
Abstract — We present a new detection algorithm for

multiple-input multiple-output channels called the CLAM

algorithm. The CLAM algorithm is similar to the classical

M algorithm for searching the detection tree, except that it

varies from one stage to the next the number of children

extended from each retained node. These numbers are

optimized based on knowledge of the channel at the

receiver. This simple enhancement not only reduces

complexity, it also enables the CLAM to significantly

outperform the M algorithm. For example, on a 4444-input 4444-
output Rayleigh-fading channel with 64646464-QAM inputs, the

CLAM algorithm outperforms the M algorithm by 2222 dB

at a BER of 10101010-3-3-3-3, falling only 0.60.60.60.6 dB short of the joint
maximum-likelihood detector, while simultaneously

reducing the average search complexity by 6%6%6%6%.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) symbol

detection is a well-studied problem with a myriad of potential

solutions. The optimal joint maximum-likelihood (JML)
detector can be implemented using the sphere detector [1], but

its complexity is high. Of the many suboptimal MIMO

detection algorithms that have been developed [2]-[7], the M

detection algorithm is of particular interest [3][4]. Often

referred to as the QR-decomposition M (QRD-M) algorithm,

it achieves near-JML performance at a fraction of the

complexity.

The M algorithm is a breadth-first strategy for searching

the detection tree. It rejects all but M nodes at a given level of

the tree before advancing to the next level [3]-[5].

Specifically, the b “best” children (having the lowest branch

metrics) are extended from each of the M retained nodes, and

of the bM contenders that result, only the M best are retained.

The performance of the M algorithm approaches that of the

JML detector when M is large, but falls off significantly as M

is decreased [6].

In this paper we present a new algorithm called the

channel-based level-adaptive M (CLAM) algorithm. Similar

to the M algorithm, the CLAM algorithm rejects all but the

best nodes at each stage of the detection tree. Unlike the M

algorithm, however, the CLAM algorithm varies the b

parameter (representing the number of children extended

from each retained node) from one stage to the next. This

simple enhancement of the M algorithm, together with a

careful choice of the b parameters, results in both reduced

average search complexity and significantly improved

performance.

The adaptive complexity QRD-M algorithm (AC-QRD-

M) of [8] is an alternative enhancement of the M algorithm

that differs from the CLAM algorithm in two substantial

ways. First, the AC-QRD-M algorithm varies the number of

retained nodes (the M parameter) rather than the number of

children extended from each retained node (the b parameter).
Second, the AC-QRD-M algorithm is adaptive across

orthogonal frequency-division multiplexing (OFDM) tones,

but uses the same M and b for all stages of a given tree. The

CLAM and AC-QRD-M algorithm are thus complementary.

For example, in an OFDM system the AC-QRD-M algorithm

could be used to select the M parameters on a tone-by-tone

basis, while the CLAM algorithm could be used to select the b

parameters within each tree.

The remainder of this paper is organized as follows.

Section II presents the channel model and relates the JML

detector to a tree search. Section III presents both the M

algorithm and the proposed CLAM algorithm. Section IV

provides a complexity analysis of the CLAM algorithm and

Section V presents simulation results. Section VI concludes

the paper.

II. CHANNEL MODEL AND TREE SEARCH

We consider an N-input L-output channel with complex

inputs a = [a1, … aN
]T and outputs r = [r1, … rL]T, where:

r = Ha + w, (1)

where H is an L × N channel matrix, where w is additive

white Gaussian noise satisfying E[ww*] = N0I, and where

w* denotes the conjugate transpose of w. The entries of H

are assumed i.i.d. complex Gaussian random variables with

zero-mean and unit variance. We assume that the receiver

knows the channel perfectly, and that L ≥ N. The channel

inputs are assumed to be chosen uniformly and independently
This research was supported in part by Texas Instruments, and by National
Science Foundation grants 0431031 and 0121565.

A Layer-Adaptive M algorithm for

Multiple-Input Multiple-Output Channel Detection

David L. Milliner and John R. Barry

School of ECE, Georgia Institute of Technology

Atlanta, GA 30332-0250 USA, {dlm, barry}@ece.gatech.edu

from a quadrature-amplitude modulation (QAM) alphabet

A = {±α, ±3α, …±(–1)α} + {±α, ±3α, …±(–

1)α}, where q = |A|. The constant α is chosen so that the

alphabet has average energy E, i.e. α = .

The JML detector chooses the decision a ∈AN that

minimizes the following cost function:

J(a) = ‖r –Ha‖ (2)

= ‖y – Ra‖ (3)

=
N∑i =1|yi –

i∑j=1Rij aj|
 , (4)

where H ==== QR is the QR decomposition of the channel

matrix H, where R is an N × N lower triangular matrix, and

where y = Q*r.

We can evaluate the JML cost with the aid of a detection

tree. The root of the tree is connected to q child nodes, one

for each possible value for a, and each of these is connected

to q child nodes, one for each possible a, and so on. Thus

each possible a is associated with a unique leaf node [9]. In

terms of this tree, we may interpret (4) as the sum of N

branch metrics, one for each branch in a path from the root to

a leaf node, where the metric for a branch in the i-th stage

with path history {a, a, ... ai} is defined as

|yi –
i∑j=1Rij aj|

. (5)

In terms of this tree, the JML detection problem becomes the

problem of finding the leaf node with the lowest cost. An

efficient strategy for searching the tree is the sphere detector

[1]. The MMSE sphere detector [10] approximates the JML

detector with lower complexity by basing the branch metrics

of (5) on a QR decomposition of the following extended

channel matrix [7]:

H = . (6)

In particular, the MMSE branch metrics are computed using

(5) with H = QR and y = Q*[rT , 0000×N]T.

Permuting the columns of H can help speed the search,

so in practice it is common to perform a QR decomposition

on HP or HP instead, where P is a permutation matrix

[7][11].

III. THE M AND CLAM ALGORITHMS

A. The M Algorithm

The M algorithm is a low-complexity but suboptimal

strategy for searching the tree. Specifically, the M algorithm

is a breadth-first search that views all the branches it will

ever consider for a given stage of the detection tree and then

rejects all but the M ≤ |A| best nodes before continuing on

to the next stage [5]. Because the M algorithm is a breadth-

first search algorithm, all path histories have the same

length. As a result it has fixed computational load and/or

memory, making it a good candidate for practical

applications [12].

A pseudocode description of the M algorithm is given in

Fig. 1. Let Si denote the retained (survivor) nodes at level i

of the tree, with S0 initialized to the root node. The M

algorithm begins at the root node S0 and calculates branch

metrics for all possible values of a∈A. The M contender

nodes with the lowest metrics are then retained, yielding S.

The algorithm continues by extending the b best

children of each of the M nodes retained from the previous

stage in the detection tree. Of the bM contenders that result,

the M best are retained; the remaining (b – 1)M contenders

are rejected [5]. Once the M best nodes have been selected

the algorithm moves to the next detection stage. This process

continues through the N -th detection stage.

The process of rejecting all but the M best contenders

(A-7) may be performed using a sorting procedure on the

branch metrics subject only to a partial ordering constraint,

rather than the more restrictive constraint required of a total

ordering. For this reason an appealing implementation of the

sorting procedure is the heapsort algorithm [13].

B. The CLAM Algorithm

The M algorithm uses the same b parameter at each

stage of the tree after the first. If we define bi as the b

parameter used at stage i, then the vector of parameters used

by the M algorithm is

b = [M, b, … b]. (7)

q 1– q

1.5E/(q 1)–

H

N0INxN

M Algorithm

Inputs: r, H, M, b. Output: â̂̂̂

(A-1) QR decomposition of channel matrix HP = QR

(A-2) y = Q*r

(A-3) S0 = root node with branch metric of zero.

(A-4) S= {M best children of S0}
(A-5) for i = 2 to N

(A-6) contenders = {b best children of node}

(A-7) Si = M best contenders
(A-8) end
(A-9) Pâ̂̂̂ = best of SN

Fig. 1. The M algorithm [4].

node ∈
∪

Si–

In contrast, the CLAM algorithm varies the b parameter from

one stage to the next, so that the vector of parameters takes

the most general form:

b = [b, b, … bN]. (8)

Fig. 2 summarizes the CLAM algorithm. Note that the

only differences between the M algorithm and the CLAM

algorithm are line (B-3), where the b parameters are

generated, line (B-5) where b1 nodes are retained at the end

of the first detection layer, and the subscript on bi in line (B-

7). Note further that the CLAM algorithm reduces to the M

algorithm when b is given by (7). Furthermore, both the

CLAM algorithm and the M algorithm reduce to the

decision-feedback detector in the trivial case when M = 1
and b = 1.

There are potentially many ways to generate an adaptive

b yielding performance superior to that of the M algorithm.

We propose the strategy shown in Fig. 3, which shows a

function generate_b whose inputs are the scalar b and the

effective channel R. The first operation performed by the

generate_b function is to create a vector whose elements

are inversely proportional to the SNR for their respective

detection layers (C-1), where the SNR of the i-th detection

layer is SNRi =ERi i
 /N0. This ensures that bi is large when

SNRi is small, and vice versa, thereby allocating more of the

complexity budget to the detection stages most likely to be in

error.

The remainder of the generate_b function is used to

ensure that {bi} satisfy the following constraints:

bi ≥ 1 i (9)

bi ≤ q i (10)

b ∈ Z
N (11)

N∑ i =1bi ≤ b. (12)

Specifically, line (C-2) normalizes the metric from (C-

1). Lines (C-3)-(C-10) are used to satisfy the constraints (9)-

(11). Lines (C-11) through (C-20) are used to satisfy

constraint (12). After (C-20), the inequality in (12) is an

equality. The remaining lines (C-21)-(C-25) decrement the

bi parameters as necessary to ensure that the average

complexity of the CLAM algorithm (with M > 1) is strictly

less than that of the M algorithm; it is described in

Section IV, with nc(b) defined in (13).

CLAM Algorithm

Inputs: r, H, M, b. Output: â̂̂̂

 (B-1) QR decomposition of channel matrix HP = QR

 (B-2) y = Q*r

 (B-3) b = generate_b(b, R)

 (B-4) S0 = root node with branch metric of zero.

 (B-5) S= {b1 best children of S0}

 (B-6) for i = 2 to N

 (B-7) contenders {bi best children of node}

 (B-8) Si = M best contenders
 (B-9) end

 (B-10) Pâ̂̂̂ = best of SN

Fig. 2. The CLAM algorithm.

node Si 1–

∈
∪=

 ∀

 ∀

1
N

generate_b Function

Inputs: b, R Output: b

 (C-1) b = [R
– , … , RNN

–]

 (C-2) b = (Nb/∑ibi)b
 (C-3) imin

 = find(b < 1)

 (C-4) imax = find(b > q)

 (C-5) iother = {1, … N} \ {imin
 ∪ imax

};

 (C-6) ρ = ∑ibi
 (C-7) bimin

 = 1

 (C-8) bimax
 = q

 (C-9) ρ = ρ − ∑ibi
 (C-10) biother

 = biother
 − ρ/length(iother)

 (C-11) d = ∑ibi − Nb

 (C-12) while (d ≠ 0)

 (C-13) imin = argmini({bi}); imax = argmaxi({bi})

 (C-14) if (d > 0)

 (C-15) bimax
 = bimax

 − 1; d = d − 1
 (C-16) end

 (C-17) if (d < 0)

 (C-18) bimin
 = bimin

 + 1; d = d + 1

 (C-19) end

 (C-20) end

 (C-21) i = N

 (C-22) while (nc(b) > M + (N – 1)bM),

 (C-23) bi = bi – 1

 (C-24) while bi = 1, i = i – 1, end

 (C-25) end;

Fig. 3. A function for generating the parameters {bi}, where bi is
the number of children extended from each of the M

retained nodes at the i-th stage of the tree.

IV. COMPLEXITY ANALYSIS

In this section we quantify and compare the

complexities of the CLAM and M algorithms. We separate

our analysis of the CLAM algorithm into a preprocessing

stage to generate b, and a core processing stage for the rest

of the computations. Because the complexity of the QR

decomposition is common to both algorithms, we will ignore

it in our analysis. We assume both algorithms begin by

operating on y.

The number of operations required by the preprocessing

function generate_b can be shown to be linear in N. The

preprocessing stage of the CLAM algorithm therefore has

linear complexity in terms of the number of operations.

A common metric for quantifying the complexity of a

tree search algorithm is to count the number of nodes visited

[4]. In our case, this is equivalent to counting the number nc
of contender nodes that are considered. The M algorithm

considers precisely nc = M + (N – 1)bM contenders,

regardless of the channel. The CLAM algorithm, however,

bases its {bi} parameters on the particular channel

realization, resulting in a search complexity that varies with

the channel. It is easy to show that the number of nodes nc
considered by the CLAM algorithm satisfies the following

recursive relationship:

nc= b + bb + min(f,M)b+…+ min(fN–,M)bN.(13)

This reduces to nc = b + bb + M(∑i >bi) when bb ≥
M.

To ensure that the average complexity of the CLAM

algorithm is strictly less than that of the M algorithm, we

decrement {bi} one at a time in lines (C-21)-(C-25), starting

with bN and decrementing until bN is equal to one. Then, if

necessary, we proceed with the same operation on bN–

down to b until nc is no greater than M + (N – 1)bM, the

total number of nodes searched by the M algorithm.

Consequently, the average complexity required by the CLAM

algorithm (with M > 1) to search the detection tree is

strictly less than that of the M algorithm. The mean nc for

the CLAM algorithm (averaged over one million distinct

4 × 4 Rayleigh channels) is 48.22, for a 6% savings relative

to the M algorithm. The probability mass function for nc,

when using the CLAM algorithm and a 4 × 4 Rayleigh

channel with 16-QAM inputs and M = 4 and b = 4, is

approximated in Fig. 4 by a histogram. Note that the CLAM

algorithm will always consider at least nc = Nb contenders,

in this case 16. Additionally, because Nb ≤ q in this example,

the same histogram of Fig. 4 will result when the alphabet is

64-QAM. The dashed line at nc = 52 indicates the fixed tree

search complexity of the M algorithm.

V. PERFORMANCE RESULTS

We now present the simulated error performance of the

CLAM algorithm in an uncoded system. We assume a 4-

input 4-output Rayleigh-fading channel with 16-QAM and

64-QAM inputs under Gray mapping. The SNR per bit is

Eb/N0 = E/(log|A|N0). The sorted QR decomposition

(SQRD) of [7] is used for both the M algorithm and the

CLAM algorithm. The SQRD has complexity comparable to

that of the unordered QR decomposition, but its ordering

results in improved detection performance [7].

In Fig. 5. we compare the bit-error rate performance in

Rayleigh fading of the JML detector, the CLAM algorithm,

and the M algorithm. The CLAM and M algorithms utilize

the same MMSE forward filter Q*. For the CLAM and M

algorithms we set M = 2 and b = 2. For the case of 16-

QAM inputs, the CLAM algorithm outperforms the M

algorithm by 2.5 dB at a BER of 10-3, falling only 1.4 dB

short of JML performance. The gap between the CLAM and

M algorithms jumps to 3.8 dB for the case of 64-QAM

inputs, with the CLAM algorithm falling 3.0 dB short of

JML performance.

Fig. 6 shows the same curves as Fig. 5 for the same

4 × 4 Rayleigh channel, only this time the CLAM and M

algorithm parameters are changed from M = b = 2 to M =
b = 4. For the case of 16-QAM inputs, the CLAM algorithm

outperforms the M algorithm by 0.3 dB at a BER of 10-3,

falling only 0.4 dB short of JML performance. The gap

}

fN

}
ff

}

f

}

Fig. 4. Histogram for the number of contenders searched by the

CLAM algorithm with M = b = 4, assuming a 4 × 4

Rayleigh channel with 16-QAM (or 64-QAM) inputs.

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

(M
 a

lg
o
.)

A
v
er

ag
e

NUMBER of CONTENDERS nc

between the CLAM and M algorithms jumps to 2.0 dB for

the case of 64-QAM inputs, with the CLAM algorithm

falling only 0.6 dB short of JML performance. Furthermore,

as described in the previous section, these gains come with a

6% reduction in average complexity.

VI. CONCLUSIONS

This paper presented a new algorithm for MIMO

detection called the CLAM algorithm. The CLAM algorithm

enhances the M algorithm by varying on a stage-by-stage

basis the number of children extended from retained nodes in

the detection tree, according to the receiver’s knowledge of

the channel matrix. The CLAM algorithm is on average less

complex than the M algorithm while achieving significantly

improved performance. For example, on a 4-input 4-output

Rayleigh-fading channel with 64-QAM inputs, the CLAM

algorithm outperforms the M algorithm by 2 dB at a BER of

10-3, falling only 0.6 dB short of the joint maximum-

likelihood detector, while simultaneously reducing the

average search complexity by 6%.

REFERENCES

 [1] M. O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice Code Decoder

for Space-Time Codes,” IEEE Communications Letters, vol. 4, no. 5,

pp.161.163, May 2000.

 [2] L. G. Barbero and J. S. Thompson, “Performance Analysis of a

Fixed-Complexity Sphere Decoder in High-Dimensional MIMO

Systems,” in IEEE Int.Conf. on Acoustics, Speech, and Signal

Processing (ICASSP '06), vol. 4, Toulouse, France, May 2006, p.

557-560.

 [3] J. Yue, K. J. Kim, J. D. Gibson, and R. A. Iltis, “Channel Estimation

and Data Detection for MIMO-OFDM Systems,” in Proc.

GLOBECOM 2003, pp. 581–585, 2003.

 [4] W. H. Chin, “QRD Based Tree Search Data Detection for MIMO

Communication Systems,” in Proc. IEEE VTC 2005 Spring, vol. 3,

pp. 1624-1627, Stockholm, Sweden, May 2005.

 [5] J. B. Anderson and S. Mohan, “Sequential coding algorithms: A

survey and cost analysis,” IEEE Trans. Commun., vol. COM-32, no.

2, pp. 169–176, Feb. 1984.

 [6] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best

sphere decoding for MIMO detection,” IEEE Journal on Selected

Areas in Communications, vol. 24, pp. 491–503, March 2006.

 [7] D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer, “MMSE

Extension of V-BLAST Based on Sorted QR Decomposition,” IEEE

Proc. Vehicular Technology Conference (VTC), Orlando, Florida,

USA, October 2003.

 [8] K. J. Kim, J. Yue, R.A. Iltis, and J.D. Gibson, “A QRD-M/Kalman

filter-based detection and channel estimation algorithm for MIMO-

OFDM systems,” IEEE Trans. Wireless Commun., vol.4, no.2,

pp.710–720, March 2005.

 [9] J. R. Barry, E. A. Lee, D. G. Messerschmitt, Digital Communication,

Third Edition, Boston: Kluwer Academic Publishers (2004).

 [10] M. O. Damen, H. E. Gamal, and G. Caire, “On Maximum-

Likelihood Detection and the Search for the Closest Lattice Point,”

IEEE Trans. on Info. Th., vol. 49, no. 10, Oct. 2003.

 [11] D. Wübben and K.-D. Kammeyer, “Low Complexity Successive

Interference Cancellation for Per-Antenna-Coded MIMO-OFDM

Schemes by Applying Parallel-SQRD,” IEEE Proc. Vehicular

Technology Conference (VTC), Melbourne, Australia, May 2006.

 [12] S. G. Wilson and S. Husain, “Adaptive tree encoding of speech at

8000 bits/s with a frequency-weighted fidelity criterion,” IEEE

Trans. Commun,. vol. COM-27, pp. 165-170, Jan. 1979.

 [13] D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting

and Searching. Reading, MA: Addison-Wesley, 1973.

10-3

10-2

10-1

4 6 8 10 12 14 16 18 20 22

JML
CLAM
M

M = b = 2

B
E

R

Eb/N0 (dB)

16-QAM

64-QAM

Fig. 5. BER performance with M = b = 2 on a 4 × 4

Rayleigh channel.

4 6 8 10 12 14 16 18
10-3

10-2

10-1

16-QAM

64-QAM

JML
CLAM
M

M = b = 4

B
E

R

Eb/N0 (dB)

Fig. 6. BER performance with M = b = 4 on a 4 × 4

Rayleigh channel.

