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Abstract — We propose theapproximate minimum:-bit- (L - 1)}, h;, is the FIR channel impulse response nonzero for
error-rate (AMBER) algorithm for adapting the cdifients of a £ =0 ... M only, andn, is white Gaussian noise withyer spec-
linear equalizer with pulse-amplitude and quadrature-amplituddral densityo®. The equalizer output ig, = ¢’r,, Wheree is a
modulation. While less complethan the least-mean-square vector of N equalizer coditients andr, = Hx,, + n;, iS a \ector
algorithm, AMBER \ery nearly minimizes error probability in of channel outputs, wherH is anN x (M + N) matrix with
white Gaussian noise, and can significantly outperform the minH;; = ;. ;, x;, = [x;, ... x,n+11" is @ \ector of channel inputs,
imum-mean-squared-error equalizer when the number of equaandn, is the noise @ctor The decisiork;_p about symbat,_p
izer coeficients is small relate to the seerity of the is determined by quantizing the equalizer outpytwhereD
intersymbol interference. accounts for the delay of both the channel and the equalizer

LetfT = ¢TH = [f, ... fyr+ n_ 1] denote the werall impulse

response. The noiseless equalizer output is then:

The most popular design strgyefor finite-tap linear equal-
—— oSt pop gn strggetor | pn g fle=foap+y ., five i @
ization with memoryless detection is the minimum mean- :
squared-error (MMSE) strajg However, a better stratgy is to ~ The first termypx,,_p represents the desired signal, whereas the
choose the equalizer céiefents to minimize error probability ~second term represents interference. Because the probability dis-
directly [1-3]. Prior adapte equalization algorithms for mini- tribution of the interference term is symmetric, the optimal deci-
mizing error probability were restricted to binary modulation sion thresholds after grequalizer arg0, + 2 fp, ..., + (L - 2)fp}.
[3](4], and some were high in comgley [3]. In this paper we Let % denote a random eetor with distrilition
propose the approximate minimum-bit-error-rate (AMBER) ;%) =p(x;,1x,_p=1), i.e, & is uniformly distrituted ver the
algorlthm,.a generallzatlon.of the binary .adaptatlon algorlthm Olset of LM+ N -1 L-aryx;, vectors for which, p, = 1. It can then
[4] to multilevel pulse-amplitude modulationARI) and higher  pe shevn that, with optimal decision thresholds, the probability

I. INTRODUCTION

order quadrature amplitude modulation (QAM). of symbol error after anequalizer is:
Although the least-mean square (LMS) algorithm for mini- ol —2 Tz
mizing MSE has v compleity, several variations of LMS hee P,c) = L_ E[Q Bpuc" 0"5], (2

been deised to reduce compliy even further such as the sign . ) .

LMS [6] and dual-sign LMS [7]. Wwill shav that the AMBER Whereins the Gaussian error function. O.bseanat the error
algorithm is remarkably similar in form to these LMS-based Probability depends oaonly through the ratie/||c ||

algorithms, despite theét that it originates from a minimum- In the sections that follo we derelop an adapte algorithm
BER criterion rather than a desire to reduce corifgleln par- for finding ¢ so as to approximately minimize the error proba-
ticular, the AMBER algorithm can be wied as the sign LMS  bility (2). We will restrict consideration tequalizable channels
algorithm modified to update only when a decision error is madefor which there rists an equalizer capable of opening the noise-
less ge diagramj.e, there &ists ac such thae”Hzx > 0 for all

This paper is ganized as folles. In Sectll, we present < .
L-ary vectorsx for whichx,_p = 1.

models for the channel and equalizaerSectlll, we propose the
approximate minimum-BER algorithm foARl and QAM. In
Sect.lV, we present numerical results s¥ing that the proposed
algorithm \ery nearly minimizes error probabilityoutper-
forming the MMSE equalizer by 1@B in one gample.

Il. PROBLEM STATEMENT Xk * Tk Ve XE-D

— b D = Ck -

We consider the linear discrete-time system depicted ir
Fig. 1, where the channel input symbajsare dravn indepen-
dently and uniformly from th&-ary FAM alphabet{+1, +3, ..., Fig. 1. System block diagram.




I1l. APPROXIMATE MINIMUM-BER EQUALIZATION

9)

Cpi1=Cp + p.Irk.

By setting to zero the gradient of (2) with respect to theWe refer to this stochastic update as dpproximate minimurm-

equalizere, we find that the minimizing error probability must
satisfy the fied-point relationshipe = ag(e) for somea > 0,
where the ector functiorng : RY — R¥ is defined by:
e Tl 0, .
= E[%expﬂ%ﬂlx} (3)
U2e] ™ U

(4)

-E[Qt Hirgy] 2 ()
~E| Qg 12| 2 ate
In (4) we define the functiog(e) that approximateg(e) by
replacing0.5e=°/2 by Q(x). It can be shen [5] that, although
there may be numerous unit-norm solutions to thedfpoint
equatione = ag(e) for a > 0, there is onlyone unit-norm solution
to ¢ = ag(e) for a > 0; call it eqpsprr.- And while this equalizer
no longer minimizes BERxactly, the accuracwith which @(x)
approximates0.5¢~"/2 for small x suggests thakaypgg
closely approximates the minimum-BER equaliZdre simula-
tion results of SectV substantiate this claim.

Here we propose a numerical algorithm to vet@,pgr-
In fact, it can be pren [5] that the follwing algorithm is guar-
anteed to coremge to the direction of the unique unit-norm
vectoreypgr Satisfyinge = aqg(e) fora > 0:

(®)

Cr+1 = + Hg(cy),
wherep is a positie step size.
Let us introduce an error indicator functifig, 5, yz) to indi-
cate thepresence andsign of an error = 0 if no error occurs,

I =1if an error occurs becauggis too ngative, and =1 if an
error occurs becaugg is too positie. In other wrds:

[1, if yk<(xk_D—1)fD andxk_D;t—L+1,
I= [—1, if yk>(xk_D+1)fD andxk_D¢L—1, (6)
Lo, otherwise.

Lemma l. The ensemblevarageE(lr;] is as follavs:

Eitry) = 2522 4(c) ~e(e)e)

(1)
whereg(e) is some positie constant.

Proof:  The proof of Lemma 1 is in Appendix I.

BER (AMBER) algorithm. WhenL = 2, (9) reverts back to the
binary algorithm proposed in [4]. &remark that (9) has the
same form as the LMS algorithnxaept thatl; y;s = x,p - ys-
Obsenre that AMBER is less comptethan LMS, because (9)
does not require a floating-point multiplication. AMBER can be
viewed as the sign LMS algorithm [6] modified to update only
when a symbol decision error is made.

The indicator functior in (9) requires knaledge offp,
which changes with time asis being updated. Lty (%) denote
the estimate gfy at timek. For a gvenx;_p , the equalizer output
v, has mearfpx, p, so that the ratig,/x;, p has mearf,. We
can trackfp using a simple mong average:

fptk+1) =1 =NFpk) +)\£ ,
Xr-D

(10)
whereA is a small positie step size. The detection thresholds are
then{0, + 27 p(k), ..., = (L—2) fp(k)}.

Because the AMBER algorithm (9) updates only when an
error occursi(e., whenlI # 0), the conergence rate will be sio
when the error rate iswo To increase corergence speed, we
can modify AMBER so that the equalizer updates not only when
an error is made,ub also when an error @most made,i.e,
when the distance between the equalizer output and the nearest
decision threshold is less than some small p@sitonstant.
Mathematically the modified indicator function & =1 if y;, <
(cpp -Dfp+tandxyp #2-L+1,I; =1 ify, > (pp + Dfp-T1
andx, p #L -1, andI; = 0 otherwise. Whem = 0, the modified
AMBER algorithm reerts to (9). Besides increasing the\em
gence rate of AMBER, a posi#i T prevents||¢;, || from possibly
shrinking to zero.

Lemma?2. If T>0in (9),] el does not shrink to zero.

Proof:  The proof of Lemma 2 is in Appendix .

Although a formal proof of global ceamgence for the
AMBER algorithm witht > 0 is not aailable, simulation results
suggest the follwing conjecture:

Conjecture. If the channel is equalizable, thepdsts a suf-
ficiently small step siz@ such that the modified AMBER
algorithm globally comerges to a uniqueector

Generalizing AMBER td.2-QAM is straightforvard, since

We can use the indicator function of (6) to approximate thethe in-phase and quadratic components of a QAM system can be

deterministic update equation of (5):

Cri1 = Cp + Hgley)
=(1+ UE(ey)) ¢ + MELI 1]

= ¢}, + UEI 1] ®)

where the inequality in (8) is accurate whegle) is small.
Remwing the &pectation in (8) leads to:

viewed as tw parallel RM systems. The compteform of
AMBER is:

*
Cpy1=cp+ HUiry,, (11)

Whel’eI:I(ka_D,y,f)+j[(x,£_D,y£) and where the super-
scriptsR and I are used to denote real and imaginary parts,
respectiely.
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Fig. 2. lllustration of the 2-step AMBER algorithm.

The update frequency, and consequently the convergence
speed, of the origind AMBER is proportional to error proba
bility. Although we have incorporated an update threshold 1 to
increase its convergence speed, a further increase in convergence
speed may be realized by applying the dual-sign concept [7].
Instead of a single step size, we may use multiple step sizes such
that updates occur more often. For example, a 2-step AMBER
uses | and Py for thresholds t; and 1y, asillustrated in Fig. 2.

IV. EXAMPLES

Wefirst consider a4-PAM channel with severe |SI character-
ized by the transfer function H(z) = 0.66 + 2% —0.6622. InFig. 4
we plot symbol-error probability versus SNR = 3|h;| /o for
three different five-tap linear equalizers. the MM SE equalizer,
the exact minimume-error-probability (EMEP) equalizer, and the
AMBER equalizer. In all cases the delay is D =3, which is
optimal for the MM SE equalizer. The coefficients of the MM SE
and EMEP equalizers were calculated exactly, whereas the
AMBER coefficients were obtained via the stochastic update (9),
with p=0.0002, T=0.05, and 10 training symbols. The
symbol-error probability for all three equalizers was then evalu-
ated using (2). Observe from Fig. 3 that the performance of
AMBER is virtualy indistinguishable from that of the EMEP
equalizer, and that the AMBER equalizer outperforms the
MM SE equalizer by over 14 dB at high SNR.

We now consider a 16QAM system with channel H(z) = (0.5
+0.3)+(1.2+0.9)21 —(0.6+04)z2. In Fig.4 we plot
symbol-error probability versus SNR for a four-tap linear
MMSE equdizer and a four-tap linear AMBER equalizer. The
MMSE delay D = 3 is used in both cases. The coefficients of the
MMSE equalizer are exact, whereas the AMBER coefficients
were obtained via (9) with p = 0.0002, T = 0.05, and 108 training
symbols. Both curves were obtained using Monte-Carlo tech-
niques, averaged over 30 x 108 trials. Observe that AMBER out-
performs MM SE by more than 6 dB.

In Fig. 5 and Fig. 6 we plot the first quadrant of the noiseless
16-QAM constellation diagrams after the AMBER and MM SE
equalizers, respectively. The equalizers are scaled to have the
same norm and therefore the same noise enhancement. Observe
that the distance between the AMBER clouds is greater than the
distance between the MM SE clouds. Thus, although the MSE of
the AMBER equalizer is 0.5dB higher than the MSE of the
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Fig. 3. Performance comparison for the 4-PAM example.
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Fig. 4. Performance comparison for the 16-QAM example.

MMSE equalizer, the symbol-error probability is smaller by a
factor of 17.

In Fig. 7, we compare the convergence rate of the LMS,
AMBER, and 3-step AMBER algorithms for the channel H(z) =
0.6 + z& with SNR = 30 dB. All equalizers have three taps and
D=3. A step size of p = 0.0005 is used for the LMS and
AMBER algorithms, while a threshold of T = 0.1 is used for
AMBER. For the 3-step AMBER, we use 4; = 0.002, 4, = 0.001,
and P = 0.0005 for 1; = 0, Ty = 0.05, and 15 = 0.1. We see that
the 3-step AMBER converges considerably faster than the
AMBER algorithm.

V. CONCLUSION

We have derived the approximate minimum-BER (AMBER)
adaptive equalization agorithm for higher-order PAM and
QAM. The AMBER algorithm very nearly minimizes error prob-
ability and is less complex than the LM S algorithm. We also pro-
posed avariant of AMBER to increase convergence speed. When
the number of equalizer coefficients is small relative to the
severity of the channel 1SI, the AMBER equalizer significantly
outperforms the MM SE equalizer.



APPENDIX |: PROOF OF LEMMA 1

4 I [ [ . . .
In this appendix we px@ Lemma 1. Equalently because
:::: r,= Hx;, + n;, we can decompose the equality of Lemma 1 into
the folloving three equations:
3 —
CHE T
2L-2. [ Hp*b 20
Ellx,pl= E|QC 0|, 12)
» L HOTTL [ 0 lelo o
.... 2L -2 D‘D+szD
.... Ellz] = =—E| QG |, (13)
1 M 0 lelo o
= am ElIn;,] = - €(e)e, (14)
0 | | | where we hee definec =[x, ..., X4 Dy 1. XD 10 --» XpodgNs 11
0 1 2 3 4 andb =[fo, ... fp_1. fDs1 - fuan1] T by discarding thelf+1)-st
components of;, andf, respectiely.
Fig. 5. Noiseless constellation (first quadrant only) after AMBEI We first prave (12). Let “left”, “right”, and “inner” denote the
equalizer (MSE=—5.4dB, P, = 4.0x 10°) eventsx, p = -L+1,x,p = L—1, andx, p O{£1, £3, ..., +(L-3)},
respectiely. (If L = 2, “inner” is the null @ent.) Then:
4 Ellxp | =Ellx;, p |leftIPlleft] + ElLx;, 1 | right]P[right]+
EllIx,_p linnedPlinnerd
sl - —LL+ e Ieft]+LT_1 E[l| right]+LT‘2 Ellx;,p | inned.(15)
Butl is independent of, , whenx,_p is an inner point, so:
2 - EllIx;, p linned = E[I linnedE[x;_p linned = E[I | inner x 0 = 0.(16)
Thus, (15) reduces to:
1 Ellx;,pl= L-1 E—E[II left] + E[I | right] %
L g C
L-1C T, , T T, ., T L
0 | | | =—E—[—(—Pr[b z+c ny>[pl)+Prlb'z +c'ny <—fplC
0 1 2 3 4 L C
L-1 [E EfD—szE . [fD+szE C
Fig. 6. Noiseless constellation (first quadrant only) after MMSE - L E QD lelo g * QD lelo O E
equalizer (MSE=-5.9dB, P, = 69.6x 107°.) ’
_ Op+tb 20
_2L-2p oD 24 (17)
1 L g lelo g
-
- L The last equality follws because and—-z have the same distri-
2 107 . bution. This proes (12). Nov we prove (13):
e}
o _
T 102 MMSE BER Ellz] = L Ellz1left) + £ Ellz1right] + Z=2 B[Izlinneil  (18)
o L L L
@
£ 107 [0 T N AT A 1
o = 7E [E[Ilz, leftlz + ElI |z, rightlz + (L 2)E[ |z, inner]z] (19)
w
- —4
o 107 L T T
@ I oy =2, 1 fp-b 20 [fp+b 20
= Minimum-BER ==-E [—Q =710z + Q(————T"[2
= o | Lo g Telo o~ "~ Telo o
0 5000 10000
TIME L-2 Q2 +sz% DcD_szE £ (20)
+ (L - — 2
£°0 lelo g °p lelo (¢ ]

Fig. 7. Corvemgence of LMS, AMBER, and 3-step AMBER
algorithms.
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We now prove (14). First observe that:

Elln;l = S Ellny|1=1,2= 21PlI=12=21+
S Elln,|I=-1 2= APlI=-1,2z=2"1 (22

where we omitted the summation term for I = 0 since it is zero
and where both summationsin (22) are summed over all LM*+N-1
possible z vectors. We will first derive ElIn;, 1T =1, z = 2'1:

Elln,|1=1,z=2"1=Eln,lcTn, <y - b"2!, 2 2L + 1]
= Eln,leTn, < —fp — bT24. (23)

Now let U be any unitary matrix with first column equa to
¢/|le|l. Then n =UTn, has the same tatistics as ny,, namely,
the components of n are i.i.d. zero-mean Gaussian with vari-
ance o2. Furthermore, ¢TU = ||c |le;, Where e; =[100 ... 0],
and n;, = Un. Continuing with (23):

Eln,lI=1,z=21=E[Un 1¢"Un <—fp-bT2} (24)
=UE[n l|¢|ln, <—fp-bT2" (25)
~ T 1
_UE[a1 2 fptb 2
- UE| & ol ) o
~ ~ T 1
_ -n, —n, fptbz
——OUE[?|?>W] 1 (Zn
+b
=—0 ng—zEc/u cll, (28)
g lelo g
e—q2/2 A
where m(n) = ——— = E[X | X>n, XC(0,1)]. We now
J21Q(n)

derive the joint probability P[I = 1, z = 2]:

PlI=12=21=PlI=1l2z=21Plz=2]

T 1
_L-1,Opth 201
L °H lelo g M+N-1°

(29)
Combining (28) and (29), the first summation in (22)
becomes
S Ellny11=1,2=2"1PlI=12=2]
2
~(L-1)o C(fp+b'2) O e
M+N 5% 55 il
LN o 0 2le?0®  Olel

T 2
_(L-og|, Ep*b 2 0 ¢
S TLim | 22 gl
2n 0 2fe|’c® O

(30)

It isnot hard to show that the second summation in (22) turns out
to be the same as (30). Hence, we conclude that

Elln,] = -2=—=

L J2rie]

Oe

Xp (31)
0 2le|’s® O

9L-2 © E[ l}(fp+sz)2D]
e

APPENDIX Il: PROOF OF LEMMA 2

Similar to the derivation in Appendix I, the ensemble average
of (9) with T > 0 isderived to be;

cp1= {1 — pEgleg)ler, + Hgqley), (32

where

(33)

OeTHY —1)°0
(e - Mu]

oo i s
21cy 0 2lex) 0" 0

and

(cp) E[Q@D——:H’%_T%HN] (34)

q-(ep) = x|.

o 0 fedlo O
We see that if the norm of ¢, is sufficiently small relative to T,
£(ep) is effectively zero and (32) becomes c¢;,, 1= ¢;, + Hgqley).
But, as shown in [5], ¢(c;) is a vector with a non-zero lower-
bounded norm; hence, the norm of e cannot shrink to zero.
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