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Abstract — We analyzethe impact of a time-varying
Rayleigh fading channel on the performance of an
Alamouti transmit-di versity scheme.We proposeseveral
detection strategies for mitigating the effects of a time-
varying channel,and derive expressiondor their bit-err or
probability as a function of the channel correlation
coefficientp.

I. INTRODUCTION

Transmit diversity has emepged in the last decadeas an
effective meansfor achieving spatial diversity in fading
channelsvith anantennarrayatthetransmitterin thedesign
andanalysisof suchschemest is generallyassumedhatthe
channels staticfor the durationof onespace-timecodevord.
In this paperwe investicate the impact of a time-varying
channelon the performanceof the transmit-dversity scheme
proposedby Alamouti [1]. We propose various detection
stratgyiesthattake into accounthetime-varying natureof the
channel,and assesgheir performancethrough analysisand
simulation.

II. CHANNEL MODEL AND ASSUMPTIONS

A transmitterwith two antennaseemploying the transmit-
diversity schemeof Alamouti [1] requirestwo signaling
periodsto corvey a pair of finite-alphabesymbolsx; andxs;
during the first symbol period, the symbolstransmittedfrom
antennaoneandantennawo, respectiely, arex; andx,y, and
during the secondsymbol period they are xo* and —x;*.
Considerareceverwith oneantennaandassumaeflat-fading
channelmodel.Let 2; andh, denotethe equivalentcomplex
channelcoeficients betweenthe two transmitantennasand
therecever antennaluringthefirst symbolperiod,andlet ;11
and fzz denotethe coeficients during the secondperiod, so
that the recever obsenationsr; andry correspondingo the
two symbol periods aregn by:

r hi  hg ||x1] |w1
rl A x2+w’2"’
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or with olvious notation:
r=Hx+w,
wherew represents noise.

)

In this paperwe make the following assumptiongboutthe
channel model (2):

1. White Gaussian noise, so thats a zero-mean circularly
symmetric compbe Gaussian randonmeetor satisfying
Elww*] = 2N

2. SpatiallysymmetricRayleighfading,sothat?, le, ho, and
ho are identically distribted, zero-mean circularly
symmetric complbe jointly Gaussian randomaviables
satisfying E[|h1|?1=E[|h1]?] = E[|h9|?]1 = E[|ho|?] = E},.

3. Sufficient antenna spacing, so that the p‘a{rle) is
independent of the palksg, A 9).

4. Temporally symmetric Rayleigladiing, so that the
correlationp betweem; and#, is the same as that
betweemqy andhy, namelyE[a h*] = Elhghy*] = PE},.

Ill. STRATEGIESFOR RECEIVER DESIGN

In this sectionwe proposethree methodsfor detectingan
Alamouti space-timecodewhenthe channelis time-varying.
Thefirst is the joint maximum-likelihood (ML), the seconds
the decision-feedbackDF) detectoy and the third is a zero-
forcing (ZF) linear detector

A. The ML Detector

Becausef the white Gaussiamoise,thejoint ML detector
chooses the pair of symbalgo minimize:

|| — Hx |P. (3)

Let R = H*H denotethe cascadef H with its matchedilter;
since R is Hermitian, it possessesa unique Cholesky
factorization of the form R =G*G, where G is lower
triangularwith realdiagonalelementsWith H definedby (1),
it is easily erified that

1 |h1h~1* + h2i7:2* I 0

A/lil1|2+|h2|2 hiho* = hihy* I;11'2*"77«2'2.

G= (4)



Multiplying bothvectorsin (3) by the unitary matrix G—*H?*,
we find that the ML detectorcan equivalently choosex to
minimize:

llz - G |E, (5)

where we hee introduced:
z =G *H*r. (6)
The linear combinerof (6) representshe whitened-matched

filter (WMF) for the matrix channel(2). Substituting(2), we
find that the output of the WMF is related to by:

2=Gx +n,

(7)
wherethewhite Gaussiamoisen hasthe samestatisticsasw.

B. The Decision-Feedback Detector

The decision-feedbacketectorusesa decisionaboutx; to
help make a decisionaboutx,. It builds on the WMF output.
In particular becausehe WMF channelmodel G is lower
triangular there is no crosstalkfrom x, to z;, and thus a
suboptimal decision x; regarding x; can be found by
guantizingz4, ignoring zo. Then, assumingthis decisionis
correct, the contritution from x; in z, can be recreatedand
subtractedff, allowing therecever to determinghe decision
%, by quantizing the resulting é&frenceD, where:

hyh—hihs

D=zg— ——2—o"1[3. ®)
Al + |hyf?
C. The Zero-Forcing Linear Detector
A linear detector computes:
y=Cr, ©)

thenmalkesa decisionabouty; basedsolelyony;, fori = 1, 2.
A zero-forcinglinear detectorchoosesC so asto force the
crosstalkio zero,sothatthe cascadeCH is arealnonngative
diagonal matrix. BecauseH is squareand full rank with
probability one, the ZF detectoris clearly of the form C =
AH? for somereal nonngative diagonalmatrix A. We can
male the detectoruniqueby addingthe additionalconstraint
thatthe combinerdoesnot changethe noisevariance so that
thenoisecomponentsn y have secondnoment2N,, thesame
as thosein r. In other words, becausethe autocorrelation
matrix of the noiseafter a combinerof theform C = AH? is
2N,AR™ A, we chooseA so that ART A hasoneson the
diagonal.lt is easily verified that the solution leadsto the
following ZF combiner:

(|i7/1|2+|h2|2)_1/2 0

c |h1iLI+h2iL; izik ha 10
B (|h1|2+|i12|2)_1/2 hy ~ha| o

hyhy +hohy | O

Substituting (10) and (2) into (9) yields:
(|]~11|2+|h2|2)’1/2 0
0 (2 [l

¥ =|h A1 +hyhs x+n, (11)

where the noise components:; andn, are identically
distributed, each being zero-meancomplex Gaussianwith
El|n;|%] = 2N,. Although n, andn, are correlated,the ZF
detectorignores the correlation, and arrives at suboptimal
decisions by independently quantizingandys,.

Comparing(11) to (7), we seethatthefirst outputy; of the
ZF detectoiis identicalto thefirst outputz; of the WMF. (The
second outputs ddr, however.)

D. All Detectors are Equivalent if the Channel is Satic

TheML, DF, andZF detectorperatdn distinctways,and
the performancedifferencebetweenthem can be significant.
However, it is worth emphasizingt this stagethatthe ZF, DF,
and ML detectorsall converge to the samedetectorin the
special case of a static channel.

ansiderﬁrst Ehe ML detector If the channelis static, so
thathy = h1 andhy = he, thenG of (4) reducego thediagonal

matrix '|h1|2 + |h2|21, and (7) reduces to:
2= J|h) |y x + 1.

The joint ML detectorthusreduceso a pair of independent
scalar detectors,significantly reducing compleity. Indeed,
the desireto diagonalizethe channelusing a MF was what
lead to the Alamouti transmit-dversity schemein the first
place.Clearly becausdhereis no crosstalkafter the WMF,
the coeficient of %, in (8) reducesto zero,andthusthe DF
reducedo the ML detectorfor the staticcase Finally, the ZF
detectorof (11) alsoreducedo (12) whenthe channels static.

(12)

IV. PERFORMANCEANALYSIS — SPECIAL CASES

Beforeconsideringhe generalkcaseof arbitrarycorrelation,
it will be instructive to focusfirst on two extremecasesthe
fully correlated or static channel, where p=1, and the
uncorrelatedchannel,where p = 0. In the remainderof this
sectionwe derive expressiondor the bit-error probability for
theseextremecasesassuminghe ZF linear detectorof (10).
We assumeuncodedbinary phase-shiftkeying modulation.
We remarkthat, from the symmetryof the channelmodel,we
only needto derive the error probability for the first symbol
x1, knowing that the secondsymbolwill have the sameerror
probability:



A. The Fully Correlated (p = 1) Static Channel

The analysisfor the staticcaseis well-known [2]. Thefirst
componentin (11) is:

y1= A[|h1|2 + |h2|2x1 + ;Ll,

so that the decision % = sign(z;) has bit-error probability
Q(/2y), wherey = (|h,|* + |hy|)E/ (2N is theinstantaneous
SNR per bit, whereE = E [1x; |2]. SinceE[14;1%] = Ej,, the
average SNR per bit is y = EE;,/N,. Sinceh; and h, are
independentand Gaussian,y has a central chi-square
distribution with four dgrees of freedom, and pdf:

(13)

ay

p(y) = =5 exp(:2 y/y). (14)
Y
AveragingQ(./2y) over this distrilution yields [2]:
oYy, Yo«

P,=:f1 s Lo+ At (15)

B. The Uncorrelated Case (p = 0)
From (11), the first output of the ZF detector is:

hyhy+hyhs

R R (16)

Y1 B v S
[+ o

Theerrorprobabilityis thusagain of theform Q(,/21 ), where
W is the efective instantaneous SNR for (16):
~ ~%|2
_ |h1h1 + h2h2|
= b i
[ +|hy)

Introducinguy = A1/ [|7|* + |hy|” andug = hs/ |haf” + Ry

the effectve SNR can equvalently be expressed as
U =1Y1%y/(2Ey), whereagainy = EE;,/ N, is the meanSNR

perbit, andwhereY = 1%, + ujhs* canbeinterpretedasa

projection u*h of h=[h;, l~z2*]T in the direction of the

independenunit vector u = [uq, uy]”. Sincethe pdf of & is

symmetric,andsinceh is independenof u, it follows thatthe

pdf of Y will beindependentf u, andchoosinge = [1, 017 we

find thatY hasthe samepdf as%;. Thus,the effective SNR

U =1Y12y/(2E,) hasmeanvaluey/ 2, exactly half of whatit

was for the static channel,and it has a central chi-square
distribution with two degrees of freedom:

E/(2Ny). a7)

P = % exp2 /Y. (18)
AveragingQ(./211) over this distrilition yields [2]:
1o [ v
P,= 5 H Ry (19)

V. PERFORMANCEANALYSIS — GENERAL CASE
A. Performance of the ZF Linear Detector

The effective instantaneou$SNR at the first output of the
ZF linear detectoris given by (17). Let us introduce the
random variables g; and &,, which are independentand
identically distributedwith the samepdf asle andh,, sothat
we can decomposg andsz as follows:

h, = p}~11+A/1—p281,
712 = ph2+»\/1—p2€2,

where p 0J[0, 1] is the correlation. Plugging (20) into (17)
leads to:

. * |2
-l |]~“|2+|h2|2+ﬁ__p2% E/@Np), (21)
hal|” + |hy|

where the fraction hasa complex gaussiandistribution and
canbe expressedst; + jtg With ¢4, t9 beingindependenteal
zero-meangaussianrandomvariables.Therefore,u reduces
to:

(20)

2 2
h=X:+X5, (22)

with X; = A +.J(E/2N,)(1 -p*)t,, wherewe have introduced

A=p [E/2Nynl +n,> and X,= [(E/2Ny)(1-p2)t,.

Therefore givenA, pu hasa nhoncentrachi-squaredistribution
with two degrees of freedom, and pdf:
Puia(plae)=
—exp(-2(a’ + B/ (1 - pHy)) Jy I
(1-pHy H1-p2)y
with a? = E[X;1? + E[X,]?, J, is the zeroth-order Bessel
function of the first kind, and= /-1 .

By definition,A is Rayleighdistributedwith four degreesof
freedom and has pdf:

g, (23)

3
Pa(@) = 3% exp(-2a%/ (7p%). (24)
Py
Integrating the productof equations(23) and (24) over the
variable ¢ from 0 to o« leads to the following density
probability forp [3]:

pu = Ae M F (2,150,

wherewe have introducedthevariablesn = 2p%/((1-p%)Y),
A= 2(1-p%)/y, v = 2/((1-p7)y), and,F,(a, B; x) is the
confluenthypeigeometricfunction. Finally, by noticing [4]
that ,F,(2,1; =) =(1-x)e , (25) can be written as:

(25)



P =2e TRy, (26)

Averaging Q(./21) over this distribution yields:

P.= a-o38- 7]
oliB-ERiE R @

As expected, (27) reduces to (15) for the static case (p = 1),
and it reducesto (19) for the uncorrelated case (p = 0).

B. Performance of the DF Detector

The performance of the DF detector is easily approximated
in terms of the performance of the ZF linear detector. Let us
express the average bit-error probability of the DF detector as
P,= 2Py +1 Py where P, = P&, # x].

First let us compute P;. Comparing (4) and (7) to (11), we
see that the first output z; of the WMF isidentical to the first
output y; of the ZF linear detector. Hence, the symbol error
probability P, for x; is given by (27).

An exact expression for P, has not been found. Instead, we
will derive alower bound on P, by assuming that the decision
%1 isalways correct. Under this assumption, the subtraction in
(8) cancels the crosstalk perfectly, leaving a difference given

by:
D= A’|;ll|2 + |h2|2962 +ng.

We recognize this as having precisely the same form as (13),
the ideal two-fold diversity case. Hence, it follows
immediately that P, is given by (15). Combining, we can
bound the performance of the DF detector by:

1-p°rlg _ [y O
P> [i%_ 2+VD]

*%&[i%“@zg% * J2zvg]' @)

(28)

VI. NUMERICAL RESULTS

In this section we compare the bit-error probability
performance for the different detectors proposed in Sect. I11.

It is difficult to analyze the performance of the ML detector
when the channel is not static. Therefore, we rely on computer
simulations instead. In Fig. 1 we present bit-error probability
results for the ML detector for the uncorrelated case (p = 0)
and the static channel (p = 1). There is very little degradation
due to the time-varying channel. Even when the channel
varies so rapidly that the correlation is zero, the ML detector
isable to perform almost as well as for the static channel.

The performance of the ZF linear detector is given in exact
form by (27), and its behavior is shown in Fig. 2 for different
values of p. We see that the performance depends strongly on
the channel correlation characteristics. If the correlation istoo
small, the ZF linear detector will actually perform worse than
a system with no diversity. Numerical calculations reveal that
the ZF linear detector outperforms areceiver without diversity
only when p is approximately greater than 0.75.
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Fig. 1. Performance of the ML detector.
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Fig. 2. Performance of the ZF detector.



The performanceof the DF detectoris shawvn in Fig. 3,
where Monte-Carlo simulationsof bit-error probability are
comparedwith the lower bound of (29). The simulation
resultsare more accuratebecausehey accountfor the effect
of occasionallyfeedingback erroneoudecisions.The small
gap betweerthe lower boundandthe simulatedperformance
implies that the DF detectorsuffers a small penalty due to
error propagtion.

In Fig. 4, we comparehe performancef all threedetectors
for three cases:p =0, p = 0.9, and the static case(p = 1).
When the channelvaries with time, the ML detectoris far
superiorto the other detectorsThe ML detectorsuffers less
than1 dB of degradationwhenp = 0 ascomparedo a static
channel Even whenthe correlationis ashigh asp = 0.9, the
ML detector significantly outperforms the others. When
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Fig. 3. Performance of the DF detector
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Fig. 4. Performance comparison for thefdient detectors.

P,=10% and p=0.9, the ZF and DF detectorssuffer a
penaltyof 2.5dB and1.5dB respectiely, comparedo those
in the staticcase At P, = 10® andp = 0.9, the penaltiesgrow
to 4 dB and @B, respectiely.

VII. CONCLUSIONS

We proposedthree stratejies for detectingan Alamouti
transmit-dversity schemewhen the channelis time-varying:
the ML, DF, and linear detectors.Through analysis and
simulation,we assessetheir performanceover time-varying
Rayleigh fading channelsas characterizedby the channel
correlation coeficient p. The ML detector significantly
outperformghe DF andZF detectorasvhenthe channelvaries
rapidly and p is small. However, the ML detectorcan be
significantly more comple, especially when higherorder
alphabetsare consideredThe DF and ZF linear detectorsare
thus attractie, especially when the channakies slavly.

ACKNOWLEDGMENT

The authorswould like to thank G. H. Meyer for his
mathematics advice and references.

REFERENCES

[1] SiavashM. Alamouti,“A SimpleTransmitDiversity Technique
for WirelessCommunication$, IEEE Journal on SelectAreas
in CommunicationsVol. 16, No 8., pp 1451-1458,0October
1998.

[2] JohnG. Proakis,Digital Communications4th Edition. New
York: Mc Graw Hill, pp 824-825, 2001.

[3] I.S.Gradshtepn, I.M. Ryzhik, andAlan Jefrey, Table of Inte-
grals, Series, and Bducts,Fifth Edition, pp. 737-6.631, 1997.

[4] Larry C. Andrews, Specialfunctionsfor Enginees and Applied
Mathematicspp 313,Nw York: MacMilliam, 1995.

[5] GordonL. Stiber Principles of Mobile Communication2nd
edition, Kluwer Academic Publishers, Wamber 2000.

[6] PW.Wolniansky, G.J.Foschini,G.D.Golden,andR. A. Valen-
zuela,“V-BLAST: An Architecturefor Realizing Very High
Data RatesOver the Rich-ScatteringWireless Channel”, in
Proc. ISSSE ‘98Pisa, Italy September 29, 1998.

[7] Williams C. Jales, MicrowaveMobile CommunicationsNew
Jersg: IEEE Press, 1974.

[8] G. J. Foschini and M. J. Gans, “On limits of Wireless
Communicationsin a Fading Environment when using
Multiple Antennas, Wreless Personal Communications
Volume 6, No. 3, pp. 311-335, March 1998.



