
Abstract — A co-channel system can be viewed as a
multiple-input, multiple-output communication system. By
extending the scalar constant-modulus algorithm to vector-
valued signals, we develop several methods for blind cancella-
tion of co-channel interference. In particular, to prevent the
receiver from locking on to the same signal more than once, we
propose the determinant constant-modulus algorithm. For the
special case of constant-modulus signals and a memoryless
channel, this method can outperform other known methods, as
demonstrated by simulation.

I. INTRODUCTION

Co-channel interference (CCI) is the crosstalk caused by
linear coupling among multiple channels, and the desire to
eliminate this interference has motivated much research in the
previous two decades [1–7]. In one form or another, CCI
affects a wide variety of systems. For example, CCI in twisted-
pair bundles results from linear coupling between neighboring
pairs within a bundle [4]; CCI in dually polarized radio results
from atmospheric rotations [5]; CCI in magnetic recording
channels results from the coupling of data from adjacent tracks
to the read head [6]; CCI in multiuser communications chan-
nels, where multiple users transmit at the same time and within
the same frequency band via a common channel, results from
the non-orthogonality of the signals at the receiver [7].

In each of the applications described above, a single
receiver observes data fromn different sources throughm dif-
ferent sensors, resulting in an equivalentm × n multiple-input,
multiple-output (MIMO) channel model. The block diagram of
a MIMO channel is shown in Fig. 1. The channel inputxk is a
sequence of vectors whose components represent the symbol
sequences for each ofn users. The channel transfer function is
H(z), and the noise sequencenk is assumed to be white and
Gaussian with power spectral densityN0I. For simplicity, we
assume thatH(z) is square, so that the dimension of the channel
outputrk is n.

 Fig. 1. A MIMO communications channel.
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It has long been recognized that it is better to exploit the
crosstalk than to treat it as background noise. In this paper we
consider receivers consisting of a MIMO linear or decision-
feedback equalizer followed by a vector decision device.
Although a scalar equalizer mitigates intersymbol interference
only (ISI), it should be emphasized that a MIMO equalizer mit-
igates both ISI and CCI.

Several prior works have developed detection strategies for
MIMO channels when the channel responses are known [1–7],
or for when a training signal is available [8]. But when the
channel responses are unknown or time varying, and the
receiver does not have access to a training signal, the receiver
must be adapted according to a blind equalization algorithm.
We propose several blind equalization algorithms for MIMO
channels and compare their performance to a recent algorithm
proposed by Oda and Sato [9].

In section II we review the vector LMS algorithm, a MIMO
version of the least mean-squared (LMS) algorithm, and we
discuss its convergence. In section III we propose several blind
equalization algorithms for MIMO channels. In section IV we
present some numerical results.

II. THE VECTOR LMS ALGORITHM

A blind MIMO equalizer should be switched to a decision-
directed mode once the ISI and CCI are mitigated to a suffi-
cient degree that decisions based on the equalizer output are
reliable. Under the assumption that all decisions are correct,
the decision-directed equalizer is equivalent to an adaptive
equalizer with training. In this section we review a MIMO ver-
sion of the least-mean square (LMS) algorithm for adaptation
with training.

A. Derivation of Vector LMS

The vector LMS algorithm can be derived following the
approach of [10]. Consider the MIMO linear equalizer shown
in Fig. 2-b below; it is a transversal filter withL matrix-valued
taps described by the matrixCk

T = [C0,k C1,k … CL–1,k]. Let
Rk

T = [rk
T rk–1

T… rk–L+1
T] be a vector of equalizer inputs, so

that the filter output at timek is yk = Ck
TRk.

The goal of the filter is to minimize the mean-squared error
(MSE) cost function, defined by:

J = E[||yk – xk||2], (1)

wherexk is the desired signal. The complex gradient [11] of (1)
with respect toCk is:

∇J = 2E[Rk
*ek

T], (2)
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whereek = yk – xk is the error between the filter output and the
desired signal. Letting2Rk

*ek
T be a stochastic approximation

of this gradient in the steepest descent algorithm leads to the
vector LMS algorithm:

Ck+1 = Ck – 0.5 µ k (3)

= Ck – µRk
*ek

T, (4)

whereµ is the step size. Note that, whenn = 1, (4) reduces to
the familiar scalar LMS algorithm [10].

Alternatively, substitutingek = Ck
TRk – xk into (2), the gra-

dient can be rewritten as:

∇J = 2(ΦCk – P), (5)

whereΦ = E[Rk
*Rk

T] andP = E[Rk
*xk

T]. It follows that the
optimal weights are given by:

Copt = Φ–1 P, (6)

and the minimum mean-squared error is:

ξmin = E[||xk||2] – tr( P†Copt), (7)

where( ⋅ )† denotes conjugate transpose.

B. Convergence of Vector LMS

Because the vector LMS uses a time average to estimate an
ensemble average, the coefficient trajectories are random in
nature. A key performance measure is the rate of convergence
of ξk, the average MSE, which can be expressed as:

ξk ≈ ξmin + ζk, (8)

whereζk = tr(E[(Ck – Copt)
†Φ(Ck – Copt)]) is the excess MSE

at timek. Following the approach of [12], and assuming that
Φ = λI is diagonal, it can be shown that the excess MSE obeys:

ζk+1 ≈ βζk + nLµ2 λ2 ξmin, (9)

whereβ = [1 – 2 µλ + nLµ2λ2]. Differentiatingβ with respect to
µ, we find the step size that maximizes the rate of decrease of
the MSE is approximately:

µopt ≈ . (10)

This result agrees with the scalar theory whenn = 1 [12]. As in
the scalar case, the MSE converges to2ξmin asymptotically
with µ = µopt, and the step size must be less than2µopt to
ensure convergence. The choice of step size is a trade off
between speed of convergence and excess asymptotic MSE.

C. Example of Vector LMS

It is important to emphasize that the vector LMS algorithm
is not equivalent ton independent scalar LMS algorithms oper-
ating in parallel, because the vector LMS algorithm exploits
the crosstalk between the different users, whereas a bank of
scalar LMS algorithms effectively treats the interference as
noise. To illustrate this point, consider the AWGN model of
Fig. 1 with a channel transfer function of:

∇̂

1
nLλ
-----------

H(z) = H0 + H1z–1  =  + z–1 . (11)

Assume the two users are independent BPSK transmitters. We
consider three different adaptive filters to process the received
signalrk, as shown in Fig. 2. The first (Fig. 2-a) is a conven-
tional receiver consisting of a bank of two linear equalizers
adapting independently according to the LMS algorithm. The
second receiver (Fig. 2-b) is a MIMO linear equalizer (LE)
employing the vector LMS algorithm. The third receiver (Fig.
2-c) is a MIMO decision-feedback equalizer (DFE) employing
the vector LMS algorithm. In all cases we assume a training
sequence is available, so that the receiver has knowledge ofxk
for generating the error and for the feedback filter. In practice,
after the training period has ended, the receiver uses the
receiver decisionsk for these purposes.
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 Fig. 2. Three adaptive receivers: (a) conventional receiver;
(b) LE receiver; (c) DFE receiver.

 Fig. 3. Learning curves for the three adaptive receivers,
averaged over 400 runs.

DFE

LE

Conventional Receiver, Outputs 1 and 2

0 300
–20

–15

–10

–5

0

5

Time k

M
S

E
 (

dB
)

ξmin for LE

ξmin for DFE

x̂



3

In Fig. 3 we show simulation results for each of the systems
of Fig. 2, assuming a noise PSD of N0 = 0.01. The step size
was µ = 0.0595 for the scalar equalizers of Fig. 2-a. The step
size for the vector LMS was chosen to be µopt ⁄ 2 using (10),
where λ is the average eigenvalue of Φ, or µLE = 0.0298 for the
LE and µDF = 0.0356 for the DFE. The scalar equalizers in
Fig. 2-a had five taps each, the LE in Fig. 2-b had five matrix
taps, and the DFE in Fig. 2-c had three forward taps and two
feedback taps.

From Fig. 3, we see that the conventional receiver performs
poorly; the MSE for each user is –5 dB, resulting in a total
MSE of –2 dB. In contrast, both the LE and DFE receivers are
effective at suppressing the crosstalk, with the DFE outper-
forming the LE by 8 dB on this channel.

III. BLIND EQUALIZATION FOR MIMO CHANNELS

The vector LMS algorithm described above requires a ref-
erence signal (or a training signal) for acceptable performance,
and hence it is unsuitable for blind equalization. In the fol-
lowing four subsections we propose four blind algorithms for
adaptively suppressing both ISI and CCI, all of which can be
viewed as extensions of the scalar constant-modulus algorithm
(CMA) [13] to MIMO channels.

A. Pointwise CMA

The first algorithm is based on the observation that each
component of the channel input will have a constant modulus
for certain modulation schemes (such as PSK and 4-QAM),
and nearly a constant modulus for other schemes. At perfect
equalization, the equalizer output should equal the channel
input. This suggests a cost function consisting of a sum of
scalar cost functions:

Jp = E |yk
(i)|2 – Mi

= E[|| yk ⊗ yk
* – M ||2], (12)

where M = [M1 … Mn]T and Mi is the modulus of the i-th
transmitted symbol, and where the symbol ⊗ indicates a Schur
(element-by-element) product. The complex gradient of this
cost function with respect to Ck is:

∇Jp = 4E[Rk
*ek

T], (13)

where the error signal is defined by:

ek = yk ⊗ (yk ⊗ yk
* – M). (14)

If we let 4Rk
*ek

T be a stochastic approximation to this gradient
in the steepest descent algorithm, we arrive at same update
equation (4) as the vector LMS, but with ek given by (14). We
refer to this algorithm as the pointwise CMA, which reduces to
the scalar CMA when n = 1. In fact, the pointwise CMA is
equivalent to a bank of independent multichannel blind equal-
izers, with each multichannel receiver using the multichannel
CMA proposed in [14]; in this configuration, only the modulus
of yk

(i) is used to adapt the n scalar filters contributing to yk
(i),

irrespective of the modulus of the other components.

 
  2

i 1=

n

∑  
 

 
  2

The modulus parameters Mi should be chosen so that the
gradient in (13) is equal to the zero matrix at perfect equaliza-
tion, which gives Mi = E[|xk

(i)|4] ⁄ E[|xk
(i)|2]. With this

choice, adaptation will cease on average after perfect equaliza-
tion is achieved.

Let F(z) = C(z)H(z) be the overall system transfer function
from the channel input to equalizer output. The primary draw-
back of the pointwise CMA is its susceptibility to the one-to-
many problem, whereby more than one component of the
equalizer output locks on to the same equalizer input. For
example, when n = 2, the pointwise CMA cost function is min-
imized by an overall transfer function of:

F = . (15)

This solution is unacceptable because the first channel input is
mapped to both equalizer outputs, and the second channel
input is ignored.

It can be shown that, under the assumption of an infinite-tap
equalizer, the pointwise CMA cost function achieves a local
minimum if and only if the overall transfer function has the
form:

F(z) = , (16)

where each row has only one nonzero entry. In other words, the
cost function is minimized if and only if each component of the
equalizer output is equal to a delayed and possibly sign-
changed version of any component of the channel input.
Observe that the unacceptable solutions are those for which
F(z) is singular, since in this case one channel input is mapped
to more than one equalizer output, while another channel input
is dropped altogether.

Comparing (12) and (16), we see that all local minima of
the pointwise CMA cost function are global minima.

B. Vector CMA

We now propose a second blind algorithm based on the
observation that the norm of the input vector || xk || is constant
or nearly so. For example, || xk ||2 = n when each of n users
selects data from a BPSK constellation of {± 1}. At perfect
equalization, the equalizer output will have the same norm as
the channel input. This suggests a cost function of:

Jv = E[(|| yk ||2 – M)2], (17)

where M is a constant. The gradient of this cost function is
again given by (13), where this time the error signal is:

ek = yk (|| yk ||2 – M). (18)

We refer to this algorithm as the vector CMA. The best mod-
ulus parameter M forces the gradient (13) to zero at perfect
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0 … ± z– N 02 0 …
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0
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equalization, i.e.,M = E[|| xk ||4] ⁄E[|| xk ||2]. Like the pointwise
CMA, the vector CMA reduces to the scalar CMA whenn = 1.
The vector CMA, pointwise CMA, and vector LMS algorithm
are all described by the same update equation (4), the only dif-
ference being the definition ofek.

A primary drawback of the vector CMA cost function is
that it is minimized by any unitary matrixF(z), such as:

F = . (19)

In addition, for the special case when each user employs the
same constellation and this constellation has a constant mod-
ulus, the transfer functions described by (16) also minimize the
vector CMA cost function. Thus, for constant-modulus signals,
the vector CMA is also susceptible to the one-to-many
problem.

When all users employ the same non-constant modulus
constellation, the vector CMA cost function is minimized by
some of the singular solutions of (16) but not others. In partic-
ular, the cost function is not minimized by any of the singular
solutions that are memoryless, i.e., for whichN1 = … = Nn. On
the other hand, it is minimized by some singular solutions with
memory, such as:

F = . (20)

C. Combination of Pointwise and Vector CMA

Recognizing the drawbacks of both the pointwise and
vector CMA cost functions, Oda and Sato proposed a linear
combination that incorporates some of the better qualities of
each [9]:

Jc = AE[(|| yk ||2 – M)2] + BE[||yk ⊗ yk
* – M ||2], (21)

whereA andB are constants. We refer to the resulting algo-
rithm as thecombination CMA. As shown in sectionIV, the
combination CMA can outperform both the pointwise CMA
and vector CMA. Unfortunately, when the users employ the
same constant-modulus constellation, all solutions described
by (16) minimize (21), making the combination CMA suscep-
tible to the one-to-many problem. Furthermore, even when the
constellations do not have constant modulus, (21) is still mini-
mized by solutions of the form (20).

D. Determinant CMA

We now propose the determinant CMA (DCMA), a blind
equalization algorithm for memoryless channels having CCI
but no ISI. In this case, the solutions which globally minimize
the pointwise CMA cost function whenn = 2 are:

F = , , and , , (22)

whereF = CH is the overall transfer function,C is the equal-
izer, and H is the channel. The first two matrices describe

θcos θsin–

θsin θcos

1 0

z 1–
0

1± 0

0 1±
0 1±
1± 0

1± 0

1± 0

0 1±
0 1±

acceptable solutions, because the data for both users can be
recovered by changing the sign and reordering the signals as
necessary. In contrast, the second two matrices are undesirable
because they completely destroy the information from one of
the users. Observe that the undesirable solutions have zero
determinant, whereas the desirable solutions have determinant
±1. This suggests that we modify the pointwise cost function
by penalizing those solutions for which the magnitude of the
determinant is not unity:

Jd = AJp + B(|detF|2 – 1) 2, (23)

whereJp is the pointwise cost function of (12), andA andB
are constants. The gradient ofJd is:

∇Jd = 4AE[Rk
*ek

T] + 4B(γ2 – 1) γ2(C†
k)–1 , (24)

whereek is the pointwise CMA error signal of (14), and where
γ2 = |detF|2. This gradient leads to the following update
equation, which we call the determinant CMA (DCMA):

Ck+1 = Ck – µARk
*ek

T – Bµ(γ2 – 1) γ2(Ck
† )–1 . (25)

If detH = 0 thenγ = 0, and the last correction term in (25)
will be zero, so that the DCMA reverts back to the original
pointwise CMA. This is not surprising in light of (23), which
shows thatJd = AJp + B whendetH = 0, and hence the DCMA
and pointwise cost functions are equivalent on singular chan-
nels.

As stated in (25), the DCMA requires knowledge ofγ2 =
|detF|2 at the receiver. This is not problematic, because
|detF|2 is easily estimated. Without noise, the equalizer
output is given byyk = Fxk, so that the autocorrelation matrix
for yk is:

P = E[ykyk
† ] = σ2FF† , (26)

where we have used the assumption that E[xkxk
† ] = σ2I. It fol-

lows that γ2 = det(P ⁄ σ2). EstimatingP by time averaging
results in the following simple estimate for|detF|2 at timek:

γk
2 = det . (27)

In a practical implementation,γk
2 should be substituted forγ2

in (25). Simulation results indicate that the estimate in (27)
converges to|detF|2 fairly quickly, within 20-40 iterations on
certain channels, so the time wasted while the receiver learns
|detF| will be negligible. The primary drawback of the
DCMA is the increased complexity associated with estimating
|detF| and computing the matrix inverse.

IV. NUMERICAL RESULTS

We now present simulation results from four experiments.
The DCMA is defined only for the memoryless channels of
experiments 2 and 3, and it does not fail in either case. In con-
strast, we demonstrate failure for each of the other algorithms.
In the first experiment, only the vector CMA fails; in the
second experiment, both the vector and the pointwise CMA

1

kσ2
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†

i 1=

k

∑ 
 
 
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fail; and in the third and fourth experiments, the vector, point-
wise, and combination CMA all fail.

A. Experiment 1: Channel with Memory

Consider a noiseless two-user system with the following
channel matrix:

H(z) =  + z–1 . (28)

Both users employ a 16-QAM constellation independently and
uniformly. Assume the equalizer has seven taps, with the
center tap initialized to the identity matrix, and assume a step
size of 5 × 10–6 . The modulus parameters for two-user 16-
QAM are Mi = 13.2 and M = 23.2.

In Fig. 4 we show simulation results for the vector CMA,
pointwise CMA, and combination CMA. Both the pointwise
and combination CMA successfully opened the eye and con-
verged to an overall transfer function close to the identity
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 Fig. 4. Real part of first component of equalizer output
for (a) vector CMA; (b) pointwise CMA; and
(c) combination CMA.
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matrix. The vector CMA, on the other hand, did not open the
eye, but converged to the following transfer function (averaged
from time 23000 to 25000):

F = , (29)

which is close to (19) with θ = –28˚ . The constellation for the
first component of the vector CMA and pointwise CMA equal-
izer outputs are shown in Fig. 5, from time 23000 to time
25000. The constellation for the second components are nearly
identical. The constellations for the combination CMA are
similar to Fig. 5-b.

B. Experiment 2: Memoryless Channel with 16-QAM

Consider the following memoryless channel:

H = . (30)

Although there is no crosstalk for the first user, the crosstalk
for the second user is particularly severe, with the interference
power exceeding the signal power by 6 dB. This is a difficult
channel to equalize, because the channel is close to the unde-
sirable overall solution of (15).

As before, assume two independent 16-QAM transmitters.
The equalizer, consisting of a single tap, was initialized to the
identity matrix, and the step size µ = 4 × 10–5 . The simulation
results are shown in Fig. 6, where we plot |Fij| (the magnitude
of the (i, j)-th component of F) versus time. We see that the
pointwise CMA fails, with both equalizer outputs locking onto
the first channel input, as in (15). In contrast, the combination
and determinant CMA both converge to the identity matrix.

C. Experiment 3: Memoryless Channel with 4-QAM

We repeat experiment 2 with the memoryless channel of
(30), but this time we assume the constellation for each user is
4-QAM. This constellation has a constant modulus, which
makes the combination CMA susceptible to the one-to-many
problem. Indeed, after convergence, the asymptotic overall
transfer functions for the pointwise, combination, and determi-
nant CMA were respectively:
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 Fig. 5. User 1 constellation: (a) vector CMA; (b) pointwise CMA.
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Fp = , Fc = , Fd = . (31)

Only the DCMA converged to the correct solution.

D. Experiment 4: Nearly Singular Channel with Memory

Consider the following channel:

H = . (32)

The input constellations were BPSK {±1}. The equalizer had
five taps, the center one initialized to the identity matrix. The
step size was switched from10–2  to 10–3  at time5000. Both
the pointwise and combination CMA converged to the undesir-
able solution of (20).

V. CONCLUSION

We have proposed several blind algorithms for adaptive
suppression of co-channel interference and intersymbol inter-
ference. The proposed algorithms are straightforward exten-
sions of the conventional CMA to vector-valued signals. To
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 Fig. 6. Simulation results for experiment two.
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prevent multiple equalizer outputs from locking on to the same
user signal, we proposed the determinant CMA for memory-
less channels. Simulation results show that the DCMA can out-
perform the other algorithms considered on certain channels.
Future work should extend this algorithm to channels with
memory.
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