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Abstract— A closed-loop MIMO-OFDM transmitter can ex-
ploit channel knowledge using eigenbeamforming to create MN
parallel channels, where M is the number of antennas at both
ends and N is the number of OFDM tones. We find that the
penalty due to a flat-frequency constraint, which forces each tone
to convey the same amount of information, becomes negligible
as M grows. We propose low-complexity bit-allocation strategies
by combining the flat-frequency constraint with previously-
reported spatial bit-allocation strategies [1]. A fixed (nonadaptive)
allocation across space and frequency performs remarkably well
with M as small as 4.

I. INTRODUCTION

It is well-known that the solution to the classical rate-
allocation problem for a bank of scalar AWGN channels
is given by the water-pouring procedure [2]. Parallel chan-
nels arise in a closed-loop wideband multi-input multi-output
(MIMO) channel when orthogonal-frequency division multi-
plexing (OFDM) creates a bank of narrowband MIMO chan-
nels across frequency, and when eigenbeamforming transforms
each narrowband MIMO channel into scalar channels across
space [3].

On MIMO-OFDM fading channels, the capacity-achieving
rate allocation is based on water-pouring over space, fre-
quency, and time [4]. Complexity can be significantly reduced
by adopting a power control strategy, which performs water-
pouring in space and frequency but not time [5][6]. With
power control, each OFDM block has the same fixed total
rate regardless of temporal channel changes.

Even with the power-control strategy, the rate-allocation
complexity can still be high when the number of OFDM tones
is large. To further reduce complexity, we introduce a flat-
frequency constraint, in which each narrowband MIMO chan-
nel is restricted to have the same rate budget. In other words,
with the flat-frequency constraint, water-pouring is performed
over space but not frequency and not time. Although the flat-
frequency constraint is grossly suboptimal for the case of a
single-input single-output channel, we show that it is nearly
optimal for the case of a MIMO channel.

This paper also examine bit-allocation problem, where each
rate assigned to one of the parallel channels is constrained to
a discrete and finite set. The best allocation strategy would
enumerate all possible combinations of bit allocations and
choose the one that has the minimum SNR requirement.
Unfortunately the complexity of this exhaustive search is
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prohibitively high when the number of scalar channels is large
in MIMO-OFDM. We propose low-complexity bit-allocation
strategies for MIMO-OFDM by combining the strategies
of [1] with the flat-frequency constraint. The reduction of
bit-allocation complexity is significant because the number
of parallel channels can be very large. We find that even a
nonadaptive strategy, which uses a fixed spatial allocation on
top of the flat-frequency constraint, performs surprisingly well.

The rest of paper is organized as follows. Section II de-
scribes the channel model for MIMO-OFDM. In Section III we
introduce the flat-frequency constraint and assess its penalty. In
Section IV, we propose low-complexity bit-allocation strate-
gies and evaluate their performance. Finally we conclude in
Section V.

II. SYSTEM MODEL

A. Channel Model

We consider a wideband MIMO system with M transmit
and M receive antennas, where we assume the same number
of antennas at each end for simplicity. A frequency-selective
channel is characterized by L significant delayed paths. Let
xk be an M × 1 complex transmitted signal vector and yk be
an M × 1 received signal vector in the baseband during the
k-th signaling interval. Then the discrete-time baseband model
is:

yk =
L−1∑
l=0

Hlxk−l + nk, (1)

where Hl is an M ×M matrix representing the l-th tap of the
discrete-time MIMO channel response [7]. The noise nk is an
M ×1 white Gaussian vector with zero mean and E[nkn∗

k] =
N0IM , where the asterisk denotes the Hermitian transpose and
IM is an M × M identity matrix.

The elements of Hl are possibly correlated, which is rep-
resented by a correlation matrix Rl. If Rl = R1/2

l R1/2∗
l , the

l-th channel matrix can be written as:

Hl = R1/2
l Ql, l = 0, 1, . . . , L − 1, (2)

where Ql is an uncorrelated M×M matrix with i.i.d. complex-
valued elements. In (2), the deterministic matrix R1/2

l models
the spatial fading correlation at the receiver. If there is no
spatial correlation at the receiver, Rl is simply an identity
matrix. The uncorrelated fading happens when there are many
scatterers around the receiver providing sufficient scattering
from all directions. When there exists spatial correlation, we
use the correlation model in [7], in which the delay spread
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channel is represented by L significant scatterer clusters at
the transmitter side. In this case the element at the m-th row
and n-th column of correlation matrix can be approximated
as:

[Rl]m,n ≈ σ2
l e−j2π(m−n)∆ cos(θl)e−

1
2 (2π(m−n)∆ sin(θl)σθl

)2 ,
(3)

where ∆ is the antenna spacing relative to wavelength. The
two parameters, θ̄l and σ2

θl
, denote the average arrival angle

and the variance of cluster angle spread, respectively, for the
l-th cluster. The path gains {σ2

l } are basically dependent on
the power delay profile and the shaping filter [3]. In fact the
approximation in (3) is accurate only for small cluster angle
spread, but it provides the correct trend for large spread. The
rank of

∑
l Rl critically impacts the maximum achievable rate

of MIMO-OFDM. Note that Rl collapses to a rank-1 matrix
when σθl

= 0, that is, when there is no cluster angle spread.
In such case a large increase in capacity is expected as L
grows [7].

In this paper we only consider Rayleigh fading, where
each element of Ql is circularly-symmetric complex Gaus-
sian with zero mean and unit variance. We assume that∑L−1

l=0 trace(Rl) = M regardless of L for the sake of
normalization. The path gains σl in (3) are equal for all l.

B. MIMO-OFDM

An OFDM system converts a wideband MIMO channel
into a bank of parallel narrowband MIMO channels, avoiding
the need for time-domain equalization at the receiver. Let N
denote the number of tones (subcarriers) in OFDM. Then the
narrowband MIMO channel at the n-th tone is given by:

Gn =
L−1∑
l=0

Hle
−j2πln/N . (4)

Let Gn = Undiag{s1/2
n }V∗

n be a singular-value decompo-
sition of Gn, where Un and Vn are unitary, and where
elements of sn = [s0,n, . . . , sM−1,n] are real and nonnegative
eigenvalues of GnG∗

n that are ordered from largest to smallest.
When the eigenbeamforming transmitter and receiver filter by
Vn and U∗

n for each n, respectively, a bank of scalar channels
is created across space and frequency [3]:

zm,n =
√

sm,nam,n + wm,n,
n = 0, 1, . . . , N − 1
m = 0, 1, . . . ,M − 1

, (5)

where am,n is the data symbol across m-th spatial channel
of n-th tone, and zm,n is the corresponding received signal
affected by the noise wm,n, which is white in space and
frequency.

III. FLAT-FREQUENCY CONSTRAINT

In this section, We investigate the power-control strategy in
MIMO-OFDM using the channel model of (5). The power-
control strategy fixes the total rate per OFDM block, and
rates are distributed to the parallel channels of (5) such that
the transmitter power requirement for Shannon’s error-free
communications is minimized. The rate-allocation problem for

Fig. 1. An example of rate allocations in MIMO-OFDM with M = 2
antennas and N = 8 tones for R = 32 bits per OFDM block: (a) with
flat-frequency constraint; and (b) without flat-frequency constraint.

the power-control strategy is solved by water-pouring over
space and frequency. The power-control strategy has lower
complexity than the capacity-achieving water-pouring strategy
over space, frequency, and time, but it is not optimal as it does
not consider temporal water-pouring. On MIMO channels,
however, its penalty is known to be very small, especially for
large antenna arrays [1][6].

Let R denote the total rate per OFDM block. The rate-
allocation problem for the power-control strategy is solved by
the following strategy:

Strategy 1 (water-pouring in space and frequency):
Choose the set of rates {rm,n} so as to minimize the
instantaneous SNR requirement:

1
N

M−1∑
m=0

N−1∑
n=0

2rm,n − 1
sm,n

, (6)

subject to
∑

m

∑
n rm,n = R.

We now introduce a flat-frequency constraint, where each
tone is forced to have the same rate budget. In other words,
each tone must satisfy

∑M−1
m=0 rm,n = R/N for all n, so that

the total rate per tone is “flat” in frequency. For instance,
Fig. 1 illustrates rate allocations with and without a flat-
frequency constraint for the case of M = 2 antennas (space)
and N = 8 OFDM tones (frequency) when R = 32. Notice
that each column sums up to R/N = 4 with the flat-frequency
constraint, which is the rate budget for each tone. The rate-
allocation problem with the flat-frequency constraint is solved
by the following strategy:

Strategy 2 (water-pouring in space only): For each tone,
choose the set of rates {rm,n} so as to minimize the instan-
taneous SNR requirement:

M−1∑
m=0

2rm,n − 1
sm,n

, (7)

subject to the flat-frequency constraint that
∑

m rm,n = R/N
for all n.

This strategy ignores the variability of the channel frequency
response and performs water-pouring only over space. With
the flat-frequency constraint, water-pouring for large (MN )
parallel channels is replaced by N repetitions of water-pouring
for rather small (M ) parallel channels. In a single-antenna
system, Strategy 2 leads to an equal allocation, that is, rn is
identical for all n, and suffers significant performance degra-
dation. In contrast, on MIMO channels, the water-pouring
over space helps decrease the degradation. In this paper, we
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Fig. 2. An example of rate-allocation results of 1 × 1 and 4 × 4 systems
for N = 64, where the solid lines are for Strategy 1 and the dotted lines are
for Strategy 2 with the flat-frequency constraint.

investigate how small this penalty can be reduced on MIMO
channels.

The penalty due to the flat-frequency constraint can be
easily measured by comparing the average SNR requirement:

E

N0
= E

[
1
N

M−1∑
m=0

N−1∑
n=0

2rm,n − 1
sm,n

]
, (8)

where rm,n are determined by either Strategy 1 or Strategy 2,
and where the expectation is over the random channel. We
define the average SNR penalty of Strategy 2 relative to
Strategy 1 as

average SNR penalty =
E/N0 for Strategy 2
E/N0 for Strategy 1

. (9)

Monte-Carlo simulations were performed by generating
10,000 independent sets of channels {Hl} for both spatially
uncorrelated and correlated cases.

A. Spatially Uncorrelated Channels

We first consider the case when there is no spatial correla-
tion, so that {Rl} are identity matrices. Spatially uncorrelated
channels might not be a very practical model for some appli-
cations, but it provides insight into how Strategy 2 performs
for various parameters, such as the number of antennas (M )
or the number of channel taps (L). As it will be mentioned
later, this uncorrelated case serves as an upper bound of the
penalty in (9).

For the single-antenna system (M = 1), there is only one
channel per tone if the flat-frequency constraint is applied.
Then each tone inevitably has the same rate for all tones.
In fact the elements of channel matrices Gn for each n are
complex Gaussian since they are just linear combinations of
Gaussian random variables of Ql as shown in (4). Therefore
the average SNR requirement in (8) will be infinite on 1 × 1
Rayleigh fading channels [4].

Fig. 3. Achievable rates of Strategy 1 and Strategy 2 for M ∈ {1, 2, 4, 6}
antennas at each end when L = 4 and N = 64 on spatially uncorrelated
Rayleigh-fading channels.

As M increases, however, each tone has more degrees of
freedom (spatial channels) over which to allocate the assigned
rate budget, and the water-pouring over space helps decrease
the average SNR penalty in (9). For instance, Fig. 2 shows one
example of rate-allocation results for M = 1 and M = 4 with
N = 64 and R = 640. The solid lines represent allocated
rates by Strategy 1, whereas the dotted lines correspond to
Strategy 2. Obviously, as shown in Fig. 2a, Strategy 2 results
in a flat allocation across frequency when M = 1. In contrast,
for M = 4 in Fig. 2b, the allocated rates of Strategy 2 are
no longer flat, even though the rates sum up to R/N = 10 at
each tone. The rates for Strategy 2 are not far from the rate
allocations by Strategy 1.

Fig. 3 plots the achievable rate for Strategy 1 and Strategy 2
by measuring (8) for M ∈ {1, 2, 4, 6} when L = 4 and
N = 64. As the number of antennas (M ) grows, not only the
achievable rate increases, but the gap between two strategies
decreases as well. In the case of a single-antenna system, Fig. 3
shows that the flat-frequency constraint results in an infinite
SNR penalty. However, average SNR penalty for M = 2
dramatically reduces to approximately 1 dB. For M = 4 and
M = 6, the gap becomes even smaller, around 0.2 dB and 0.1
dB, respectively. Fig. 3 shows that performance degradation
due to flat-frequency constraint is negligible, especially when
more than two antennas are employed at both ends.

We now investigate how the number of channel paths (L)
affects the average SNR penalty. The average SNR require-
ment of Strategy 2 is independent of L and is equal to the
flat-fading case since spatial water-pouring is independently
performed for each channel matrix Gn, which is statistically
identical to the flat-fading case. On the other hand, the average
SNR requirement of Strategy 1 decreases as L grows. This is
similar to the case when diversity order increases in proportion
to L [8]. The more sources of transmitted signals are available
at the receiver, the higher the transmission rate can be. From
a frequency-domain perspective, as L grows, the frequency
response becomes more variable so that water-pouring over
frequency becomes more advantageous.
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Fig. 4. Average SNR penalty due to the flat-frequency constraint in
frequency-selective channels for L ∈ {2, 3, 4, 6} channel taps and no spatial
correlation when M = 4 and N = 64.

In order to illustrate the effects by L, Fig. 4 plots the
average SNR penalty due to the flat-frequency constraint for
L ∈ {2, 3, 4, 5, 6} when M = 4 and N = 64. Clearly it can
be seen that the penalty increases as L grows. When L = 2,
it is less than 0.15 dB. But it becomes more than 0.2 dB
as L = 5 or L = 6. In Fig. 4, the advantage of Strategy 1
is not as impressive as the diversity-order increase since the
achievable rate is primarily determined by the rank of

∑
l Rl,

which is already full with probability one even for L = 1
in uncorrelated fading. Also the advantage in Fig. 4 seems to
saturate as L increases. In practice significant paths are often
limited to a small number, and the penalty due to the flat-
frequency constraint can be kept small as long as a sufficient
number of antennas are employed at both ends.

B. Spatially Correlated Channels

When the receiver is located in an open place and no local
scattering occurs, spatial fading at the receive antennas will
be correlated and this correlated fading can be described by
the correlation matrix in (3). In this case the average SNR
requirement of (1) is strongly affected by the rank of

∑
l Rl

since it is not necessarily full rank. Thus the decrease in the
average SNR requirement of Strategy 1 becomes more con-
spicuous as L grows. This is true either when the transmitter
knows the channel [3] or not [7]. In contrast to uncorrelated
fading, where an increase in L does not lower the average SNR
requirement of Strategy 2, the average SNR requirement with
the flat-frequency constraint also shows a significant decrease
as L grows in the case of correlated fading.

For instance, we compare performance in Fig. 5 when
fading is either correlated or uncorrelated, and when cluster
angle spread is either small (σθl

= 0) or large (σθl
= 0.25)

if correlated. We assume that there are L = 4 clusters,
whose average angles {θl} are {0, π/4, π/3, π/2}. As shown
in Fig. 5, when the spread is smaller, performance degradation
due to the flat-frequency constraint is less severe. In this
example, as already shown in Fig. 4, uncorrelated case suffers
a penalty of approximately 0.2 dB. As the fading becomes
more correlated, the penalty decreases up to 0.17 dB for large

Fig. 5. Comparison between spatially correlated and uncorrelated fading in
terms of the average SNR penalty for M = 4, L = 4, and N = 64.

spread and up to 0.14 dB for small spread. As mentioned
before, the uncorrelated fading is the worst case in terms of
average SNR penalty.

Generally, when there is spatial correlation, the average
SNR penalty increases, just like uncorrelated case, as L grows.
However there is a tendency that the penalty is smaller when
the angle spread is narrower. When σθl

= 0 and when there are
only L = 2 or L = 3 clusters, the penalty is nearly zero and
Strategy 2 suffers little degradation due to the flat-frequency
constraint. We see that performance degradation due to flat-
frequency constraint becomes less severe in the presence of
spatial correlation of fading.

IV. BIT-ALLOCATION STRATEGIES

The rate-allocation problem becomes the bit-allocation
problem when we impose a granularity constraint on the rates,
so that {rm,n} are restricted to be discrete and finite. With this
granularity constraint, the number of possible bit allocations is
limited. The best bit-allocation strategy would enumerate all
possible allocations and choose the one that has the minimum
average SNR requirement. For MIMO-OFDM, however, this
exhaustive-search strategy requires high complexity when the
number of parallel channels (MN ) is large.

We can reduce complexity by imposing a fixed spatial
allocation [1] on top of Strategy 2 with a rate budget of R/M
per tone. Instead of an exhaustive search, this strategy fixes the
allocation for all tones and all channel realizations. Combining
the flat-frequency constraint with a fixed spatial allocation per
tone leads to a totally nonadaptive bit-allocation strategy. If
the fixed allocation is carefully chosen to match the anticipated
statistics of MIMO fading channels, this fixed-frequency fixed-
space strategy performs well and its achievable rate approaches
Strategy 1 closely when there are more than two antennas at
each end. This is in part due to the ordered nature and reduced
variability of the eigenvalues {sm,n} of MIMO channels [1].

With M = 2 antennas at each end, the fixed-allocation
strategy might incur a large penalty as the number of spatial
channels is not sufficient. In this case, the binary-search strat-
egy in [1] can be used instead of the fixed-allocation strategy to
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Fig. 6. Performance of the flat-frequency (FF) bit-allocation uncorrelated
Rayleigh fading with M ∈ {2, 4, 6} when L = 4 and N = 64.

improve the performance. The binary-search strategy considers
two candidates out of all possible allocations with a budget of
R/N and chooses the one with smaller instantaneous SNR
requirement in (7). Though the binary search is the simplest
form of adaptation, it guarantees good performance for any
MIMO channel.

Fig. 6 illustrates the performance of the fixed-allocation and
binary-search strategies with the flat-frequency constraint for
M ∈ {2, 4, 6}, where we assume no spatial correlation with
L = 4 and N = 64. When restricting the spatial allocation to
binary search (marked as squares), the flat-frequency strategy
incurs an average SNR penalty of between 0.4 dB and 0.9 dB
for M = 2 compared to the iterative algorithm of [9] (marked
as circles), whereas the penalty is negligible when M = 4 and
M = 6. The fixed-frequency fixed-spatial allocation (marked
as triangles) is also nearly optimal for M = 4 and M = 6,
while its penalty can be large for M = 2. As shown in Fig. 6,
the iterative algorithm of [9] is tightly bounded by Strategy 1
(thin lines) while the binary-search strategy with flat-frequency
constraint is tightly bounded by Strategy 2 (thick lines). Thus
infinite-precision water-pouring is a good indicator for the
performance of practical bit-allocation strategies.

V. CONCLUSIONS

We investigated the rate-allocation problem for a closed-
loop MIMO-OFDM system using eigenbeamforming. Particu-
lar focus is on simple rate-allocation strategies instead of high-
complexity water-pouring over space and frequency. First we
introduced a flat-frequency constraint, which leads to spatial
water-pouring by forcing the same total rate per tone. We
showed that the penalty due to the flat-frequency constraint is
small on spatially uncorrelated MIMO-OFDM channels. For
example, the penalty relative to water-pouring over both space
and frequency is only 0.2 dB on 4×4 Rayleigh fading channels
with L = 4 channel taps. It becomes even smaller when fading
is spatially correlated. We further reduce the complexity by
imposing a fixed spatial allocation on top of the flat-frequency
constraint, which leads to a totally nonadaptive rate allocation.
Remarkably this fixed-allocation strategy performs well when

the fixed allocation is chosen to match the anticipated statistics
of fading channels. These results imply that a closed-loop
MIMO system need not perform adaptive modulation in order
to approach capacity. Instead, a combination of eigenbeam-
forming and fixed modulation is sufficient.
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