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ABSTRACT lowing equivalent baseband channel model, théGN model,

. . . . _for wireless infrared communications using intensity modulation
The channel model for indoor wireless optical communica: - .
_ : ) . . . . _“and direct detection:

tion links is unusual in that it combines the intensity-modulation

constraints of the Poisson photon-counting channel with the mul- *

tipath dispersion, bandwidth constraints, and additive white y@) = [x(DA( - 1) dT + n(@), 1)
Gaussian noise of the conventional radio channel. In this paper - . .

we examine the performance of several modulation schemes wfere x(t) represents the Instantaneous optical power of the
the indoor wireless optical channel. Modulation schemes havirigansmitter y(:) represents the instantaneous current of the
low duty cycle, such as pulse-position modulation (PPMgrof receiving photodetector(?) represents the multipath-induced
improved power diciency at the expense of decreased bandtemporal dispersion, and) is white Gaussian noise with two-

width eficiency We compare the power and bandwidtfi-ef Sided power spectral densit.

ciency of several forms of PPM, including multiple PPM,  The same model (1) is used to model conventional radio
overlapping PPM, convolutional coded PPM, and trellis code@hannels, where(t) represents amplitude, and it must satisfy
OPPM. W also examine the é#fences between the wireless 32k P,, whereP, is the average power constraint of the radio
infrared communications channel and the quantum'limite@ansmitteﬂ- However x(¢) represents 0ptica| power in our app“_
photon-counting channel. cation, so it must satisfy:

x(¢) =2 0 andZ(z)k P, )

whereP is the average optical power constraint of the transmitter

The appropriate channel model for wireless optical commumn this paper we examine the bandwidtficiéncy and power
nications systems using intensity modulation depends on thsficiency of various modulation schemes under the constraints
intensity of the background light. In low background light, it isof (2). To isolate the décts of (2), we neglect multipath disper-
common to model the received signal as a Poisson process Wéion in this paperso thata(z) = 8(¢) in (1); nevertheless, we note
rate A(t) + A,, whereA,(?) is proportional to the instantaneous that the bandwidth limitations of bo#iz) and the receiver elec-
optical power of the received signal, aggds proportional to the  tronics are what motivates us to consider bandwiditiericy as
power of the background light; whey) is zero, the channel is an important parameter
guantum limited. Howevem those applications whekg is very The ANGN model is essentially the same as the noisy

large and the receiver employs a wideband photodefettter ...photon counting channel in the limit &s — o, so we could use
photodetector shot-noise is accurately modeled as an addmﬁg?

. . . o e photon-counting channel as our starting point. However
white Gaussian noise VAGN) plus a d.c. dset [1][2], and it is working directly with the AVGN model is beneficial because of
often more convenient to use aw/&N model.

the additional insight it brings to the problem; by starting with a
Non-directed infrared radiation fefs several advantages conventional waveform channel model and then introducing the
over radio as a medium for indoor wireless networks, includingonstraints of (2), we can build on intuition developed for con-
an immense window of unregulated bandwidth, immunity toentional channels. Furthermore, as we will see, analysis using
multipath fading (but not multipath distortion), and a lack ofthe ANGN model is often simpler than that for the Poisson
interference from one room to another [3][4]. But the backgroung¢hodel.
light in typical indoor environments is very intense; even after a
narrow-band (1&m) optical filter A, will be betweerio™ and
104 photong's, depending on the proximity to a window [3].
Such high rates make thM’GN model extremgly accurate. Fur- Our results are summarized in Sé¥¢t. where we compare the
thermore, because the mgltlpath propagatlon destroys spat wer and bandwidth &fiencies on both the quantum-limited
coherence, the fefcts of multipath propagation can be character-

ized by a baseband linear model [5][6]. This leads to the foghannelxn = 0) and the AVGN model k,, = ).

I. INTRODUCTION

In Sectll we examine pulse-position modulation (PPM),
multiple PPM (MPPM), and overlapping PPM (OPPM). In
Sect.lll, we consider coded modulation using PPM and OPPM.
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II. UNCODED MODULATION drznin — m;n I(xl(t) —xj(t))2dt — 2LP210g2L/Rb @)
We first review the classic problem of determining the error I

probability for anL-ary modulation scheme in the presence OfTherefore, the average power requirement is approximately:

additive white Gaussian noise, assuming maximum-likelihood Poorr/P ~dore/ dee = 2 ®)
(ML) detection, and neglecting intersymbol interferef}]. PPM” = OOK = “OOK” “min = |Tjog T, -

The transmitter conveys information at a rateRgfbits/s by
transmitting one o, non-negative signal(¢), xo(), ... , x7®)}
everyT =logoL/R,; seconds, and the channel adds white Gau
sian noise with power spectruxy. To prevent intersymbol inter-
ference, each signal is confined to the intef@al’). The signal
set satisfies (2) with equaljtgo that the average signal power is
%Ziﬁi(t)Dz P. For example, an on4ekeying (OOK) transmitter
emits a rectangular pulse of duratibn®, and of intensitgP to  II.B Multiple PPM
signify a one bit, and no pulse to signify a zero bit. The band-

width required by OOK is roughl®,, the inverse of the pulse In m“'t'P'e PPM eqch symbol interval Of. duration
width. T =logoL /Ry, is partitioned inta: chips, each of duratiofi/ n,

o ] ) _and the transmitter sends an optical pulse dusin§these chips.
To simplify analysis, we make the high-SNR assumptionrhe transmitted signal is given by:

that the bit-error rate (BER) is dominated by the two nearest sig-
nals, so that:

From (8) we see that, for afygreater than 2, PPM requires less
optical power than OOK. In principle, the optical power require-
$hent can be made arbitrarily small by makinguitably lage, at

the expense of increased bandwidth; the bandwidth required by
PPM to achieve a bit rate &, is approximately the inverse of
one chip durationB = L /T = LRy, /logsL.

n-1
x®)=a 5 c @t -kT/n), 9)
BER = Q(dmin/2 «/]vo )’ (3) k=0
whered,.... is the minimum Euclidean distance between any pait/N€€l¢o, ¢1, .., ¢, -1l i a binaryn-tuple of weightw, where
of valid modulation signals: o¢) = Jn/Tp() is a unlt-en_eJy rectangular pulse of duratldh/_
n, and where the constamtis chosen so that the average optical
diin = min J’(xi(t)—xj(t))2dt. (4)  power isP: a =(P/w)JnT =dpog./nlog,L /2w. There are )
_ e _ o binaryn-tuples of weightv, but it may be desirable to use only a
In fact, (3) is exact for OOK (and any time= 2); the minimum  fraction 1 of these; for example, we may choose the codewords

distance between the two signals in the OOK signal set is: to have a lage minimum Hamming distane& That is, we may
d _ 2P ©) restrict attention to atr, d, w) constant weight code [8], which
00K J}Tb’ is a set of binary-tuples having weightr and minimum Ham-

. . i ist .
and the BER, assuming ML detection,@¢P /,/N,R, ). ming distance!
For a givem, d, andw, letL < (;,) be the number of valid

. We wil use OOKasa bgnchmark to compare the povfngr ef codewords. W must have = 2, because it is impossible for two
ciencies of various modulation schemes. The power required l@{

. . _ ) nary n-tuples of weightv to differ in only one position. If we
OOK to achieve a given BER Byox = ./NoR, @ "(BER). The admit all binaryn-tuples of weightw, thenL = (;,) andd = 2.

power required by any other modulation scheme to achieve trﬂ?nless noted otherwise, we assume (") in this paperThe

same BER is approximatel® = (dpox/ dmin)Pook. assuming e ) ; :
the SNR is high enough that (3) is accurate. Therefore, in tr{)ﬁ?[fjw'dth is roughly./T, the inverse of the chip duration, so

remainder of the paper we will use the distance sy dpnin

to characterize the power requirement of any modulation scheme Byppy/ Ry = IogLL ) (10)
II.A Pulse-Position Modulation : ° N
Becausd ¢t — kT /n)} is an orthonormal set, (9) implies that

In a pulse-position modulation (PPM) scheme, each symbehe Euclidean distance between any two PPM wavefattns
interval of duratiorl" = log,L/R,, is partitioned intd. sub-inter- andx;(t) isa /d;, wheredj; is the Hamming distance between the
vals, or chips, each of durati@ty L, and the transmitter sends an corresponding binary.-tuples. Thus, the minimum distance is
optical pulse during one and only one of these chips. PPMis si; . = a./d, whered is the minimum Hamming distance and
ilar to L-ary FSK, in that all signals are orthogonal and have, = dyx./nlog,L /2w. The ratio ofdpox 10 dy;, gives the
equal enagy. PPM can be viewed as the rédg;L /L block code  average power requirement:

consisting of all binary.-tuples having unity Hamming weight.

A PPM signal satisfying (2) is: Pyppu/ Poox = —22— . (11)
/ndlog,L
L-1
x@t)=LP 5 cppt-kT/L), (6) Note that PPM is a special case of multiple PPM withL,
E=0 d =2, andw = 1, and that (1) reduces to (8) in this case.

whereleg, ¢ 1, ..., ¢, _ 11 is the PPM codeword, and whex@) is a
rectangular pulse of duratidfiyL and unity height. All of the
signals are equidistant, with:



II.C Overlapping PPM

We define ) overlapping PPM (OPPM) as a special case of
multiple PPM, where the ones are constrained to be consecu
of duration

tive. In other words, each symbol interval
T =logoL/ Ry is divided inton chips, each of duratidfi/», and

a rectangular pulse spanniwgchips is transmitted, beginning at

any of the firstL =n -w + 1 chips. The motivation for con-

straining thev ones to be consecutive is the decreased bandwid

that results; unfortunatelyhis benefit is déet by the reduced
alphabet size, sinde drops from () ton —w + 1. Note that this

PPM symbols. Because of the encoder mepntany information
sequences that @& by only a single bit will result in two trellis
paths that disagree in exactly consecutive transitions. For

example, the trellis in Fi®@ shows the two paths corresponding

to the all-zero sequence and a single one Wit faths can diér

in more tharv consecutive transitions, but never less. As illus-

trated in Fig2, the Hamming distance between any two branches

ﬁ either zero oe. Therefore, an upper bound on the minimum
amming distancey for convolutionally coded PPM is:

dHS 2v. (15)

definition of OPPM is slightly more general than the usual defini we design the convolutional encoder so that the distance in

tion [9], because it allows the possibility thatw is not an
integer We refer to the ratia = w/n as the duty cycle. Note also
that specifyind. does not uniquely specityandw; for example,
4-OPPM can arise from3(, (5), (1), etc. Thus, it takes two
parameters to specify OPPM, eitlheandw or L anda.

The bandwidth of OPPM is/ (wT) whereT = logsL/ Ry, SO
that:

n/w

log, (n—w +1)’ (12)

Boppm /Ry =

which is clearly smaller than that of PPM, simcaw is less than

each of they transitions is alwayg, then the Hamming distance
due to a one-bit error Bv. One way to achieve this is to make
one of the generator polynomials all ongf)=(111 ... 1).
However we must also consider information sequences that
differ in more than a single bit. Nevertheless, it seems likely that
a ratel/n encoder with constraint lengthcan always be found
such that the minimum Hamming distance between coded PPM
sequences is close fw, at least whew is small. In fact, the
maximal ds,, codes of @ble 1.1(c) in [1] satisfy (15) with
equality forv < 6. In particular the minimum Hamming distance
for the convolutional encoded PPM system of Biggdy = 6, so

L. The minimum Hamming distance between OPPM codewords satisfies (15) with equality

is 2, so that the minimum Euclidean distance between received

signals isd,,;, = ~2a = (P/w)./2nT. Dividing dpoox bY dpin

yields the average power requirement for OPPM:
2w

A/2nlog2 (n-w+1) )

Poppm/ Pook = (13)
With w = 1, n becomed., and this equation reduces to (8).
III. CODED MODULATION

III.A Rate 1/n convolutional coded 2*-PPM

The PPM waveform during each symbol period has the form
of (9), where the constant is chosen so that the total average
power isP; since there ar@” chips per symbolg = P,/2"/R, .

The minimum Euclidean distance between coded PPM sequences
is given byd ,;, = a./d, . Therefore, the average power require-
ment for convolutionally coded PPM is:

1 .1
the last approximation being valid when (15) is approximately
satisfied with equality

Pec1/ny/ Pook = (16)

One method for combining a convolutional code and PPM is

shown in Figl, where a raté/n convolutional code is followed

by a2™-PPM encoder [10]. For every information bit coming in,

II1.B Rate k/n convolutional coded 2"- PPM

A ratek/n convolutional code can also be combined with

a single pulse is transmitted. Thus, the symbol rate and bit rag@>\. Ther bits of information are shifted into the encoder at

are identical and the required bandwidth is rougfilyT, so the
bandwidth requirement is:

Bcc(l/n)/Rb = 2"
The bandwidth increases exponentially with

(14)

A simple rate-¥2 convolutional code and one stage of its

trellis diagram are shown in Fig. Associated with each transi-
tion on the trellis diagram is a PPM codeword.

Consider a ratel/n convolutional code with constraint
length v (i.e., with v—1 memory elements). An information
sequence of lengtk bits will result in a sequence & +v -1

n(t)

S
unit-enegy MF

Fig. 1. Arate 1/n convolutional coded 2"-PPM system.

bits Viterbi
in decoder

rate 1/n
c.c.

-

2" PPM

each symbol period and thebits of the encoder output are con-

Fig. 2. A simple rate-1/2 convolutional code.
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Fig. 3. An error event with Hamming distance 2v.



verted to &"-PPM symbol. The chip duration7¥2™ and the bit The signal sets for 8-OPPM,(= 14, w, = 7) and its set par-
rate iSRy, = k/ T, so the bandwidth expansion factor is: titioning are shown in Figl. If we use a 4-state TCM, the min-
n imum Hamming distance is 8, which is the distance for a parallel
Beeh /ny/ Bp = 2"/ k. S transition resulting from the set partitioning. From (22), there-
Using the same gument as in Sedil.A, the minimum  fore, the asymptotic coding gain relative to uncoded 4-OPPM
Hamming distance is bounded ) < 2v,,;,, wherev,,;, is the  (with n, =6,w, =3)is1.2 dB.
minimum constraint length among thenput shift registers. As

in (9), the constant is chosen so that the total average power is IV. DISCUSSION
P; unlike (9), howeverthere are” chips per symbol, nat, and ) ) _ )
the symbol period i = /R, Not1/R,, so thaw = P.[2'%/R, . The bandwidth and powerfigiency for various modulation

schemes on the M\GN channel are shown in Fig:a. The
benchmark modulation OOK is marked with the symbgdl *

= , (18) PPM requires less power ds increases, but its bandwidth
2 hdy 2 Ry, increases as well. Multiple PPM with weight 2 outperforms PPM
the last approximation being valid whég = 2v,,;,. From (17) both in terms of bandwidth fifiency and power &tiency Mul-
and (18) we see that, with respect to bandwidficieficy and tiple PPM with weight 8 is even more bandwidtficant, but it
power eficiency, the ratek/n encoders are better than the raterequires a laje number of chipa to achieve good power fef

Thereforedpox/ dmin gives the power requirement as:
1

Peo /n)y/ Pook = 7

1/n encoders, and that increasinés always beneficial. ciency Overlapping PPM with a duty cycle af=1/2 is
) extremely bandwidth &€ient. Decreasing the duty cycle to
III.C Trellis Coded OPPM a = 1/4 increases the powerfiefency at the expense of band-

If we use a convolutional code to reduce the probability ofVidth-
error, there is an inevitable increase in bandwidth, as derived in  Both the rate-12, 4-PPM and the rate’3, 8-PPM convolu-
the last two sections. It is well known that trellis-coded modulational coded systems require twice the bandwidth of 2-PPM, and
tion (TCM) is a technique that improves performance withouheither is able to outperform uncoded PPM, even fgelaon-
increasing the bandwidth. Since PPM has the same Hammisgraint lengths(The figure assumes that (15) is achieved with
distance between any two codewords, no gains can be maeguality) Trellis coded 8-OPPMo(= 1/2) does much better; as
through set partitioning. Overlapping PPM is an attractive altethe coded Hamming distance ranges from 2 to 16, the power
native since it has a low duty cycle and equal ggnhesignals requirement decreases from 2B to —-1.8dB. A distance of
[9][12][13]. But doubling the number of overlapping PPM sym-d, = 16 can be achieved using the 128-state code from [13], and it
bols without increasing bandwidth, as Ungerboeck suggesteiifers a a coding gain of about 2IB over 4-OPPM, with no
[14], requires that the overall duty cyde= w/n remain fixed, bandwidth expansion.
and so the number of slots in each baud interval m_ust i|_'1crease It is worthwhile to compare the results of Figa with those
from n, =@ -1)/(1-0a) 10 n,=@L-1)/A-a), which, in o e guantum-limited (QL) channeh(=0), presented in
turn, decreases the minimum distance. Idedig coding gain iy 5. Ty arrive at this curve, we manipulated the results of

achieved through set partitioning will bedarenough to com- 115115 arrive at the following expressions for the average optical
pensate for the decreased minimum distancelli§-coded2L- power required to achieve an error probabilitPgf

OPPM has a bit rate &, = logoL/T and a bandwidth expansion

factor of: 2w
Pypem/Pook = 22 1_Iog%2w now+1 (23)
Bremer-orpv/ Ry = %, (19) log, () log2P,
92
which is the same dsOPPM, but now the required power is: |og%2_#
P /p _ 2w 1- n—w+10 (24)
—1)q> OPPM’ = 00K = joq (n —w + 1) log2P '
P /P _ 4(2L-1)a 2 e
TCM,2L-OPPM’ £ 00K = | |71y log L (20)
] ¢ z ) The second factor in both equations is approximately unity when
In contrast, the requirement for uncode®PPM from (13)is:  p_is small (the figure assumBs= 10%).
2
_ 4(L-1)a
Poppy/Pook = T (1-0) log,L" (21)
dg

whered,, andd,, = 2 are the minimum Hamming distances for the
coded and uncoded systems. The asymptotic coding gain is: 2 1 S?"i/i"’s“’ 85’\‘? 57.59)

0/ O 0
. . L-1 4 (S1,8S3,85,87) (Sg,S4,Sg, Sg)
Coding gain = 1010g10|:| ECE’Z— L—l% = IOIOgIOEA/%B' (22) 1)/3 \5\ 7 2/4 \i 8

To get improved performance using TCM, the minimum Ham-Sl S S S S S S S 8 (51,85) (53,57 (82,56 (S, 8s)
ming distance must be greater than aldout

Fig. 4. The 8-OPPM signal set and its set partitioning.



o =1/2 anda = 1/4 curves intersect on the QL channel, but not

The diferences between the two channels are striking[6]
Observe that OPPM is much more powdicet on the AVGN
channel than on the QL channel. For example, 32-OPPM with
o =1/4 sufers a 6.1dB penalty relative to OOK on the QL
channel, but no penalty at all on th&/&N channel. Relative to
4-PPM, 32-OPPM witln = 1/4 suffers a 6.1dB penalty on the

QL channel, but only a @B penalty on the WGN channel. The

[7]

(8]

on the AVGN channel. On the whole, the power penalties reIaTg
tive to OOK on the QL channel are 2 taB higher than their
counterparts on theMAGN channel. The dérences between
Fig. 5-a and Fig5-b indicate that modulation techniques devel- [10]
oped for low background light may not be suitable for high back-

ground light.
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Fig. 5. Power efficiency and bandwidth efficiency on: (a) the AWGN channel; (b) the quantum-limited channel.



