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Abstract — The decision-feedback(DF) detector is a nonlinear
detection strategy for multiple-input multiple-output (MIMO)
channels that can significantly outperform a linear detector,
provided that the order in which the inputs are detectedis chosen
carefully. We show that the DF detector may be implemented as
the cascadeof a linear detector, which mitigates interference at
the expenseof correlating the noise,followed by a noisepredictor,
which exploits the correlation in the noiseusing linear prediction
to reduceits variance. A key advantage of the noise-predictive
detector is that it leadsto a simple algorithm for optimizing the
detection order that is 28% lower in complexity than the lowest-
complexity algorithm previously reported.

I. INTRODUCTION

This paperconsiderghe following MIMO channelwith N

inputsa = [ay, ... ay]T andM outputsr = [rq, ... rp] "
r=Ha+w, (0]

where H is a complex M x N channelmatrix with linearly
independentolumns,andwherew = [wy, ... wy]” is additive
white noise satisfyin@[ww*] = 01

The DF detectoremepgesas a popular stratgy in a wide
rangeof applicationsfor which (1) applies.In the contet of a
wirelesspoint-to-pointlink with N transmitantennasand M
receve antennasthe DF detectoris known as the BLAST
nulling andcancellingdetector{1]; in the context of a CDMA
systemwith N usersandM chipspersymbol,it is known asthe
decision-feedbackultiuserdetectof2]; andin the context of
paclet transmission, it is kmn as a generalized DFE [3].

The performancef the DF detectotis stronglyimpactedby
the order in which the symbolsare detected.Unfortunately
optimizing the detectionorderis a difficult problemthat often
dominateghe overall recever compleity. Whenthe aimiis to
minimize the joint error probability the BLAST ordering
algorithmof [1] canbeusedto find theoptimalordering;it is a
recursve schemethat suffers from high O(N*) compleity
becauseit involves repeated computations of a matrix
pseudoinerse. Several O(N?) reduced-compbdty ordering
algorithmshave beenproposedThe square-rootlgorithm of
[4] is bothnumericallystableandlow in compleity, while the
decorrelatingalgorithm of [5] is somevhat lower in both
compleity andstability. Otheralgorithmssacrificeoptimality
in order to reduce compliy [6—8].

In this paperwe presentinew architecturdor implementing
the DF detector basedon linear prediction. The detector
consistsof a cascad@f alinearMIMO detectorfollowedby a
linear prediction mechanismthat reducesthe noise variance.
The noise-predictie detectoris functionally equivalentto the
cornventional DF detectoy but it offers two implementation
adwantages.First, the noise-predictie DF detector can be
adapteddirectly using low-compleity adaptve algorithms,
without the needfor an intermediatechannelestimationstep.
Second,the noise-predictie DF detectorleadsto a simple
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O 3) algorithm for determiningthe optimal detectionorder
that is 28% lower in compleity than the lowest-complgity
ordering algorithm praously reported [5].

Il. NOISE-PREDICTIVE DF DETECTION

To simplify our presentatiorwe focus on the zero-forcing
(ZF) DF detector althoughthe resultsapply to the minimum-
mean-squared-err(iMMSE) DF detectoras well. Consider
first a ZF linear detector[9], which computesy = Cr where
C = (H*H)"'H* is the channelpseudoinerse.From (1), the
output of this filter is free of interference:

y=a+n, (2)
wherethenoisern is nolongerwhite; its autocorrelatiomrmatrix
iS R,,,, = E[nn*] = 0%(H*H) L.

The correlationof the noise can be exploited using linear
predictionto reduceits variance.lf thefirst i — 1 elementsof
the noisevectorare known, we could form an estimatern; of
thei-th elementr; andsubtractthis estimatefrom y; to reduce
its variance. Specifically given {n,...n;_;}, a linear
predictor estimates; according to:

n; = Zj;llpijnj, ()
or equialently = Pn, whereP is a strictly lower triangular
prediction filter with zeroson the diagonal. This processis
complicatedby the factthatthe recever doesnot have access
to n; directly, but ratherto thesumy; = a; + n;. However, oncea

decisionabouta; hasbeenmade,it needonly be subtracted
from y, to yieldn;, assuming the decision is correct.

The above linear prediction strateyy leadsto the noise-
predictiveDF detectorshavn in Fig. 1, wheree; denoteghe -
th row of the channel pseudoinerse C = (H*H)"'H*, and
where{p;} arethe predictioncoeficients. The outputsof the
pseudoimerse are permuted according to the ordering
algorithmof Sectionlll. Sinceorderinganddetectionmay be

— nL1

z

&}

Y2 || Vi

5
= n;
14 2

1]

o

Fig. 1. The noise-predicte DF detector



separatedvithout loss of generality we assumean identity
permutation in the remainder of this section.

The predictionfilter that minimizesthe MSE E[||A — n||] is
easily expressed in terms of the folling QR decomposition:
H=QDM, 4)
whereQ is an M x N matrix with orthonormalcolumns,where
D is a diagonalmatrix with real and nonngative diagonal
entries,andwhereM is lower triangularmatrix with oneson
thediagonallt is straightforvardto shav that[10], in termsof
this decomposition, the optimal prediction filtePis T - M.

It is easyto shav that the noise-predictie DF detectorof
Fig. 1 is equivalentto the cornventional DF detectorof [1-3].
The cascadeof the pseudoinerseC andthe predictionerror
filter E =1 - P reduces to an ffctive overall filter F of:

F=(I-P)C=MH*H) 'H*

=MM 'D2M*)H* =D2M*H* =D-1Q*. (5)

The output of the prediction error filter is:
I-Py=a—-Pa+e, (6)

wheree =n —n is the effective noisewith reducedvariance
after prediction.From (6), we seethat the predictionprocess
hasintroducedan interferenceterm —Pa. The factthat P is
strictly lower triangularallows this interferenceto be canceled
using decision feedback,namely by feeding past decisions
througha feedbackfilter B= —P =M — 1. Thefilters F and B
just derived are preciselythe forward and feedbackfilters of
the ZF-DF detectoy respectrely; thus, we concludethat the
proposechoise-predictie DF detectorof Fig. 1 is functionally
equialent to the carentional DF detector of [1-3].

I1l. A Low-COMPLEXITY ORDERING ALGORITHM

Let i;, denotetheindex of the k-th symbolto be detectedso
that{iy, iy, ... in} IS apermutatiorof {1, 2, ... N}. Thenoise-
predictive view leadsto a very simplealgorithmfor finding the
optimal orderingthat is lower in compleity than previously
reported algorithms, making it an attractve choice even if
linear prediction is not used for implementation.

As proven in [1], the optimal orderingcan be found in a
greedy and recursve fashionby choosingeachi, so asto
maximize the post-detectionSNR, or equialently minimize
the MSE. Specifically becausehe MSE for the first detected
symbol is 02||c,~1||2, we have i; = argmin||¢; ||. Oncei; is
chosen,the MSE for the secondsymbol is E[|n;,— ﬁi2|2],
which reducesto o?|¢;,—ps;e; . When the prediction
coeficient py; is optimized, the term py;¢;, reducesto the
projectionof ¢;, ontothe subspacepannedy c;,. Hence,the
optimal iy satisfiesi, = argmin; «; [le;—¢; |2, where ¢&; is the
projectionof ¢; onto the subspacespannedy c;,. Repeating
this procedurerecursvely leadsto the following simple and
succinct description of an optimal ordering algorithm:

argmin [l¢;-&]?, (@)

i =
k iD{il,...Lk71

where ¢&; is the projection of ¢; onto the span of {¢; , ... ¢;, _}.

In words,the bestchoicefor the k-th row is the unchoserrow

that is closestto the subspacespannedby the rows already

chosen.

(1) Perform QR decompositidd = QG
) Initialize C = G1Q* andE = I
(8 fork=1toN,
@) = argmin |||
i O{iy, . ip_q
5) v=e, ; d=lll ; r=|v]
(6) vy =vytdv/r
@ C=C-Cv*v/(d2+dr)
(8) Delete first column fron€; store it ask-th column ofB
(9) forj=(k—1)downto1,
(10) Ey ;= —Ezlfn:jﬂEk,mBim,jE/Bij,j
(11) end
(12) end
Fig. 2. Proposed sorting algorithm.

The sorting algorithm could be implementedby applying
the Gram-Schmidiprocedureto the pseudoinerserows {¢;},
but we proposea more efficient implementationas described
by thepseudocodef Fig. 2. Thealgorithmacceptghechannel
H asaninput, andit produceshe optimal ordering{i,, ... in}
as well as the prediction error filter E =1 — P as outputs. Lines
(9) — (11), which use backsubstitutiorto find the prediction
coeficients, can be omitted if only the detectionorder is
neededLines (5) and (6) createa Householdewector v that
leads to low complexity by allowing C to decrease in
dimension with each iteration; see line (8). The number of
operations required to initialize C to the pseudoinverse of H in
lines (1) and (2) is 3MN?— N3/3, while that for line (7) is
2MN? - 2N3/3, andthatfor line (10)is N3/3 [11]. Thenorms
in line (4) neednot be calculatedanev for eachk, but canbe
calculatedrecursvely accordingto ||c;|? + 1 = lle;|IF —1B; 1%
Thetotal compleity is thus5MN?— 2N 3/ 3, which reducego
13N3/ 3 whenM = N. Thisis significantlylowerin compleity
thanthe 27N*/4 compleity of BLAST [1], andis 55% less
complex thanthe 29N3/3 algorithm of [4], andis 28% less
comple than thé 6N3 algorithm of [5].
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1. The compleity of [5] breaks dan asbN%/3 to initialize Ly andLI\fl,
10N3/3 for theN iterations {2 to compute norms for thieth iteration,
and6Ni to triangularizel,; andL;'), andN? to multiply H* by L™,



