
Abstract — We introduce a new family of detectors for multiple-
input multiple-output (MIMO) channels called Chase detectors
because of their resemblance to the well-known Chase algorithm
for soft decoding of error-control codes. A Chase detector is fully
specified by only three simple parameters; nevertheless, it reduces
to a wide range of previously reported MIMO detectors as special
cases, including the maximum-likelihood and decision-feedback
detectors. Based on the Chase framework we propose two new
detectors, the B-Chase and L-Chase detectors, both of which
perform well on fading channels. In fact, the L-Chase detector is
shown to outperform the BLAST-ordered decision-feedback
detector by 9.8 dB, while simultaneously requiring 17% fewer
computations, on a 4-input 4-output Rayleigh-fading channel with
uncoded 4-QAM inputs. Under the same conditions, the B-Chase
detector falls only 0.2 dB short of the minimum-mean-squared-
error sphere detector, while requiring 50% fewer computations. 

I.  INTRODUCTION

The promise of high spectral efficiency and diversity to
fading has led to widespread interest in multiple-input
multiple-output (MIMO) communications. A practical obstacle
to the realization of a MIMO system is the complexity of
detection. For example, the complexity of the maximum-
likelihood (ML) detector [1,2] grows exponentially with the
number of channel inputs. A popular reduced-complexity
alternative is the BLAST ordered decision-feedback (BDF)
detector [3] (also known as the successive interference
canceller); its performance can approach that of the ML
detector when there are many more channel outputs than
inputs [3], but otherwise the BDF detector is significantly
inferior to the ML detector. 

The large gap in both performance and complexity
between the ML and BDF detectors has motivated the search
for alternatives. Various combinations of the ML and BDF
detectors have been proposed that improve on the performance
of the BDF detector at the cost of increased complexity [4,5].
Other algorithms that achieve near-ML performance while
reducing the average complexity are the minimum mean-
squared-error (MMSE) sphere detector of [6], and the MMSE
BDF detector combined with lattice reduction of [7]. 

This paper introduces a new family of Chase detectors,
which includes as special cases the ML [2], BDF [3], ML-
BDF [4], parallel [5], and partial decision-feedback (PDF) [8]
detectors. The Chase family provides a unified framework for
comparing a variety of existing detectors. Furthermore, we
propose the L-Chase and B-Chase detectors as new special
cases that perform well on fading channels. We will
demonstrate that the L-Chase detector greatly outperforms the
BDF detector, despite its reduced complexity. We will also
show that the B-Chase detector can approach ML performance
with less complexity than previously reported detectors.

In Section II we introduce the Chase framework for
defining detection algorithms, and show how existing detectors
fit into the framework. In Section III we derive two new
instances of the Chase detector family. In Section IV we
present some performance and complexity results, and in
Section V we make concluding remarks. 

II.  CHASE DETECTION: A GENERAL FRAMEWORK

This paper considers a memoryless channel with N inputs
a = [a1, … aN]T and M outputs r = [r1, … rM ]T:

r = Ha + w , (1)

where H = [h1, … hN] is a complex M × N channel matrix
whose i-th column is hi, and where w = [w1, … wM ]T is noise.
We assume that the columns of H are linearly independent,
which implies M ≥ N. We assume that the noise components
are i.i.d. complex Gaussian random variables with E[ww*] =
σ2I, where w* denotes the conjugate transpose of w. Further,
we assume that the inputs are uncorrelated and chosen from the
same unit-energy alphabet A, so that E[aa*] = I.

In this section we introduce the Chase detector, a general
detection strategy for MIMO channels that reduces to a variety
of previously reported detectors as special cases. The Chase
detector defines a simple framework for not only comparing
existing MIMO detection algorithms but also proposing new
ones. Specifically, a Chase detector is defined by five steps, as
illustrated in Fig. 1, and as outlined below:
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Step 1. Identify i ∈ {1, … N}, the index of the first symbol to
be detected.

Step 2. Generate a sorted list {s1, … sq} of candidate values for
the i-th symbol, by computing the q elements of the
alphabet nearest to yi, where y = (H*H)−1H*r. 

Step 3. Determine a set of q residual vectors {r1, … rq} by
cancelling the contribution to r from the i-th symbol,
assuming each candidate from the list is in turn correct:

rj = r − hisj . (2)

Step 4. Apply each of {r1, … rq} to its own independent
subdetector, which makes decisions about the
remaining N – 1 symbols (all but the i-th symbol).
Together with sj, the j-th subdetector defines a
candidate hard decision j regarding the input a.

Step 5. Choose as the final hard decision  the candidate hard
decision { 1, … q} that best represents the
observation r in a minimum mean-squared-error sense:

=  || r − H j ||2 . (3)

The Chase detector can be viewed as a generalization of its
namesake, the well-known Chase algorithm for soft decoding
of binary error-control codes [9]. The Chase algorithm begins
by identifying the p least reliable bits of a received codeword,
and enumerates all 2p corresponding binary vectors while
fixing the remaining more reliable bits. This is analogous to
Steps 1 and 2, except in Step 1, only one symbol is identified
instead of p, and in Step 2, only a subset of the most likely
values are enumerated. The Chase algorithm decodes each of
the 2p binary vectors using a simple hard-decoding algorithm,
producing candidate hard decisions for the codeword. This is
analogous to the cancellation and subdetection in Steps 3 and 4.
Finally, the Chase algorithm chooses the candidate codeword
that best matches the received observations in a way precisely
analogous to that in Step 5.

To uniquely define an instance of the Chase detector
requires that the following three parameters be identified:

• A strategy for selecting i in Step 1.
• A list length q for Step 2.
• A subdetector algorithm for Step 4.

Table 1 summarizes how the ML, BDF, PDF, ML-BDF, and
parallel detectors may be specified as Chase detectors using
these three parameters. The last two rows of Table 1 describe
new detectors that will be proposed in the next section.

III.  TWO NEW CHASE DETECTORS

In this section we introduce the B-Chase and L-Chase
detectors, as summarized in the last two rows of Table 1. The
two detectors are distinguished by the type of subdetector they
employ; the B-Chase detector uses BDF [3,10] subdetectors,
whereas the L-Chase detector uses linear [1] subdetectors.
These new detectors are further parameterized by the strategy
for selecting i in Step 1, as well as the list length q, which could
be any integer in the set {1, … |A|}. 

In the following subsection we analyze the performance
benefit of using a list detector. In the subsection that follows
we propose strategies for selecting the index i in Step 1.
Finally, in the last subsection we propose computationally
efficient implementations of the L-Chase and B-Chase
detectors. 

A. The SNR Gain of a List Detector
We define αq

2  as the effective gain in SNR provided by a
list detector of length q, relative to a list detector of length one
(i.e., relative to a conventional decision device). We will
introduce this concept using the unit-energy 4-QAM alphabet
{e±jπ/4, e± j3π/4} as an example. By symmetry we can assume
that e jπ/4 was transmitted, without loss of generality. In this
case, a conventional decision device (q = 1) will be correct for
any observation y = |y|e jφ in the first quadrant of the complex
plane, satisfying |φ – π/4| < π/4. The distance from the
transmitted symbol to the nearest decision boundary is thus d1
= 1/ . In contrast, a list detector with q = 2 will be correct
(produce a list that contains the transmitted symbol) for any
observation y = |y|e jφ in the half-plane |φ – π/4| < π/2. The
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 Fig. 1.  Block diagram of the Chase detector.
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hi

hi

hi

…

Step 2 Step 3 Step 4 Step 5

LIST
DETECTOR

FOR
SYMBOL i

â2
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Table 1: Special cases of the Chase detector.

Detector First-Symbol Index i List Length q Subdetector

ML [2] any |A| ML

BDF [3] ♦BLAST1 1 BDF

PDF [8] ♦BLAST1 1 Linear

Parallel [5] using (9) with αq= ∞ |A| any

B-Chase according to (6) 1 < q ≤ |A| BDF

L-Chase according to (6) 1 < q ≤ |A| Linear
♦The index BLAST1 signifies the first index of the BLAST ordering [3].

2
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distance d2 to the nearest decision boundary is thus d2 = 1.
Therefore, relative to a conventional decision device, the list
detector with q = 2 provides an SNR gain of α2

2 = (d2/d1)
2 = 2.

Generalizing the above example to arbitrary alphabets A
and arbitrary list lengths q, we define dq as the minimum
distance from any valid symbol in A to its decision boundary
for a length-q list detector. In these terms, the effective SNR
gain of a length-q list detector is:

αq
2 =(dq/d1)

2. (4)

The parameter αq is a function of the symbol alphabet A as well
as the list length q. Obviously, α1 = 1 and α|A| = ∞, but it is also
easy to calculate αq for other values of q. Specifically, for 4-
QAM we have α2

2 = α3
2 = 2; for 16-QAM we have α2

2 = 2,
α4

2 = 4, α8
2 = 8, and α12

2 = 13.6; while for 64-QAM we have
α4

2 = 4, α8
2 = 8, α16

2 = 18.5, α32
2 = 38.4, and α48

2 = 57.8.

B. Selection Algorithms: Specifying the index i
The performance of a Chase detector depends strongly on

the selection algorithm that is adopted in Step 1 for selecting
the index i of the first symbol to be detected. In this subsection
we propose a selection algorithm that is preferable to that
proposed in [5] in two ways; it is drastically less complex while
achieving nearly the same performance, and it applies to the
case when q < |A|. We also describe better-performing
selection algorithms that are too complex to implement in
practice but are nevertheless useful as performance
benchmarks.

Proposed Selection Algorithm. The list in Step 2 of the
Chase detector is simply the list of valid alphabet symbols
closest to:

yi = cir 
= ai + ni , (5)

where ci is the i-th row of the pseudoinverse C = (H*H)−1H*,
and where the noise variance is E[|ni|

2] = σ2||ci ||2. 
We now argue that the choice of i must balance two

opposing goals: (1) that the transmitted symbol be on the list,
and (2) that the subsequent subdetectors perform well. Indeed,
if our only concern were to ensure that the transmitted symbol
be on the list, we would choose i so that variance of the noise ni
is small, or equivalently, so that the pseudoinverse row norm
||ci || is small. On the other hand, if our only concern were to
ensure that the subdetectors perform well when making
decisions about the remaining N – 1 symbols, we would choose
i so that the effective MIMO channel seen by the subdetectors
is as “orthogonal” as possible. Specifically, we would choose i
so that hi is the column of H that is least orthogonal to the
other columns, which is precisely the i that corresponds to the
pseudoinverse row with maximum norm ||ci ||.

Therefore, to balance the two opposing goals, we should
choose i so that the noise variance σ2||ci ||2 is large, but not so
large that the list does not contain the transmitted symbol. We

want the actual symbol to be on the list, but just barely. In other
words, we should choose i so that the effective SNR of the list
detector is neither too small nor too large.

We propose choosing i so that the effective SNR seen by
the list detector is as close as possible to a target value of β–2.
Since the effective SNR with list detection is αq

2 /σ2||ci ||2,
assuming a unit-energy alphabet, this reduces to:

i = . (6)

Tuning the factor β provides an additional degree of freedom in
balancing the opposing goals. 

The complexity of the selection algorithm (6) is very low.
In fact, many subdetectors (like the BDF) already require the
norms of the rows of C, in which case (6) may be implemented
with no additional computations.

Benchmark Selection Algorithms. We now describe
benchmark selection algorithms that perform better than (6),
but whose high complexity makes them impractical. They
depend on H(k) = [h1, …, hk−1, hk+1, …, hN], the channel
matrix after the k-th column has been removed. They will be
described in terms of the following pair of Cholesky
decompositions:

(HΠ)*(HΠ) = G*G, (7)

(H(k)Π(k))*(H(k)Π(k)) = (G(k))*G(k), (8)

where Π and Π(k) are permutation matrices that represents the
symbol ordering and the BLAST ordering [3] of the submatrix
H(k), respectively, and where G and G(k) are lower triangular
matrices with real positive diagonal elements {g1,1, … gN,N}
and { g1,1,(k) … (k)gN,N }, respectively.

The B-Chase detector can be viewed as a bank of BDF
detectors in parallel, with the first-stage decision device
replaced by a list detector. Since the effective SNR of the list
detector is a factor αq

2 larger than the SNR of the first stage of
a BDF detector, a straightforward generalization of the BLAST
ordering would choose i according to: 

i = . (9)

In other words, the chosen index should maximize the worst-
case SNR, with the understanding that the list detector
amplifies the SNR of the first stage by a factor of αq

2 . The
parallel selection algorithm [5] is a special case of (9) when
q = | A | and αq = ∞. The first index chosen by the BLAST
ordering is also a special case of (9) when q = 1 and αq = 1.
Implementing (9) when αq ≠ 1 requires calculating the BLAST
ordering for each of the N possible submatrices H(k), which
requires O(MN3) computations [10]. 

We now develop a selection algorithm for the L-Chase
detector, which uses linear subdetectors. If j were detected first
in Step 1, the post-detection SNR of the k-th symbol in the

arg min
k ∈ {1, 2, ... , N}

ck
βαq

σ
---------–

arg max
k ∈ {1, 2, ... , N}

min αqg1 1,  g1 1,
k( )  …  gN 1– N 1–,

k( )
,,,{ }
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linear subdetector would be inversely proportional to ,
where  is the k-th row of the pseudoinverse of H(j).
Therefore, the selection algorithm that maximizes the
minimum post-detection SNR with linear subdetection, where
the SNR of the first symbol is again scaled by αq

2 , is:

i = . (10)

The total complexity of (10) is O(MN2), since =
, where = */ .

C. Implementing the Subdetectors
In this subsection we describe computationally efficient

implementations of the two new Chase detectors, beginning
with the B-Chase detector. We propose to implement the B-
Chase detector using the modified decorrelation decision-
feedback algorithm of [10], in a further modified form that
forces the i-th symbol to be detected first. This algorithm
calculates G, G-1, and Π, where the final N − 1 columns of Π
implement the BLAST ordering of H(i). The receiver thus
begins by computing z = (G−1)*(HΠ)*r, which reduces to:

z = G + v , (11)

where = Π*a is a permuted version of the transmitted
symbol vector. The l-th subdetector then finds its decision
vector  using classical DF, except that the first decision is
hard-wired to sl. The index of the best decision vector is found
according to:

= || z − G ||2. (12)

The final decision vector is = Π . Implementing (12)
requires minimal complexity because the l-th subdetector has
already calculated most of the elements of G .

We now describe an efficient implementation of the L-
Chase detector, which is basically a set of q PDF detectors in
parallel. We propose using the low-complexity noise-
predictive implementation of the PDF detector presented in [8],
except that the index of the first symbol detected is forced to be
i. In this case, the decision in Step 5 reduces to:

= || G ( r − ) ||2, (13)

where  is the pseudoinverse of the channel matrix H with the
first and i-th rows swapped. The final decision is obtained by
swapping the first and i-th elements of .

The average complexity of the B-Chase and L-Chase
algorithms can be significantly reduced by exploiting the lower
triangular structure of G in a manner reminiscent of sphere
detection [6]. Specifically, the cost in (12) or (13) need not be
calculated for each candidate decision. Instead, a cost threshold
can be established with the cost of the first subdetector’s

decision. The cost calculation of subsequent subdetectors can
be aborted whenever this threshold is exceeded. Furthermore,
the threshold can be reduced each time a lower cost is found.

IV.  NUMERICAL RESULTS

This section examines the performance and complexity of
Chase detectors on Rayleigh-fading channels, assuming the
channel H is known to the receiver. Fig. 2 shows bit-error rate
versus SNR = E[||Ha ||2]/E[||w ||2], averaged over 106

realizations of the channel model (1) with 4 × 4 Rayleigh-
fading channels and 16-QAM inputs. The solid curves
represent the performance of the L-Chase and B-Chase
detectors for various list sizes, using (6) as the selection
algorithm. The uppermost curve shows the performance of the
traditional BDF detector, a special case of the B-Chase detector
with q = 1 and β = 0. Even with a list length of only q = 2, the
L-Chase detector outperforms the BDF detector by 2 dB at a
BER of 10–3. Larger list lengths lead to enormous performance
gains. Specifically, when q = 16 the B-Chase detector falls only
0.1 dB short of the ML detector, while the L-Chase detector
falls 1.1 dB short of the ML detector.

The dashed lines in Fig. 2 show the performance of the
Chase detectors when the benchmark selection algorithms of
(9) and (10) are used in place of (6). The advantage of (9) and
(10) is seen to range from 0.2 dB to 0.8 dB at 10–3 BER,
depending on the list size and subdetector type. These gains are
minimal and not enough to justify the enormous increase in
complexity required to implement (9) and (10).

The full benefit of the B-Chase and L-Chase detectors is
best understood in the context of a performance-complexity
trade off. Fig. 3 shows a plot of performance versus
complexity, where performance is measured by the SNR
required to reach BER = 10−3, and complexity is measured by
the 99% quantile of real computations, i.e., the number of real
computations exceeded 1% of the time. These results were
averaged over 105 realizations of the channel model with either
4-QAM or 64-QAM inputs, as indicated. The number of real
computations was counted during simulations of the algorithms
described in this paper, assuming that a complex multiply
requires eight (floating-point) operations, a complex division
or addition require two operations each, a complex magnitude
requires three operations, and a square root requires one
operation. 

The L-Chase and B-Chase detectors operate in different
regimes of the performance-complexity plane. Specifically, the
L-Chase detector is appropriate when complexity is at a
premium, where the BDF detector would normally be used. In
many cases the L-Chase detector is less complex than the BDF
detector while performing better. For example, with 4-QAM
inputs, the L-Chase detector with q = 4 outperforms the BDF
detector by 9.8 dB while requiring 17% less complexity.
Similarly, with 64-QAM inputs the L-Chase detector with q = 4
outperforms the BDF detector by 3.9 dB while requiring 10%
less complexity. 
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In contrast to L-Chase, the B-Chase detector is appropriate
when performance is at a premium, when a near-ML detector
like the MMSE sphere detector would normally be used. With
4-QAM inputs, the B-Chase detector with q = 4 falls only
0.2 dB short of the MMSE sphere detector performance, while
requiring 50% less complexity. Likewise, with 64-QAM, the
B-Chase detector with q = 32 falls short of the MMSE sphere
detector by only 0.4 dB while reducing complexity by 29%. 

The results of Fig. 3 also reveal the strong impact of the
alphabet size on the relative merits of the different detectors.
Specifically, when the alphabet is small (4-QAM), the L-Chase
detector exhibits a preferable performance-complexity trade-
off for all list lengths. Furthermore, a maximum list length of
q = 4 provides enormous performance gains at very little cost
in complexity. In contrast, when the alphabet is large (64-
QAM), the L-Chase detector is obviously preferable only for
relatively short list lengths of q ≤ 8. After this diminishing
returns set in, and for larger list lengths the B-Chase detector
becomes preferable. The B-Chase detector is seen to range
from the BDF detector to an approximation of the MMSE
sphere detector as the list length ranges from its minimum to
maximum value.

V.  CONCLUSION

The Chase family of detection algorithms for MIMO
channels is a combination of a list detector and a parallel bank
of subdetectors. The general Chase detector reduces to a
variety of existing MIMO detectors as special cases. Based on
the Chase framework, we proposed the B-Chase and L-Chase
detectors, two new members of the Chase family. Using
efficient implementations and a new selection algorithm, these
new detectors demonstrate an attractive performance-
complexity trade off. The L-Chase detector is especially
attractive because it can simultaneously improve the
performance and reduce the complexity of the BDF detector.
For example, on a 4 × 4 Rayleigh-fading channel with 4-QAM
uncoded inputs, the L-Chase detector outperforms the BDF
detector by 9.8 dB, while simultaneously requiring 17% fewer
computations. On the other hand, the B-Chase detector is
attractive when near-ML performance is required. For
example, on a 4 × 4 Rayleigh-fading channel with 4-QAM
uncoded inputs, the B-Chase detector performs only 0.2 dB
worse than the MMSE sphere detector, but is half as complex. 

REFERENCES

 [1] S. Verdú, Multiuser Detection, Cambridge University Press, 1998.
 [2] A. Chan and I. Lee, “A new reduced-complexity sphere decoder for

multiple antenna systems,” IEEE Conf. on Commun., pp. 460-464, 2002.
 [3] G. J. Foschini, G. Golden, R. Valenzuela, and P. Wolniansky, “Simplified

processing for wireless communication at high spectral efficiency,” IEEE
J. Select. Areas Commun., vol. 17, no. 11, pp. 1841-1852, 1999.

 [4] W. J. Choi, R. Negi, and J. Cioffi, “Combined ML and DFE decoding for
the V-BLAST system,” IEEE Conf. on Commun., pp. 1243-1248, 2000.

 [5] Y. Li, and Z. Luo, “Parallel detection for V-BLAST system,” Proc. IEEE
Conf. on Commun. (ICC), vol. 1, pp. 340-344, May 2002.

 [6] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. on Info.
Th., vol. 49, no. 10, Oct. 2003.

 [7] D. Wübben, R. Böhnke, V. Kühn, and K. Kammeyer, “Near-maximum-
likelihood detection of MIMO systems using MMSE-based lattice-
reduction,” IEEE Conf. on Commun., vol. 2, pp. 798-802, June. 2004.

 [8] D. W. Waters and J. R. Barry, “Partial decision-feedback detection for
multiple-input multiple-output channels,” Proc. ICC, pp. 2668-72, 2004.

 [9] D. Chase, “A class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Info. Th., pp. 170-182, Jan. 1972.

 [10] W. Zha and S. Blostein, “Modified decorrelating decision-feedback
detection of BLAST space-time system,” IEEE Conf. on Commun., vol. 1,
pp. 335-339, May 2002.

20 22 24 26 28 30 32 34
10-4

10-3

10-2

SNR (dB)

L-Chase using (6)
B-Chase using (6)

L-Chase using (10)
(M

L)

BDF (q = 1, β = 0)
q = 2 β = 0.4

q = 4

q = 8

β = 0.7q = 16

β = 0.6

 Fig. 2.  Performance of the L-Chase and B-Chase detectors with
varying list lengths q, over 4 × 4 channels with 16-QAM inputs.

B
E

R

B-Chase using (9)

β = ∞

1000 2000 3000 4000 5000 6000

15

20

25

30

35

40

COMPLEXITY

(PDF)

(PDF)

64-QAM
4-QAM

MMSE
SPHERE

(4,∞)

(3,0.6)
(2,0.6)

(1,0)

(3,0.6)

(2,0.6)

(4,0.6)

(8,0.6) (16,0.8)
(32,0.8) (48,∞) (64,∞)(8,0.6)

(32,0.8) (48,0.8) (64,∞)
(1,0)

(1,0)

(4,0.4)

(4,∞)

(1,0)

MMSE SPHERE

L-Chase (q,β)
B-Chase (q,β)

 Fig. 3.  The performance-complexity trade-off of Chase detectors.

R
E

Q
U

IR
E

D
S

N
R

 (
dB

)

(16,0.6)

(BDF)

(BDF)

Globecom 2004 2639 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


