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Abstract — The minimum mean-squared-erro(MMSE)
linear multiuser detector[1-2] is popularbecauseof its good
performanceandamenabilityto adaptve implementationHow-
ever, there are circumstancesn which the linear detectorthat
minimizesbit-error rate (BER) can significantly outperformthe
MMSE detector We proposea low-compleity adaptie algo-
rithm for approximatingthe minimum-BER linear multiuser
detector

I. INTRODUCTION

Within the classof linear multiuserdetectorswhichincludes
the corventional matched-filterdetectorand the decorrelating
detector the minimum-mean-squared-errdMMSE) detector
standsout asan attractive choicefor two reasonsfirst, it is ame-
nableto a low-compleity, adaptve, and decentralizedmple-
mentation2]; andsecondthe MMSE detectoroffersgoodBER
performancd3]. However, asillustratedin this paper thereare
circumstancesn which the linear detectorwhich choosesits
coeficientssoasto minimize BER cansignificantlyoutperform
the MMSE detector

Other linear detectorshave beenproposedthat can outper-
form the MMSE detector The first was the maximumasymp-
totic-multiuserefficienoy (MAME) linear detectorof Lupasand
Verdu [4], which minimizes BER in the limit as noise
approachegero.An adaptve algorithmfor realizingthe MAME
detectoris not yet available. Adaptive algorithmsfor realizing
the minimum-BERmultiuserdetectorwere proposedn [5] and
[6], but areeitherhighin compleity or requireknowvledgeof the
signaturesequencef theuserof interest.This papemproposesan
adaptve algorithm for approximatingthe minimum-BER mul-
tiuser detectorthat has low compleity and does not require
knowledge of the users signature sequences.

In Sect.ll, we presenthe problemstatementin Sect.lll, we
discussexact minimum-BER (EMBER) detection.In Sect.lV,
we proposethe approximateminimum-BER (AMBER) mul-
tiuser detector In Sect.V, we presentnumericalresultscom-
paring the performanceof the AMBER detectorto otherlinear
multiuser detectors.

Il. PROBLEM STATEMENT

We limit our discussiorto a synchronousystem becauset
captureghe essentiafeaturesof the moregeneralasynchronous
problem,andit alsoclarifiesexposition.Considera synchronous
direct-sequenc€DMA systemwith N active usersandM chips
perbaud,andlet s; denotethe unit-lengthM-vectorrepresenting
the signaturesequencef useri. Furthermorelet A; denotethe
recevedamplitudefor useri, b, 0{+1} denotetheinformation
bit for useri during bit-epochk, and a2 denotethe noise PSD.
Sampling at the chip rate leads to the following equialent
channel model [3]:

rp = ku +ny, (1)

where the memorylesschannelmatrix H = [s; sy ... syJA has
dimensionM x N, A = diag(4,), by, = [,V ... ,"™1T, andn,, is
white Gaussiamoisewith PSD a?I. Without loss of generality
we take userl astheuserof interest A decentralizedinear mul-
tiuserdetectorfor user1 is thencharacterizedby an M-vectore
and the decision rule:

I;k(l) = sgn{ cTrk} . 2

The problemis to choosee to minimize the probability that
(2) is erroneousj.e., to minimize the bit-error rate (BER) for
user1. A key contrikution of this paperis a low-compleity
adaptve algorithm for linear multiuser detectorsthat closely
approximates the minimum-BER solution.

Basedon (1), the probability that the decisionof (2) is erro-
neous is:

BER, = Pr[b,Per;, < 0]

=E [Pr[bk(l)cTku + bk(l)cTnk <01 bk]]

"Hb,b"
-=lef e ®
wherethe expectationsare over the 2V equally likely binary bit
vectorsb;, O{+1}", andwhereq is the Gaussiarerror function.
Obsere thatthe productbb, ! is a binary vectorwith a onein
the first component(correspondingo the userof interest).Let
bD, p?@, ... b denoteary orderingof the L = 2V~ suchdis-
tinct vectors. Bllowing [7][8], we define thaignal vectors by:

v =HbY,i=1... L 4



These {v®)} vectors represent the L possible noiseless channel
output vectors given that the %™ bit from the desired user is unity,
b,V = 1. With this definition, (3) simplifies to:

_1lcr oree’p
BER; = 7 5. 1QD"c"0 B (5)
Observe that the BER depends on the direction ¢/|| ¢ || of ¢ only,
and that the norm of e is irrelevant; this is because the receiver
decisions are determined by the sign of the detector output only.

In this paper, we make the mild assumption that user i islin-
early detectable, by which we mean that the signature s; of user i
does not lie within the interference subspace spanned by {s; » ;} .

I11. EXACT MINIMUM-BER MULTIUSER DETECTION

A. The EMBER Detector

Let egyprr denote a linear multiuser detector that achieves
exact minimum-BER (EMBER) performance, minimizing (5).
Observe that because (5) depends only on the direction of the
detector, egyprr IS NOt unique: if ¢ minimizes BER, then so
does ace for any positive constant a. Unlike the coefficient vector
eymse =A;(HH' + 62I)1s; that minimizes MSE = El(cr;, -
b, V)21, there is no closed-form expression for egypgpr. HOW-
ever, by setting to zero the gradient of (5) with respect to e:

(T 2 2 T
0,BER, = E[expm (e v) el ve ""} —0, (8

1
o 2lel®e®0  fel® ’

we find that CEMBER must Satley

¢ =afle) forsomea >0, (1)

where we have introduced the function 7: R _. RM, defined
by:

(8

2
fe) = E|:exp EL_(LTE)—EL)} .

2lelc®0

The expectation in (8) is with respect to v over the L = 2V-1
equally likely {v®)} vectors of (4), so that fie) can be expressed
as aweighted sum of the {v‘)} vectors:

1< —9/2
fley==S/_,e Y,
L i=1

)
where a; = ¢Tv)/(|le||0) is a normalized inner product of v®
with e. The fixed-point relationship of (7) characterizes local
maxima as well as local minima for the BER cost function, and
hence (7) is a necessary but not sufficient test for the global min-
imum.

Example 1. Consider the simplest nontrivial two-user
system described by (1) withs; = [1, 017, s = [p, /1_p* 1%,
normalized correlation p = 0.9, SNR; =A,2/0? = 18 dB,
and SNR, = 14.6 dB. In Fig. 1 we present a polar plot of

BER; versus 0 for the unit-norm detector ¢ = [cosb, sinf] T
Superimposed on this plot are the L = 2 signal vectors vV
and v'?), depicted by solid lines. Also superimposed are the
coefficient vectors of four detectors:. the minimum-BER
detector at an angle of 6 = —36.9°; the MMSE detector at
0 = —60.2°; the MF detector at 8 = 0°; and the decorrelator
at 0 = -64.2°. Observe that none of the traditional detectors
coincide with the minimum-BER detector. We should point
out that the minimum-BER detector is not always colinear
with the worst-case signal vector, but rather satisfies
¢ = afl(e) witha > 0 in the general case[see (7) and (9)].
To recover a solution to the fixed-point
¢ = afie) with a > 0, we propose the EMBER algorithm:

equation

1 = ¢ + Hficp), (10

where 1 is a small positive step size. Although there may be
some solutions to the fixed-point egquation ¢ = afie) with a > 0
that correspond to local minima and do not globally minimize
BER, we hypothesize that if ¢ = afic) and also BER < 27V, then e
minimizes BER. Thistest is based on the observation that the eye
diagram is open when the fixed-point equation is satisfied, and
our belief that local minima arise only when certain combina-
tions of interfering user bits are able to close the eye. We thus
propose the following strategy for finding the exact minimum-
BER linear multiuser detector. First, iterate the deterministic
EMBER agorithm of (10) until it converges. If the resulting
BER < 27V, stop. Otherwise, initialize the deterministic EMBER
algorithm somewhere else and repeat the process. This is an
effective strategy when the initial condition of the EMBER algo-
rithm is chosen carefully (for example, chosen to be the MM SE
detector) and when the SNR is sufficiently large that BER < 27V
ispossible.
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Fig. 1. A polar plot of BER; versus 0 for atwo-user system with
correlation p = 0.9. Superimposed are the signal vectors
(scaled by afactor of 0.5) and the MM SE, decorrelating,
MF, and minimum-BER detectors.



IV. APPROXIMATE MINIMUM-BER MULTIUSER
DETECTION

Although the deterministicEMBER algorithm of the pre-
vious sectionis usefulfor finding the minimum-BERdetectorof
known channelsit is poorly suitedfor adaptve implementation
in time-varying applications. We now propose a stochastic
update equation with extremely low complity and whose
ensembleerage approximates the EMBER algorithm.

A. The Stochastic AMBER Algorithm

The errorfunction @(a) is upperboundedandapproximated
by exp(-a2/2)/(/2ma) [9], so thatfle) of (9) can be approxi-
mated by:

fler= 2T 5L a,Qpe? a1
= %amiHZL'L: 1Q(ai)v(i) (12)
= /2T 0ying(e), (13)

wherea; = ¢Tv®/(|le||0) asin (9), Ay, = min{a;}, andwhere
we have introduced the functign: RY — RM, defined by

T
- E[ofE 3 .

Theexpectationin (14)is with respecto v, uniformly distributed
overthe setof signalvectors(4). The EMBER algorithmof (10)
can thus be approximated by

Cry1 = € + Hg(cy). (15)

In analogyto the EMBER fixed-pointrelationshipof (7), we
define the AMBER relationship:

¢ =ag(e) forsomea > 0. (16)

Let usdefineanerrorindicatorfunction, thatis zeroor one,
depending on whether an error occurs:

i Ty —p, (D
I = %), !f sgn{cTrk} = b, o (17)
o, if sgn{eTry} # b,V
It follows thatE[I,] = BER,. As exploitedin (5), the conditional
expectation off;, givenv = b, VHb,, is:

T
EIL, 0] = @ E"zi"vog. (18)

Therefore,the function g(e) can be expressedn termsof this
error indicator as folls:

g(e)=E[E[l, lvlv]
= Ell,v]
= Ell,b,\VHby]
= Ellb, Dy, — np)1. (19)

Using this result, the deterministic update of (15) can be
expressed as:

Crr1= € + HELb, Dy, — ny)l (20)
= ¢ + UE[L,b, Vry]. (21)

Theapproximatiorof (21)is valid athigh SNR,andis bestjusti-
fied by thegoodperformancef theresultingalgorithm,asdem-
onstrated in the numerical results to fallo

We canform a simplestochastiaupdatealgorithmby simply
removing the epectation in (21):

Cre1 =€ + Wby Py (22)

We refer to this stochasticalgorithm as the stodhastic AMBER
algorithm for linear multiuser detection,or just AMBER for
short.

A closerlook at (22) leadsto someinsightful geometridnter-
pretations of the AMBER algorithm.

» The detector is updated only when an error is made.

« The updateterm b,r,, is a noisy estimateof the signal
vector:b,Vry, = b, V(Hb,, + ny) =v + b,Vn;, =v. Hence,
whenan error is made,c takesa small stepin the general
direction of the signalectorv that caused the error

» Averagedover mary iterations,e will move towardseach
v®) with a frequeny proportionalto the probability @(a;)
thatv”) causes an errowheren; = ¢7v®/(|le|| 0).

« At steadystatewe expecte [ 32 Q(a;)v®), whichiis pre-
cisely the AMBER fixed-point relationshipof (16), and
which closelyapproximateshe minimum-BERfixed-point
relationship of (7), nameky [ Zleexp(—ai2/2)v(i).

We cangain additionalinsightinto the AMBER algorithmby
comparingit to two otherwell-known adaptve algorithms:the
LMS algorithm,which implementshe MMSE detectorandthe
sign-LMS algorithm, a lower-complity version of the LMS
algorithm which approximateshe MMSE detector All three
algorithms can bexgressed in a similar form:

Cr+1 = Cf — Hepry, (LMS) (23)

cp.1 =c¢p — Usgn{e,}ry, (sign-LMS) (24)

cp.1=cp — Wsgn{ep}ry. (AMBER) (25)

wheree;, = ¢Tr;, — b,V is the error signalof the MMSE detectoy
andwherewe have madeuseof theidentity b, = —I,sgn{e;}
to transform (22) to (25). There is a remarkablesimilarity
betweenthe AMBER andsign-LMS algorithms.Simply stated,
the AMBER algorithmcanbeviewedasthesign-LMSalgorithm
modifiedto updateonly whenan error is made The sign-LMS
wasmotivatedby its low compleity comparedo the LMS algo-
rithm, despiteits poorerperformanceThe simple modification
for AMBER, on the otherhand,providesdramaticperformance
improvement, without ancost in complgity.



B. Modification of the AMBER Algorithm

Becausehe AMBER algorithmupdatesonly whenan error
is made,convergencespeedcandecreasasthe BER decreases.
Onemethodfor speedingcorvergenceis to modify the AMBER
algorithmsothatit not only updatesvhenan erroris made,but
alsowhenan erroris almostmade.Specifically we canmodify
the errorindicatorfunction of (17) by introducinga nonngative
thresholdrt = 0 as follows:

I = £ (1~ sgnlby My 1)) (26)

In other words, the madified indicator function is I =1 if
b, Vy, < T and I, = 0 otherwise.This indicator function reverts
backto the original (17) whenthe thresholdt is zero.Besides
speedingcorvergence,the thresholdmodification of (26) also
allows the AMBER algorithm to be operatedin a decision-
directedmanner using 5, in placeof 5, in (22) and (26).
Additional methodsfor speedingcorvergenceare describedin

[8].

V. NUMERICAL RESULTS

While the MMSE linear multiuser detectorgenerally per-
forms well, the minimum-BERIinear detectorcan performsig-
nificantly better Consider again the two-user system of
Examplel with normalizedcorrelationp . In Fig. 2 we illustrate
the potentialreductionin BER by plotting the ratio BERgyBER
/BERyysg Versusthe normalizedinterferencepower A5/ A2,
assuming SNR; = 20 dB. The BER reduction is most pro-
nounced for lage correlations and\ointerference pwers.

Next we again considerthe two-usersystemof Examplel,
with p = 0.9 andA,2/4,% = 4.15 dB. In Fig. 3 we comparethe
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Fig. 2. A plot of BERgyMprr/ BERMMSE Versus interference
power for SNR = 20dB.

BER performanceof six linear multiuser detectors:the exact
minimum-BERdetector(satisfying(10)), the approximatemin-

imum-BER detectoy the MMSE detectoy the matchedfilter

detectorthe decorrelatagrandthe MAME detector Obsene that
the exact, approximateminimum-BER, and MAME detectors
are indistinguishable They all outperformthe MMSE detector
by more than 1 dB at high SNR, and they outperform the

matched filter and the decorrelator by a widergimar

Next we studythe performancef thesedetectorsn the pres-
ence of strong nearfar interference.ln Fig.4 we plot BER;
versusthe normalizedinterferencepower A,2/A;2, assuming
p = 0.9 andSNR; = 12 dB. Interestingly we seethatthe MMSE
detectorapproacheminimum-BER performanceor extremely
low and extremely high interferencepowers, but not for mod-

10_1 T T T T T T T

BER,

19 20
SNR; (dB)

Fig. 3. Theoretical steady-state BER comparison.
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Fig. 4. BER ersus normalized interferencevyer.
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Fig. 5. Learning cure of AMBER in the presence of strong near
far interference and with a closegkdnitialization.

erateinterferencepowver. The MAME detectorapproachesnin-
imum-BER performanceat low interferencebut not at high
interference, becausefor sufiiciently high interference, the
MAME detector becomes the decorrelator

The performanceof the stochasticAMBER algorithmin the
presenceof strongneatfar interferenceis examinedin Fig. 5,
which shavs the learning curve of AMBER for a two-user
systemwith p =0.9 and SNR; =12dB, with the interference
power exceedingthe signalpower by 10 dB. The BER wasaver-
agedover 100trials usingu = 1/ k. Beforeeachtrial the detector
wasinitialized with the eye closedat —;z455. Thus,this figure
indicatesnotonly thatAMBER performswell in anearfar ervi-
ronmentbut alsothatit is ableto consistentlyescapea closed-
eye situation.

Finally, considerthe simple three-useisystemdescribedby
(1) with s;=11,01%, sy =11, 117./2, s3=10,1]", and SNR=
20dB for all usersin Fig. 6 we illustratethe performancef the
stochasticAMBER algorithmof (22), with parametersgt = 0.02,
T initializedto 0.4, andwith T cutin half attime 200andagain at
time 400. Although AMBER cando nothingfor user2, it is of
immediate and significant benefit to users 1 and 3.

VI. CONCLUSION

We have proposedthe AMBER algorithm for adaptingthe
coeficients of a linear multiuserdetectorso asto approactthe
minimum-BER linear detector When comparedto the LMS
algorithm,the AMBER algorithmis no more complex and yet
can producea significantly smallerBER. Like the LMS, algo-
rithm, AMBER requiresonly atrainingsequencesothatno esti-
mation of the timing or signatureameforms is necessary

Simulationresultsreveal no appreciablaifferencebetween
the steady-statperformanceof the AMBER algorithmandthe

1 1 1 1 1

MMSE and AMBER (USER 2)

BER

MINIMUM BER (USERs 1 and 3)

10—4 1 1 1 1
0 100 200 300 400 500

TIME

Fig. 6. Learning cures of AMBER for the three-usexample.

optimum minimum-BER linear detector Furthermore, the
AMBER algorithmwas shawn to be robustto nearfar interfer-
enceandclosed-ge initialization, propertieghatareperhapsot
surprisinggiventhe closerelationshipbetweerthe AMBER and
sign-LMS algorithms.
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