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Abstract—In this work we present a unifying framework to
characterize different types of breadth-first tree search detectors
for multiple antenna systems. All considered algorithms operate
at fixed complexity and require only a single pass through the
detection tree, making them very attractive for practical imple-
mentation. Existing approaches are placed into this framework
and a performance-complexity analysis is performed for both
hard-output and soft-output detection. The B-Chase and the
parallel smart candidate adding algorithm emerge as the most
attractive schemes for hard-output and soft-output detection,
respectively.

I. INTRODUCTION

Radio frequency spectrum is a scarce and thus valuable
resource. Equipping the transmitter and receiver of a wireless
system with multiple antennas allows for efficient use of this
resource by increasing spectral efficiency. Unfortunately, this
improvement is accompanied by potentially dramatic increases
in detection complexity (exponential in the worst case). Nu-
merous approaches have been proposed for solving the detec-
tion problem in such multiple-input multiple-output (MIMO)
systems, for hard-output as well as soft-output detection. Many
of these schemes reformulate the MIMO detection task into a
tree search problem, in which leaf nodes maximizing a certain
metric have to be found in a detection tree.

A class of tree search schemes which has received con-
siderable attention, justified by their attractive performance-
complexity tradeoff and amenability for practical implementa-
tion, are breadth-first algorithms. Breadth-first schemes search
the detection tree layer-by-layer and are therefore easily con-
structed to have fixed complexity. However, one inherent draw-
back of these schemes is that their achievable performance
is often limited by error propagation, particularly when the
available computational resources are small.

In [1] the general “Chase detection” strategy was proposed
for MIMO channels, reducing a variety of previously reported
schemes to special cases of a larger framework. However,
the framework focuses on the case of hard-output detection,
leaving some aspects aside which are relevant for soft-output
detection.

In this paper we present a general framework for fixed
complexity breadth-first MIMO detection schemes through

a vector parameterization approach which includes the pre-
processing specification. It covers both hard-output and soft-
output detection and is thus in some ways less restrictive, and
in other ways more restricted, than the one from [1]. This
framework enables a performance-complexity comparison of
the most popular breadth-first schemes.

The remainder of this paper is organized as follows: after
discussing the employed system model in Section II, Sec-
tion III details fundamentals of MIMO detection. Section
IV describes our framework for fixed complexity MIMO
detection and the placement of existing approaches within
this framework. In Section V we provide a performance-
complexity comparison of existing fixed complexity breadth-
first MIMO detection approaches in both hard-output and soft-
output systems. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider an NT × NR MIMO system based on a BICM
transmit strategy as depicted in Fig. 1: the vector u of i.i.d.
information bits is encoded and interleaved. The resulting
coded bit stream is partitioned into blocks c of NT ·L bits and
mapped onto a vector symbol x ∈ X whose components are
taken from some complex constellation C (e.g. Gray mapped
64-QAM). Here, L denotes the number of bits per complex
symbol, resulting in Q = |C| = 2L different constellation
points. We consider transmission over a flat fading channel.
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Figure 1. System model using a BICM transmit strategy.

In the equivalent discrete-time base-band model, the re-
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ceived signal y is thus given by:

y = Hx + n (1)

where H ∈ C
NR×NT is the channel transfer matrix which is

assumed to be perfectly known at the receiver. The entries
of H are realizations of zero mean i.i.d. complex Gaus-
sian random processes of unit variance (passive subchan-
nels). The average transmit energy is normalized such that
E{xxH} = Es/NT I. The vector n ∈ C

NR×1 represents the
receiver noise whose components are zero mean i.i.d. com-
plex Gaussian random variables with variance N0/2 per real
dimension: E{nnH} = N0 I. The signal-to-noise ratio (SNR)
at each receive antenna is hence given by SNR = Es/N0.

III. FUNDAMENTALS

In the case of soft-output detection, the detector in Fig. 1
has to generate reliability information, i.e., determine the a
posteriori probability for each of the code bits cm,l in x, where
m ∈ {1, . . . , NT } is the symbol index, and l ∈ {1, . . . , L}
the bit index in the m-th symbol. Since we are dealing with
binary numbers, this information is conveniently expressed in
the form of log-likelihood ratios (LLRs):

L(cm,l|y) := ln
P [cm,l = +1|y]
P [cm,l = −1|y]

(2)

≈ max
x̂∈X+1

m,l

{
−‖y − Hx̂‖2

N0
+

NT∑
i=1

L∑
k=1

ln P (ci,k = ĉi,k)

}

− max
x̂∈X−1

m,l

{
−‖y − Hx̂‖2

N0
+

NT∑
i=1

L∑
k=1

ln P (ci,k = ĉi,k)

}
,

where the second line follows from the application of the max-
log approximation. Here, X±1

m,l denotes the set of 2NT ·L−1

symbols x̂ ∈ X for which ĉm,l = ±1, where x̂ denotes a
certain hypothesis on the transmit sequence and ĉ the corre-
sponding vector of code bits. Evaluating (2) by a brute-force
approach (maxLogAPP detection) is well known to require an
effort growing exponentially in the number of transmitted bits
per vector symbol. However, only a few hypotheses in X±1

m,l

actually maximize each of the respective terms in (2). Sev-
eral close-to-optimal detection strategies therefore construct
a subset list L ⊂ X of size |L| from which the LLRs are
determined. The list L should on the one hand include only a
fraction of the elements from X , to minimize complexity. On
the other hand, it should be large enough such that the true
detector LLRs can be approximated as closely as possible, to
maximize performance. For hard-output detection the detector
“only” needs to determine the most likely transmitted signal
vector x̂JML (and corresponding ĉJML).

A. Tree-Search MIMO Detection

Tree search based MIMO detection techniques construct
L using a back-substitution approach. After an orthogonal-
triangular decomposition of the channel matrix, e.g. H = QR,

the LLRs can be determined using the per-antenna metric
increments Λi:

L(cm,l|y) ≈ max
x̂∈L∩X+1

m,l

{
NT∑
i=1

Λi

}
− max

x̂∈L∩X−1
m,l

{
. . .

}

which are referred to as branch metrics and given by

Λi = − 1
N0

∣∣∣∣ỹi −
NT∑
j=i

ri,j x̂j

∣∣∣∣
2

+
L∑

k=1

ln P (ci,k = ĉi,k) (3)

with ỹ = QHy. The detector starts in layer i = NT and works
its way up until layer i = 1 is reached. For each branch in the
tree, Q different choices are possible for the signal estimate
xi. The detection process can hence be interpreted as a search
for leaf nodes in a tree structure. Different types of tree search
based detectors can be implemented by using the path metrics∑NT

j=i Λj (with i as the current layer index) to control which
tree nodes are added to the working stack and in which order.

A major problem for all “conventional” tree search schemes
are missing counter-hypotheses: whenever L ∩ X±1

m,l = ∅, the
magnitude of the LLR for the corresponding bit cannot be
determined from the entries of L. One solution to this problem
is to use a technique called smart candidate adding [2]–[6].
This strategy is based on the recognition that the LLRs as
defined by (2) can also be written as the difference between
the metric of the MAP estimate x̂MAP (i.e., the hypothesis
maximizing the a posteriori probability) and the metric of the
best counter-hypothesis for each bit:

L(cm,l|y) ≈ ĉMAP
m,l

(
NT∑
i=1

Λi

(
x̂MAP

)
. . .

− max
x̂∈X−MAP

m,l

{
NT∑
i=1

Λi (x̂)

})
, (4)

where ĉMAP is the bit pattern of the MAP estimate and
X−MAP

m,l the set of potential counter-hypotheses, for which
ĉm,l = −ĉMAP

m,l . The maxLogAPP detection problem may
hence be solved by first finding the MAP estimate and then
performing NT · L searches which cover only a subset of the
transmitter signal set, as proposed for the sphere detector in
[2] and extended to general tree search algorithms in [5].

A lower complexity (and slightly suboptimal) alternative
to [2] is the parallel smart candidate adding algorithm [6],
which requires only a single pass through the detection tree
and ensures that each node in the detection tree is visited only
once. Specifically, in the PSCA algorithm counter-hypotheses
are found concurrently with the MAP estimate as the breadth-
first search proceeds through the detection tree, rather than
through supplemental searches. This is similar to the “parallel
sphere detector” approach taken in [7].

B. Ordering

It is widely recognized [8]–[10] that the order in which the
signal components are detected has a significant impact on the
tree search complexity and the quality of the detector output.
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For decision feedback schemes (as a trivial special case) the
Bell Labs Layered Space-Time (BLAST) ordering [11] has
been developed to maximize performance. In general, it is at-
tractive for tree search schemes to incorporate the ordering into
the matrix decomposition step. Here, the sorted QR decompo-
sition (SQRD) [12] is an attractive choice, as the layer ordering
then becomes part of the Gram-Schmidt orthogonalization
procedure of the QR decomposition, at negligible additional
overhead. Thus, the decomposition effectively operates on a
channel matrix whose columns are shuffled by a permutation
matrix P, such that HP = QR.

Note that the BLAST ordering is roughly twice as complex
as the SQRD, but with improved performance as a result of
its better ordering criterion [13]. Other useful orderings which
we will discuss in more detail in Section IV-C include the
one employed by the parallel detector (PD) [14], the fixed-
complexity sphere decoder (FSD) [10], [15], and B-Chase
preprocessing [1], [9], [13], [16].

IV. FIXED COMPLEXITY FRAMEWORK

A. Classical M Algorithm and Special Cases

In this work, we will focus on breadth-first search algo-
rithms, with the classical M algorithm [17] as the most famous
example (often also referred to as QRD-M [18] algorithm). As
any other breadth first scheme, it traverses the tree layer-by-
layer; in this case by rejecting all but M nodes at a given
layer before advancing to the next one [17]. Specifically, the b
best children (with largest branch metrics) are extended from
each of the M retained nodes, and of the bM contenders
that result, only the M best are retained. In the case of hard-
output detection, the candidate at the final detection layer is
considered to be the hard-output decision. The performance of
the M algorithm in hard-output systems approaches that of the
joint maximum likelihood (JML) detector when M is large,
but falls off significantly as M is decreased [19]. A common
technique for soft-output versions of the M algorithm is to let
L comprise the M best candidates at the final detection layer.

Given this description, we observe that the entire M al-
gorithm can be parameterized by just two scalar values, M
and b. Many detection algorithms are special cases of this
scheme with specific parameterizations and preprocessing. The
simplest example is the decision feedback detector, for which
M = b = 1. With b = Q and M = ∞1, the algorithm turns
into the maximum complexity, brute-force, APP approach
which enumerates all possible transmit vectors. For b = Q, and
arbitrary positive M , the M algorithm is sometimes referred
to as the K-best approach [19].

B. Fixed-Complexity Framework

We can generalize the M algorithm by allowing the pa-
rameters M and b to be represented as 1 × NT vectors
M = [M1 M2 . . . MNT

] and b = [b1 b2 . . . bNT
], respec-

tively, where Mi represents the number of nodes retained at

1An M value of ∞ implies that no pruning of the detection occurs.

the ith layer of the detection tree and bi represents the number
of children extended from each parent at the ith tree layer2.

This generalization can be extended further to include the
parallel smart candidate adding schemes [6] by introducing a
boolean vector S = [S1 S2 . . . SNT

], where Si determines
whether or not to perform smart candidate adding at the ith
layer in the detection tree. This allows for more flexibility in
the design of SCA algorithms than in [6].

With the introduction of M, b and S vectors, as well as the
specification of the preprocessing algorithm, we now have a
framework which allows for the characterization of a large
class of fixed complexity, single-pass, breadth-first MIMO
detectors. While this framework is simple to describe, it
enables a myriad of possibilities and brings to light many new
design considerations. An appropriate configuration is crucial
to achieve a desirable performance-complexity tradeoff.

Before proceeding it is important to assess the complexity of
different algorithms within the established framework. A good
measure of complexity for tree search schemes is the number
of branch metric computations performed3 μ. The total number
of branch metric computations μ is a function of the number
of nodes retained for a given layer in the detection tree ζi:

ζi =
{

1 i = 0
min (ζi−1bi + Siκi, Mi) i > 0 , (5)

where i is the detection layer, and where φ = 1 for the
complex-valued and φ = 2 for the real-valued system model.
κi denotes the number of branch metrics calculated as part of
the smart candidate adding at layer i and is given by:

κi =

{
max

(
L − 2(

√
bi − 1), 0

)
φ = 1

max
(

L
2
− (bi − 1), 0

)
φ = 2

, (6)

where for the complex-valued system model it is assumed that
bi is the square of an integer. The total number of branch
metric computations for schemes in our framework becomes:

μ =
φNT∑
i=1

(ζi−1bi + Siκi) . (7)

The final list size is |L| = ζφNT
.

C. Placement

We will now place existing fixed-complexity breadth-first
detectors into the framework just presented and discuss the
design considerations that accompany each detection scheme,
as well as relationships amongst them. While the list of
detection algorithms in this subsection does not claim to
be complete, it does provide insight into many of the most
common and effective fixed complexity breadth-first schemes.

Decision-Feedback: The simplest scheme to be captured by
the presented framework is the decision-feedback (DFE), or

2The root node of the detection tree corresponds to i = 0.
3Obviously, the overall complexity also includes a preprocessing step

which, however, is only needed when the channel changes. Its impact on
complexity thus depends on the channel coherence time/bandwidth. Further-
more, the complexity of different preprocessing schemes is often very similar.
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successive interference cancelation (SIC), approach. After
removing (“cancelling”) the signal contribution of previous
layers, this scheme will recursively determine the single
best candidate at the currently considered layer (single
enumeration, SE), and proceed with this decision to the
next layer. Obviously, the tree width is minimized by this
scheme. Good DFE performance thus heavily depends on
making the correct decision in the initial detection layer
(having the lowest diversity order). BLAST (or SQRD)
should therefore be used to obtain the optimal (or nearly
optimal) DF performance. DF detection is captured through
the parameterization M = [1 . . . 1], b = [1 . . . 1], and
S = [0 . . . 0] and the specification of the preprocessing
algorithm. Consequently μ = φNT and |L| = 1.

Parallel Detector [14]: Rather than using SE at the first
detected layer, the parallel detector uses full enumeration (FE)
at this point, i.e., enumerates all candidates. All subsequent
layers are detected using SE. The PD also adopts a special
ordering, where the weakest received signal component is
detected first. Subsequent layers use the BLAST ordering.
The intuitive justification for such an approach is that in each
layer where FE is used, no decision errors can occur. It is
therefore desirable to use FE for the layers with the largest
noise enhancement, to minimize performance loss. The PD
uses the parameterization M = [Q ... Q], b = [Q 1 . . . 1],
S = [0 . . . 0] and PD preprocessing. Thus, μ = φQNT and
|L| = Q.

B-Chase Detection [1], [9], [13], [16]: The B-Chase(�) detec-
tor is a hard-output detector that generates a list of � tentative
decisions for the first detected symbol, and implements a bank
of � ordered decision-feedback detectors in parallel, one for
each element of the list. In the case of hard-output detection,
the final decision vector is the DF equalized output that
minimizes the mean-squared error (MSE). The performance-
complexity trade-off for Chase detection is easily adapted by
adjusting �, as Chase detection reduces to ordered DF when
� = 1 and the PD when � = Q. Increasing � improves
performance at the cost of a complexity growing linearly in �.

The B-Chase preprocessing approach results in substantial
performance gains [1]. B-Chase preprocessing balances the
goals of BLAST preprocessing (which performs well with
SE) and PD ordering (which performs well with FE). It
therefore gracefully trades off between the opposing design
goals of maximizing vs. minimizing the SNR of the first
detection layer by allowing the ordering algorithm to consider
an increase in the number of enumerated child nodes as an
effective SNR gain for the receiver. The B-Chase detector
uses the parameterization M = [� ... �], b = [� 1 . . . 1],
S = [0 . . . 0] and B-Chase preprocessing. Hence, it computes
μ = φ�NT branch metrics and the list size is |L| = �.

Fixed-Complexity Sphere Decoder [10], [15]: The FSD
extends the PD to handle cases when the number of candi-
dates enumerated at a detection layer is neither SE or FE.

Specifically, when FE is used at any detection layer the FSD
adopts the ordering criterion of the PD, otherwise it uses the
BLAST ordering. Similar to the PD and the B-Chase detector,
paths once generated are never pruned.

The FSD is capable of many parameterizations, where S is
always the zero vector. The most effective parameterizations,
however, are those of the PD and, for large dimensions such
as 8 × 8 [10], the parameterization M = [Q Q2 . . . Q2]
and b = [Q Q 1 . . . 1]. In [15] it was shown that the FSD
maintains the diversity order of the APP detector with a fixed
complexity and order Θ(Q

√
NT ) if NR = NT , by using FE

in the p = 	√NT � first detection layers.

List Fixed-Complexity Sphere Decoder [20]: The list
fixed-complexity sphere decoder (LFSD) is intended as a
soft-output extension of the FSD. It builds on the FSD
approach by typically computing more branch metrics than
the FSD, in order for L to include more counter-hypotheses to
the hard-output FSD decision vector. In [20] this was typically
done using balanced powers of 2 for b2, . . . bNT

. In the event
that this was not possible due to list length constraints, these
powers of 2 are weighted to earlier layers in the detection tree.

Soft Fixed-Complexity Sphere Decoder [21]: We now
describe the soft fixed-complexity sphere decoder (SFSD)
which, while not a single-pass approach, has important
relationships to several approaches mentioned in this work.
The SFSD, like the LFSD, is a soft-output extension
of the FSD. However, it is more similar to previously
reported SCA approaches [2]–[6], with the process of smart
candidate adding being referred to as “bit-negating” and
“path augmentation” [21]. Specifically, the SFSD can be
thought of as the combination of the hard-output FSD
approach, used to generate the set LFSD, with an iterative
SCA type approach used to generate the set LSCA, where
L = LFSD ∪ LSCA. Unlike other SCA approaches, the
SFSD typically employs FSD ordering and FE in the first
detection layer(s). When only one iteration is performed
(SCA augmentation of a single path), the SFSD approach
is similar to an algorithmic realization in [5]. With multiple
iterations (SCA extended paths), SFSD performance can be
improved, but the performance improvements are relatively
small and detection complexity is substantially increased.

Parallel Smart Candidate Adding [6]: The parallel smart
candidate adding algorithm is an efficient way to achieve near-
capacity performance for soft-output MIMO detectors, with
lower complexity than the soft-output approaches mentioned
so far [2], [5], [20], [21], using a single pass through the
detection tree. For a given ith layer in the detection tree, the
PSCA algorithm finds the bi child nodes with lowest branch
metrics for each parent node. The algorithm then establishes,
from all enumerated child nodes, the one with the lowest total
path metric, the “partial MAP estimate”. For this child node
all sibling nodes (i.e., child nodes from the same parent),
possessing a Hamming distance of 1 in relation to the bit
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BLAST PD
B-Chase(1) B-Chase(Q) B-Chase(�) M(2, 2) LFSD LFSD PSCA PSCA

FSD(1) FSD(Q) (e.g. 1) (e.g. 1) (e.g. 2) (e.g. 1) (e.g. 2)
M [1 1 1 1] [Q Q Q Q] [� � � �] [2 2 2 2] ∞ ∞ ∞ ∞
b [1 1 1 1] [Q 1 1 1] [� 1 1 1] [2 2 2 2] [Q 2 1 1] [Q 2 2 2] [1 1 1 1] [4 4 1 1]
S [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [1 1 1 1] [1 1 1 1]
Preprocessing algorithm BLAST PD B-Chase SQRD FSD FSD SQRD SQRD
μ 16-QAM 4 64 4� 14 112 240 44 96
SNR[dB] 10−2 Uncoded BER 16.05 12.85 – 13.70 – – 13.06 12.81

SNR[dB] 10−5 Coded BER 13.08 9.67 – 11.41 9.33 8.84 9.37 8.95
μ 64-QAM 4 256 4� 14 448 960 64 134
SNR[dB] 10−2 Uncoded BER 21.66 17.88 – 19.50 – – 18.44 18.06
SNR[dB] 10−5 Coded BER 18.01 13.84 – 16.35 13.37 12.96 13.72 13.22

Table I
COMPARISON OF VARIOUS FIXED-COMPLEXITY BREADTH-FIRST MIMO DETECTION SCHEMES FOR A 4 × 4 MIMO CHANNEL.

pattern corresponding to the partial MAP estimate at the ith
detection layer, are enumerated. This strategy ensures that
a counter-hypothesis exists for every bit for the detector’s
soft output. The PSCA algorithm is captured through the
parameterization M = [∞ . . . ∞], S = [1 . . . 1], and
an appropriate selection of the preprocessing algorithm and
the vector b. Note that in the case bi > 3 (bi > 2 for
the real-valued model) a slight variance in complexity is
possible, since the bi closest points will then generate a
varying number of counter-hypotheses to the partial MAP
estimate. Consequently, the provided μ figures correspond to
an upper complexity bound. In practice, one would accept
some redundant nodes in the detection tree and work with
fixed complexity at this upper complexity bound.

Other: There exist many other fixed (or quasi-fixed)
complexity breadth-first algorithms. Examples of algorithms
which we wish to mention, but due to space limitations
cannot be treated in detail, include [22]–[24].

A summary of the above algorithmic placements is provided
in Table IV-C for a 4 × 4 MIMO channel. In addition to
specifying the parameterization of the aforementioned algo-
rithms, it provides the number of branch metric calculations
for a 4 × 4 MIMO system using 16-QAM and 64-QAM
transmission alphabets and a complex system model, as well as
the SNR required for a uncoded detection BER performance of
10−2 and a coded BER of 10−5. The coded results are found
using the simulation parameters presented in subsection V-C.
Additionally, the preferred channel decomposition for each
algorithm is provided4. Because multiple parameterizations
are possible for the M, LFSD, and PSCA algorithms, typical
parameterizations are provided, as evidenced by [6], [20], [22].
Results corresponding to these and other parameterizations
will now be provided.

V. ANALYSIS

A. Simulation Setup

We consider transmission over a spatially and temporally
i.i.d. fading 4×4 MIMO channel, using 16-QAM and 64-QAM

4All channel decompositions in this paper have complexity order Θ(NT )3.

modulation alphabets. The information block size (including
tail bits) is 9216 bits. Detection is performed based on the
complex-valued system model. Since tree search schemes with
fixed (or tightly bounded) detection complexity benefit from
the use of MMSE preprocessing, we employ unbiased MMSE
detection [25] with all techniques. For coded transmission, we
use a setup equivalent to the one in [26]: a rate 1/2 PCCC
based on (7R, 5) convolutional codes using 8 internal iterations
of logMAP decoding. The LLRs were clipped at a magnitude
of ±6 for all investigated techniques.

B. Hard-Output Results

Fig. 2 shows uncoded results for a 4 × 4 MIMO system
employing 16-QAM and 64-QAM transmission. Curves with
square markers denote the B-Chase family of hard-output
detection algorithms, including the BLAST-ordered DF de-
tector, B-Chase(� = 1), and the parallel detector / FSD, B-
Chase(� = Q). Also shown in triangular markers is the M
algorithm, where results are provided for the case M = b = 2.
Joint maximum likelihood (JML) detection serves as reference.

A significant difference in performance between the various
detection techniques can be observed at bit error rates of 10−3

(and below), a target BER level often considered for perfor-
mance comparisons and algorithm optimization. However, at
code rates of Rc = 1/2 and below, powerful coding schemes
can achieve successful decoding at much higher error rates5,
even above 10−1. A detector output BER level of 10−2 will
thus be much more relevant for practical applications. In this
regime, the difference in performance between the different
techniques is much less significant (cf. Fig. 2), and their ability
to generate reliable soft outputs will be of crucial importance.

In order to provide a more accurate picture of the relation
between the aforementioned algorithms, Fig. 3 provides a
performance-complexity plot for the detectors presented in
Fig. 2, with the addition of the PSCA as reference, although
the PSCA algorithm was intended as a soft-output detector.
Complexity is measured in terms of the number of complex
detection tree branch metric computations μ. The subscript S
is used to denote that the vector to which it is attached is S.

5Note that the Shannon bound for rate 1/2 on the binary symmetric channel
(i.e., hard output detection) is at an error rate around 16% [27].
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We observe for hard-output detection that B-Chase detection
has the most desirable performance-complexity tradeoff.
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output breadth-first 4 × 4 MIMO detection schemes in Rayleigh fading.

C. Soft-Output Results

Fig. 4 provides performance results for 16-QAM transmis-
sion in a Turbo coded system setup. Results provided are for
the B-Chase detection family, the M algorithm, the PSCA
algorithm and the LFSD. For the B-Chase detection family
results are given for BLAST-ordered DF, B-Chase(4), and
the PD/B-Chase(Q)/FSD. For the M algorithm results are
provided for the cases M = b = 2 and M = b = 4.

For the PSCA and LFSD algorithms results are provided for
the representative cases outlined in Table IV-C. Results are not
provided for the SFSD approach, because it is not a single-
pass detection algorithm. Note that this algorithm could be
converted to single-pass by using a slightly suboptimal PSCA-
like approach. The complexity of such an approach would
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Figure 4. Performance for various soft-output 4×4 MIMO detection schemes
using 16-QAM alphabets in Rayleigh fading.

be higher than PSCA (due to FE in the first layer) but less
than LFSD, which uses larger bi values than SCA approaches,
resulting in a multiplicative factor on the number of detection
tree branch metric computations.
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Figure 5. Performance for various soft-output 4×4 MIMO detection schemes
using 64-QAM alphabets in Rayleigh fading.

Fig. 5 provides performance results for the same setup and
the same classes of algorithms, but 64-QAM transmission and
slightly different configurations for the PSCA and the LFSD
algorithm. The performance gap between the PSCA and LFSD
approaches relative to the several cases of the B-Chase and M
detection algorithms is even wider than in Fig. 4. The soft-
output PD is performing quite well, at the expense of having
to compute 64 branch metrics in the first detection layer.

Fig. 6 provides a performance-complexity plot for a coded
4 × 4 MIMO system in Rayleigh fading under 16-QAM and
64-QAM transmission. The subscript b is used to denote that
the displayed vector corresponds to the configuration of b.
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Figure 6. Performance vs. complexity for various soft-output MIMO
detection schemes for 4 × 4 MIMO in Rayleigh fading.

For the coded case we observe that in order to achieve better
performance it is necessary to use either LFSD or PSCA
detection, although the PSCA algorithm achieves an operating
point much lower on the complexity axis relative to the LFSD.
This is due in part to the fact that the PSCA algorithm is
interested in obtaining, if possible, only the bits relevant to
the MaxLogMAP approximation and the LFSD is interested
in obtaining candidate vectors which are close in Euclidean
distance to the received vector.

VI. CONCLUSIONS

In this contribution, we presented a fixed complexity frame-
work for breadth-first tree search detection in MIMO sys-
tems. Existing approaches for fixed-complexity breadth-first
detection were placed into this framework and a performance-
complexity analysis was performed. Results showed that,
amongst hard-output detection schemes, B-Chase detection
was the most desirable approach. Amongst soft-output detec-
tion schemes the PSCA and LFSD algorithm were shown to
be viable options, but the PSCA algorithm was shown to have
a more favorable performance-complexity tradeoff.
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