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Abstract — Although most linear and decision-feedback modify the minimum-BER cost function and propose the
equalizers are designed to minimize a mean-squared error (MSIAMBER adaptve algorithm. In SecV, we present numerical
performance metric, the equalizer that directly minimizes bit-results comparing the AMBER and MMSE equalizers.
error rate (BER) may significantly outperform the minimum-

MSE equalizerespecially for binary antipodal signaling and its I[l. MODELSFOR CHANNEL AND EQUALIZER
biorthogonal gtensions, such as four quadrature-amplitude
modulation. V& shev that the performanceaq of the min-
imum-BER equalizerwer the minimum-MSE equalizer is most
pronounced when the number of equalizer ficehts is small
relative to the seerity of the intersymbol interference.epro-
pose a simple stochastic gradient algorithm that approximatel

Consider the linear discrete-time binary signaling channel
depicted in Figl, wherex is the binary input dran from {1},
hy is the channel impulse response with menMryandn,, is
white Gaussian noise with wer spectral density?. The
channel output, is:

minimizes BER in the presence of linear intersymbol interfer- M
ence and white Gaussian noise. Computer simulatiopalrthat Tp=Sp+ng= Z hixp, _i + np, 1)
the proposed algorithm comparesdrably to the popular least- i=0

mean-square algorithm in terms of both steady-state perfoiwheres, is the noiseless channel output.

mance and compidy. Also shavn in Fig.1 is a linear equalizer witN + 1 coefi-

cients described by theeetore = [¢, ... cy17. The equalizer
output can bex@ressed as the inner produgt ¢’r;, betweere
We consider the design and adaptation of a finite-tap lineaand a channel outpuegtorry, = [ry, ... r, _ 517, where:
equalizer for combating intersymbol interference in the presenc ry=s; +n, = Hyy, + ny, )
of additve white Gaussian noise, under the constraint that deci
sions are made on a symbol-by-symbol basis by quantizing th
equalizer output. The most popular design ssate this setting
is the minimum mean-squared error (MMSE) equalindrich
can be realized using the least-mean square (LMS) algorithnr
However, as recognized in [1-3], a better stggtés to choose
the equalizer coéitients so as to minimize the error probability = ' 3)
or bit-error rate (BER), not MSE. Unfortunatestochastic gra- )
dient algorithms minimizing BER are significantly more com- 0..0hg ... hy
plex than their MSE counterparts. Also, minimum-BER
equalizers require that the noisemgo spectral density be esti-
mated [3]. Finally the BER sudce of &en a simple binary
channel is highly irrgular, and comergence to the global min-
imum cannot generally be guaranteed.

I. INTRODUCTION

wherexy, = [xy, ... x, _ 3 17 is @ \ector of channel inputss, =
[ng ... nj, _ N1T is @ \ector of noise samplesy, = [sy, ... s;, _ y17=
Hx, is a ‘ector of noiseless channel outputs, @idis the
(N + 1) x (M + N + 1) Toeplitz cowolution matrix:

We male the restrictie assumption that the decisidp , about

the information symbok,_p is determined by the sign of the
equalizer outputi ,_p = sgn(y;), where D accounts for the delay
of both the channel and the equalizef course, this memoryless
decision deice is suboptimal; better BER performance can be

In this paperwe derve a simple adapte algorithm achi&ing  achiered by performing maximum-l&ihood sequence detection
approximate minimum-BER (AMBER) performance for both on the equalizer output.

linear and decision-feedback equalizers, specializing to binar
and quadrature-amplitude modulation. The proposed AMBEF
algorithm has the follwing attributes: it closely approximates

Because of the binary alphabet gy the bit-error probability
after the linear equalizerhas a particularly simple form:

the minimum-BER equalizer; it does not require Wiezlge of ., ~els.0
the noise &riance; it has W compleity (even laver than the Pri%, p#x,_pl= E[Q kﬁfllcr k } 4)
least mean-square algorithm); and is guaranteed teento

the global minimum of its cost function under the mild condition

r——— =9 - - - — —

that the channel be equalizable. nk

-
This paper is @anized as folles. In Sectll, we present
iz ' i | L% I

models for the channel and equalizkr Sectlll, we discuss _Channel

exact minimum-BER (EMBER) equalization. In Sedt, we — - T -
Fig. 1. Binary signaling channel and reeei
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where@ is the Gaussian error function, and thxpextation is
over all2M+*N+1 equally likely s, = Hx, vectors. Observthat the
error probability depends on the directien||e || of e only, and
that the length of is irrelevant; this is because the reasi deci-
sions are determined by the sign of the equalizer output only

I1l. EXACT MINIMUM-BER EQUALIZATION

Unlike the codfcient vector ey sg that minimizes MSE,
there is no closed-formxpression for a coé€ient vector
cgmBer that achiges &act minimum-BER (EMBER) perfor-
mance. Hwever, by setting to zero the gradient of (4) with
respect ta, it is straightforvard to shw thategyggr must sat-
isfy the follaving fixed-point relationship:

CEMBER =AﬂcEMBER)7 for someA > 0, (5)
wheref: RM*1 _, RN*1 s defined by:
N Ts )0
*r-DC Sk
fe) = E|:exp D’ck_DSk] ) (6)
O 2lef’c® O

and agin the &pectation is wer all 2Y+N+1 equally likely
Sy = ka vectors.

The functionfie) plays an important role in our analysis, and
it has a useful geometric interpretation. If wesfét s@, ..., s
denote thel = 2Y+N*1 equally likely x;,  sj, = x; p Hx, vectors,
thenfle) can be gpressed as a weighted suns@fvectors:

2 2 2
fle) = % Ee_a1/2 sD 4 2@ TR 5 7

where a; = ¢’s®/(||¢ |jo) is a normalized inner product ef’
with e. Becausexp( D) is an &ponentially decreasing function,
fle) is dictated by only thos€® vectors whose inner products
with ¢ are relatvely small. But the inner product &f with ¢ is
the noiseless equalizer output when a one is transmitted; thus,
small inner product is equalent to a nearly closege diagram.
Thus,fte) will be very nearly a linear combination of thevfe®
vectors for which theye diagram is most closed.

The «istence of at least one unit-lengthsatisfying (5) can
be intuitively explained: The fipersphere of all unit-lengthec-

Recall that the length af has no impact on BER, and observ
that the first braaited fctor in (8) represents an adjustment of
the length ok, . ;. Eliminating this &ctor leads to the so-called
EMBER deterministic gradient algorithm (EMBER-DGA):

Cp1 = ¢ + Ufey). )

Although the transformation from (8) to (9)edts the cover-
gence rate and the steady-state noug ||, it has no ééct on
the steady-state directian,/||c., |, and thus no &ct on the
steady-state BER performance. &tf, it can be pren that the
EMBER-DGA of (9) is globally covergent for a certain class of
channels, as described in the faliog theorem:

Theorem 1. If the maximum angle betweenyapair of
x5, _p Sy, vectors is less tham/ 2, then the EMBER-DGA of
(9) is guaranteed to cearge to the minimum-BER solution,
regardless of its initial condition.

V. APPROXIMATE MINIMUM-BER EQUALIZATION

We naw propose thepproximate minimum-BER determin-
istic gradient algorithm (AMBER-DGA) by making a simple
modification to the EMBER-DGA update equation (9 Wen
propose a lv-complity stochastic update equation; propose a
modification for fister comergence; andx¢end it to quadrature
amplitude modulation.

A. Deterministic AMBER

The error functior@(a) is upper bounded and approximated
by exp(-a2/2)/(/2ma) [4], so thatfie) of (6) and (7) can be
approximated by:

fie) 2%‘ Ha1Q(aps™® + a5Q(ag)s®) + .. + azQap)s™ H(10)

a = «/ﬁammg(c),

wherea ,;, = min{0;}, and where we e introduced theector
functiong : RV+1 _ RN+L:

(11)

2@ = 1 EQ@ps? + Qs + ... + Qap)s™

tors ¢ is closed, continuous, and bounded. Each point on the Oy, _DcTskEI
sphere is mapped to a reahlwe via the dferentiable and =E QDD—"c"o E’%—Dsk : (12)

bounded BER function of (4) and forms another closed, contin-

uous, and bounded sade. The resultant sade is diferentiable ~ Comparing (6) and (12), we see tgét) has the same form as
everywhere and has at least one local minimum, due to its closefie), but with @(a) replacing &p(-a®/2). The approximation in
and bounded properties. In general, thefistemore than one (11) is \alid because only the terms in (10) for whach= o,
local minima,i.e. more than one unit-lengéh satisfying (5). are releant, the other terms b@ neligible impact. Usings(c)

to approximatefie) in (9) leads to the follwing approximate
minimum-BER DGA (AMBER-DGA):

Although the BER cost function in general is notwexn a
gradient algorithm may still be used to search for its global min

imum. In particulara gradient algorithm based on (4) yields: Cr+1 = € + Hg(cp). 13)

Because of the approximations in (10) and (11), the AMBER
DGA no longer minimizes BERxactly. However, the approxi-
mations are well-justified, and the simulation results of Séct.
verify that the equalizer minimizing the AMBER cost function
very nearly minimizes BER.

Cry1=Cp— MU0, Prlx, _p #x;, _pl

T
[1_ uckf(ck) 0oc

U
C 3 [OCCk
el

1-pey, f(ey)/ x|’

8)
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Fortunately, the AMBER-DGA of (13) isglobally convergent
for amuch broader class of channels than the EMBER-DGA:

Theorem 2. If the eye of the channel can be opened by the
equalizer, the AMBER algorithm of (13) is guaranteed to
converge to the global minimum of its cost function.

. Stochastic AMBER

At first glance, the AMBER-DGA of (13) is no less compli-
cated than the EMBER-DGA of (9). However, we can introduce
an error indicator function I,.,, where

xyr
1
Ly=3

(1 - sgnlxz pyi)). (14)
In other words, I, = 1 when an error is made (&, p # x;p), and
I, =0 when no error is made (%,p =x;p). We can use this
indicator function to simplify the AMBER-DGA of (13),

through the following series of straightforward equalities:
Cr+1

= ¢+ UE [E[Ixy |25 s3Elx, sk]]

= ¢, + UElLx p sy ]
= ¢, + UElLx, pryl. (15)

The last equality follows because r, = s;, + ny, and I, and x;, p
are statistically independent, so that:

ElL,x;p 1) = Elxy,p IEL ny] = 0. (16)

A simple and asymptotically unbiased stochastic gradient
update algorithm consequently can be formed by removing the
expectation in (15):

Chy1 = Cp + WXy p Ty 1
We refer to this stochastic algorithm as AMBER. The equalizer
is updated only when an error is made. AMBER has aform sim-
ilar to the familiar LMS algorithm: both are described by (17),

the only difference being that I, = 1 -x;, py, for LMS, and
Ixy =(1- sgn[xk,Dyk])/2 for AMBER.

Because AMBER-SGA is an unbiased stochastic version of
AMBER-DGA, it can be shown that, for a sufficiently small step
size, the AMBER-SGA converges to a solution satisfying the
following fixed-point relation:

CAMBER = Ag(cAMBER), for someA > 0. (18)

Observe the similarity between (18) and (5).

The simple AMBER-SGA of (17) has an insightful geometric
interpretation. Recall that the noiseless equalizer output when a
one is transmitted is the inner product of ¢ with x; _ps; = s©.
Most errors occur when thisinner product is small, i.e. when the
eye is nearly closed. The AMBER update of (17) dictates that
each time an error is made, the equalizer coefficient vector ¢
takes a small step in space towards the s®) vector that resulted in
the error. Therefore, the next time the input bits conspire to pro-
duce the same s vector, its inner product with ¢ will be larger.
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In other words, the eye opening will be larger. Thus, we can view
(17) as aheuristic algorithm for maximizing the eye opening.

At steady state, as shown in (18), csyprr 1S a weighted com-
bination of s vectors, with weights proportional to the condi-
tional error probability. And since these conditional error
probabilities are dominated by the few s vectors that close the
eyethe most, eqprr Will be very nearly alinear combination of
the few s® vectors for which the eye diagram is most closed.

C. Threshold Modification

When atraining sequence is not available, it may be tempting
to operate the AMBER algorithm in a decision-directed manner
by replacing x,p by %,p in (17). Unfortunately, this would
cause the indicator function (14) to be zero always, stalling adap-
tation from the start, because %, py, = sgn(yg)yy = byg| > 0. To
overcome this problem, we introduce a positive threshold T into
the AMBER adaptation process. The modified update equation
for both training and data modes becomes:

crr1=c¢p+ Wy X pry, (19

where the modified indicator function is I,,=1 if y,&p <T
and I, =0 otherwise. Because the norm of ¢ may grow with
time, we define T relative to this norm using T = a|| ¢ || for some
fixed constant a O (0, 1). As discussed in Sect. V, the threshold
modification changes the steady state performance of the equal-
izer.

Besides its utility as a decision-directed agorithm, a second
advantage of the threshold modification isthat it increases signif-
icantly the rate of convergence of the AMBER agorithm with
training. The origina AMBER algorithm updates only when an
error is made, while the modified AMBER algorithm updates
when an error is made and also when an error is ailmost made.
Thus, the threshold modification causes ¢ to be updated much
more frequently.

Similar to the decision-directed LM S update process, we can
expect the modified AMBER update process to be valid when
the BER is reasonably small, perhaps 1071 or 102 or less.

D. Approximate Minimum-BER Equalization for 4-QAM

Although the original AMBER agorithm is defined for
binary signaling only, it can be generalized to four quadrature-
amplitude modulation (4-QAM) asfollows. Using superscripts R
and I to denote real and imaginary parts, respectively, of a com-
plex 4-QAM system, the BER (not symbol error rate) for 4-
QAM signaling with Gray coding is:

R b3
1 Ov,_plefs,)®0 Do, _plels;,)D
BERpsy == E| Q=22 O+ QO==—=—"—"0|.(20
AAM T2 [QD o Jal 8% Jel o ®

We assume n,® and n,! are white and independent with PSD 2.
Following the AMBER-SGA derivation for binary signaling, the
following AMBER update equations for 4-QAM can be derived:

R _ R 3 ~R R 3 ~I I
ck+1 = C‘k +u(Inyka_Drk +ley1xk_Drk)

I _ I % ~R I, 3 ~I R
cLi1=¢,t u(—Inyka_Drk +Ix1y1xk_Drk ). (21



V. NUMERICAL RESULTS

To demonstrate thefettiveness of the proposed algorithms,

we naw present simulation results for both binary and 4-QAM

channels. All BER simulation results are obtained vgitto®

required to achiee BER= 10 versus equalizer length for both
AMBER and MMSE. W see that MMSE approaches AMBER
as the length of the equalizer increases.

Fig. 4 depicts the “artificial” noiselesye patterns (obtained

training data bits antio” data bits. All equalizers use a step size by interpolating all possible noiseless equalizer outputs with a
of u=0.001 during training and no adaptation occurs in datatriangular pulse shape) for EMBER, AMBER, and MMSE with

mode. fer binary signaling channels, EMBER casvare plotted
via numerical ealuation of (4) with ideal EMBER filter cdef
cients. V@ use a small fed threshold of = 0.1 (not normalized
relative to||e ||) for the AMBER algorithm to increase its a@nm-
gence rate for all BER simulations. lmegy example we choose
the equalizer dela® to be optimal in the MSE sense.

A. Channel A: Linear Equalization for Binary Signaling

five equalizer taps and SNR30 dB. All three equalizer are nor-
malized to hee identical norm (and thus identical noise
enhancement). The EMBER and AMBERegatterns are virtu-
ally identical, while the MMSE y& pattern is drastically dif-
ferent. In particulgrthe EMBER and AMBER y& patterns
exhibit a lager /e opening than the MMSE/e pattern.

The cowergence rates of the AMBER and MMSE 3-tap
equalizers are compared at SMNRBO0 dB in Fig.5, assuming a

Here we consider binary signaling and linear equalization forfixed threshold of = 0.1. Obsere that AMBER cowerges much

a channel with transfer functidii(z) = 1.2 + 1.1z7 —0.2272. In
Fig. 2 we plot BER ersus SNR=3,4;%/02, considering both
MMSE and AMBER equalizers of length three ancefilhe
figure shavs that with 3 filter taps and a delay bf= 2, the
AMBER equalizer has a more thérs dB gain over the MMSE
equalizer With 5 filter taps and a delay @& = 4, AMBER still
has a nearl® dB gain over MMSE. Obserg that the AMBER
(solid) and EMBER (dashed) c@w are nearly indistinguishable.

The results of Fig2 shav that the impreement of AMBER
over MMSE drops from 6.8B to 2dB as the equalizer length
increases from three to &y suggesting that MMSE approaches
AMBER as the equalizer length increases. In Bigie plot SNR

1074

SNR (dB)
Fig. 2. Performance of linear equalization for channel A.

N
o

=10"°

SNR required for BER
w
o

3 4 5 6 7 8 9 10
Equalizer Length

Fig. 3. SNR requirement vs. equalizer length for channel A.
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slower than LMS. © partially miticate this problem, a geahift
algorithm combining LMS and AMBER is used here. The LMS
algorithm is used to first quickly reach a good initial condition,
and then the adaptation process is switched to the AMBER algo-
rithm to approach the minimum BER solution.

In Fig. 6 we plot both steady-state BER andwagence time
for the AMBER-DGA as a function oft =1/||e ||, assuming
SNR= 32 dB. Obsere that fora less than0.1, the AMBER
steady state BER isewy close to the true minimum BER,
whereas the BER deades significantly for lger thresholds.
Meanwhile, the coremgence rate (right-hand scale) impes
dramatically ast increases from 0 to 0.1ubnot appreciably for
o greater tharo.1. (Here, we define cerrgence as when the
BER is within 20% of its steady-statelue.) Comparing the v
curves, we conclude that choosiog= 0.1 prasides a good bal-
ance between Vo steady-state BER anddt corergence.

2 6 2 6

BER=2.%10" BER=2.%10"
1 1
0 0
-1 -1
__[MSE=-5.2dB > MSE=-5.2dB

@ (b)

Fig. 4. Equalized ge patterns for (a) EMBER; (b) AMBER; and

(c) MMSE.
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| __ .___Minimum-BER _ "
0 10,000 20,000 30,000
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Fig. 5. BER wersus time for MMSE and AMBER SGAs.
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Fig. 6. The efect of AMBER threshold on steady-state BER
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B. Channel B: Decision-Feedback Equalization

Consider another simple channel with transfer function
H(z)=0.35 + 0.8z + 22 + 0.8z, agnin with binary signaling,
but this time with decision-feedback equalization. In Figve
compare the BER performance of AMBER to MMSEr & five-
tap DFE (3 forvard and 2 feedback taps), AMBER has a more 3]
than 5 dB gin over MMSE atBER = 10 . For a sgen-tap DFE
(4 forward and 3 feedback taps), AMBER outperforms MMSE
by about1.8 dB. Obsere that thes-tap AMBER DFE outper-

forms the7-tap MMSE DFE.

VI. CONCLUSION

We hare demonstrated the potentially dramataing of a
linear equalizer thatxactly minimizes BER as compared to a
minimum-MSE equalizer for both binary and 4-QAM signaling.
We hare proposed the AMBER algorithm that is less comple
than the LMS algorithm i achiees far superior BER perfor-
mance on serely distorted channels, especially when the equal-
izer length is short. Under the mild condition that the equalizer
can open the channeye diagram, the AMBER update algo-
rithm is globally comergent, rgardless of its initial condition.
Simulation results confirm that the proposed algoritheny v
nearly minimizes BER. On the other hand, the proposed algo-
rithm generally needs more training dataxtact the ensemble
average information from a timev@rage. Impreing the comer-
gence rate of AMBER is a topic for future research.
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C. Channel C: Linear Equalization for 4-QAM Signaling

Here we consider 4-QAMH1 + j} with linear equalization
andH(z) = (0.7 —0.2)) + (0.4 —0.5 )z + (0.2 + 0.3)z2, and
SNR=3, |k, 1%2/0% As shavn in Fig.8, the 4-tap ) =23)
AMBER linear equalizer outperforms MMSE equalizer by about
18 dB. With five taps, the@n drops to slightly more than 2 dB.

In Fig. 9 we present the noiseless constellation diagrams for
the 5-tap AMBER and MMSE linear equalizers. Obeette
interesting structure of the AMBER constellation cloudsy the
result in a higher MSE than the MMSE clouds (which appear
roughly Gaussian),ut the edges of the AMBER clouds are fur-

ther apart.

BER

Fig. 7.

1074

10

19 20 21 22 23 24 25 26 27
SNR (dB)
BER performance for DFE on Channel B.
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20 25 30 35 40
SNR (dB)

Fig. 8. BER comparison for linear equalizer on channel C.

BER=6.6x10°

-7.4dB

2 2 - 1 2

0
(b)

Fig. 9. Noiseless equalized constellations of 5-tap (a) AMBER
and (b) MMSE at SNR = 20 dB on channel C.



