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Abstract — We analyzethe impact of a time-varying
Rayleigh fading channel on the performance of an
Alamouti transmit-di versity scheme.We proposeseveral
detection strategies for mitigating the effects of a time-
varying channel,and derive expressionsfor their bit-err or
probability as a function of the channel correlation
coefficientρ.

I. INTRODUCTION

Transmit diversity has emerged in the last decadeas an
effective means for achieving spatial diversity in fading
channelswith anantennaarrayat thetransmitter. In thedesign
andanalysisof suchschemesit is generallyassumedthat the
channelis staticfor thedurationof onespace-timecodeword.
In this paper we investigate the impact of a time-varying
channelon the performanceof the transmit-diversity scheme
proposedby Alamouti [1]. We proposevarious detection
strategiesthattake into accountthetime-varyingnatureof the
channel,and assesstheir performancethroughanalysisand
simulation.

II. CHANNEL MODEL AND ASSUMPTIONS

A transmitterwith two antennasemploying the transmit-
diversity schemeof Alamouti [1] requires two signaling
periodsto convey a pair of finite-alphabetsymbolsx1 andx2;
during the first symbolperiod,the symbolstransmittedfrom
antennaoneandantennatwo, respectively, arex1 andx2, and
during the secondsymbol period they are x2* and –x1*.
Considerareceiverwith oneantenna,andassumeaflat-fading
channelmodel.Let h1 andh2 denotethe equivalentcomplex
channelcoefficients betweenthe two transmitantennasand
thereceiver antennaduringthefirst symbolperiod,andlet 1
and 2 denotethe coefficients during the secondperiod,so
that the receiver observationsr1 and r2 correspondingto the
two symbol periods are given by:
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or with obvious notation:

r = Hx + w , (2)

wherew represents noise.

In this paperwe make thefollowing assumptionsaboutthe
channel model (2):

1. White Gaussian noise, so thatw is a zero-mean circularly
symmetric complex Gaussian random vector satisfying
E[ww*] = 2N0I.

2. SpatiallysymmetricRayleighfading,sothath1, 1, h2, and

2 are identically distributed, zero-mean circularly
symmetric complex jointly Gaussian random variables
satisfying E[ |h1|2] = E[| 1|2] = E[|h2|2] = E[| 2|2] = Eh.

3. Sufficient antenna spacing, so that the pair(h1, 1) is
independent of the pair(h2, 2).

4. Temporally symmetric Rayleigh fading, so that the
correlation ρ betweenh1 and 1 is the same as that
betweenh2 and 2, namelyE[h1 1*] = E[h2 2*] = ρEh.

III. STRATEGIES FOR RECEIVER DESIGN

In this sectionwe proposethreemethodsfor detectingan
Alamouti space-timecodewhenthe channelis time-varying.
Thefirst is thejoint maximum-likelihood(ML), thesecondis
the decision-feedback(DF) detector, and the third is a zero-
forcing (ZF) linear detector.

A. The ML Detector

Becauseof thewhite Gaussiannoise,thejoint ML detector
chooses the pair of symbolsx to minimize:

||r – Hx ||2. (3)

Let R = H*H denotethecascadeof H with its matchedfilter;
since R is Hermitian, it possessesa unique Cholesky
factorization of the form R = G*G, where G is lower
triangularwith realdiagonalelements.With H definedby (1),
it is easily verified that

G = . (4)
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Multiplying bothvectorsin (3) by theunitarymatrix G– *H*,
we find that the ML detectorcan equivalently choosex to
minimize:

||z – Gx ||2 , (5)

where we have introduced:

z = G– *H*r . (6)

The linear combinerof (6) representsthe whitened-matched
filter (WMF) for the matrix channel(2). Substituting(2), we
find that the outputz of the WMF is related tox by:

z = Gx + n, (7)

wherethewhiteGaussiannoisen hasthesamestatisticsasw.

B. The Decision-Feedback Detector

Thedecision-feedbackdetectorusesa decisionaboutx1 to
help make a decisionaboutx2. It builds on the WMF output.
In particular, becausethe WMF channelmodel G is lower
triangular, there is no crosstalkfrom x2 to z1, and thus a
suboptimal decision 1 regarding x1 can be found by
quantizingz1, ignoring z2. Then, assumingthis decision is
correct,the contribution from x1 in z2 can be recreatedand
subtractedoff, allowing thereceiver to determinethedecision

 by quantizing the resulting differenceD, where:

D = z2 – 1 . (8)

C. The Zero-Forcing Linear Detector

A linear detector computes:

y = Cr , (9)

thenmakesadecisionaboutxi basedsolelyonyi, for i = 1, 2.
A zero-forcinglinear detectorchoosesC so as to force the
crosstalkto zero,sothatthecascadeCH is a realnonnegative
diagonal matrix. BecauseH is squareand full rank with
probability one, the ZF detectoris clearly of the form C =
AH–1 for somereal nonnegative diagonalmatrix A. We can
make the detectoruniqueby addingthe additionalconstraint
that thecombinerdoesnot changethenoisevariance,so that
thenoisecomponentsin y havesecondmoment2N0, thesame
as those in r. In other words, becausethe autocorrelation
matrix of thenoiseaftera combinerof the form C = AH–1 is
2N0AR–1 A, we chooseA so that AR–1 A has ones on the
diagonal.It is easily verified that the solution leadsto the
following ZF combiner:

C = . (10)

Substituting (10) and (2) into (9) yields:

y = x + , (11)

where the noise components 1 and 2 are identically
distributed, each being zero-meancomplex Gaussianwith
E[| i |

2] = 2N0. Although 1 and 2 are correlated,the ZF
detector ignores the correlation, and arrives at suboptimal
decisions by independently quantizingy1 andy2.

Comparing(11) to (7), we seethat thefirst outputy1 of the
ZF detectoris identicalto thefirst outputz1 of theWMF. (The
second outputs differ, however.)

D. All Detectors are Equivalent if the Channel is Static

TheML, DF, andZF detectorsoperatein distinctways,and
the performancedifferencebetweenthemcanbe significant.
However, it is worthemphasizingat thisstagethattheZF, DF,
and ML detectorsall converge to the samedetectorin the
special case of a static channel.

Considerfirst the ML detector. If the channelis static,so
that 1 = h1 and 2 = h2, thenG of (4) reducesto thediagonal
matrix I, and (7) reduces to:

z = x + n . (12)

The joint ML detectorthus reducesto a pair of independent
scalar detectors,significantly reducing complexity. Indeed,
the desireto diagonalizethe channelusing a MF was what
lead to the Alamouti transmit-diversity schemein the first
place.Clearly, becausethereis no crosstalkafter the WMF,
the coefficient of in (8) reducesto zero,andthusthe DF
reducesto theML detectorfor thestaticcase.Finally, theZF
detectorof (11)alsoreducesto (12)whenthechannelis static.

IV. PERFORMANCE ANALYSIS — SPECIAL CASES

Beforeconsideringthegeneralcaseof arbitrarycorrelation,
it will be instructive to focusfirst on two extremecases:the
fully correlated or static channel, where ρ = 1, and the
uncorrelatedchannel,where ρ = 0. In the remainderof this
sectionwe derive expressionsfor thebit-errorprobability for
theseextremecases,assumingthe ZF linear detectorof (10).
We assumeuncodedbinary phase-shiftkeying modulation.
We remarkthat,from thesymmetryof thechannelmodel,we
only needto derive the error probability for the first symbol
x1, knowing that the secondsymbolwill have the sameerror
probability.
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ñ ñ ñ
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A. The Fully Correlated (ρ = 1) Static Channel

Theanalysisfor thestaticcaseis well-known [2]. Thefirst
component in (11) is:

y1 = x1 + 1 , (13)

so that the decision 1 = sign(z1) has bit-error probability
Q( ), whereγ = ( )E ⁄ (2N0) is the instantaneous
SNR per bit, whereE = E [|x1|2]. SinceE[|hi|

2] = Eh, the
average SNR per bit is γ = EEh ⁄ N0. Since h1 and h2 are
independent and Gaussian, γ has a central chi-square
distribution with four degrees of freedom, and pdf:

p(γ) = exp(–2 γ ⁄ γ). (14)

AveragingQ( ) over this distribution yields [2]:

Pe = 1 – 2 2 + . (15)

B. The Uncorrelated Case (ρ = 0)

From (11), the first output of the ZF detector is:

y1 = x1 + . (16)

Theerrorprobabilityis thusagainof theform Q( ), where
µ is the effective instantaneous SNR for (16):

µ = E ⁄ (2N0). (17)

Introducingu1 = ⁄ and u2 = h2* ⁄ ,
the effective SNR can equivalently be expressed as
µ =|Y|2γ ⁄ (2Eh), whereagain γ = EEh ⁄ N0 is the meanSNR
per bit, andwhereY = u1*h1 + u2* 2* canbe interpretedasa
projection u*h of h = [h1, 2*]T in the direction of the
independentunit vector u = [u1, u2]T. Since the pdf of h is
symmetric,andsinceh is independentof u, it follows thatthe
pdf of Y will beindependentof u, andchoosingu = [1, 0]T we
find that Y hasthe samepdf as h1. Thus, the effective SNR
µ =|Y|2γ ⁄ (2Eh) hasmeanvalueγ ⁄ 2, exactly half of what it
was for the static channel,and it has a central chi-square
distribution with two degrees of freedom:

p(µ) = exp(–2 µ ⁄ γ). (18)

AveragingQ( ) over this distribution yields [2]:

Pe = . (19)

V. PERFORMANCE ANALYSIS — GENERAL CASE

A. Performance of the ZF Linear Detector

The effective instantaneousSNR at the first output of the
ZF linear detector is given by (17). Let us introduce the
random variables ε1 and ε2, which are independentand
identicallydistributedwith thesamepdf as 1 andh2, sothat
we can decomposeh1 and 2 as follows:

,

, (20)

where ρ ∈[0, 1] is the correlation.Plugging (20) into (17)
leads to:

µ = E ⁄ (2N0), (21)

where the fraction has a complex gaussiandistribution and
canbeexpressedast1 + jt2 with t1, t2 beingindependentreal
zero-meangaussianrandomvariables.Therefore,µ reduces
to:

µ = , (22)

with X1 = A + , wherewe have introduced
A = and X2 = .
Therefore,givenA, µ hasa noncentralchi-squaredistribution
with two degrees of freedom, and pdf:

Pµ|A (µ|a) =

, (23)

with a2 = E[X1]2 + E[X2]2, J0 is the zeroth-order Bessel
function of the first kind, and i = .

By definition,A is Rayleighdistributedwith four degreesof
freedom and has pdf:

PA(a) = exp( ). (24)

Integrating the product of equations(23) and (24) over the
variable a from 0 to ∞ leads to the following density
probability forµ [3]:

pµ(µ) = , (25)

wherewehave introducedthevariables ,
, , and is the

confluenthypergeometricfunction. Finally, by noticing [4]
that  = , (25) can be written as:
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pµ(µ) = . (26)

Averaging Q( ) over this distribution yields:

. (27)

As expected, (27) reduces to (15) for the static case (ρ = 1),
and it reduces to (19) for the uncorrelated case (ρ = 0).

B. Performance of the DF Detector

The performance of the DF detector is easily approximated
in terms of the performance of the ZF linear detector. Let us
express the average bit-error probability of the DF detector as
Pe = P1 + P2, where Pi = Pr[ i ≠ xi].

First let us compute P1. Comparing (4) and (7) to (11), we
see that the first output z1 of the WMF is identical to the first
output y1 of the ZF linear detector. Hence, the symbol error
probability P1 for x1 is given by (27).

An exact expression for P2 has not been found. Instead, we
will derive a lower bound on P2 by assuming that the decision

1 is always correct. Under this assumption, the subtraction in
(8) cancels the crosstalk perfectly, leaving a difference given
by:

D = x2 + n2 . (28)

We recognize this as having precisely the same form as (13),
the ideal two-fold diversity case. Hence, it follows
immediately that P2 is given by (15). Combining, we can
bound the performance of the DF detector by:

. (29)

VI. NUMERICAL RESULTS

In this section we compare the bit-error probability
performance for the different detectors proposed in Sect. III.

It is difficult to analyze the performance of the ML detector
when the channel is not static. Therefore, we rely on computer
simulations instead. In Fig. 1 we present bit-error probability
results for the ML detector for the uncorrelated case (ρ = 0)
and the static channel (ρ = 1). There is very little degradation
due to the time-varying channel. Even when the channel
varies so rapidly that the correlation is zero, the ML detector
is able to perform almost as well as for the static channel.

The performance of the ZF linear detector is given in exact
form by (27), and its behavior is shown in Fig. 2 for different
values of ρ. We see that the performance depends strongly on
the channel correlation characteristics. If the correlation is too
small, the ZF linear detector will actually perform worse than
a system with no diversity. Numerical calculations reveal that
the ZF linear detector outperforms a receiver without diversity
only when ρ is approximately greater than 0.75.
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 Fig. 1. Performance of the ML detector.
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 Fig. 2. Performance of the ZF detector.
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The performanceof the DF detectoris shown in Fig. 3,
where Monte-Carlosimulationsof bit-error probability are
comparedwith the lower bound of (29). The simulation
resultsaremoreaccuratebecausethey accountfor the effect
of occasionallyfeedingbackerroneousdecisions.The small
gap betweenthe lower boundandthe simulatedperformance
implies that the DF detectorsuffers a small penalty due to
error propagation.

In Fig. 4, wecomparetheperformanceof all threedetectors
for three cases:ρ = 0, ρ = 0.9, and the static case(ρ = 1).
When the channelvaries with time, the ML detectoris far
superiorto the otherdetectors.The ML detectorsuffers less
than1 dB of degradationwhenρ = 0 ascomparedto a static
channel.Even whenthe correlationis ashigh asρ = 0.9, the
ML detector significantly outperforms the others. When

Pe = 10–2 and ρ = 0.9, the ZF and DF detectorssuffer a
penaltyof 2.5 dB and1.5dB respectively, comparedto those
in thestaticcase.At Pe = 10–3 andρ = 0.9, thepenaltiesgrow
to 4 dB and 6dB, respectively.

VII. CONCLUSIONS

We proposedthree strategies for detectingan Alamouti
transmit-diversity schemewhen the channelis time-varying:
the ML, DF, and linear detectors.Through analysis and
simulation,we assessedtheir performanceover time-varying
Rayleigh fading channelsas characterizedby the channel
correlation coefficient ρ. The ML detector significantly
outperformstheDF andZF detectorswhenthechannelvaries
rapidly and ρ is small. However, the ML detectorcan be
significantly more complex, especially when higher-order
alphabetsareconsidered.TheDF andZF lineardetectorsare
thus attractive, especially when the channel varies slowly.
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