
Abstract — The minimum mean-squared-error(MMSE)
linear multiuser detector[1–2] is popular becauseof its good
performanceandamenabilityto adaptive implementation.How-
ever, thereare circumstancesin which the linear detectorthat
minimizesbit-error rate(BER) cansignificantlyoutperformthe
MMSE detector. We proposea low-complexity adaptive algo-
rithm for approximatingthe minimum-BER linear multiuser
detector.

I. INTRODUCTION

Within theclassof linearmultiuserdetectors,which includes
the conventional matched-filterdetectorand the decorrelating
detector, the minimum-mean-squared-error(MMSE) detector
standsout asanattractive choicefor two reasons:first, it is ame-
nable to a low-complexity, adaptive, and decentralizedimple-
mentation[2]; andsecond,theMMSE detectoroffersgoodBER
performance[3]. However, asillustratedin this paper, thereare
circumstancesin which the linear detectorwhich choosesits
coefficientssoasto minimizeBER cansignificantlyoutperform
the MMSE detector.

Other linear detectorshave beenproposedthat can outper-
form the MMSE detector. The first was the maximumasymp-
totic-multiuser-efficiency (MAME) lineardetectorof Lupasand
Verdú [4], which minimizes BER in the limit as noise
approacheszero.An adaptivealgorithmfor realizingtheMAME
detectoris not yet available. Adaptive algorithmsfor realizing
the minimum-BERmultiuserdetectorwereproposedin [5] and
[6], but areeitherhigh in complexity or requireknowledgeof the
signaturesequenceof theuserof interest.Thispaperproposesan
adaptive algorithm for approximatingthe minimum-BERmul-
tiuser detectorthat has low complexity and does not require
knowledge of the users signature sequences.

In Sect.II, we presenttheproblemstatement.In Sect.III, we
discussexact minimum-BER(EMBER) detection.In Sect.IV,
we proposethe approximateminimum-BER (AMBER) mul-
tiuser detector. In Sect.V, we presentnumerical resultscom-
paring the performanceof the AMBER detectorto other linear
multiuser detectors.

II. PROBLEM STATEMENT

We limit our discussionto a synchronoussystem,becauseit
capturestheessentialfeaturesof themoregeneralasynchronous
problem,andit alsoclarifiesexposition.Considera synchronous
direct-sequenceCDMA systemwith N active usersandM chips
perbaud,andlet si denotetheunit-lengthM-vectorrepresenting
the signaturesequenceof useri. Furthermore,let Ai denotethe
receivedamplitudefor useri, bk

(i) ∈{ ±1} denotetheinformation
bit for useri during bit-epochk, andσ2 denotethe noisePSD.
Sampling at the chip rate leads to the following equivalent
channel model [3]:

rk = Hbk + nk, (1)

where the memorylesschannelmatrix H = [s1 s2 … sN]A has
dimensionM × N, A = diag(Ai), bk = [bk

(1) … bk
(N)]T, andnk is

white Gaussiannoisewith PSDσ2I. Without lossof generality,
we takeuser1 astheuserof interest.A decentralizedlinearmul-
tiuserdetectorfor user1 is thencharacterizedby an M-vectorc
and the decision rule:

k
(1) = sgn{ cTrk} . (2)

The problemis to choosec to minimize the probability that
(2) is erroneous,i.e., to minimize the bit-error rate (BER) for
user 1. A key contribution of this paper is a low-complexity
adaptive algorithm for linear multiuser detectorsthat closely
approximates the minimum-BER solution.

Basedon (1), the probability that the decisionof (2) is erro-
neous is:

BER1= Pr[bk
(1)cTrk < 0]

= E Pr[bk
(1)cTHbk + bk

(1)cTnk < 0 | bk]

= E , (3)

wherethe expectationsareover the 2N equally likely binary bit
vectorsbk ∈{ ±1} N, andwhereQ is theGaussianerror function.
Observe that theproductbkbk

(1) is a binaryvectorwith a onein
the first component(correspondingto the userof interest).Let
b(1), b(2), …, b(L) denoteany orderingof the L = 2N–1 suchdis-
tinct vectors. Following [7][8], we define thesignal vectors by:

v(i ) = Hb(i ), i = 1 … L. (4)
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Q
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These {v(i )} vectors represent the L possible noiseless channel
output vectors given that the kth bit from the desired user is unity,
bk

(1) = 1. With this definition, (3) simplifies to:

BER1 = Q . (5)

Observe that the BER depends on the direction c ⁄ || c || of c only,
and that the norm of c is irrelevant; this is because the receiver
decisions are determined by the sign of the detector output only.

In this paper, we make the mild assumption that user i is lin-
early detectable, by which we mean that the signature si of user i
does not lie within the interference subspace spanned by {sj ≠ i}.

III. EXACT MINIMUM-BER MULTIUSER DETECTION

A. The EMBER Detector

Let cEMBER denote a linear multiuser detector that achieves
exact minimum-BER (EMBER) performance, minimizing (5).
Observe that because (5) depends only on the direction of the
detector, cEMBER is not unique: if c minimizes BER, then so
does ac for any positive constant a. Unlike the coefficient vector
cMMSE = A1(HH* + σ2I)–1s1 that minimizes MSE = E[(cTrk –
bk

(1))2], there is no closed-form expression for cEMBER. How-
ever, by setting to zero the gradient of (5) with respect to c:

∇cBER1 = E  = 0, (6)

we find that cEMBER must satisfy:

c = af(c) for some a > 0, (7)

where we have introduced the function f : M → M, defined
by:

f(c) = E . (8)

The expectation in (8) is with respect to v over the L = 2N–1

equally likely {v(i )} vectors of (4), so that f(c) can be expressed
as a weighted sum of the {v(i )} vectors:

f(c) = v(i), (9)

where αi = cTv(i ) ⁄ (||c|| σ) is a normalized inner product of v(i )

with c. The fixed-point relationship of (7) characterizes local
maxima as well as local minima for the BER cost function, and
hence (7) is a necessary but not sufficient test for the global min-
imum.

Example 1. Consider the simplest nontrivial two-user
system described by (1) with s1 = [1, 0]T, s2 = [ρ, ]T,
normalized correlation ρ = 0.9, SNR1 = A1

2 ⁄ σ2 = 18 dB,
and SNR2 = 14.6 dB. In Fig. 1 we present a polar plot of

BER1 versus θ for the unit-norm detector c = [cosθ, sinθ]T.
Superimposed on this plot are the L = 2 signal vectors v(1)

and v(2), depicted by solid lines. Also superimposed are the
coefficient vectors of four detectors: the minimum-BER
detector at an angle of θ = –36.9˚; the MMSE detector at
θ = –60.2˚; the MF detector at θ = 0˚; and the decorrelator
at θ = –64.2˚. Observe that none of the traditional detectors
coincide with the minimum-BER detector. We should point
out that the minimum-BER detector is not always colinear
with the worst-case signal vector, but rather satisfies
c = af(c) with a > 0 in the general case [see (7) and (9)].

To recover a solution to the fixed-point equation
c = af(c) with a > 0, we propose the EMBER algorithm:

ck+1 = ck + µf(ck), (10)

where µ is a small positive step size. Although there may be
some solutions to the fixed-point equation c = af(c) with a > 0
that correspond to local minima and do not globally minimize
BER, we hypothesize that if c = af(c) and also BER ≤ 2–N, then c
minimizes BER. This test is based on the observation that the eye
diagram is open when the fixed-point equation is satisfied, and
our belief that local minima arise only when certain combina-
tions of interfering user bits are able to close the eye. We thus
propose the following strategy for finding the exact minimum-
BER linear multiuser detector. First, iterate the deterministic
EMBER algorithm of (10) until it converges. If the resulting
BER ≤ 2–N, stop. Otherwise, initialize the deterministic EMBER
algorithm somewhere else and repeat the process. This is an
effective strategy when the initial condition of the EMBER algo-
rithm is chosen carefully (for example, chosen to be the MMSE
detector) and when the SNR is sufficiently large that BER ≤ 2–N

is possible.
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 Fig. 1. A polar plot of BER1 versus θ for a two-user system with

correlation ρ = 0.9. Superimposed are the signal vectors
(scaled by a factor of 0.5) and the MMSE, decorrelating,
MF, and minimum-BER detectors.
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IV. APPROXIMATE MINIMUM-BER MULTIUSER

DETECTION

Although the deterministicEMBER algorithm of the pre-
vioussectionis usefulfor finding theminimum-BERdetectorof
known channels,it is poorly suitedfor adaptive implementation
in time-varying applications. We now propose a stochastic
update equation with extremely low complexity and whose
ensemble average approximates the EMBER algorithm.

A. The Stochastic AMBER Algorithm

Theerror functionQ(α) is upperboundedandapproximated
by exp(– α2 ⁄2) ⁄( α) [9], so that f(c) of (9) can be approxi-
mated by:

f(c)≈ αiQ(αi)v(i ) (11)

≈ αmin Q(αi)v(i ) (12)

= αming(c), (13)

whereαi = cTv(i) ⁄(||c||σ) as in (9), αmin = min{ αi}, andwhere
we have introduced the functiong : M → M, defined by

g(c) = E . (14)

Theexpectationin (14) is with respectto v, uniformly distributed
over thesetof signalvectors(4). TheEMBER algorithmof (10)
can thus be approximated by

ck+1 = ck + µg(ck). (15)

In analogyto the EMBER fixed-point relationshipof (7), we
define the AMBER relationship:

c = ag(c) for somea > 0. (16)

Let usdefineanerrorindicatorfunctionIk thatis zeroor one,
depending on whether an error occurs:

Ik = . (17)

It follows thatE[Ik] = BER1. As exploitedin (5), theconditional
expectation ofIk givenv = bk

(1)Hbk is:

E[Ik|v] = Q . (18)

Therefore,the function g(c) can be expressedin termsof this
error indicator as follows:

g(c) = E E[Ik|v]v
= E[Ikv]
= E[Ikbk

(1)Hbk]
= E[Ikbk

(1)(rk – nk)]. (19)

Using this result, the deterministic update of (15) can be
expressed as:

ck+1= ck + µE[Ikbk
(1)(rk – nk)] (20)

≈ ck + µE[Ikbk
(1)rk]. (21)

Theapproximationof (21) is valid athighSNR,andis bestjusti-
fied by thegoodperformanceof theresultingalgorithm,asdem-
onstrated in the numerical results to follow.

We canform a simplestochasticupdatealgorithmby simply
removing the expectation in (21):

ck+1 = ck + µIkbk
(1)rk. (22)

We refer to this stochasticalgorithm as the stochastic AMBER
algorithm for linear multiuser detection,or just AMBER for
short.

A closerlook at (22) leadsto someinsightfulgeometricinter-
pretations of the AMBER algorithm.

• The detector is updated only when an error is made.

• The updateterm bk
(1)rk is a noisy estimateof the signal

vector:bk
(1)rk = bk

(1)(Hbk + nk) = v + bk
(1)nk ≈ v. Hence,

whenan error is made,c takesa small stepin the general
direction of the signal vectorv that caused the error.

• Averagedover many iterations,c will move towardseach
v(i ) with a frequency proportionalto the probability Q(αi)
thatv(i ) causes an error, whereαi = cTv(i ) ⁄(||c||σ).

• At steadystatewe expectc ∝ Q(αi)v(i ), which is pre-
cisely the AMBER fixed-point relationshipof (16), and
which closelyapproximatestheminimum-BERfixed-point
relationship of (7), namelyc ∝ exp(– αi

2 ⁄2)v(i).

Wecangainadditionalinsightinto theAMBER algorithmby
comparingit to two otherwell-known adaptive algorithms:the
LMS algorithm,which implementstheMMSE detector, andthe
sign-LMS algorithm, a lower-complexity version of the LMS
algorithm which approximatesthe MMSE detector. All three
algorithms can be expressed in a similar form:

ck+1 = ck – µekrk (LMS) (23)

ck+1 = ck – µsgn{ ek} rk (sign-LMS) (24)

ck+1 = ck – µIksgn{ ek} rk. (AMBER) (25)

whereek = cTrk – bk
(1) is theerrorsignalof theMMSE detector,

andwherewehavemadeuseof theidentity Ikbk
(1) = – Iksgn{ ek}

to transform (22) to (25). There is a remarkablesimilarity
betweenthe AMBER andsign-LMS algorithms.Simply stated,
theAMBER algorithmcanbeviewedasthesign-LMSalgorithm
modifiedto updateonly whenan error is made. The sign-LMS
wasmotivatedby its low complexity comparedto theLMS algo-
rithm, despiteits poorerperformance.The simple modification
for AMBER, on the otherhand,providesdramaticperformance
improvement, without any cost in complexity.
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B. Modification of the AMBER Algorithm

Becausethe AMBER algorithmupdatesonly whenan error
is made,convergencespeedcandecreaseastheBER decreases.
Onemethodfor speedingconvergenceis to modify theAMBER
algorithmso that it not only updateswhenanerror is made,but
alsowhenan error is almostmade.Specifically, we canmodify
theerror indicatorfunctionof (17) by introducinga nonnegative
thresholdτ ≥ 0 as follows:

Ik = (1 – sgn[bk
(1)yk – τ]). (26)

In other words, the modified indicator function is Ik = 1 if
bk

(1)yk ≤ τ and Ik = 0 otherwise.This indicator function reverts
back to the original (17) when the thresholdτ is zero.Besides
speedingconvergence,the thresholdmodification of (26) also
allows the AMBER algorithm to be operatedin a decision-
directedmanner, using k

(1) in placeof bk
(1) in (22) and (26).

Additional methodsfor speedingconvergenceare describedin
[8].

V. NUMERICAL RESULTS

While the MMSE linear multiuser detectorgenerally per-
forms well, the minimum-BERlinear detectorcanperformsig-
nificantly better. Consider again the two-user system of
Example1 with normalizedcorrelationρ . In Fig. 2 we illustrate
the potentialreductionin BER by plotting the ratio BEREMBER
⁄BERMMSE versusthenormalizedinterferencepower A2

2 ⁄A1
2,

assuming SNR1 = 20 dB. The BER reduction is most pro-
nounced for large correlations and low interference powers.

Next we again considerthe two-usersystemof Example1,
with ρ = 0.9 andA2

2 ⁄A1
2 = –4.15 dB. In Fig. 3 we comparethe

BER performanceof six linear multiuser detectors:the exact
minimum-BERdetector(satisfying(10)), the approximatemin-
imum-BER detector, the MMSE detector, the matchedfilter
detector, thedecorrelator, andtheMAME detector. Observe that
the exact, approximateminimum-BER, and MAME detectors
are indistinguishable.They all outperformthe MMSE detector
by more than 1 dB at high SNR, and they outperform the
matched filter and the decorrelator by a wider margin.

Next we studytheperformanceof thesedetectorsin thepres-
ence of strong near-far interference.In Fig. 4 we plot BER1
versusthe normalizedinterferencepower A2

2 ⁄A1
2, assuming

ρ = 0.9 andSNR1 = 12dB. Interestingly, we seethat theMMSE
detectorapproachesminimum-BERperformancefor extremely
low and extremely high interferencepowers, but not for mod-

1
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b̂

 Fig. 2. A plot of BEREMBER ⁄BERMMSE versus interference
power for SNR1 = 20dB.
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 Fig. 3. Theoretical steady-state BER comparison.
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 Fig. 4. BER versus normalized interference power.
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erateinterferencepower. The MAME detectorapproachesmin-
imum-BER performanceat low interferencebut not at high
interference, becausefor sufficiently high interference, the
MAME detector becomes the decorrelator.

The performanceof the stochasticAMBER algorithmin the
presenceof strongnear-far interferenceis examinedin Fig. 5,
which shows the learning curve of AMBER for a two-user
systemwith ρ = 0.9 and SNR1 = 12dB, with the interference
power exceedingthesignalpower by 10 dB. TheBER wasaver-
agedover100trialsusingµ = 1 ⁄ k. Beforeeachtrial thedetector
wasinitialized with the eye closedat –cMMSE. Thus,this figure
indicatesnot only thatAMBER performswell in a near-far envi-
ronmentbut also that it is able to consistentlyescapea closed-
eye situation.

Finally, considerthe simple three-usersystemdescribedby
(1) with s1 = [1, 0]T, s2 = [1, 1]T⁄ , s3 = [0, 1]T, and SNR=
20dB for all users.In Fig. 6 we illustratetheperformanceof the
stochasticAMBER algorithmof (22), with parametersµ = 0.02,
τ initializedto 0.4, andwith τ cut in half at time200andagainat
time 400.Although AMBER cando nothingfor user2, it is of
immediate and significant benefit to users 1 and 3.

VI. CONCLUSION

We have proposedthe AMBER algorithm for adaptingthe
coefficientsof a linear multiuserdetectorso asto approachthe
minimum-BER linear detector. When comparedto the LMS
algorithm, the AMBER algorithm is no more complex and yet
can producea significantly smallerBER. Like the LMS, algo-
rithm, AMBER requiresonly a trainingsequence,sothatnoesti-
mation of the timing or signature waveforms is necessary.

Simulationresultsreveal no appreciabledifferencebetween
the steady-stateperformanceof the AMBER algorithmandthe

optimum minimum-BER linear detector. Furthermore, the
AMBER algorithmwasshown to be robust to near-far interfer-
enceandclosed-eye initialization,propertiesthatareperhapsnot
surprisinggiventhecloserelationshipbetweentheAMBER and
sign-LMS algorithms.
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 Fig. 5. Learning curve of AMBER in the presence of strong near-
far interference and with a closed-eye initialization.
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 Fig. 6. Learning curves of AMBER for the three-user example.
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