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Abstract — Lattice basis reduction is a powerful technique
that enables a hard-output detector for a multiple-input
multiple-output channel to approach maximum-likelihood
performance with low complexity. In this work we
propose a soft-output detector that combines lattice-
reduction-aided detection and list decoding. The proposed
algorithm performs nearly as well as the list-sphere
detector but with much lower complexity. Numerical
results reveal that the complexity per bit for the proposed
algorithm decreases as the size of the QAM alphabet
increases.

Index Terms — Multiple-input multiple-output (MIMO)
systems, lattice reduction, soft information, list decoding.

I. INTRODUCTION

Lattice-reduction (LR) aided detection has recently
emerged as a low-complexity strategy for performing hard-
output detection for multiple-input multiple-output (MIMO)
channels with quadrature-amplitude modulation (QAM)
inputs [1]. The basic idea behind LR-aided detection is to
perform detection using a reduced lattice basis instead of the
original lattice basis thereby realizing decision regions much
closer to those of the maximum-likelihood (ML) detector.
With one recent exception [2], LR-aided detectors to date
have been exclusively hard-output detectors [1], [3]-[6]. In
this work we propose a soft-output detector based on lattice
reduction.

One well-studied method for generating soft information
from a MIMO channel is the list sphere detector (LSD) [7],
which generates a list from which it computes bit posterior
probabilities. Other methods for computing soft information
include breadth-first algorithms [8], semi-definite relaxation
[9], iterative tree search [10], space-time Chase decoding
[11], modified sphere decoding and Monte Carlo methods
[12]. The notion that LR-aided detectors might be used for
estimating bit probabilities was mentioned briefly in [3], but
no details were presented. In contrast to previous methods, we
propose to use lattice reduction to help generate the list. The

proposed detector is called the LR-aided list detector (LRLD).
An alternative approach designed only for 4-QAM was
developed independently and recently reported in [2]. 

The remainder of this paper is organized as follows.
Section II presents our system model. Section III reviews LR-
aided hard detection. Section IV presents the proposed soft-
output detector. Section V presents a complexity analysis,
Section VI presents performance results, and Section VII
concludes the paper.

II. SYSTEM MODEL

Separating the real and imaginary parts of an NT -input
NR -output complex baseband channel leads to an equivalent
real channel with 2NT real inputs a = [a1, … a2NT

]T and
2NR  real outputs r = [r1, … a2NR

]T:

r = Ha + w , (1)

where H = [h1, … h2NT
] is a 2NR × 2NT channel matrix

whose i-th column is hi , and where w is noise. We assume
that the columns of H are linearly independent, which implies
that NR ≥ NT . We assume the noise components are
independent identically distributed (i.i.d.) N(0,N0/2), i.e.,
zero-mean Gaussian random variables with variance N0/2.
We assume that the channel inputs are chosen uniformly and
independently from the pulse-amplitude modulation (PAM)
alphabet A = {±α, ±3α, …±(M–1)α}, where |A| = M and
where M is the size of the equivalent complex QAM
alphabet. The constant α is related to the complex alphabet
energy E by α = .

The PAM alphabet A is a scaled and translated subset of
the integers. Before proceeding it will be convenient to
translate (1) into an equivalent channel whose inputs are
actually integers. In particular, adding the constant vector
((M –1)/2)∑ihi to r/(2α) yields the following equivalent
channel model:

r´ = Hb + w´ (2)

where the components of w´ are i.i.d. N(0, σ2) with variance
σ2 = (M – 1)/(12E/N0), and

a = α(1 – M + 2b). (3)
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The advantage of this transformation is that the elements of b
are now drawn from an alphabet B = {0, 1, … M – 1} that is
a subset of the integers. The scaling and translation that
transforms (1) into (2) is reversible, and hence without loss of
generality we will assume in the remainder of the paper that
the receiver operates on the effective model (2) with integer
inputs. 

III. HARD DETECTION USING LATTICE REDUCTION

The lattice spanned by H is the set of all linear
combinations of its columns with integer coefficients.
Because the components of b are integers, the noiseless
channel output Hb = ∑ibihi is a point in the lattice.
Furthermore, because the components of b are restricted to B,
there are only M 2NT possible values for Hb. The problem of
hard-output maximum-likelihood detection can thus be seen
as finding which of these lattice points is closest to r´. 

The basis of a lattice is not unique. If H is a basis, the
product H̃ = HT will also be a basis whenever the matrix T
is unimodular (having integer entries and a determinant of
±1) [13]. Note that the inverse of a unimodular matrix is also
unimodular. 

Roughly speaking, lattice reduction is the process of
transforming an original basis H into a new (reduced) basis
H̃ = HT that is as “orthogonal” as possible. A celebrated yet
suboptimal polynomial-time lattice reduction algorithm was
proposed by Lenstra, Lenstra, and Lovász (LLL) [14]. A
concise description of this algorithm is provided in [5].

In terms of a reduced basis H̃ = HT, the channel model
(2) can be rewritten as: 

r´ = H̃c + w´ (4)

where we have introduced c = T–1b. We may thus interpret
r´ as the noisy output of an equivalent channel whose input is
c and whose channel matrix is H̃. Furthermore, because b
and T–1 are both comprised of integers, the effective input c
is also comprised of integers, c ∈ Z2NT.

An LR-aided detector operates in three steps [1], [3]-[6]:
first, it performs lattice reduction to find a reduced basis
H̃ = HT; second, it adopts the viewpoint of (4) and uses a
low-complexity MIMO detector (such as a linear or decision-
feedback detector) to recover c; and third, it recovers the
inputs to the original channel using the relationship b = Tc.

The simplest LR-aided detector applies the Moore-
Penrose pseudoinverse H̃+ of H̃ to r´, and rounds the
result to estimate c. Better performance is achieved by the
LR-aided minimum-mean square error (LR-MMSE) detector
[5], which is based on a reduction of an extended channel
matrix: 

H̃ = T.  (5)

The receiver then estimates c using

ĉLR-MMSE = [H̃+r´] , (6)

where r´ = [rT, 0]T and where [ ⋅ ] denotes a component-wise
rounding to the integers. The final decision vector is
b̂ = ˆ[ Tc ]B, where [ ⋅ ]B denotes a component-wise
rounding to the nearest element of B. In fact, because the
arguments to [ ⋅ ]B are already integers, we may interpret this
as a hard-limiting operation, mapping all negative integers to
zero, and mapping integers greater than M – 1 to M – 1. This
border limiting approach is equivalent to the one used in [3].
A block diagram of the LR-MMSE detector is shown in
Fig. 1. 

IV. LR-AIDED LIST DETECTOR

The previous section described a hard-output detector,
whose goal is to find the lattice point Hb that is closest to r´.
The goal of a list detector is to find an unordered list of the l
closest lattice points Hb to r´. We define the candidate list
L⊆B2NT as the set of l corresponding input vectors b. Once
found, the candidate list can be used to approximate the a
posteriori probabilities (APPs). The approximation becomes
exact when the candidate list encompasses all possible input
vectors, L=B2NT. In this section we propose a strategy for
generating a candidate list that builds on the LR-aided
detector. 

Conceptually our approach for computing per-bit
likelihoods can be broken into three key steps. First, using a
LR-aided hard detector we produce an initial decision vector.
Finding this decision vector was the topic of Section III.
Second, we generate a candidate list of decision vectors,
using the initial decision vector as a seed. Lastly, using the
candidate list we compute the per-bit likelihoods or log-
likelihood ratios (LLRs) of the transmitted vector using
standard LLR calculations. 

We now describe how to generate the list of candidate
vectors. The basic idea is to exploit the fact that all possible
estimates for c lie on the integer lattice Z2NT. Specifically we
propose to enumerate the elements of Z2NT within a
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 Fig. 1.  The MMSE LR-aided MIMO hard-output detector.

[ ⋅ ]B
b̂ĉ
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hypersphere centered at ĉ. The search radius is initialized to
zero and is increased until the desired list length ldes has been
achieved. The details are described below.

Let us define a perturbation matrix D via a one-time
offline precomputation whose columns represent vectors that
perturb the hard decision ĉ. The columns of D are ordered in
nondecreasing Euclidean norm. In theory the number of
columns in D would be infinite, but in practice the size of D
can be fixed based on design requirements. An example of D
for a 2×2 system would be

D =  = [d0, d1, d2, …]. (7)

Fig. 2 presents the pseudocode for a serial
implementation of the proposed list generation algorithm.
The column index counter i is initialized to zero. The
algorithm proceeds by sequentially (or in parallel) adding the
column vectors of D to ĉ. Each ĉi that results is transformed
to a candidate input vector using bi

ˆ = [Tĉi ]B. The list is
populated via the union of b̂i and the current list L, which
prohibits repeated entries. The algorithm terminates as soon
as the desired list length ldes is achieved. Note that we have
made the design decision to force the product Tciˆ to be an
element of B2NT. This choice helps to generate the list
quickly. A slower alternative would be to discard those
Tciˆ that are not in B2NT, which might lead to a more
accurate list. 

After we obtain a candidate list we can compute the bit
probabilities using LLR calculations equivalent to those of
(12) in [7] after replacing y with r´ and s with b̂.

V. COMPLEXITY ANALYSIS

The complexity of the LRLD and LSD were analyzed by
counting the number of basic operations for each algorithm.
We account for the preprocessor complexity of both
algorithms, performed once for each realization of the
channel, as well as for the core processing performed each
signaling interval. The preprocessor complexities are
primarily governed by the QR decomposition in the LSD and
the LLL algorithm in the LRLD. The core processing for both
approaches consists of list generation, LLR computation and,
for the LRLD, a LR-MMSE hard detection step. 

One distinguishing feature of the LRLD is that the
majority of its operations are integer computations as
opposed to floating-point operations. Almost always this
leads to a savings in terms of both speed and integrated circuit
area. For our numerical results we adopt the speedup
associated with integer operations versus floating-point
operations on a Texas Instruments TMS6700 digital signal
processor, where single-precision additions require four times
as many clock cycles as integer additions, and single-
precision multiplies require four times as many clock cycles
as integer multiplies. Therefore, when tallying operations, we
divide the number of integer operations by 4 before adding to
the number of floating-point operations. While this factor of 4
is not fixed across architectures, and even the overhead costs
on the architecture we selected can be mitigated to some
extent with proper scheduling, it provides a rough cost
estimate when comparing floating-point and integer
operations.

The complexity of the proposed detector is a random
variable that depends on the channel input, channel matrix,
and noise realizations. The complexity is random because the
list-generation algorithm can terminate quickly or not,
depending on how many valid c vectors are near the seed ĉ.
The probability density function of the complexity
(operations per bit) is approximated in Fig. 3 by a histogram
for (a) 16-QAM and (b) 64-QAM alphabets. These results are
for a 4×4 system with an SNR of 10 dB and a list length of
ldes = 256. The histograms were found by counting
operations for more than 115,000 signaling intervals
comprising over 4700 distinct realizations of i.i.d. Rayleigh
fading channels. 

The histograms show that the LRLD is significantly less
complex than the LSD. On average, for 16-QAM, the number
of LRLD operations is 8.7 times less than the LSD. The
disparity is even more dramatic with 64-QAM, where the
average number of LRLD operations is 77.2 times less than
for LSD. Admittedly, the average complexity is not always a
relevant benchmark. The maximum complexity may be more

0 1 0 1– 0 1 …  
0 0 1 0 1– 1 …  

 Fig. 2.  The proposed list-generation algorithm.

List Generation Algorithm 
Input: ĉ, T, ldes, D. Output: L 

(1) Initialize i = 0 and L = .

(2) While |L| < ldes ,

(3) ĉi = ĉ + di

(4) b̂i = [Tĉi ]B
(5) L = L ∪ b̂i

(6) i = i + 1

(7) end

∅
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relevant in practice. For 16-QAM, the maximum number of
observed LRLD operations during the 115,000 signaling
intervals simulated is 3.1 times less complex than the LSD.
The maximum number of observed operations is over 1000
times less complex for 64-QAM. 

Comparing Fig. 3(a) to Fig. 3(b), we observe the
noteworthy trend that the complexity per bit for the LRLD
decreases significantly with a growth in QAM size. In
contrast, the complexity of the LSD increases from (a) to (b).
A possible explanation for the reduction in complexity of the
LRLD is that its list-generation algorithm has an easier time
generating a candidate list when the elements of B2NT are
more densely packed on the integer lattice. 

VI. PERFORMANCE RESULTS

We now present the simulated error performance of the
LRLD in an iterative space-time bit-interleaved coded
modulation (ST-BICM) system and compare it to that of the
LSD. More details on this standard system configuration can
be found in [7]. Additionally, we constrain the a priori
information from the outer decoder as in [15] but clip the
soft-output of the inner MIMO detector to ±8. Constraining of
a priori information has been shown to improve the
performance of the LSD and the same is true for the LRLD.
Finally, the LLR of the MIMO detector was computed as in
(12) of [7] using the max-log approximation to simplify
calculations.

We assume a 4-input 4-output channel with 16-QAM
inputs. As in [7], message bits are encoded by a rate-1/2
parallel turbo code with length 18432 and parity generator
(1+D2)/(1+D+D2) and a length-9216 S-random
interleaver with spread parameter 10. Coded bits are
interleaved by a S-random interleaver of size 18432 and
spread 20 before being Gray mapped to 16-QAM symbols, so
that each codeword frame spans 1152 signaling intervals. We
assume a quasistatic fading environment with a coherence
time of 48 signaling intervals, so that each codeword spans 24
coherence times. For each frame we performed four outer
iterations between the detector and decoder; for each outer
iteration we performed eight iterations within the turbo
decoder. 

In Fig. 4 we compare the bit-error rate performance of
the LSD and the LRLD after one, two and four outer
iterations with ldes = 512 for both algorithms. We see that,
after four outer iterations, the performance of the LRLD is
within 0.3 dB of the LSD. 

Fig. 5 illustrates and compares the performance-versus-
complexity trade-off of the LRLD and the LSD. The
performance is measured by the SNR required to achieve
BER = 10-5 after four outer iterations, while the complexity
is measured by the required number of operations per bit.
There are 4 curves in the figure, representing the average and
maximum complexity for each algorithm. Each curve is
parameterized by the list length. As in Section V, simulations
were run over more than 115,000 signaling intervals
comprising more than 4700 distinct i.i.d. Rayleigh fading
channels, but for each system configuration the SNR used

Fig. 3.  Complexity histograms for (a) 16-QAM and (b) 64-QAM. The
diamonds mark the maximum complexities of the LRLD. The
maximum complexities of the LSD are off the scale and not
shown.
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corresponds to a bit-error rate of 10– for the system
configuration under test. Slicing Fig. 5 horizontally (fixing
performance), we note that the LRLD is significantly less
complex than the LSD in terms of average and maximum
complexity when ldes ≤ 256. Similarly, slicing Fig. 5
vertically (fixing complexity), the LRLD will achieve better
performance than the LSD when ldes ≤ 256. Specifically,
comparing the LRLD with list length 128 to the LSD with
list length 8, we see that the proposed algorithm is able to
simultaneously improve performance by 0.2 dB and reduce
maximum complexity by a factor of 8. Finally, we note that
the proposed algorithm has a smaller spread between the
average and maximum complexities for most list lengths, a
desirable property for system designers seeking a more
predictable complexity.

VII.CONCLUSION

This paper has proposed the LR-aided list detector for
soft-output detection of MIMO channels with QAM inputs.
Simulation results indicate that the LRLD exhibits a
favorable performance-complexity trade-off with large QAM
alphabets. Specifically, we observed the trend that the
complexity per bit for the LRLD decreases as the size of the
QAM alphabet increases.
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