
The restriction to strictly linear codes instead of the more
general linear dispersion codes [3] does not lead to
significant loss in achievable performance [5].

For every code, if there is a discrete alphabet U of all
possible K × 1 input vectors, there is a corresponding discrete
alphabet X of all possible t × N transmit matrices. The raw
transmit diversity order of the code is defined as

dt =  rank(X − X′) . (3)

Defining the difference alphabet D = {d = u − u′ u ≠ u′
∈U}, we notice that if X and X′ are two different code
matrices, then X − X′ = mat(L(u − u′)) = mat(Ld) for some d
∈D. Using this fact, the transmit diversity order of (3) can be
rewritten as:

dt =  rank(mat(Ld)) . (4)

Clearly, dt ≤ min(t, N). If the transmitter uses a space-time
code with transmit diversity order dt and the receiver does
ML decoding, the total raw diversity order is d = dtr [4]. In
order to attain the maximum possible raw diversity order of
tr, the code length must be at least as great as the number of
transmit antennas, or N ≥ t.

III. FULL-RATE, FULL-DIVERSITY CODES ARE PLENTIFUL

In this section, we use probabilistic arguments to show that
FRFD codes are easy to find. Specifically, suppose one is
given the values of N, t and K satisfying K ≤ Nt. Let L denote
the ensemble of all Nt × K matrices with orthonormal
columns. We will show that for any discrete input alphabet U,

a matrix L drawn randomly from L achieves transmit
diversity order dt = min(t, N) with probability one. The
following lemma will prove useful.

Lemma 1. For any d ≠ 0, if L is chosen uniformly from L,
the t × N matrix V = mat(Ld) has full rank min(t, N) with
probability one.

Proof: Since L is random, so is the vector v = Ld. Since
L*L = I for all L ∈L, we have || v ||2 = d*L*Ld = d*d =
|| d ||2. Denote the Nt-dimensional complex sphere of radius
ρ by Sρ. The random vector v always lies on S||d ||. Further,
for any unitary matrix Θ, the random matrix ΘL has the
same uniform distribution as L, therefore the vector Θv has
the same distribution as v. In other words, the pdf of v is
invariant to all rotations, leading to the fact that v is
uniformly distributed on S||d ||. Consequently, the matrix V =
mat(v) is uniformly distributed over the set of all t × N
matrices whose elements lie on S||d ||.

Now, let G be a t × N Rayleigh-fading matrix. The random
vector vec(G) ⁄ || G ||F has elements that are uniformly
distributed on S1 [7]. Therefore, the matrix R = G ⁄ || G ||F is
uniformly distributed over the set of all t × N matrices
whose elements lie on S1. Further, since G is full-rank with
probability one, R is also full-rank with probability one.
Comparing the random variables R and V, we see that V has
the same distribution as || d ||R. Therefore,

Pr[V has full rank] = Pr[R has full rank] = 1. (5)

We can now prove the main theorem of this section.

Theorem 1. For any countable input alphabet U, an
encoding matrix drawn uniformly from L achieves a
transmit diversity order of min(t, N) with probability one.

Proof: A space-time code with encoding matrix L achieves
transmit diversity dt = min(t, N) if and only if mat(Ld) has
full rank for all d ∈D. The probability that dt = min(t, N) is

Pr{ } , (6)

where Fd is the event that mat(Ld) has full rank. Since the
input alphabet is countable, so is the difference alphabet D.
Therefore, the intersection in (6) is taken over a countable
set. From Lemma 1, Fd is a set of probability one for any
non-zero d ∈D. It is well-known that the intersection of
countably many probability one events also has probability
one. Therefore, the probability that dt = min(t, N) reduces
to unity, proving the theorem.

To achieve full rate we need K = Nmin(t, r). Further, to
achieve full raw diversity order, it is necessary to make dt = t
by choosing N ≥ t. Thus, for N ≥ t and any countable input
alphabet, a randomly chosen Nt × Nmin(t, r) encoding matrix
with orthonormal columns achieves both full rate and full
diversity with probability one, according to Theorem 1. In
particular, one can let U = CK, the set of all K-dimensional
vectors of complex numbers whose real and imaginary parts
are integers. This ensures full diversity over all finite QAM
alphabets, since these are a subset of CK.

min
X ≠ X´∈ X

min
d ∈ D

F d
d D∈
∩
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IV. OPTIMIZATION OF THE ENCODING MATRIX

Themainresultof theprevioussectionis thatFRFDcodes
arevery common.However, rateandraw diversityorderonly
determineasymptotictrendsandnot the exact performance.
Codeswith the samerate and raw diversity order can have
drasticallydifferenterror-rateperformance.A comprehensive
designobjective shouldbe to find, from the family of space-
time encodingmatricesof a given dimension,at least one
specific matrix which minimizes the error rate while
transmittingatagivendatarateatagivenSNR.Theerrorrate
itself is not amenableto analysis.Instead,onecanusesome
relatedquantity, like the codinggain or the union boundon
error rate,asmetricsfor theoptimization.In [5], codinggain
was used as the optimization metric, and numerical
optimizationwasperformedfor someinstancesof t, N, K, r
andU. It hasbeenestablishedthat the union boundreflects
actualperformancemorecloselythanthecodinggain [6]. In
the following we proposea combinationof randomsearch
andgradientdescentto find encodingmatriceswhich have a
low union bound, given the data rate and SNR.

The union boundf(L) on the word error rate is a smooth,
continuous function of the encoding matrixL, namely [6]:

f(L) = , (7)

where {λi} are the singular valuesof mat(Ld). Since the
summationin (7) is over the differencealphabetD, it is
necessaryto keep the input alphabet small in order to
maintainlow complexity. We chosethe input alphabetU to
bethesetof all K × 1 vectorswhoseelementsaredrawn from
aunit-energy 4-QAM alphabet.Optimizationfor largerQAM
constellations(and for large valuesof K) becomesdifficult
primarily due to the difficulty in computing the union bound.

In orderto fix thetransmitenergy, we constraintheNt × K
encodingmatrix L to haveasquaredFrobeniusnormequalto
K, so that the total transmitenergy per signalinginterval is
E = K ⁄ N. In terms of the SNRS = E ⁄ N0, (7) reduces to:

f(L) = , (8)

which clearly shows the dependenceof f(L) on SNR.To get
meaningfulresults,the SNR at which optimization is done
mustbechosencarefully. In whatfollows,for agivenN andt,
we first simulateda random code and chosethe SNR of
optimizationto bethepoint at which theframe-errorratewas
around10–3.

For the optimizationresultsin this paper, we fix K = Nt,
giving a rateof t. Let F denotethesetof all Nt × Nt matrices
with squaredFrobeniusnorm is Nt. Further, let G be the set
of all Nt × Nt matriceswith unit-normcolumns.Finally, let L
denote, as before, the set of all Nt × Nt matrices with
orthonormalcolumns.Clearly, L ⊂ G ⊂ F. Theoptimization
problemamountsto a searchfor a matrix L with low f(L)
amongall L ∈ F. However, we heuristically find that the
smallersetsG and L yield matriceswith low union bound
faster, andcanbeusedasconstraintsetsfor fastoptimization.

We useda combinationof randomsearchandconstrained
gradientdescentto performtheoptimization.First, a random
searchwasperformedover oneof theconstraintsetsuntil an
encodingmatrix L0 with low union boundwasfound. Then
constrained gradient descent was performed with the
initialization L0. Let Li−1 bethematrix obtainedat theendof
the (i−1)th iteration.The ith iteration of constraineddescent
consists of two steps:

Step1. i = Li − 1 − µ∇f(Li−1), for some step-sizeµ.
Step2. Li = i roundedoff to its closestapproximation
in the constraint setL, G or F.

As statedearlier, thesetsG andL containmatriceswith low
union bound.In particular, amongthe threeconstraintsets,
the setL leadsto the fastestconvergenceto a near-optimum
L. Interestingly, if constrainedgradientdescentis performed
on somematrix in thesetG, thestableresultis usuallyfound
to be in L. This observation suggeststhat L is likely to
contain at least one globally optimum encoding matrix.
Unfortunately, we have no proof for this proposition.

Somemorestructurecanbe observed for the caseN = 2.
Consider the setK ⊂ L of 2t × 2t matrices of the form

,

for some t × t unitary matrix Q. In the course of our
optimization,we find that the set K containsnear-optimum
matrices,andcanbeusedastheconstraintsetfor anefficient
search.In particular, for t = r = N = 2, the following 4 × 4
matrix in K hadthe lowestunionboundat anSNRof 23 dB
among all the matrices found in the course of our search:

K2,2,2 = .

At anSNRof 23 dB, K2,2,2 hasa unionboundof 6.9 × 10–5.
In comparison,theencodingmatricespresentedfor thesame
valuesof t, r and N in [1] and [2] have union boundsof
1.43 × 10–4 and1.56 × 10–4, respectively.

To demonstratethevalueof optimization,we comparethe
performanceof severalFRFDspace-timecodesof lengthtwo
(N = 2) operatingover a two-input two-output Rayleigh-
fadingchannelwith 4-QAM. Framesconsistingof 50 coded
blocks (or equivalently 100 signaling intervals) were
transmitted,andML decodingwasperformedat the receiver
using the spheredecoder[8]. We comparefour space-time
codes:theoptimizedcodeK2, 2, 2 proposedin this paper, the
numbertheoretic(NT) codeof [1], the linear complex field
(LCF) codeof [2] anda randomlygeneratedcodein L. The
parametersof theNT andLCF codeswereassuggestedin the
respective sources.The frame-errorratesachieved by these
codesareshown in Fig. 2. At a frameerror rateof 10–3, the
FRFD codesof [1] and [2] outperformthe randomcodeby
only 0.5 dB. Observe from the slope that the randomcode
doesachieve full diversity, as predictedby Theorem1. The
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optimizedcodeK2,2,2 outperformsthe previously reported
codes by1.25 dB.

Optimizedcodesfor someothervaluesof t, r andN canbe
foundin a similar manner. For example,near-optimumcodes
L3,3,3 (for t = r = 3, N = 3) andK4,4,2 (for t = r = 4, N = 2)
areshown in Fig. 1. Themajorproblemwith theoptimization
approachis thatcomputationof theunionboundis infeasible
for largevaluesof Nt. While restrictionto thesmallersetsL
and K does reduce the computationalburden somewhat,
developing more tractable optimization metrics and more
efficient optimization techniques is an open problem.

V. CONCLUSION

We showed that full-rate, full-diversity codesare easyto
find. In particular, a randomlychosenencodingmatrix with
orthogonal columns will do. Among FRFD codes, some
codesperform betterthan others,and finding a codewhich
minimizes error rate given the data rate and SNR is a
nontrivial optimization problem. We proposedthe union
boundasan optimizationmetric,anduseda combinationof
randomsearchandconstrainedgradientdescentto minimize
the union bound. The results of our searchindicated that
encoding matrices with orthonormal columns have near-
optimum union bounds.Further, when the code length is
N = 2, the set K of 2t × 2t unitary matriceswith a special
structurewasexperimentallyfound to containnear-optimum
encoding matrices. Simulation results confirmed the
advantage of using optimized encoding matrices. An
interesting area of future work is to explain why the
heuristically obtainedsetsL and K contain near-optimum
matrices.
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Fig. 1. Near-optimum encoding matricesL3, 3, 3 (t = r = 3, N = 3) andK4, 4, 2 (t = r = 4, N = 2).
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Fig. 2. Comparing the proposed space-time code to the NT [1] and
LCF [2] codes as well as to a code randomly selected fromL .
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