
Abstract — Although most linear and decision-feedback
equalizers are designed to minimize a mean-squared error (MSE)
performance metric, the equalizer that directly minimizes bit-
error rate (BER) may significantly outperform the minimum-
MSE equalizer, especially for binary antipodal signaling and its
biorthogonal extensions, such as four quadrature-amplitude
modulation. We show that the performance gain of the min-
imum-BER equalizer over the minimum-MSE equalizer is most
pronounced when the number of equalizer coefficients is small
relative to the severity of the intersymbol interference. We pro-
pose a simple stochastic gradient algorithm that approximately
minimizes BER in the presence of linear intersymbol interfer-
ence and white Gaussian noise. Computer simulations reveal that
the proposed algorithm compares favorably to the popular least-
mean-square algorithm in terms of both steady-state perfor-
mance and complexity.

I. INTRODUCTION

We consider the design and adaptation of a finite-tap linear
equalizer for combating intersymbol interference in the presence
of additive white Gaussian noise, under the constraint that deci-
sions are made on a symbol-by-symbol basis by quantizing the
equalizer output. The most popular design strategy in this setting
is the minimum mean-squared error (MMSE) equalizer, which
can be realized using the least-mean square (LMS) algorithm.
However, as recognized in [1–3], a better strategy is to choose
the equalizer coefficients so as to minimize the error probability
or bit-error rate (BER), not MSE. Unfortunately, stochastic gra-
dient algorithms minimizing BER are significantly more com-
plex than their MSE counterparts. Also, minimum-BER
equalizers require that the noise power spectral density be esti-
mated [3]. Finally, the BER surface of even a simple binary
channel is highly irregular, and convergence to the global min-
imum cannot generally be guaranteed.

In this paper, we derive a simple adaptive algorithm achieving
approximate minimum-BER (AMBER) performance for both
linear and decision-feedback equalizers, specializing to binary
and quadrature-amplitude modulation. The proposed AMBER
algorithm has the following attributes: it closely approximates
the minimum-BER equalizer; it does not require knowledge of
the noise variance; it has low complexity (even lower than the
least mean-square algorithm); and is guaranteed to converge to
the global minimum of its cost function under the mild condition
that the channel be equalizable.

This paper is organized as follows. In Sect.II, we present
models for the channel and equalizer. In Sect.III, we discuss
exact minimum-BER (EMBER) equalization. In Sect.IV, we

modify the minimum-BER cost function and propose the
AMBER adaptive algorithm. In Sect.V, we present numerical
results comparing the AMBER and MMSE equalizers.

II. MODELS FOR CHANNEL AND EQUALIZER

Consider the linear discrete-time binary signaling channel
depicted in Fig.1, wherexk is the binary input drawn from {±1},
hk is the channel impulse response with memoryM, andnk is
white Gaussian noise with power spectral densityσ2. The
channel outputrk is:

rk = sk + nk = hi xk – i + nk, (1)

wheresk is the noiseless channel output.

Also shown in Fig.1 is a linear equalizer withN + 1 coeffi-
cients described by the vector c = [c0 … cN]T. The equalizer
output can be expressed as the inner productyk = cTrk betweenc
and a channel output vectorrk = [rk … rk – N]T, where:

rk = sk + nk = Hxk + nk, (2)

wherexk = [xk … xk – M – N]T is a vector of channel inputs,nk =
[nk … nk – N]T is a vector of noise samples,sk = [sk … sk – N]T=
Hxk is a vector of noiseless channel outputs, andH is the
(N + 1) × (M + N + 1) Toeplitz convolution matrix:

H = . (3)

We make the restrictive assumption that the decisionk–D about
the information symbolxk–D is determined by the sign of the
equalizer output, k–D = sgn(yk), where D accounts for the delay
of both the channel and the equalizer. Of course, this memoryless
decision device is suboptimal; better BER performance can be
achieved by performing maximum-likelihood sequence detection
on the equalizer output.

Because of the binary alphabet forxk, the bit-error probability
after the linear equalizerc has a particularly simple form:

Pr[ k – D ≠ xk – D] = E , (4)
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whereQ is the Gaussian error function, and the expectation is
over all2M+N+1 equally likely sk = Hxk vectors. Observe that the
error probability depends on the directionc ⁄ ||c || of c only, and
that the length ofc is irrelevant; this is because the receiver deci-
sions are determined by the sign of the equalizer output only.

III. EXACT MINIMUM-BER EQUALIZATION

Unlike the coefficient vector cMMSE that minimizes MSE,
there is no closed-form expression for a coefficient vector
cEMBER that achieves exact minimum-BER (EMBER) perfor-
mance. However, by setting to zero the gradient of (4) with
respect toc, it is straightforward to show thatcEMBER must sat-
isfy the following fixed-point relationship:

cEMBER = Af(cEMBER), for someA > 0, (5)

wheref : N+1 → N+1  is defined by:

f(c) = E , (6)

and again the expectation is over all 2M+N+1 equally likely
sk = Hxk vectors.

The functionf(c) plays an important role in our analysis, and
it has a useful geometric interpretation. If we lets(1), s(2), …, s(L)

denote theL = 2M+N+1 equally likely xk–D sk = xk–D Hxk vectors,
thenf(c) can be expressed as a weighted sum ofs(i) vectors:

f(c) = s(1) + s(2) + … + s(L) , (7)

where αi = cTs(i) ⁄ (||c ||σ) is a normalized inner product ofs(i)

with c. Becauseexp( ⋅ ) is an exponentially decreasing function,
f(c) is dictated by only thoses(i) vectors whose inner products
with c are relatively small. But the inner product ofs(i) with c is
the noiseless equalizer output when a one is transmitted; thus, a
small inner product is equivalent to a nearly closed eye diagram.
Thus,f(c) will be very nearly a linear combination of the few s(i)

vectors for which the eye diagram is most closed.

The existence of at least one unit-length satisfying (5) can
be intuitively explained: The hyper-sphere of all unit-length vec-
tors  is closed, continuous, and bounded. Each point on the
sphere is mapped to a real value via the differentiable and
bounded BER function of (4) and forms another closed, contin-
uous, and bounded surface. The resultant surface is differentiable
everywhere and has at least one local minimum, due to its closed
and bounded properties. In general, there exist more than one
local minima,i.e. more than one unit-length satisfying (5).

Although the BER cost function in general is not convex, a
gradient algorithm may still be used to search for its global min-
imum. In particular, a gradient algorithm based on (4) yields:

ck+1= ck – µ Pr[ k – D ≠ xk – D ]

= 1 – ck + f(ck) . (8)

Recall that the length ofc has no impact on BER, and observe
that the first bracketed factor in (8) represents an adjustment of
the length ofck + 1. Eliminating this factor leads to the so-called
EMBER deterministic gradient algorithm (EMBER-DGA):

ck+1 = ck + µf(ck). (9)

Although the transformation from (8) to (9) affects the conver-
gence rate and the steady-state norm ||c∞ ||, it has no effect on
the steady-state directionc∞ ⁄ ||c∞ ||, and thus no effect on the
steady-state BER performance. In fact, it can be proven that the
EMBER-DGA of (9) is globally convergent for a certain class of
channels, as described in the following theorem:

Theorem 1. If the maximum angle between any pair of
xk –D sk vectors is less thanπ ⁄ 2, then the EMBER-DGA of
(9) is guaranteed to converge to the minimum-BER solution,
regardless of its initial condition.

IV. APPROXIMATE MINIMUM-BER EQUALIZATION

We now propose theapproximate minimum-BER determin-
istic gradient algorithm (AMBER-DGA) by making a simple
modification to the EMBER-DGA update equation (9). We then
propose a low-complexity stochastic update equation; propose a
modification for faster convergence; and extend it to quadrature
amplitude modulation.

A. Deterministic AMBER

The error functionQ(α) is upper bounded and approximated
by exp(–α2 ⁄ 2) ⁄ ( ) [4], so thatf(c) of (6) and (7) can be
approximated by:

f(c) ≈ α1Q(α1)s(1) + α2Q(α2)s(2 ) + … + αLQ(αL)s(L) (10)

≈ αming(c), (11)

whereαmin = min{αi}, and where we have introduced the vector
functiong : N+1 → N+1:

g(c) = Q(α1)s(1) + Q(α2)s(2) + … + Q(αL)s(L)

= E . (12)

Comparing (6) and (12), we see thatg(c) has the same form as
f(c), but with Q(α) replacing exp(–α2 ⁄ 2). The approximation in
(11) is valid because only the terms in (10) for whichαi ≈ αmin
are relevant, the other terms have negligible impact. Usingg(c)
to approximatef(c) in (9) leads to the following approximate
minimum-BER DGA (AMBER-DGA):

ck+1 = ck + µg(ck). (13)

Because of the approximations in (10) and (11), the AMBER
DGA no longer minimizes BER exactly. However, the approxi-
mations are well-justified, and the simulation results of Sect.V
verify that the equalizer minimizing the AMBER cost function
very nearly minimizes BER.
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Fortunately, the AMBER-DGA of (13) is globally convergent
for a much broader class of channels than the EMBER-DGA:

Theorem 2. If the eye of the channel can be opened by the
equalizer, the AMBER algorithm of (13) is guaranteed to
converge to the global minimum of its cost function.

B. Stochastic AMBER

At first glance, the AMBER-DGA of (13) is no less compli-
cated than the EMBER-DGA of (9). However, we can introduce
an error indicator function Ixy, where

Ixy = (1 – sgn[xk–D yk]). (14)

In other words, Ixy = 1 when an error is made ( k–D  ≠ xk–D ), and
Ixy = 0 when no error is made ( k–D = xk–D ). We can use this
indicator function to simplify the AMBER-DGA of (13),
through the following series of straightforward equalities:

ck+1 = ck + µE

= ck + µE E[Ixy|xk–D sk]E[xk–D sk]

= ck + µE[Ixyxk–D sk]
= ck + µE[Ixyxk–D rk]. (15)

The last equality follows because rk = sk + nk, and Ixy and xk–D
are statistically independent, so that:

E[Ixyxk–D nk] = E[xk–D ]E[Ixynk] = 0. (16)

A simple and asymptotically unbiased stochastic gradient
update algorithm consequently can be formed by removing the
expectation in (15):

ck+1 = ck + µIxyxk–D rk. (17)

We refer to this stochastic algorithm as AMBER. The equalizer
is updated only when an error is made. AMBER has a form sim-
ilar to the familiar LMS algorithm: both are described by (17),
the only difference being that Ixy = 1 – xk–D yk for LMS, and
Ixy = (1 – sgn[xk–D yk]) ⁄2 for AMBER.

Because AMBER-SGA is an unbiased stochastic version of
AMBER-DGA, it can be shown that, for a sufficiently small step
size, the AMBER-SGA converges to a solution satisfying the
following fixed-point relation:

cAMBER = Ag(cAMBER), for some A > 0. (18)

Observe the similarity between (18) and (5).

The simple AMBER-SGA of (17) has an insightful geometric
interpretation. Recall that the noiseless equalizer output when a
one is transmitted is the inner product of c with xk – Dsk = s(i).
Most errors occur when this inner product is small, i.e. when the
eye is nearly closed. The AMBER update of (17) dictates that
each time an error is made, the equalizer coefficient vector c
takes a small step in space towards the s(i) vector that resulted in
the error. Therefore, the next time the input bits conspire to pro-
duce the same s(i) vector, its inner product with c will be larger.

In other words, the eye opening will be larger. Thus, we can view
(17) as a heuristic algorithm for maximizing the eye opening.

At steady state, as shown in (18), cAMBER is a weighted com-
bination of s(i) vectors, with weights proportional to the condi-
tional error probability. And since these conditional error
probabilities are dominated by the few s(i) vectors that close the
eye the most, cAMBER will be very nearly a linear combination of
the few s(i) vectors for which the eye diagram is most closed.

C. Thr eshold Modification

When a training sequence is not available, it may be tempting
to operate the AMBER algorithm in a decision-directed manner
by replacing xk–D  by k–D  in (17). Unfortunately, this would
cause the indicator function (14) to be zero always, stalling adap-
tation from the start, because k–D yk = sgn(yk)yk = |yk| > 0. To
overcome this problem, we introduce a positive threshold τ into
the AMBER adaptation process. The modified update equation
for both training and data modes becomes:

ck+1 = ck + µ k–D rk, (19)

where the modified indicator function is = 1 if yk k–D ≤ τ
and = 0 otherwise. Because the norm of c may grow with
time, we define τ relative to this norm using τ = α|| c || for some
fixed constant α ∈ (0, 1). As discussed in Sect. V, the threshold
modification changes the steady state performance of the equal-
izer.

Besides its utility as a decision-directed algorithm, a second
advantage of the threshold modification is that it increases signif-
icantly the rate of convergence of the AMBER algorithm with
training. The original AMBER algorithm updates only when an
error is made, while the modified AMBER algorithm updates
when an error is made and also when an error is almost made.
Thus, the threshold modification causes c to be updated much
more frequently.

Similar to the decision-directed LMS update process, we can
expect the modified AMBER update process to be valid when
the BER is reasonably small, perhaps 10–1 or 10–2 or less.

D. Appr oximate Minimum-BER Equalization for 4-QAM

Although the original AMBER algorithm is defined for
binary signaling only, it can be generalized to four quadrature-
amplitude modulation (4-QAM) as follows. Using superscripts R
and I to denote real and imaginary parts, respectively, of a com-
plex 4-QAM system, the BER (not symbol error rate) for 4-
QAM signaling with Gray coding is:

BERQAM = .(20)

We assume nk
R and nk

I are white and independent with PSD σ2.
Following the AMBER-SGA derivation for binary signaling, the
following AMBER update equations for 4-QAM can be derived:
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V. NUMERICAL RESULTS

To demonstrate the effectiveness of the proposed algorithms,
we now present simulation results for both binary and 4-QAM
channels. All BER simulation results are obtained with5⋅105

training data bits and107 data bits. All equalizers use a step size
of µ = 0.001 during training and no adaptation occurs in data
mode. For binary signaling channels, EMBER curves are plotted
via numerical evaluation of (4) with ideal EMBER filter coeffi-
cients. We use a small fixed threshold ofτ = 0.1 (not normalized
relative to||c ||) for the AMBER algorithm to increase its conver-
gence rate for all BER simulations. In every example we choose
the equalizer delayD to be optimal in the MSE sense.

A. Channel A: Linear Equalization for Binary Signaling

Here we consider binary signaling and linear equalization for
a channel with transfer functionH(z) = 1.2 + 1.1z–1 – 0.2z– 2. In
Fig. 2 we plot BER versus SNR= hk

2 ⁄σ2, considering both
MMSE and AMBER equalizers of length three and five. The
figure shows that with 3 filter taps and a delay ofD = 2, the
AMBER equalizer has a more than6.5 dB gain over the MMSE
equalizer. With 5 filter taps and a delay ofD = 4, AMBER still
has a nearly2 dB gain over MMSE. Observe that the AMBER
(solid) and EMBER (dashed) curves are nearly indistinguishable.

The results of Fig.2 show that the improvement of AMBER
over MMSE drops from 6.5dB to 2dB as the equalizer length
increases from three to five, suggesting that MMSE approaches
AMBER as the equalizer length increases. In Fig.3 we plot SNR

required to achieve BER= 10–5  versus equalizer length for both
AMBER and MMSE. We see that MMSE approaches AMBER
as the length of the equalizer increases.

Fig. 4 depicts the “artificial” noiseless eye patterns (obtained
by interpolating all possible noiseless equalizer outputs with a
triangular pulse shape) for EMBER, AMBER, and MMSE with
five equalizer taps and SNR= 30 dB. All three equalizer are nor-
malized to have identical norm (and thus identical noise
enhancement). The EMBER and AMBER eye patterns are virtu-
ally identical, while the MMSE eye pattern is drastically dif-
ferent. In particular, the EMBER and AMBER eye patterns
exhibit a larger eye opening than the MMSE eye pattern.

The convergence rates of the AMBER and MMSE 3-tap
equalizers are compared at SNR= 30 dB in Fig.5, assuming a
fixed threshold ofτ = 0.1. Observe that AMBER converges much
slower than LMS. To partially mitigate this problem, a gear-shift
algorithm combining LMS and AMBER is used here. The LMS
algorithm is used to first quickly reach a good initial condition,
and then the adaptation process is switched to the AMBER algo-
rithm to approach the minimum BER solution.

In Fig.6 we plot both steady-state BER and convergence time
for the AMBER-DGA as a function ofα = τ ⁄||c ||, assuming
SNR= 32 dB. Observe that forα less than 0.1, the AMBER
steady state BER is very close to the true minimum BER,
whereas the BER degrades significantly for larger thresholds.
Meanwhile, the convergence rate (right-hand scale) improves
dramatically asα increases from 0 to 0.1, but not appreciably for
α greater than0.1. (Here, we define convergence as when the
BER is within 20% of its steady-state value.) Comparing the two
curves, we conclude that choosingα = 0.1 provides a good bal-
ance between low steady-state BER and fast convergence.

 Fig. 2. Performance of linear equalization for channel A.

28 30 32 34 36 38 40
10–5

10–4

M
M

S
E

E
M

B
E

R
A

M
B

E
R

M
M

S
E

A
M

B
E

R

SNR (dB)

B
E

R

3-tap

5-tap

E
M

B
E

R

Σk

 Fig. 3. SNR requirement vs. equalizer length for channel A.

Equalizer Length

S
N

R
 r

eq
ui

re
d 

fo
r 

B
E

R
=

10
–5

MMSE

AMBER

3 4 5 6 7 8 9 10

25

30

35

40

 Fig. 4. Equalized eye patterns for (a) EMBER; (b) AMBER; and
(c) MMSE.

0 1 2
−2

−1

0

1

2

0 1 2
−2

−1

0

1

2

0 1 2
−2

−1

0

1

2

(a) (b) (c)
MSE=–5.2dB

BER=2.9×10–6

MSE=–5.2dB

BER=2.9×10–6 BER=3.5×10–5

MSE=–9.0dB

 Fig. 5. BER versus time for MMSE and AMBER SGAs.

10–2

10–3

2

MMSE

AMBER

Minimum-BER

B
E

R

Iterations
10,000 30,00020,0000



1099

B. Channel B: Decision-Feedback Equalization

Consider another simple channel with transfer function
H(z) = 0.35 + 0.8z–1 + z– 2 + 0.8z–3 , again with binary signaling,
but this time with decision-feedback equalization. In Fig.7 we
compare the BER performance of AMBER to MMSE. For a five-
tap DFE (3 forward and 2 feedback taps), AMBER has a more
than 5 dB gain over MMSE atBER = 10–5 . For a seven-tap DFE
(4 forward and 3 feedback taps), AMBER outperforms MMSE
by about1.8 dB. Observe that the5-tap AMBER DFE outper-
forms the7-tap MMSE DFE.

C. Channel C: Linear Equalization for 4-QAM Signaling

Here we consider 4-QAM {±1 ± j} with linear equalization
and H(z) = (0.7 – 0.2 j) + (0.4 – 0.5 j)z–1 + (–0.2 + 0.3 j)z– 2, and
SNR= |hk|2 ⁄σ2. As shown in Fig.8, the 4-tap (D = 3)
AMBER linear equalizer outperforms MMSE equalizer by about
18 dB. With five taps, the gain drops to slightly more than 2 dB.

In Fig.9 we present the noiseless constellation diagrams for
the 5-tap AMBER and MMSE linear equalizers. Observe the
interesting structure of the AMBER constellation clouds; they
result in a higher MSE than the MMSE clouds (which appear
roughly Gaussian), but the edges of the AMBER clouds are fur-
ther apart.

VI. CONCLUSION

We have demonstrated the potentially dramatic gains of a
linear equalizer that exactly minimizes BER as compared to a
minimum-MSE equalizer for both binary and 4-QAM signaling.
We have proposed the AMBER algorithm that is less complex
than the LMS algorithm but achieves far superior BER perfor-
mance on severely distorted channels, especially when the equal-
izer length is short. Under the mild condition that the equalizer
can open the channel eye diagram, the AMBER update algo-
rithm is globally convergent, regardless of its initial condition.
Simulation results confirm that the proposed algorithm very
nearly minimizes BER. On the other hand, the proposed algo-
rithm generally needs more training data to extract the ensemble
average information from a time average. Improving the conver-
gence rate of AMBER is a topic for future research.
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 Fig. 6. The effect of AMBER threshold on steady-state BER
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