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Abstract — Despite the widespread use of forward-err or
control (FEC) coding,mostchannelestimation techniquesignore
its presence,and instead make the simplifying assumption that
the transmitted symbols are uncoded. However, FEC induces
structur e in the transmitted sequencethat can be exploited to
impr ove channel estimates.Furthermor e, soft-output decoding
can impr ovedecision-driven techniques.In this work wepropose
a technique for exploiting FEC in channel estimation that
combines iterati ve channel estimation with turbo equalization.
We presentoneexampleshowing that an estimator that exploits
FEC can attain the sameaccuracyas one that ignoresFEC, but
with an SNR that is 6 dB lower.

I. I NTRODUCTION

Practical communications systems use forward-error
control (FEC)coding,which restrictsthepossibletransmitted
sequencesso as to increasetheir minimum distance,thus
reducingthe signal-to-noiseratio (SNR) requiredto attain a
given bit-error rate.Nevertheless,the presenceof FEC codes
is seldomexploited in decision-directedandblind estimation
techniques.Rather, mostestimatorsassumethechannelinputs
are independent,identically distributed (i.i.d.) over a finite
alphabet.A likely explanationfor this assumptionis that, at
sufficiently high SNR, even decision-directedblind iterative
estimationtechniquesthatignoreFECcanperformwell [1,2].
There is then little incentive to incur the extra complexity
requiredto exploit FEC.However, thelastdecadehasseenthe
discovery of powerful FEC techniquesthat, with reasonable
complexity, allow reliable transmissionat an SNR only
fractionsof a dB from channelcapacity[3-5]. Whenpowerful
codesareusedat low SNR,estimationtechniquesthat ignore
FEC are doomed to fail.

There is little prior work that relates FEC to channel
estimation.In [6] it wasshown thatFEC,thoughviolating the
i.i.d. assumption,doesnothurt theperformanceof someblind
equalizersthat rely on this assumption.However, practical
blind estimatorsthat benefit from FEC were unknown until
the estimatorsof [7-10] were proposed.These techniques
combine the good performanceof blind iterative channel
estimation[1,2], shown in Fig. 1(a), and turbo equalization
[11–13], shown in Fig. 1(b). Iterative channel estimation

ignores FEC, and turbo equalization ignores channel
estimation.As illustratedin Fig. 1(a) and(b), both arebased
on an iterative exchange of information between blocks.

In Fig. 1(a), the symbol estimator uses the channel
estimates to compute soft estimates of the transmitted
sequence.The channelestimatorthenusesthesesoft symbol
estimatesto improve the channelestimates,which in turn
producebettersymbolestimates,andso on. Likewise, in the
turboequalizerof Fig. 1(b), soft symbolinformationfrom the
FEC decoderis usedas a priori information to improve the
soft symbol estimatesproduced by the equalizer. These
estimatesin turn arethenpassedagain to thedecoder, andso
on. In this work, the two techniquesof Fig. 1(a) and(b) will
be combinedinto a single, practical methodfor exploiting
FEC in blind channel estimation.

The FEC-aware schemesof [7-10] were basedon the
channelestimatorof [1]. In contrast,we proposea blind
iterative FEC-aware channelestimatorbasedon the channel
estimatorof [2], which haslower complexity and improved
convergenceperformance,beinglesslikely to becometrapped
in a undesirablestationary point of the iterative scheme.
Furthermore,the soft-outputequalizerin [7-10] is basedon
theBCJRalgorithm[8], which hascomplexity exponentialin
the channel memory. In contrast, we propose a low-
complexity soft-output equalizer based on a modified
decision-feedbackequalizer(DFE) [14] whichhascomplexity
linear in the number of equalizer coefficients, making it
feasibleto apply the proposedtechniquesto channelswith
severe ISI.

 Fig. 1. A blind iterative channel estimator (a) iterates between
channel estimation and equalization; a turbo equalizer (b)
iterates between equalization and decoding.
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II. CHANNEL MODEL AND PROBLEM STATEMENT

Considerthesystemmodelshown in Fig. 2, wherea binary
messagem = [m0, …, mK–1] of lengthK is encodedby a rate
K ⁄ N encoder, producinga codeword c = [c0, …, cN–1] of
length N, with eachsymbol drawn from the binary alphabet
{ ±1}. The codeword is then permuted according to an
interleaverπ, resultingin thetransmittedsequencea = [a0, …,
aN–1], with ak = cπ(k). Let r = [r0, …, rL – 1] denotethe
received sequence, whereL = N + µ, and where:

rk = hTak + nk , (1)

wherethechannelimpulseresponseis h = [h0, …, hµ]T, ak =
[ak, …, ak–µ]T is a vectorof channelinputs,andnk ~ N(0, σ2)
represents the white Gaussian noise.

Theblind estimation problem is to estimateh andσ2 from
r, without the assistanceof training (i.e., without knowledge
of m). Instead,theestimatormustrely solelyon its knowledge
of the probability distribution function (pdf) of m, assumed
hereto beuniform,knowledgeof theencoderandinterleaver,
andknowledgeof thechannelmodel(1). The joint maximum-
likelihood estimator [15] would chooseh, σ2, andm soasto
jointly maximizep(r|m; h, σ2), theconditionalpdf of r given
h, σ2, andm. Its complexity is prohibitive,however, andthus
we seek lower complexity approximations.

III. STATE OF THE ART

Unlike the joint ML estimator, a conventional receiver
separatesthe tasksof channelestimation,equalizationand
FEC decoding: first the channel is estimated, then the
transmittedsequenceis equalized,and finally the equalized
sequenceis decoded.This approach is suboptimal, and
performancecanbe improved with iterative techniquessuch
as turbo equalizersand iterative channelestimators.In this
section we briefly review these two techniques.

A key ingredientof iterative algorithmsis the useof soft
information,which, for a BPSKsystem,takestheform of the
log-likelihood ratio (LLR):

λk = log . (2)

The LLR fully describesthe a posteriori probability (APP)
Pr(ak|r) of ak. TheBCJRalgorithm[8] computesλk exactly,
while the decision-aidedequalizer[16] and the soft-output
DFE [2] provide reduced-complexity approximations.The
LLR can be used to compute two important quantities:

• Maximuma posteriori (MAP) decision: = sign(λk) ,

• A posteriori expectation: = E[ak|r] = tanh(λk ⁄ 2) .

A. Blind Iterative Channel Estimators [1-2]

Theblind channelestimationproblemcanbesimplifiedby
ignoring the presenceof the code,andinsteadassumingthat
the transmitsymbolsare i.i.d. uniform, and choosingh, σ2,
anda so asto jointly maximizethe likelihoodp(r|a; h, σ2).
Even this simplified ML estimator is infeasible when the
codeword length N is large, however, sinceit would require
that all 2N possiblesequencesa be tested.Blind iterative
channel estimatorsbasedon the expectation-maximization
(EM) algorithm[1] computea sequenceof estimates and

with non-decreasinglikelihood,andhencecanconverge
to the simplified ML solution with proper initialization.

The EM algorithm has high complexity and is prone to
beingcaughtin a local maximumof the likelihoodfunction.
To mitigate these problems, the extended-window EM
algorithmwasproposed[2]. Let = E[ak|r; , ] be
anestimateof thea posteriori expectedvalueof ak, computed
by the symbol estimator at iteration i assumingthat the
channeland noisestandarddeviation are given by and

. Given , the extended-window channel estimator
computes

gn = rk , for n ∈{ –µ, …, 2µ} . (3)

Thenew channelestimatefor iterationi + 1 is thentakento be
(i+1) = [gδ, …, gδ + µ]T, whereδ ∈{ –µ, …, µ} is chosensoas

to maximize the energy of (i+1). The noise variance is
computed as:

, (4)

where = [sign( ), …, sign( )]T.

B. Turbo Equalizers [11-13]

As seenin Fig. 1(b), a turbo equalizer is basedon the
exchange of information between the equalizer and the
decoder. Key to its successis the fact that only extrinsic
informationis exchanged.Theextrinsic informationprovided
by the equalizer can be seen as the information on the
transmittedbits gainedat the equalizingstageby exploiting
only the structure of the channel.Similarly, the extrinsic

 Fig. 2. Transmitter and channel model.
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âk

ãk
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informationprovidedby thedecodercontainstheinformation
aboutthe transmittedbits that wasnot apparentto the FEC-
ignorant equalizer. The equalizer and decoder use this
extrinsic informationasa priori informationto computenew
valuesfor λk. The extrinsic information, denotedby , is
computedasthedifferencebetweenthis new valueof λk and
the extrinsic information used in its computation.

An ideal receiver that jointly equalizesanddecodeswould
find the information sequencem that maximizesp(r|m).
Solving this problemexactly is computationallyhard, since
the presenceof the interleaver implies that the number of
statesin the joint encoder⁄ channelsuper-trellis would be
large. Turbo equalization provides a low-complexity
approximation.

C. FEC-Aware Blind Channel Estimation

One important aspect of turbo equalizers is that they
provide soft estimatesof thetransmittedsequencethatbenefit
from theFECcodestructure,andaremuchmorereliablethan
theestimatesprovidedby anequalizeralone.Its seemsnatural
that using this information for channel estimation should
provide better results than using FEC-ignorant symbol
estimates,as is done in Fig. 1(a). Thus, we propose the
channelestimatorof Fig. 3, in which thesymbolestimatorin
Fig. 1(a) is replaced by the turbo equalizer of Fig.1(b).

The proposedestimatorof Fig. 3 iteratesbetweenthree
blocks:achannelestimator, asoft-outputequalizer, andasoft-
outputFEC decoder. A receiver would have to performthese
functionsanyway, so their presencealonedoesnot imply any
addedcomplexity; the only addedcomplexity is due to fact
that these functions are performed multiple times as the
algorithmiterates.Theproposedestimatoris astraightforward

combination of the FEC-ignorantestimator of [2] with a
conventionalturbo equalizer, but with two distinctions.First,
eachinstanceof the turbo equalizermay involve only one
iteration.Second,the a priori informationfor the soft-output
equalizeris not initialized to zero for eachinstanceof the
turboequalizer, but instead,extrinsic informationfrom thelast
instance is used as the initial a priori information in the next.

It is instructive to comparethe proposedestimatorwith a
conventional receiver that performschannelestimationjust
once, then uses theseestimatesin a turbo equalizer. The
proposedestimatorcan be derived from this conventional
receiver by making just onemodification:Ratherthanusing
the initial channelestimatesfor every turbo iteration, the
proposed receiver occasionally improves the channel
estimatesbasedon tentative soft decisions.Specifically, every
J-th iterationof theturboequalizer, thesoft-symbolestimates
producedby the FEC decoderare used in (3) and (4) to
producebetterchannelestimates,which arethenusedfor the
next J iterations.The choiceof J is a designparameterthat
can affect convergence speed, steady-statebehavior, and
overall complexity. Becauseof the low complexity of the
channelestimatorrelative to the complexity of the equalizer
andFEC decoder, we have found empirically that J = 1 is a
reasonablechoice. With this choice, each time the FEC
decoderpassesextrinsic information to the equalizer, the
channelestimatesaresimultaneouslyimproved. This is only
marginally more complex than a conventional receiver that
usesturbo equalization,but the performanceimprovement
that results can abe significant.

IV. SOFT DFE WITH A PRIORI INFORMATION

In [2] we showedhow a DFE canbeusedto approximatea
soft-output BCJR equalizer, but with significantly lower
complexity. We now expandthat ideato incorporatea priori
information,makingit usefulasan innerequalizerin a turbo
equalization system.

Let zk betheoutputof anMMSE-DFEwith rk asits input,
Nf forward tapsand Nb backward taps.This relationshipis
illustrated in Fig. 4. Roughly speaking, the equalizer
eliminatesISI from its output,sothatwemaywrite zk ≈ Aak +
vk, where A is the amplitudeof the equivalent memoryless
channelbetweenak andzk, andvk is theequivalentnoisewith
variance . This noise includesresidual ISI, but we may
approximateit as AWGN. We may thus approximatethe
extrinsic LLR by ≈ 2Azk/ . This extrinsic information
dependsonly on thestructureof theISI channel.Any a priori
informationfrom the FEC decodershouldbe addedto to
producethe full LLR λk. Since the full LLR will provide
much more reliable decisionsthan the extrinsic information
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 Fig. 3. Integrating channel estimation with turbo equalization.
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alone, should be used to compute symbol estimates in the
feedback loop of the DFE, as illustrated in Fig. 4.

Computation of the coefficient vectors f and b is easy if the
channel is known [14, p. 542]. Obviously, the channel
information is not available, but in keeping with the iterative
paradigm of Fig. 3 we may compute f and b using the current
estimates and . We also propose to use the soft
information = tanh(λk ⁄ 2), as opposed to the traditional
hard information coming from a slicer, in the feedback loop.
As in [2], we estimate A and using a scalar channel version
of EM.

V. SIMULATION RESULTS

In this section we present simulation results that illustrate
the performance of the proposed estimation algorithm. For all
the experiments, the channel estimates were initialized by
measuring the energy of the received signal, and assigning
half to signal and half to noise, yielding = ⁄ (2L)
and  = [ , 0, …, 0].

We begin by showing how exploiting FEC can improve
channel estimates. Consider the system of Fig. 2, and assume
that K = 2048 bits are encoded by a rate 1 ⁄ 2 recursive
systematic convolutional (RSC) code with parity generator
polynomial (1 + D2) ⁄ (1 + D + D2). The resulting 4096 coded
bits are interleaved with a random interleaver and transmitted
through an ISI channel with h = [0.5, 0.7, 0.5]. We use the
DFE-based soft-output equalizer of the previous section, with
Nf = 15 forward and Nb = 2 feedback coefficients.

In Fig. 5 we plot the mean-square estimation error
MSE = E[|| – h ||2] as a function of the per-bit SNR Eb ⁄ N0
after five iterations, for both the proposed estimator that
exploits FEC as well as an iterative blind estimator [2] that
ignores FEC. Also shown are the same two curves when the
DFE is replaced by BCJR. We see that the DFE-based
estimator that exploits FEC can attain the same level of

accuracy as the one that ignores FEC, but with an SNR that is
6 dB lower. Furthermore, the DFE-based estimator that
exploits FEC requires only 2 dB more SNR than the a BCJR-
based estimator that exploits FEC, to achieve the same MSE.

It is also interesting to note that the bit-error rate (BER)
performance of the proposed blind schemes are comparable to
that of a receiver with full channel knowledge. This can be
seen in Fig. 6, where we plot the BER versus Eb/N0 for
several iterations of the DFE-based and BCJR-based turbo
equalizers with channel knowledge, as well as the channel
estimators based on these two algorithms. We see that as the
number of iterations increases, the gap between the blind and
the non-blind equalizers decreases, until it is almost closed.
The blind scheme is seen to converge in about the same

λ́d

 Fig. 4. A soft-output equalizer based on a MMSE-DFE.
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ãk

σv
2

σ̂ 0( )
2 rk

2

k 0=

L 1–∑
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numberof iterationsasthe schemewith channelknowledge.
Furthermore, we again see that the DFE-based system
requiresonly 2 dB moreSNRthantheBCJR-basedonefor a
BER of 10–2 . Another important featuremadeclear in this
plot is thegoodusethat theproposedDFE makesof a priori
information,as evidencedby the 5 dB gap betweenthe first
and last iteration of the DFE-basedsystem with channel
knowledge.

To analyzetheperformanceof thechannelestimatoracross
different channels, we tested its performance over an
ensembleof 1000randomlygeneratedchannels.In eachcase,
K = 400 messagebits were encodedby a rate 1 ⁄ 4 serially
concatenatedturbo code using two identical rate 1 ⁄ 2 RSC
encoders,eachwith parity generator(1 + D2) ⁄(1 + D + D2).
The channelswere generatedrandomly according to h =
u ⁄ ||u||, whereu ~ N(0, I) is a circularly symmetricGaussian
random vector of length five, and the noise variancewas
chosenso that Eb /N0 = 2 dB. The receiver usedthe BCJR
algorithm for both equalizationand decoding. The turbo
decoderwent through only one iteration (J = 1) for each
iteration of the overall scheme.

In Fig. 7, we plot theestimatedprobabilitydensityfunction
pe(e) for the estimationerror e = || – h ||, producedafter 60
iterationsof the FEC-awareand the FEC-ignorantextended-
window channelestimators.We observe that the FEC-aware
estimatorproducederrorslarger than–10dB in only 2.7%of
the experiments,while the errors producedby the FEC-
ignorantestimatorwere larger than –10dB in 82.9%of the
experiments.To test the quality of theseestimates,we used

themto performa turbo equalizationfor eachtrial. After 30
iterations of the turbo equalizer, we could recover the
transmitted codeword without errors for 90.7% of the
channelsusing the FEC-aware estimates,while this was
possible for only 12.3% of the channelsusing the FEC-
ignorantestimates.The benefitof usingFEC informationfor
channel estimation are thus clear.

It is well known that blind channel estimatorscannot
resolve delays.A blind equalizerthatestimates ≈ ak – 1 is
oftenjustasgoodasonethatestimates ≈ ak. However, this
delay is problematicwhenthe transmitterincludesa random
interleaver. For example,if we deinterleave ak – 1 insteadof
ak, the result will bearno resemblancewhatsoever to ck – 1.
TheframeboundariesmustbeidentifiedbeforeFECdecoding
is meaningful.In therandomchannelexperiment,weassumed
perfect frame synchronization. A truly blind frame
synchronizerwould be difficult to implement in practice.
Fortunately, in practicetherewill exist sideinformationfrom
preamblesandpilot symbolsthat canbe usedto synchronize
the frame in a semiblind fashion.

VI. CONCLUSIONS

We proposed a blind iterative channel estimator that
benefitsfrom thepresenceof forward-errorcorrectioncoding.
The benefitscanbe significant.In oneexample,comparedto
anestimatorthat ignoresFEC,anestimatorthatexploits FEC
canattain the sameperformancewith 6 dB lessSNR. In our
simulations,the performanceof the proposedblind schemes
was as good as that of a turbo equalizer with channel
knowledge,andit convergedequallyfast.We alsoproposeda
soft-output equalizerbasedon a DFE that incorporatesa
priori information.Weshowedthat,eventhoughablind FEC-
awareschemebasedon this equalizerperformsslightly worse
than the scheme based on the BCJR algorithm, the
performanceof the DFE-basedsystem improves as the
iterations progress,providing a gain of 5 dB over a non-
iterative system with channel knowledge that employs a
conventional DFE followed by a decoder.
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