
ABSTRACT

The channel model for indoor wireless optical communica-
tion links is unusual in that it combines the intensity-modulation
constraints of the Poisson photon-counting channel with the mul-
tipath dispersion, bandwidth constraints, and additive white
Gaussian noise of the conventional radio channel. In this paper
we examine the performance of several modulation schemes on
the indoor wireless optical channel. Modulation schemes having
low duty cycle, such as pulse-position modulation (PPM), offer
improved power efficiency at the expense of decreased band-
width efficiency. We compare the power and bandwidth effi-
ciency of several forms of PPM, including multiple PPM,
overlapping PPM, convolutional coded PPM, and trellis coded
OPPM. We also examine the differences between the wireless
infrared communications channel and the quantum-limited
photon-counting channel.

I. INTRODUCTION

The appropriate channel model for wireless optical commu-
nications systems using intensity modulation depends on the
intensity of the background light. In low background light, it is
common to model the received signal as a Poisson process with
rate λs(t) + λn, whereλs(t) is proportional to the instantaneous
optical power of the received signal, andλn is proportional to the
power of the background light; whenλn is zero, the channel is
quantum limited. However, in those applications whereλn is very
large and the receiver employs a wideband photodetector, the
photodetector shot-noise is accurately modeled as an additive
white Gaussian noise (AWGN) plus a d.c. offset [1][2], and it is
often more convenient to use an AWGN model.

Non-directed infrared radiation offers several advantages
over radio as a medium for indoor wireless networks, including
an immense window of unregulated bandwidth, immunity to
multipath fading (but not multipath distortion), and a lack of
interference from one room to another [3][4]. But the background
light in typical indoor environments is very intense; even after a
narrow-band (10nm) optical filter, λn will be between1011 and
1014 photons⁄ s, depending on the proximity to a window [3].
Such high rates make the AWGN model extremely accurate. Fur-
thermore, because the multipath propagation destroys spatial
coherence, the effects of multipath propagation can be character-
ized by a baseband linear model [5][6]. This leads to the fol-

lowing equivalent baseband channel model, the AWGN model,
for wireless infrared communications using intensity modulation
and direct detection:

y(t) = x(τ)h(t – τ) dτ + n(t), (1)

where x(t) represents the instantaneous optical power of the
transmitter, y(t) represents the instantaneous current of the
receiving photodetector, h(t) represents the multipath-induced
temporal dispersion, andn(t) is white Gaussian noise with two-
sided power spectral densityN0.

The same model (1) is used to model conventional radio
channels, wherex(t) represents amplitude, and it must satisfy
〈x2(t)〉 ≤ Po, wherePo is the average power constraint of the radio
transmitter.1 However, x(t) represents optical power in our appli-
cation, so it must satisfy:

x(t) ≥ 0 and〈x(t)〉 ≤ P, (2)

whereP is the average optical power constraint of the transmitter.
In this paper we examine the bandwidth efficiency and power
efficiency of various modulation schemes under the constraints
of (2). To isolate the effects of (2), we neglect multipath disper-
sion in this paper, so thath(t) = δ(t) in (1); nevertheless, we note
that the bandwidth limitations of bothh(t) and the receiver elec-
tronics are what motivates us to consider bandwidth efficiency as
an important parameter.

The AWGN model is essentially the same as the noisy
photon counting channel in the limit asλn → ∞, so we could use
the photon-counting channel as our starting point. However,
working directly with the AWGN model is beneficial because of
the additional insight it brings to the problem; by starting with a
conventional waveform channel model and then introducing the
constraints of (2), we can build on intuition developed for con-
ventional channels. Furthermore, as we will see, analysis using
the AWGN model is often simpler than that for the Poisson
model.

In Sect.II we examine pulse-position modulation (PPM),
multiple PPM (MPPM), and overlapping PPM (OPPM). In
Sect.III, we consider coded modulation using PPM and OPPM.
Our results are summarized in Sect.IV, where we compare the
power and bandwidth efficiencies on both the quantum-limited
channel (λn = 0) and the AWGN model (λn = ∞).
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II. UNCODED MODULATION

We first review the classic problem of determining the error
probability for anL-ary modulation scheme in the presence of
additive white Gaussian noise, assuming maximum-likelihood
(ML) detection, and neglecting intersymbol interference[2][7].
The transmitter conveys information at a rate ofRb bits ⁄ s by
transmitting one ofL non-negative signals{ x1(t), x2(t), … , xL(t)}
everyT = log2L ⁄ Rb seconds, and the channel adds white Gaus-
sian noise with power spectrumN0. To prevent intersymbol inter-
ference, each signal is confined to the interval[0, T). The signal
set satisfies (2) with equality, so that the average signal power is

Σi〈xi(t)〉 = P. For example, an on-off-keying (OOK) transmitter
emits a rectangular pulse of duration1 ⁄ Rb and of intensity2P to
signify a one bit, and no pulse to signify a zero bit. The band-
width required by OOK is roughlyRb, the inverse of the pulse
width.

To simplify analysis, we make the high-SNR assumption
that the bit-error rate (BER) is dominated by the two nearest sig-
nals, so that:

BER ≈ Q(dmin/2 ), (3)

wheredmin is the minimum Euclidean distance between any pair
of valid modulation signals:

 = (xi(t) – xj(t))
2dt. (4)

In fact, (3) is exact for OOK (and any timeL = 2); the minimum
distance between the two signals in the OOK signal set is:

dOOK = , (5)

and the BER, assuming ML detection, isQ(P ⁄ ).

We will use OOK as a benchmark to compare the power effi-
ciencies of various modulation schemes. The power required by
OOK to achieve a given BER isPOOK ≡ Q–1(BER). The
power required by any other modulation scheme to achieve the
same BER is approximatelyP = (dOOK ⁄ dmin)POOK, assuming
the SNR is high enough that (3) is accurate. Therefore, in the
remainder of the paper we will use the distance ratiodOOK ⁄ dmin
to characterize the power requirement of any modulation scheme.

II.A  Pulse-Position Modulation

In a pulse-position modulation (PPM) scheme, each symbol
interval of durationT = log2L ⁄ Rb is partitioned intoL sub-inter-
vals, or chips, each of durationT ⁄ L, and the transmitter sends an
optical pulse during one and only one of these chips. PPM is sim-
ilar to L-ary FSK, in that all signals are orthogonal and have
equal energy. PPM can be viewed as the rate-log2L ⁄ L block code
consisting of all binaryL-tuples having unity Hamming weight.
A PPM signal satisfying (2) is:

x(t) = LP ck p(t – kT ⁄ L), (6)

where[c0, c 1, …, cL – 1] is the PPM codeword, and wherep(t) is a
rectangular pulse of durationT ⁄ L and unity height. All of the
signals are equidistant, with:
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Therefore, the average power requirement is approximately:

PPPM ⁄ POOK ≈ dOOK ⁄ dmin = . (8)

From (8) we see that, for anyL greater than 2, PPM requires less
optical power than OOK. In principle, the optical power require-
ment can be made arbitrarily small by makingL suitably large, at
the expense of increased bandwidth; the bandwidth required by
PPM to achieve a bit rate ofRb is approximately the inverse of
one chip duration,B = L ⁄ T = LRb ⁄ log2L.

II.B  Multiple PPM

In multiple PPM, each symbol interval of duration
T = log2L ⁄ Rb is partitioned inton chips, each of durationT ⁄ n,
and the transmitter sends an optical pulse duringw of these chips.
The transmitted signal is given by:

x(t) = a ckφ(t – kT ⁄ n), (9)

where [c0, c1, …, cn – 1] is a binaryn-tuple of weightw, where
φ(t) = p(t) is a unit-energy rectangular pulse of durationT ⁄
n, and where the constanta is chosen so that the average optical
power isP: a = (P ⁄ w) = dOOK ⁄ 2w. There are ( )
binaryn-tuples of weightw, but it may be desirable to use only a
fraction L of these; for example, we may choose the codewords
to have a large minimum Hamming distanced. That is, we may
restrict attention to an(n, d, w) constant weight code [8], which
is a set of binaryn-tuples having weightw and minimum Ham-
ming distanced.

For a givenn, d, andw, let L ≤ ( ) be the number of valid
codewords. We must haved ≥ 2, because it is impossible for two
binary n-tuples of weightw to differ in only one position. If we
admit all binaryn-tuples of weightw, thenL = ( ) andd = 2.
Unless noted otherwise, we assumeL = ( ) in this paper. The
bandwidth is roughlyn ⁄ T, the inverse of the chip duration, so
that:

BMPPM ⁄ Rb = . (10)

Because{ φ(t – kT ⁄ n)}  is an orthonormal set, (9) implies that
the Euclidean distance between any two PPM waveformsxi(t)
andxj(t) is a , wheredij is the Hamming distance between the
corresponding binaryn-tuples. Thus, the minimum distance is
dmin = a , whered is the minimum Hamming distance and
a = dOOK ⁄ 2w. The ratio of dOOK to dmin gives the
average power requirement:

PMPPM ⁄ POOK = . (11)

Note that PPM is a special case of multiple PPM withn = L,
d = 2, andw = 1, and that (11) reduces to (8) in this case.
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II.C  Overlapping PPM

We define ( ) overlapping PPM (OPPM) as a special case of
multiple PPM, where thew ones are constrained to be consecu-
tive. In other words, each symbol interval of duration
T = log2L ⁄Rb is divided inton chips, each of durationT ⁄n, and
a rectangular pulse spanningw chips is transmitted, beginning at
any of the firstL = n – w + 1 chips. The motivation for con-
straining thew ones to be consecutive is the decreased bandwidth
that results; unfortunately, this benefit is offset by the reduced
alphabet size, sinceL drops from ( ) to n – w + 1. Note that this
definition of OPPM is slightly more general than the usual defini-
tion [9], because it allows the possibility thatn ⁄w is not an
integer. We refer to the ratioα = w ⁄n as the duty cycle. Note also
that specifyingL does not uniquely specifyn andw; for example,
4-OPPM can arise from (), ( ), ( ), etc. Thus, it takes two
parameters to specify OPPM, eithern andw or L andα.

The bandwidth of OPPM isn ⁄(wT) whereT = log2L ⁄Rb, so
that:

BOPPM ⁄Rb = , (12)

which is clearly smaller than that of PPM, sincen ⁄w is less than
L. The minimum Hamming distance between OPPM codewords
is 2, so that the minimum Euclidean distance between received
signals isdmin = a = (P ⁄w) . Dividing dOOK by dmin
yields the average power requirement for OPPM:

POPPM ⁄POOK = . (13)

With w = 1, n becomesL, and this equation reduces to (8).

III. CODED MODULATION

III.A  Rate 1 ⁄ n convolutional coded 2n-PPM

One method for combining a convolutional code and PPM is
shown in Fig.1, where a rate1 ⁄n convolutional code is followed
by a2n-PPM encoder [10]. For every information bit coming in,
a single pulse is transmitted. Thus, the symbol rate and bit rate
are identical and the required bandwidth is roughly2n/T, so the
bandwidth requirement is:

Bcc(1 ⁄n) ⁄Rb = 2n. (14)

The bandwidth increases exponentially withn.

A simple rate-1⁄ 2 convolutional code and one stage of its
trellis diagram are shown in Fig.2. Associated with each transi-
tion on the trellis diagram is a PPM codeword.

Consider a rate1 ⁄n convolutional code with constraint
length ν (i.e., with ν – 1 memory elements). An information
sequence of lengthK bits will result in a sequence ofK + ν – 1
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Fig. 1.  A rate 1 ⁄n convolutional coded 2n-PPM system.

PPM symbols. Because of the encoder memory, two information
sequences that differ by only a single bit will result in two trellis
paths that disagree in exactlyν consecutive transitions. For
example, the trellis in Fig.3 shows the two paths corresponding
to the all-zero sequence and a single one bit. Two paths can differ
in more thanν consecutive transitions, but never less. As illus-
trated in Fig.2, the Hamming distance between any two branches
is either zero or2. Therefore, an upper bound on the minimum
Hamming distancedH for convolutionally coded PPM is:

dH ≤ 2ν. (15)

If we design the convolutional encoder so that the distance in
each of theν transitions is always2, then the Hamming distance
due to a one-bit error is2ν. One way to achieve this is to make
one of the generator polynomials all ones,g(i) = (1 1 1 … 1).
However, we must also consider information sequences that
differ in more than a single bit. Nevertheless, it seems likely that
a rate1 ⁄n encoder with constraint lengthν can always be found
such that the minimum Hamming distance between coded PPM
sequences is close to2ν, at least whenν is small. In fact, the
maximal dfree codes of Table 11.1(c) in [11] satisfy (15) with
equality forν ≤ 6. In particular, the minimum Hamming distance
for the convolutional encoded PPM system of Fig.2 isdH = 6, so
it satisfies (15) with equality.

The PPM waveform during each symbol period has the form
of (9), where the constanta is chosen so that the total average
power is P; since there are2n chips per symbol,a = P .
The minimum Euclidean distance between coded PPM sequences
is given bydmin = a . Therefore, the average power require-
ment for convolutionally coded PPM is:

Pcc(1 ⁄n) ⁄POOK = ≈ , (16)

the last approximation being valid when (15) is approximately
satisfied with equality.

III.B  Rate k ⁄ n convolutional coded 2n- PPM

A rate k ⁄n convolutional code can also be combined with
PPM. Thek bits of information are shifted into the encoder at
each symbol period and then bits of the encoder output are con-
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Fig. 2.  A simple rate-1 ⁄ 2 convolutional code.

Fig. 3.  An error event with Hamming distance 2ν.
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verted to a2n-PPM symbol. The chip duration isT ⁄2n and the bit
rate isRb = k ⁄T, so the bandwidth expansion factor is:

Bcc(k ⁄n) ⁄Rb = 2n ⁄k. (17)

Using the same argument as in Sect.III.A, the minimum
Hamming distance is bounded bydH ≤ 2νmin, whereνmin is the
minimum constraint length among thek input shift registers. As
in (9), the constanta is chosen so that the total average power is
P; unlike (9), however, there are2n chips per symbol, notn, and
the symbol period isT = k ⁄Rb, not1 ⁄Rb, so thata = P .
Therefore,dOOK ⁄dmin gives the power requirement as:

Pcc(k ⁄n) ⁄POOK = ≈ , (18)

the last approximation being valid whendH ≈ 2νmin. From (17)
and (18) we see that, with respect to bandwidth efficiency and
power efficiency, the ratek ⁄n encoders are better than the rate
1 ⁄n encoders, and that increasingk is always beneficial.

III.C  Trellis Coded OPPM

If we use a convolutional code to reduce the probability of
error, there is an inevitable increase in bandwidth, as derived in
the last two sections. It is well known that trellis-coded modula-
tion (TCM) is a technique that improves performance without
increasing the bandwidth. Since PPM has the same Hamming
distance between any two codewords, no gains can be made
through set partitioning. Overlapping PPM is an attractive alter-
native since it has a low duty cycle and equal energy signals
[9][12][13]. But doubling the number of overlapping PPM sym-
bols without increasing bandwidth, as Ungerboeck suggested
[14], requires that the overall duty cycleα = w ⁄n remain fixed,
and so the number of slots in each baud interval must increase
from nu = (L – 1) ⁄(1 – α) to nc = (2L – 1) ⁄(1 – α), which, in
turn, decreases the minimum distance. Ideally, the coding gain
achieved through set partitioning will be large enough to com-
pensate for the decreased minimum distance. Trellis-coded2L-
OPPM has a bit rate ofRb = log2L ⁄T and a bandwidth expansion
factor of:

BTCM,2L-OPPM ⁄Rb = , (19)

which is the same asL-OPPM, but now the required power is:

PTCM,2L-OPPM ⁄POOK = . (20)

In contrast, the requirement for uncodedL-OPPM from (13) is:

POPPM ⁄POOK = , (21)

wheredc anddu = 2 are the minimum Hamming distances for the
coded and uncoded systems. The asymptotic coding gain is:

Coding gain = 10log10  ≈ 10log10 . (22)

To get improved performance using TCM, the minimum Ham-
ming distance must be greater than about4.

2
nk Rb⁄

1

2
n 2– kdH

-------------------------- 1

2
n 1– kνmin

----------------------------

n w⁄
log2L
--------------

4 2L 1–( ) α2

dc 1 α–( ) log2L
----------------------------------------

4 L 1–( ) α2

du 1 α–( ) log2L
-----------------------------------------

dc
2
----- L 1–

2L 1–
---------------- 

 
 
 
  dc

4
----- 

 
 

The signal sets for 8-OPPM (nc = 14, wc = 7) and its set par-
titioning are shown in Fig.4. If we use a 4-state TCM, the min-
imum Hamming distance is 8, which is the distance for a parallel
transition resulting from the set partitioning. From (22), there-
fore, the asymptotic coding gain relative to uncoded 4-OPPM
(with nu = 6, wu = 3) is 1.2 dB.

IV. DISCUSSION

The bandwidth and power efficiency for various modulation
schemes on the AWGN channel are shown in Fig.5-a. The
benchmark modulation OOK is marked with the symbol ‘×’.
PPM requires less power asL increases, but its bandwidth
increases as well. Multiple PPM with weight 2 outperforms PPM
both in terms of bandwidth efficiency and power efficiency. Mul-
tiple PPM with weight 8 is even more bandwidth efficient, but it
requires a large number of chipsn to achieve good power effi-
ciency. Overlapping PPM with a duty cycle ofα = 1 ⁄2 is
extremely bandwidth efficient. Decreasing the duty cycle to
α = 1 ⁄4 increases the power efficiency at the expense of band-
width.

Both the rate-1⁄ 2, 4-PPM and the rate 2⁄ 3, 8-PPM convolu-
tional coded systems require twice the bandwidth of 2-PPM, and
neither is able to outperform uncoded PPM, even for large con-
straint lengths. (The figure assumes that (15) is achieved with
equality.) Trellis coded 8-OPPM (α = 1 ⁄2) does much better; as
the coded Hamming distance ranges from 2 to 16, the power
requirement decreases from 2.7dB to –1.8dB. A distance of
dc = 16 can be achieved using the 128-state code from [13], and it
offers a a coding gain of about 2.7dB over 4-OPPM, with no
bandwidth expansion.

It is worthwhile to compare the results of Fig.5-a with those
of the quantum-limited (QL) channel (λn = 0), presented in
Fig. 5-b. To arrive at this curve, we manipulated the results of
[12] to arrive at the following expressions for the average optical
power required to achieve an error probability ofPe:

PMPPM ⁄POOK = ⋅ (23)

POPPM ⁄POOK = ⋅ .(24)

The second factor in both equations is approximately unity when
Pe is small (the figure assumesPe = 10–6 ).
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Fig. 4.  The 8-OPPM signal set and its set partitioning.
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Fig. 5.  Power efficiency and bandwidth efficiency on: (a) the AWGN channel; (b) the quantum-limited channel.
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The differences between the two channels are striking.
Observe that OPPM is much more power efficient on the AWGN
channel than on the QL channel. For example, 32-OPPM with
α = 1 ⁄4 suffers a 6.1dB penalty relative to OOK on the QL
channel, but no penalty at all on the AWGN channel. Relative to
4-PPM, 32-OPPM withα = 1 ⁄4 suffers a 6.1dB penalty on the
QL channel, but only a 3dB penalty on the AWGN channel. The
α = 1 ⁄2 andα = 1 ⁄4 curves intersect on the QL channel, but not
on the AWGN channel. On the whole, the power penalties rela-
tive to OOK on the QL channel are 2 to 7dB higher than their
counterparts on the AWGN channel. The differences between
Fig. 5-a and Fig.5-b indicate that modulation techniques devel-
oped for low background light may not be suitable for high back-
ground light.
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