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Abstract — We investigate how knowledge of the
channel at the transmitter can improve performance in
array-to-array wireless communications. We explore
the practical issues associated with space-time
processing based on a singular-value decomposition
(SVD) of the channel matrix. Compared to space-time
block codes that do not require channel knowledge at
the transmitter, the proposed method without channel
coding requires 8.3 dB less SNR per antenna to achieve
6 bits ⁄ sec ⁄ Hz with 4 transmit and 4 receive antennas.
Exploiting the properties of the SVD, we propose fixed
bit and power allocations that avoid dynamic
allocations. We also describe how reciprocity in a time-
division duplex system may be exploited to simplify
implementation of the SVD processing.

1.  Introduction
The introduction of antenna arrays at the

transmitter and receiver can dramatically improve the
capacity of a wireless communication system [1]. When
the transmitter does not have channel knowledge, many
transmit diversity techniques have been reported,
including the layered space-time scheme of Foschini [2]
and the space-time trellis codes of Tarokh et al. [3].
Alamouti proposed a simple and effective block code
for transmission using two transmit antennas [4], which
was generalized to orthogonal space-time block codes
(STBC) by Tarokh et al. [5][6].

In some applications, the transmitter knows the
channel because of either explicit feedback or channel
symmetry in time-division duplex (TDD) systems. In
such cases, the transmitter can exploit this knowledge to
achieve a higher transmission rate. It has been known
for decades that the capacity is achieved when the
channel is diagonalized by the singular-value
decomposition (SVD) and the power is distributed by
the water-pouring procedure [7][8].

In this paper, we investigate the performance of the
SVD-based scheme in terms of bit-error rate (BER)
using quadrature amplitude modulation (QAM)
constellations and a practical bit and power allocation
algorithm, and compare it to the performance of STBC.
Instead of distributing power and bits adaptively
according to the channel gains, we explore the
possibility of a fixed allocation, and show that the
resulting performance penalty is small. We also
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describe how reciprocity in TDD systems simplifies
implementation.

2.  System Model
We consider the array-to-array system shown in

Fig. 1-a, consisting of a transmitter with N antennas and
a receiver with M antennas, and denoted as an M × N
system. Let xk

(j) denote the complex QAM symbol
transmitted by the j-th antenna during the k-th signaling
interval of duration T. The N symbol sequences xk

(1)

through xk
(N) drive identical pulse-shape filters g(t),

assumed here to have zero excess bandwidth. The
signals are then upconverted to a carrier frequency f0
and transmitted across a quasi-static fading channel, so
that the signal emitted by the j-th antenna is
Re{e xk

(i)g(t – kT)}. At the receiver, the M
passband observations are downconverted, filtered by
g(–t) ⁄ E, where E = g2(t) dt, and sampled at the
symbol rate to produce M received sequences rk

(1)

through rk
(M).

We make the flat-fading assumption that the
frequency response hi,j(f ) at receive antenna i from
transmit antenna j does not differ appreciably from
hi,j = hi,j(f0) over the signal band. We often make the
independentRayleigh-fadingassumptionthat { hi,j} are
i.i.d. zero-meansymmetriccomplex Gaussianrandom
variables. We assume independentadditive white-
Gaussiannoise at each receiver antennawith power
spectral density N0 ⁄ 2. The average signal energy
received at each receive antenna per signaling interval is
(E ⁄ 2)E[|| xk ||2]E[|hi,j|

2]. Without loss of generality
we normalize the symbols and channel so that
E[|| xk ||2] = E[|hi,j|

2] = 1, in which case the average
SNR per bit per antenna reduces to SNRb = E ⁄ (2RN0),

 Fig. 1. An array-to-array communication link:
(a) passband model; (b) equivalent discrete-time model.
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where R is the transmission rate in bits per signaling
interval, or equivalently in bits ⁄ sec ⁄ Hz.

The equivalent discrete-time baseband model is

rk = Hxk + nk, (1)

asshown in Fig. 1-b, wherexk = [xk
(1), …, xk

(N)]T and
rk = [rk

(1), …, rk
(M)]T are column vectors.Becauseof

our normalizationconvention, the real and imaginary
componentsof thenoisevectornk in (1) arei.i.d. zero-
mean Gaussian random variables with variance
σ2 = (2R⋅SNRb)–1.

3.  Space-Time Block Codes
The Alamouti space-time code achieves order-2M

diversity with N = 2 transmit antennas and with a
simple detector. During the 2k-th and 2k+1-st signaling
intervals, the signal vectors x2k = [a1, a2]T and x2k+1 =
[– a2

*, a1
*]T are transmitted, where E[|a1|2] = E[|a2|2]

= 0.5. The spectral efficiency is identical to that of an
uncoded single-antenna transmitter using the same
alphabet, since both deliver on average one symbol per
signaling interval.

The two outputs of a matrix-matched filter are

z1 = (hi,1
*r2k

(i) + hi,2
*r2k+1

(i)) = HFa1 + η1, (2)

z2 = (hi,2r2k
(i)* – hi,1r2k+1

(i)*) = HFa2 + η2 (3)

where HF is the Frobenius norm of H, and where the
noise components η1 and η2 are i.i.d. with the same
distribution as the noise components in (1), namely
zero-mean complex Gaussian satisfying E[|ηi|

2] =
(R⋅SNRb)–1. The joint maximum-likelihood (ML)
detector thus separates into a pair of scalar detectors, a
result due to the orthogonality of the code.

If the number of transmit antennas is more than
two, it has been shown that the spectral efficiency of

 Fig. 2. The SVD Scheme.
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orthogonal STBC is strictly less than that of an uncoded
single-antenna transmitter [5]. As an alternative, we
consider the following nonorthogonal code for N = 4
transmit antennas, which suffers no penalty in spectral
efficiency:

[x4k, x4k+1, x4k+2, x4k+3] = . (4)

This code does incur a penalty in complexity, however.
It can be shown that the joint ML detector reduces to a
pair of ML detectors, with a1 and a3 detected
independently of a2 and a4, where E[|a1|2] = E[|a2|2]
= E[|a3|2] = E[|a4|2] = 0.25. Therefore, the detection
complexity is proportional to the square of constellation
size, unlike the linear complexity for orthogonal STBC.

4.  The SVD Scheme
The space-time block codes described above

require no knowledge of the channel at the transmitter.
However, if the transmitter does have this knowledge, it
can be exploited to approach Shannon capacity. Assume
for simplicity that H is square (M = N). Let H = UDV*

be an SVD of H, where U and V are unitary matrices
and D is a diagonal matrix with non-decreasing
nonnegative diagonal elements {d1, d2,…, dN}, the
singular values. The asterisk denotes Hermitian
transpose. When both the transmitter and the receiver
know the channel, the channel matrix H can be
decomposed into N parallel subchannels by a prefilter V
at the transmitter and a receive filter U* at the receiver.
The output of the receive filter is

yk = U*HVak + U*nk = Dak + wk, (5)

where the noise wk = U*nk is statistically identical to
nk. This diagonalized system is illustrated in Fig. 2.

Although the singular values {d1, d2,…, dN} are
random variables, they are much more predictable than
the {hi,j} of the underlying channel. In Fig. 3, we
illustrate the Rayleigh pdf p(t) = 2te– t for the random
variable |hi,j|and also the estimated marginal pdf’s for
the five singular values of a 5 × 5 system. The second
moment of the largest singular value is approximately
E[d1

2] ≈ 13.1 (11.2 dB). In contrast, the second
moment of |hi,j| is unity. The gain of d1 relative to any
|hi,j| can be interpreted as a form of diversity.

In order to compare the SVD scheme to Alamouti’s
scheme, a 2 × 2 system is considered. Recall that a
symbol is transmitted twice in Alamouti’s scheme,
whereas it is transmitted once in the SVD scheme. It
thus appears that the SVD offers a power advantage.
Assume that we only use the first singular subchannel in
the SVD scheme, which has a channel gain of d1. It can

a1 a– 2∗ a3 a– 4∗

a2 a1∗ a4 a3∗

a3 a– 4∗ a1 a– 2∗

a4 a3∗ a2 a1∗

2



be shown that d1 is always bigger than HF ⁄ , which
is the channel gain of Alamouti’s scheme (2)-(3). In
fact, d1 is closer to HF (E[d1

2] ≈ 3.5, whereas E[HF
2] =

4.0). Therefore, the power advantage of the SVD
scheme over Alamouti’s scheme approaches 3 dB in a 2
× 2 system, even though the low-SNR subchannel
(corresponding to the d2) is not used.

By the invertible and norm-preserving properties of
U and V, the capacity of the system in Fig. 1-a is
identical to that of the diagonalized system of Fig. 2. It
is known that the capacity of the parallel subchannels is
theoretically achieved by allocating power to each of
the subchannels according to the water-pouring
procedure. Many practical bit and power allocation
algorithms based on the water-pouring procedure have
been reported, some of which impose integer bit
constraints.

For small N and R, however, it is also feasible to
allocate bits and power so as to minimize the vector
symbol error probability (VSEP) Pr[ak≠ k] for the
finite combinations of bit allocation. For example, {[4
0], [3 1], [2 2]} is the set of possible bit allocations
when N = 2 and R = 4. Increasing bit allocations (such
as [1, 3]) are not considered because d1 ≥ d2. For a
given bit allocation {bj}, power is distributed according
to the capacitªy formula pj = 2σ2( – ª 1)/dj

2, and
scaled to satisfy E[|| ak ||2] = 1. Then, we choose the bit
allocation that has the smallest VSEP. In some cases,
the transmitter can avoid altogether dynamic allocation,
by exploiting the reduced variability and decreasing
nature of the singular values. Hence, bits and power
may be distributed in a fixed manner regardless of
subchannel gains. The performance degradation by
using the fixed allocation is small, as illustrated in later
results (see Fig. 4).

The most important advantage of the SVD scheme
is that its performance approaches the theoretical
capacity when combined with effective channel codes.
Traditional one-dimensional channel codes are readily
used instead of high-complexity space-time codes [3].
Another important advantage is the simple detection at
the receiver, since proper prefilter and receive filter
allow the detection of each subchannel to be
independent of the others. The receiver complexity thus
grows only linearly with the number of antennas and

 Fig. 3. Estimated pdf’s for singular values.
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with the size of the alphabets. Moreover, it is easy to
extend the SVD scheme for any M and N, with M not
necessarily equal to N. In contrast, orthogonal STBC
must sacrifice spectral efficiency for more than two
transmit antennas.

5.  Numerical Results
The discrete-time model in (1) was used to estimate

an “SNRb requirement” for the SVD scheme, which we
define as the average SNRb required to achieve a BER
of 10–4 using uncoded QAM alphabets1 and allocating
bits so as to minimize VSEP. The results are
summarized in Fig. 4 for a 2 × 2 system and a 4 × 4
system, considering spectral efficiencies in the range R
∈ {2, 3, 4, 5, 6}. As a benchmark the SNR requirements
for STBC are also shown, using Alamouti code for the
2 × 2 system, and using the nonorthogonal code in (4)
for the 4 × 4 system.

The curves labeled “Fixed SVD” are the SNRb
requirement for the SVD system with a fixed allocation
of {[2 0], [3 0], [4 0], [5 0], [6 0]} for the 2 × 2 system,
and {[2 0 0 0], [3 0 0 0], [2 2 0 0], [3 2 0 0], [4 2 0 0]}
for the 4 × 4 system. These were the most frequently
observed allocations under optimized allocation. For
the 2 × 2 system, the fixed allocation incurs a penalty of
between 0.1 dB and 1.3 dB, while it is only between
0.1 dB and 0.4 dB for the 4 × 4 system.

It is seen that the SVD scheme significantly
outperforms STBC. For example, at SNRb = 14 dB for
the 2 × 2 system, the Alamouti’s scheme can convey
only R = 4 bits per signaling interval, whereas the SVD
scheme can convey R = 6. Similarly, at SNRb = 3.4 dB
for the 4 × 4 system, the STBC can convey R = 2 bits
per signaling interval, whereas the SVD scheme can
convey over R = 6 bits per signaling interval.

1. For R = 3, hexagonal constellation was used
for better performance.

4 × 4

2 × 2

 Fig. 4. Performance of the SVD scheme and STBC.
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For the 2 × 2 system, the SNR gap between the
fixed SVD scheme and Alamouti’s scheme is around
2.5 dB, a close match to E[d1

2] ⁄E[HF
2 ⁄2] ≈ 2.43 dB.

When dynamic allocation is used, this gap increases to
more than 3.6 dB for R = 6. The SNR gap increases
even more dramatically for the 4 × 4 system. If only the
largest subchannel (d1) is used, the expected gain is
E[d1

2] ⁄E[HF
2 ⁄4] ≈ 3.9 dB, which matches closely the

3.8 dB gain of the fixed SVD in Fig. 4 at R = 2 and
R = 4. This SNR gap increases to 8.3 dB as R increases
from 2 to 6, and as more and more subchannels are
used.

For comparison, the orthogonal STBC for the 4 × 4
system with code rate of 1 ⁄2 from [5] requires SNRb =
7.1 dB for R = 2 (16 QAM) and SNRb = 11.4 dB for R
= 3 (64 QAM) to achieve a BER of 10–4 .

6.  Exploiting Reciprocity with TDD
If the receiver estimates the channel matrix H and

performs an SVD of H, then the prefilter information
may be sent to the transmitter via a feedback link. In a
TDD system, however, the use of feedback may be
avoided by exploiting the reciprocity of wireless
channels. In particular, the receive filter may be
estimated while receiving signals from the other end,
and the estimated receive filter may be used as the
prefilter during transmission in the opposite direction.
As shown in Fig. 5, let the link from left to right be the
forward link, and let the link from right to left be the
reverse link. Further, let us use column vectors and row
vectors, respectively, to represent signals in the forward
and reverse paths. With this convention, reciprocity
implies that the forward and reverse paths both see the
same channel matrix H. Suppose that V and U* are the
optimal prefilter and receive filter, respectively, in the
forward link as represented in (5). It then follows that,
in the reverse link, U* is the optimal prefilter and V is
the optimal receive filter. Specifically, the reverse link is
diagonalized according to:

k
T = k

TU*HV + k
TU* = k

TD + k
TU*. (6)

H U*V

prefilter receive filter

V H U*

AWGN

AWGN

forward link

reverse link
prefilterreceive filter

reciprocity

 Fig. 5. The SVD scheme in a TDD system.
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Hence, if the receive filters are estimated during
reception, they may be used as prefilters without change
during transmission.

An intuitive method to estimate the receive filter is
to compute the SVD of an estimate of H directly. Other
methods are based on an eigendecomposition of the
covariance matrix of rk:

Rr = E[rkrk
*] = UD2U* + 2σ2IM, (7)

where IM is an M × M identity matrix, which requires
that the transmitter distribute power equally to all
antennas. Algorithms based on eigendecomposition can
be implemented adaptively and blindly, so that explicit
channel estimation is not necessary.

7.  Conclusions
When the transmitter knows the channel, the

optimal space-time processing strategy is based on an
SVD. We have shown by simulations that the SVD
scheme without channel coding can significantly
outperform STBC, achieving 150% and 300% higher
transmission rates for 2 × 2 systems and 4 × 4 systems,
respectively. We observed a small penalty by using a
fixed bit and power allocation. Implementation of the
SVD scheme was seen to simplify in TDD systems. The
concepts presented in this paper may be extended to
frequency-selective channels by combining them with
orthogonal frequency-division multiplexing.
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