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Abstract - The singular-value decomposition can he 
used to transform a MIMO fading channel into an 
equivalent bank of scalar subchannels, a strategg known as 
eigenbeamforming or dosed-loop MIMO, provided that the 
transmitter knows the channel. We consider the problem of 
allocating bits to subchannels after such processing, and 
propose simple strategies, which achieve near-optimal 
performance, by exploiting statistical properties of singular 
values. For large antenna arrays, a b e d  bit-allocation 
becomes an attractive choice without any significant 
performance loss. For example, on the 6-input 6-output 
Rayleigh-fading chnnnel, the fixed allocation strategg 
performs only 035 dB worse than the optimal bit-allocation. 

1. INTRODUCTION 

For a bank of scalar channels, it is well-known that 
capacity is achieved by water-pouring procedures when 
channel information is known to the transmitter [I] .  In 
practice, where rates are often restricted to be finite and 
discrete values, the problem must be modified, to account 
for the granularity constraint. 

The best way to allocate discrete rates to parallel 
channels would compare all possible combinations of 
allocations and select the best one. However, this 
exhaustive search often requires high complexity and 
thus iterative optimization is widely used instead. Many 
iterative algorithms for allocation have been introduced, 
especially for discrete multitone (DMT) applications, 
such as [2]-[4], which have relatively small complexity 
without significant performance loss. 

For MIMO channels, parallel subchannels are created 
by a singular-value decomposition (SVD) (see 151 and 
references therein). Unlike DMT, MIMO flat-fading 
channels have some unique properties: the number of 
subchannels in MIMO systems is small compared to 
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DMT, and the singular values of channel matrices, which 
are the subchannel gains, exhibit special properties. In 
this paper, we study the bit-allocation problem using the 
special properties of MIMO channels. 

The rest of this paper is organized as follows. 
Section I1 describes the MIMO flat-fading model and the 
problem statement. In Section 111, we propose low- 
complexity bit-allocation strategies, and explore their 
near-optimal pelfonnance. Pelformance is evaluated for 
Rayleigh fading in Section IV. In Section V, we examine 
the robustness of the proposed strategies to a change of 
the fading statistics. Finally, we conclude in Section VI. 

11. SYSTEM MODEL AND BIT-ALLOCATION PROBLEM 

For simplicity we consider a narrowband channel with 
M transmit and M receive antennas, which can k 
modeled by an M x M channel matrix E = [h$, where hy 
is the response at receive antenna i from transmit antenna 
j. Let H = Udiag(s"')V* denote an SVD, where U and V 
are unitary, and where the elements of s = [sl. ..., s ~ l  are 
real and ordered so that s1 t ... 2 SM 2 0. When the 
uansmitter and receiver filter by V and U*, respectively, a 
bank of scalar subchannels results: 

y; = h a ;  + n i  , fori = 1, ... M ,  (1) 

where {nil are i.i.d. a ( 0 ,  No). There is no crosstalk 
from one subchannel to the next. 

So as to achieve a rate of r; bits per signaling interval 
across the i-th subchannel, its SNR s ; E i / N o  must be at 
least r(Zri - 1). where E; = E[ lai 1'1. and where r, an 
S N R  gap. accounts for the additional S N R  required for a 
practical code to achieve a given target probability of 
error [2]. With an ideal capacity-achieving code, r 
reduces to unity. Then the total energy, EiEi, required by 
the transmitter to achieve a given set of rates {r;}  is: 
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It is well-known that, to achieve a given total rate of R = 
&; bits per signaling interval, the rate allocation that 
minimizes (2) is given by the water-pouring solution, 
r; = {log2(Usk;i In}', where {r)' = max{0, x } ,  and 
where Us) ensures that R = Lr;. 

In practice, complexity considerations require that { r ; )  
be drawn from a discrete and finite set. Let the 
granularity, p, be the smallest incremental unit of 
information rate. Then, the rate of any subchannel is 
given by r; = BB;, where B; is a non-negative integer. 
With these constraints, the bit-allocation pmblem is to 
find the {r;} ,  given 8, that minimizes (2) subject to a total 
rate constraint, R = &. Clearly, the best bit-allocation is 
based on a full search that enumerates each element of: 

B = {[rl, . , ., r ~ l ;  &; = f&B; = R, rl L .. . L rM L 0 )  ,(3) 

and chooses the allocation that minimizes (2) for given S. 

The ordering restriction on {r;}  in (3) stems from the 
ordered nature of S. When M is large, such as in DMT, the 
size of full-search set (!??j can be very large and 
calculating (2) for all members in 5 might he practically 
too complex. Even for MIMO flat-fading channels, where 
the number of subchannels is not as large as DMT due to 
physical space limitation of antenna arrays, the 
complexity of full-search strategy can be high. Usually, 
full-search strategy seems to be feasible only for M = 2. 
In the paper, we consider how to reduce the complexity 
without any significant performance loss. 

111. PROPOSED BIT-ALLOCATION STRATEGY 

First we investigate how frequently an allocation in the 
full-search set is used and how it contributes to average 
required SNR, when channels, {b;j}, are generated 
according to a certain distribution, such as Rayleigh 
distribution. Let b,= [bv ,  ..., b w ]  be the j-th allocation in 
B and let A, be a subregion in M-dimensional space, {s; 
s1 L __. 2 SM L 0) .  in which b; is optimal. In other words, 
i f s  E Ai. bj is the bit-allocation that minimizes (2) with r; 
= bii for i = 1, ... M. Then, the average required SNR for 
a full search becomes: 

where E. J -  - rZ;(ZRcbv- l )E,[ l /~; l4~]  is the partial SNR 
requirement conditioned on Ai. and where L denotes the 
size of B. The probability mass function (PMF) of 
allocation is denoted by Pj ,= F'rohL4;l for j = 1, ... L, 
which indicates how often b; IS selected over realizations 
of 8. 

One way to reduce search-set size is based on the 
following observations. For given fading statistics, some 
elements of Bare infrequently or never used, that is, P, is 
very small or zero for some j. 

Observation 1. If P; is negligible, deleting its alloca- 
tion bj from 3 and using other allocation(s) for Aj will 
increase E / N , ,  hut its increase is only marginal. 

This is obvious since small P; nulls the increase in P;Ej by 
using suboptimal allocation for AI. Hence, deleting these 
infrequent allocations from consideration has little impact 
on performance. 

In order to see how deleting members from B impacts 
performance, we investigate the increase in average SNR 
by deleting members one by one. We delete the allocation 
that has the smallest Pi. and calculate corresponding 
average SNR penalty compared to full-search strategy. 
We repeat these procedures until all hut one allocation are 
eliminated. Fig. I-a illustrates average SNR penalty in dB 
as allocations are removed from B for p = 3/4 and 
B = 12, where we assume B; E {O, . __  8 )  in (3) and, where 
10' independent Rayleigh channels (M=6) are 
generated. As illustrated in Fig. I-b, which plots P; for i  = 
1, ... L, there are seven allocations out of L = 51 which 
have dominant P? Labels in Fig. I-b identify seven 
dominant-P; allocations, and the impact of eliminating 
them is shown in Fig. 1-a, where alphabetical order 
matches deletion order. It can be seen in Fig. 1-a that 
penalty is almost zero until seven labeled allocations are 
left in reduced set, which agrees with Observation 1. By 
removing the 'a' allocation, SNR penalty begins to grow 
sharply, and the last elimination (labeled as T) leaves 
only one allocation (labeled as 'survivor') in the search 
set. 

An interesting point in this elimination process is how 
many allocations have negligible Pj so thal they do not 
affect (4) much. As observed in Fig. I-h, only a few out 
of L possibilities have dominant PI, and thus the number 
of considerations reduces correspondingly. 

Observation 2. In MIMO channels the number of 
allocations with dominant P; is small relatively to the 
size of full-search set, L. 

This can be explained in part by ordered natures of 
singular values and reduced variability of bit-allocation. 
By ordered nature, we mean not only that singular values 
are ordered, s1 L . . . L SM, but also that each singular value 
has a different distribution. Thus, depending on the 
distributions of the singular values, some allocations have 

814 



allcation index j 

Fig. 1. (a) S N R  penalty in dB due IO deleting bit-allocations from 27. 
(b) PMF (Pi) of bit-allacations, b m h  for M = 6 and B = 12. 

higher probabilities than others, which implies that the 
bit-allocation is more predictable. Certainly, there is still 
variability in bit-allocation despite the ordered nature. 
The point is how small this variability is. To this purpose, 
we investigate distribution of the optimal rate, 
ri = {logZ(Us)si /I?}+. For instance. Fig. 2 illustrates 
empirical marginal distribution of optimal rate for M = 4 
(thick) and M = 6 (thin) at R / M  = 2 bits per signaling 
interval and per antenna, where we assume E[ ih,jl 21 = 1. 
Even though the marginal distribution tells only a part of 
the whole story, a variability reduction is obvious as one 
goes from M = 4 to M = 6 in Fig. 2. In M-dimensional 
space, we conjecture, from marginal distribution and 
covariance of optimal rates, that only a small portion of 
space corresponds to large probability as joint 
distribution is,centered and has small variance (in all 
directions), and that distribution shrinks, that is, variance 
becomes small for large M. This conjecture suggests that 
only a few allocations in 3, whose Aj corresponds to 
high-probability regions of optimal rates, have dominant 

Now we move further and delete some of the 
allocations with dominant Pj, as inspired from Fig. I-a, 
where deleting all hut one allocation incurs only a penalty 
of 0.13 dB compared to full search. 

Pj. 
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Fig. 2. Marginal PDF of optimal me for M = 4 (thick) and far M = 6 
(thin) at R I M  = 2 bits/sec/Hz/anlennas. 

Observation 3. A penalty by removing bj with domi- 
nant Pj is not negligible any more, but still reasonably 
small. 

This is based on the fact that the increase in in (4) is 
small, even if Pj is not negligible, since distance between 
the optimal b, and its substitute is not quite far as regions 
of frequently-used allocations concentrate in M- 
dimensional space. 

From Observations 1-3, we propose bit-allocation 
strategies restricting its search to and %, where !& 
denotes a restricted search set containing only k candidate 
allocations. For optimal choice of 4, we compare 
average required S N R  for all possible members of %, 
and choose the one that produces minimum average 
required SNR. For most cases, the optimal choice 
coincides with the results by deleting infrequently-used 
allocation one by one as in Fig. I-a, but it is not always 
true, especially when M = 2. 

Advantages of proposed strategies include: (i) a great 
reduction in complexity; (ii) thus suitable to frequent 
channel change; (iii) no increase in complexity as number 
of subchannels (M) grows; and (iv) applicable to any 
constraint on rate (e.g. any stepsize p or any maximum 
value of B,). Complexity reduction is quite impressive 
when compared to a full search. For example, only two 
calculations of (2) are required if '&is used, in contrast to 
51 calculations required for a full search when M = 6 and 
B = 12 for B, E {O, . .. 8) .  Especially low in complexity is 
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Fig. 3. Samples of restricted sels (31 and g2) optimized to Rayleigh 
f m M E  (2.4.6) .  

restricting search to % (fixed allocation); which does not 
require bit-allocation processing. This will be particularly 
valuable when these ideas extend to frequency-selective 
channels. 

As mentioned before, on the other hand, choice of 2t, 
and '& depends on channel distribution. Thus, we assume 
that channel statistics as well as channel information are 
known to transmitter. If B, and '& do not match current 
fading statistics, it could cause significant performance 
loss. In SectionV, we will deal with this mismatch 
problem. 

IV. NUMERICAL RESULTS 

We consider Rayleigh fading for M E{& 4, 6 )  
antennas. Suppose that each allocation is restricted to 
discrete values, ri = bei, with p =  0.75 and Bi E { O ,  . . . E}. 
Fig.3 illustrates restricted-search sets, ZJl and 4, 
optimized for Rayleigh fading, for some B = Z B ,  = R /p. 
In Fig. 3, for example, an allocation denoted as [4 21 
means B1 = 4 and Bz = 2. Notice that, in the case of q, 
the last subchannel (SM) is never used. This is because SM 
is exponentially distributed in Rayleigh fading [6] ,  which 
means that, information-theoretically, it takes infinite 
average power to convey a nonzero rate, however small it 
is, over this subchannel. Especially for M = 2, all 
information is forcefully conveyed over the first 
subchannel, which explains why optimal allocation is not 
necessarily most frequently-used allocation, and which 
inevitably results in a significant performance loss. 

0 0.5 1 1.5 2 2.5 3 

R / M  (bits/sec/Hz/antenna) 

I I I i 

(b) restricting search to 4 

,e' 

In 
0.5 

0 0.5 1 t .5 2 2.5 3 
R/M(bas/sec/Hz/antenna) 

Fig. 4. Relative perfomance of restricted search over 3, in (a) m d  
over 'I$ in (b) compared to full-search strategy in Rayleigh- 
fading with M E (2.4.6). 

We evaluates performance of restricted search over 58, 
and '& in Fig. 3, which plots average SNR penalty by 
using 4 in Fig. 4-a, and by using !E$ in Fig. 4-h against 
rate per signaling interval and per antenna when 
compared to full-search strategy (9). In both cases, the 
restricted searches perform only marginally worse. For 
example, restricting the search to 4 incurs an S N R  
penalty of less than 0.23 dB when M = 2. Even the fixed 
allocation ('&) performs well, falling only 0.3 dB short of 
the full-search performance for both M = 4 and M = 6. 
One exception is for M = 2, where the penalty by using 
'B1 can be as large as 2.2 dB at R/M = 3. 

V. ROBUST BIT-ALLOCATION STRATEGY 

As discussed at the end of Section 111, bit-allocation 
based on restricted search over 4 could cause a 
mismatch problem when actual fading statistics are 
different from those to which Bb is optimized. When size 
of & is small, this mismatch problem can be serious. In 
the following we consider mild mismatch, which occurs 
when statistics estimation differs from real channels or 
when statistics slightly change between estimations. Also 
we focus on the case of more than two antennas (M > 2). 
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An intuitive way to make bit-allocation robust to 
fading change is to increase the size of 4 and to select its 
members appropriately. Since restricting search to 51 is 
near-optimal for M > 2, an union of several 5 1 ’ s ,  whose 
members are optimized to some typical fading statistics, 
would perform reliably. Expanding Bh obviously leads to 
increase in complexity. For mild change of statistics, 
however, only a few additions are sufficient. 

For example, consider Ricean fading of K = 4.45 in M 
= 4 antenna arrays with p=O.75 and B; E{O,  .._ 8). 
where K denotes the Rice factor (71. The dotted line in 
Fig. 5 represents S N R  penalty by using a mismatched &, 
which is optimized to Rayeligh (K = 0), compared to a 
full search over B. This mismatch loss can be large, as 
illustrated in Fig. 5, more than 1 dB. By adding three 5 1 ’ s  
that are optimized to K = 0, K = 2.41, and K = 6.46, 
respectively, we constitute a robust search set: 

%,rob= %&=O U 51&=2.41 U 51&=6.46 I ( 5 )  

where R&=6.46 means that 4 is optimized to K = 6.46. 
Fig. 5 shows performance of robust bit-allocation 
strategy, where thick line corresponds to %$mb. As 
references, SNR penalty of 51 (square) and & (circle), 
which are optimized to actual fading (K = 2.41). is 
plotted. Clearly, bit-allocation over performs very 
well, whose S N R  penalty is less than 0.2 dB. 

VI. CONCLUSIONS 

Based on the statistical properties of MIMO fading 
channels, we proposed reduced-complexity bit-allocation 
strategies that restrict the search to & (containing two 
allocations) or 9 1  (fixed allocation). These bit-loading 
strategies considerably reduce complexity while 
performing only marginally worse than optimal hit- 
allocation. For example, in Rayleigh fading with M = 4 or 
M = 6 antennas, its average S N R  penalty is below 0.16 
dB and below 0.3 dB when restricting search to & and 
3, respectively. For M = 2, it has been found that at least 
twn allocations must be considered (&). We also 
proposed a robust bit-allocation strategy which can 
handle some variations of fading statistics. 

The proposed bit-allocation strategies extend to 
orthogonal frequency division multiplexing (OFDM) in 
frequency-selective channels. If each OFDM tone is 
restricted to have the same bit-budget, a great deal of 
complexity can be saved by the proposed strategies. Since 
frequency correlation between tones is ignored, it would 
incur a performance loss. Future work will compare the 
flat-frequency strategy with conventional bit-allocation 
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Fig. 5. Fading mismatch of restricted search over opcimired to 
Rayleigh fading and performance of robust bit-allocation in 
Riceanfading(K=4.45) withM=4antennas. 

algorithms. In the meantime, we only consider a fixed 
total rate system in this paper. We will investigate joint 
optimization of bit-allocation and rate regions when the 
total rate is variable. 
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