
Abstract — We propose theapproximate minimum-bit-
error-rate (AMBER) algorithm for adapting the coefficients of a
linear equalizer with pulse-amplitude and quadrature-amplitude
modulation. While less complex than the least-mean-square
algorithm, AMBER very nearly minimizes error probability in
white Gaussian noise, and can significantly outperform the min-
imum-mean-squared-error equalizer when the number of equal-
izer coefficients is small relative to the severity of the
intersymbol interference.

I. INTRODUCTION

The most popular design strategy for finite-tap linear equal-
ization with memoryless detection is the minimum mean-
squared-error (MMSE) strategy. However, a better strategy is to
choose the equalizer coefficients to minimize error probability
directly [1–3]. Prior adaptive equalization algorithms for mini-
mizing error probability were restricted to binary modulation
[3][4], and some were high in complexity [3]. In this paper we
propose the approximate minimum-bit-error-rate (AMBER)
algorithm, a generalization of the binary adaptation algorithm of
[4] to multilevel pulse-amplitude modulation (PAM) and higher-
order quadrature amplitude modulation (QAM).

Although the least-mean square (LMS) algorithm for mini-
mizing MSE has low complexity, several variations of LMS have
been devised to reduce complexity even further, such as the sign
LMS [6] and dual-sign LMS [7]. We will show that the AMBER
algorithm is remarkably similar in form to these LMS-based
algorithms, despite the fact that it originates from a minimum-
BER criterion rather than a desire to reduce complexity. In par-
ticular, the AMBER algorithm can be viewed as the sign LMS
algorithm modified to update only when a decision error is made.

This paper is organized as follows. In Sect.II, we present
models for the channel and equalizer. In Sect.III, we propose the
approximate minimum-BER algorithm for PAM and QAM. In
Sect.IV, we present numerical results showing that the proposed
algorithm very nearly minimizes error probability, outper-
forming the MMSE equalizer by 14dB in one example.

II. PROBLEM STATEMENT

We consider the linear discrete-time system depicted in
Fig. 1, where the channel input symbolsxk are drawn indepen-
dently and uniformly from theL-ary PAM alphabet{ ±1, ±3, …,

±(L – 1)} , hk is the FIR channel impulse response nonzero for
k = 0 … M only, andnk is white Gaussian noise with power spec-
tral densityσ2. The equalizer output isyk = cTrk, wherec is a
vector ofN equalizer coefficients andrk = Hxk + nk is a vector
of channel outputs, whereH is an N × (M + N) matrix with
Hij = hj–i, xk = [xk … xk–M–N+1]T is a vector of channel inputs,
andnk is the noise vector. The decision k–D about symbolxk–D
is determined by quantizing the equalizer outputyk, whereD
accounts for the delay of both the channel and the equalizer.

Let f T = cTH = [f0 … fM + N – 1] denote the overall impulse
response. The noiseless equalizer output is then:

f Txk = fDxk–D + fixk – i. (1)

The first termfDxk–D represents the desired signal, whereas the
second term represents interference. Because the probability dis-
tribution of the interference term is symmetric, the optimal deci-
sion thresholds after any equalizer are{0, ± 2 fD, …, ± (L – 2)fD}.

Let  denote a random vector with distribution
p( ) = p(xk|xk – D = 1), i.e.,  is uniformly distributed over the
set ofLM + N – 1 L-ary xk vectors for whichxk – D = 1. It can then
be shown that, with optimal decision thresholds, the probability
of symbol error after any equalizer is:

Pe(c) = E , (2)

whereQ is the Gaussian error function. Observe that the error
probability depends onc only through the ratioc ⁄ ||c ||.

In the sections that follow we develop an adaptive algorithm
for finding c so as to approximately minimize the error proba-
bility (2). We will restrict consideration toequalizable channels
for which there exists an equalizer capable of opening the noise-
less eye diagram;i.e., there exists ac such thatcTH > 0 for all
L-ary vectors  for whichxk–D = 1.

 Fig. 1. System block diagram.
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III. APPROXIMATE MINIMUM-BER EQUALIZATION

By setting to zero the gradient of (2) with respect to the
equalizerc, we find that thec minimizing error probability must
satisfy the fixed-point relationshipc = ag(c) for some a > 0,
where the vector functiong : N → N is defined by:

g(c)  E (3)

 ≈ E q(c). (4)

In (4) we define the functionq(c) that approximatesg(c) by
replacing0.5  by Q(x). It can be shown [5] that, although
there may be numerous unit-norm solutions to the fixed-point
equationc = ag(c) for a > 0, there is onlyone unit-norm solution
to c = aq(c) for a > 0; call it cAMBER. And while this equalizer
no longer minimizes BER exactly, the accuracy with whichQ(x)
approximates0.5  for small x suggests thatcAMBER
closely approximates the minimum-BER equalizer. The simula-
tion results of Sect.IV substantiate this claim.

Here we propose a numerical algorithm to recover cAMBER.
In fact, it can be proven [5] that the following algorithm is guar-
anteed to converge to the direction of the unique unit-norm
vectorcAMBER satisfyingc = aq(c) for a > 0:

ck+1 = ck + µq(ck), (5)

whereµ is a positive step size.

Let us introduce an error indicator functionI(xk–D , yk) to indi-
cate thepresence andsign of an error:I = 0 if no error occurs,
I = 1 if an error occurs becauseyk is too negative, andI = –1  if an
error occurs becauseyk is too positive. In other words:

I = (6)

Lemma 1. The ensemble averageE[Irk] is as follows:

E[Irk] = (7)

where is some positive constant.

Proof:     The proof of Lemma 1 is in Appendix I.

We can use the indicator function of (6) to approximate the
deterministic update equation of (5):

ck+1 = ck + µq(ck)
= ck + µE[I rk]
≈ ck + µE[I rk] (8)

where the inequality in (8) is accurate whenµε(c)  is small.
Removing the expectation in (8) leads to:

ck+1 = ck + µ I rk. (9)

We refer to this stochastic update as theapproximate minimum-
BER (AMBER) algorithm. WhenL = 2, (9) reverts back to the
binary algorithm proposed in [4]. We remark that (9) has the
same form as the LMS algorithm, except thatILMS = xk–D – yk.
Observe that AMBER is less complex than LMS, because (9)
does not require a floating-point multiplication. AMBER can be
viewed as the sign LMS algorithm [6] modified to update only
when a symbol decision error is made.

The indicator functionI in (9) requires knowledge of fD,
which changes with time asc is being updated. LetD(k) denote
the estimate offD at timek. For a givenxk–D , the equalizer output
yk has meanfDxk–D , so that the ratioyk ⁄ xk–D has meanfD. We
can trackfD using a simple moving average:

D(k + 1) = (1 – λ) D(k) + λ , (10)

whereλ is a small positive step size. The detection thresholds are
then{0, ± 2 D(k), …, ± (L – 2) D(k)}.

Because the AMBER algorithm (9) updates only when an
error occurs (i.e., whenI ≠ 0), the convergence rate will be slow
when the error rate is low. To increase convergence speed, we
can modify AMBER so that the equalizer updates not only when
an error is made, but also when an error isalmost made,i.e.,
when the distance between the equalizer output and the nearest
decision threshold is less than some small positive constantτ.
Mathematically, the modified indicator function isIτ = 1 if yk <

(xk–D  – 1) fD + τ andxk–D ≠ – L + 1, Iτ = –1  if yk > (xk–D  + 1)fD –  τ
andxk–D ≠ L – 1 , andIτ = 0 otherwise. Whenτ = 0, the modified
AMBER algorithm reverts to (9). Besides increasing the conver-
gence rate of AMBER, a positive τ prevents||ck || from possibly
shrinking to zero.

Lemma 2. If τ > 0 in (9), ||ck|| does not shrink to zero.

Proof:     The proof of Lemma 2 is in Appendix II.

Although a formal proof of global convergence for the
AMBER algorithm withτ > 0 is not available, simulation results
suggest the following conjecture:

Conjecture. If the channel is equalizable, there exists a suf-
ficiently small step sizeµ  such that the modified AMBER
algorithm globally converges to a unique vector.

Generalizing AMBER toL2-QAM is straightforward, since
the in-phase and quadratic components of a QAM system can be
viewed as two parallel PAM systems. The complex form of
AMBER is:

ck+1 = ck + µ I , (11)

where I = I( , ) + jI( , ) and where the super-
scripts R and I are used to denote real and imaginary parts,
respectively.
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The update frequency, and consequently the convergence
speed, of the original AMBER is proportional to error proba-
bility. Although we have incorporated an update threshold τ to
increase its convergence speed, a further increase in convergence
speed may be realized by applying the dual-sign concept [7].
Instead of a single step size, we may use multiple step sizes such
that updates occur more often. For example, a 2-step AMBER
uses µ1 and µ2 for thresholds τ1 and τ2, as illustrated in Fig. 2.

IV. EXAMPLES

We first consider a 4-PAM channel with severe ISI character-
ized by the transfer function H(z) = 0.66 + z–1  – 0.66z–2 . In Fig. 4
we plot symbol-error probability versus SNR = ∑k

2 ⁄ σ2 for
three different five-tap linear equalizers: the MMSE equalizer,
the exact minimum-error-probability (EMEP) equalizer, and the
AMBER equalizer. In all cases the delay is D = 3, which is
optimal for the MMSE equalizer. The coefficients of the MMSE
and EMEP equalizers were calculated exactly, whereas the
AMBER coefficients were obtained via the stochastic update (9),
with µ = 0.0002, τ = 0.05, and 106 training symbols. The
symbol-error probability for all three equalizers was then evalu-
ated using (2). Observe from Fig. 3 that the performance of
AMBER is virtually indistinguishable from that of the EMEP
equalizer, and that the AMBER equalizer outperforms the
MMSE equalizer by over 14 dB at high SNR.

We now consider a 16QAM system with channel H(z) = (0.5
+ 0.3j) + (1.2 + 0.9j)z–1 – (0.6 + 0.4j)z–2 . In Fig. 4 we plot
symbol-error probability versus SNR for a four-tap linear
MMSE equalizer and a four-tap linear AMBER equalizer. The
MMSE delay D = 3 is used in both cases. The coefficients of the
MMSE equalizer are exact, whereas the AMBER coefficients
were obtained via (9) with µ = 0.0002, τ = 0.05, and 106 training
symbols. Both curves were obtained using Monte-Carlo tech-
niques, averaged over 30 × 106 trials. Observe that AMBER out-
performs MMSE by more than 6 dB.

In Fig. 5 and Fig. 6 we plot the first quadrant of the noiseless
16-QAM constellation diagrams after the AMBER and MMSE
equalizers, respectively. The equalizers are scaled to have the
same norm and therefore the same noise enhancement. Observe
that the distance between the AMBER clouds is greater than the
distance between the MMSE clouds. Thus, although the MSE of
the AMBER equalizer is 0.5 dB higher than the MSE of the

MMSE equalizer, the symbol-error probability is smaller by a
factor of 17.

In Fig. 7, we compare the convergence rate of the LMS,
AMBER, and 3-step AMBER algorithms for the channel H(z) =
0.6 + z–1  with SNR = 30 dB. All equalizers have three taps and
D = 3. A step size of µ = 0.0005 is used for the LMS and
AMBER algorithms, while a threshold of τ = 0.1 is used for
AMBER. For the 3-step AMBER, we use µ1 = 0.002, µ2 = 0.001,
and µ3 = 0.0005 for τ1 = 0, τ2 = 0.05, and τ3 = 0.1. We see that
the 3-step AMBER converges considerably faster than the
AMBER algorithm.

V. CONCLUSION

We have derived the approximate minimum-BER (AMBER)
adaptive equalization algorithm for higher-order PAM and
QAM. The AMBER algorithm very nearly minimizes error prob-
ability and is less complex than the LMS algorithm. We also pro-
posed a variant of AMBER to increase convergence speed. When
the number of equalizer coefficients is small relative to the
severity of the channel ISI, the AMBER equalizer significantly
outperforms the MMSE equalizer.
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 Fig. 2. Illustration of the 2-step AMBER algorithm.
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 Fig. 3. Performance comparison for the 4-PAM example.
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 Fig. 4. Performance comparison for the 16-QAM example.
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APPENDIX I: PROOF OF LEMMA 1

In this appendix we prove Lemma 1. Equivalently, because
rk= Hxk + nk, we can decompose the equality of Lemma 1 into
the following three equations:

E[Ixk–D ] = E , (12)

E[Iz] = E , (13)

E[Ink] = – ε(c)c, (14)

where we have definedz = [xk, …, xk–D+ 1, xk–D– 1, …, xk–M–N+ 1]T

andb = [f0, …, fD– 1, fD+1, …, fM+N– 1]T by discarding the (D+1)-st
components ofxk andf, respectively.

We first prove (12). Let “left”, “right”, and “inner” denote the
eventsxk–D = – L +1, xk–D = L – 1, andxk–D  ∈{ ±1, ±3, …, ±(L– 3)} ,
respectively. (If L = 2, “inner” is the null event.) Then:

E[Ixk–D ] =E[Ixk–D |left]P[left] + E[Ixk–D |right]P[right]+
E[Ixk–D |inner]P[inner]

= E[I|left] + E[I|right] + E[Ixk–D |inner].(15)

But I is independent ofxk–D  whenxk–D  is an inner point, so:

E[Ixk–D |inner] = E[I|inner]E[xk–D |inner] = E[I|inner] × 0 = 0.(16)

Thus, (15) reduces to:

E[Ixk–D ]= –E[ I|left] + E[I|right]

= – (–Pr[ bTz + cTnk > fD]) + Pr[bTz + cTnk < – fD]

= E + E

= E . (17)

The last equality follows becausez and– z have the same distri-
bution. This proves (12). Now we prove (13):

E[Iz] = E[Iz|left] + E[Iz|right] + E[Iz|inner] (18)

= E E[I|z, left]z + E[I|z, right]z + (L –2)E[ I|z, inner]z (19)

= E – Q z + Q z

+ (L – 2) Q – Q z (20)
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 Fig. 5. Noiseless constellation (first quadrant only) after AMBER
equalizer. (MSE= –5.4dB, Pe = 4.0× 10–5.)
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 Fig. 6. Noiseless constellation (first quadrant only) after MMSE
equalizer. (MSE= –5.9dB, Pe = 69.6× 10–5.)

 Fig. 7. Convergence of LMS, AMBER, and 3-step AMBER
algorithms.
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= E . (21)

We now prove (14). First observe that:

E[Ink] = E[Ink|I = 1, z = zl] P[I = 1, z = zl] +

E[Ink|I = – 1, z = zl] P[I = – 1, z = zl] (22)

where we omitted the summation term for I = 0 since it is zero
and where both summations in (22) are summed over all LM+N– 1

possible z vectors. We will first derive E[Ink|I = 1, z = zl]:

E[Ink|I = 1, z = zl] = E[nk|cTnk < – fD – bTzl, xk–D ≠ – L + 1]
= E[nk|cTnk < – fD – bTzl]. (23)

Now let U be any unitary matrix with first column equal to
c ⁄ || c ||. Then = UTnk has the same statistics as nk, namely,
the components of  are i.i.d. zero-mean Gaussian with vari-
ance σ2. Furthermore, cTU = || c ||e1, where e1 = [1 0 0 … 0],
and nk = U . Continuing with (23):

E[nk|I = 1, z = zl]= E[U |cTU < – fD – bTzl] (24)

 = UE[ ||| c || < – fD – bTzl] (25)

 = UE | > (26)

 = – σUE | > e1 (27)

 = – σ c ⁄ || c ||, (28)

where m(η) = E[X | X ≥ η, X∼N (0,1)]. We now

derive the joint probability P[I = 1, z = zl]:

P[I = 1, z = zl]= P[I = 1|z = zl] P[z = zl]

 = . (29)

Combining (28) and (29), the first summation in (22)
becomes

E[Ink|I = 1, z = zl] P[I = 1, z = zl]

=

= . (30)

It is not hard to show that the second summation in (22) turns out
to be the same as (30). Hence, we conclude that

E[Ink] = – . (31)

APPENDIX II: PROOF OF LEMMA 2

Similar to the derivation in Appendix I, the ensemble average
of (9) with τ > 0 is derived to be:

ck+1= {1 – µετ(ck)}ck + µqτ(ck), (32)

where

ετ(ck) = (33)

and

qτ(ck) = . (34)

We see that if the norm of ck is sufficiently small relative to τ,
ετ(ck) is effectively zero and (32) becomes ck+1= ck + µqτ(ck).
But, as shown in [5], qτ(ck) is a vector with a non-zero lower-
bounded norm; hence, the norm of c cannot shrink to zero.
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