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Abstract — Despite the widespread use of forward-err or
control (FEC) coding, mostchannelestimation techniquesignore
its presenceand instead make the simplifying assumption that
the transmitted symbols are uncoded. However, FEC induces
structure in the transmitted sequencethat can be exploited to
improve channel estimates. Furthermor e, soft-output decoding
canimpr ove decision-driventechniques.In this work we propose
a technique for exploiting FEC in channel estimation that
combinesiterati ve channel estimation with turbo equalization.
We presentone exampleshowing that an estimator that exploits
FEC can attain the sameaccuracy as one that ignoresFEC, but
with an SNR that is 6 dB laver.

I. INTRODUCTION

Practical communications systems use forward-error
control (FEC) coding,which restrictsthe possibletransmitted
sequenceso as to increasetheir minimum distance,thus
reducingthe signal-to-noiseratio (SNR) requiredto attaina
given bit-error rate. Neverthelessthe presenceof FEC codes
is seldomexploited in decision-directedndblind estimation
techniquesRather mostestimatorsassumehechanneinputs
are independentjdentically distributed (i.i.d.) over a finite
alphabetA likely explanationfor this assumptions that, at
sufficiently high SNR, even decision-directedlind iterative
estimationtechniqueghatignoreFEC canperformwell [1,2].
Thereis then little incentive to incur the extra compleity
requiredto exploit FEC.However, thelastdecadéhasseenthe
discovery of powerful FEC techniqueshat, with reasonable
compleity, allow reliable transmissionat an SNR only
fractionsof a dB from channelkcapacity[3-5]. Whenpowerful
codesareusedat low SNR, estimationtechniqueghatignore
FEC are doomed tai.

There is little prior work that relates FEC to channel
estimation.n [6] it wasshavn thatFEC,thoughviolating the
i.i.d. assumptiondoesnot hurtthe performancef someblind
equalizersthat rely on this assumption.However, practical
blind estimatorsthat benefitfrom FEC were unknavn until
the estimatorsof [7-10] were proposed.Thesetechniques
combine the good performanceof blind iterative channel
estimation[1,2], shovn in Fig. 1(a), and turbo equalization
[11-13], showvn in Fig. 1(b). Iterative channel estimation
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Fig. 1. A blind iterative channel estimator (a) iterates between
channel estimation and equalization; a turbo equalizer
iterates between equalization and decoding.

ignores FEC, and turbo equalization ignores channel
estimation.As illustratedin Fig. 1(a) and (b), both are based
on an iteratie exchange of information between blocks.

In Fig.1(a), the symbol estimator uses the channel
estimatesto compute soft estimatesof the transmitted
sequenceThe channelestimatorthen usesthesesoft symbol
estimatesto improve the channelestimates,which in turn
producebettersymbol estimatesandso on. Likewise, in the
turboequalizerof Fig. 1(b), soft symbolinformationfrom the
FEC decoderis usedasa priori informationto improve the
soft symbol estimatesproduced by the equalizer These
estimatesn turn arethenpassedagain to the decoderandso
on. In this work, the two techniquef Fig. 1(a) and (b) will
be combinedinto a single, practical methodfor exploiting
FEC in blind channel estimation.

The FEC-avare schemesof [7-10] were basedon the
channelestimatorof [1]. In contrast,we proposea blind
iterative FEC-avare channelestimatorbasedon the channel
estimatorof [2], which haslower compleity andimproved
convergenceperformancebeinglesslik ely to becomerapped
in a undesirablestationary point of the iterative scheme.
Furthermore the soft-outputequalizerin [7-10] is basedon
the BCJRalgorithm|[8], which hascompleity exponentialin
the channel memory In contrast, we propose a low-
compleity soft-output equalizer based on a modified
decision-feedbackqualizet(DFE) [14] which hascompleity
linear in the number of equalizer coeficients, making it
feasibleto apply the proposedtechniquesto channelswith
severe ISI.



Il. CHANNEL MODEL AND PROBLEM STATEMENT

Considerthe systemmodelshowvn in Fig. 2, wherea binary
messagen = [m,, ..., mg_1] of lengthK is encodedby arate
K/N encoder producinga codevord e = [cg, ..., cy_1] Of
length N, with eachsymbol dravn from the binary alphabet
{£1}. The codevord is then permuted according to an
interleaver 11, resultingin thetransmittedsequence = [ay, ...,
an_1l, With a;, = ¢y, Let r = [ry, ..., r_1] denotethe
receved sequence, whefe= N + 1, and where:

rk=hTak +ng,

1)

wherethe channelimpulseresponseés & = [h,, ..., hu]T, a, =
lag, ..., ak_u]T is avectorof channeinputs,andn;, ~ (0, 0?)
represents the white Gaussian noise.

The blind estimation problem is to estimatek anda? from
r, without the assistancef training (i.e., without knowledge
of m). Insteadthe estimatomustrely solelyonits knowledge
of the probability distribution function (pdf) of m, assumed
hereto be uniform, knowledgeof the encodeandinterleaver,
andknowledgeof the channeimodel(1). Thejoint maximum-
likelihood estimator [15] would chooseh, 02, andm soasto
jointly maximizep(r | m; k, %), the conditionalpdf of r given
h, 02, andm. Its compleity is prohibitive, however, andthus
we seek lwer complaity approximations.

I1l. STATE OF THE ART

Unlike the joint ML estimator a corventional recever
separateghe tasksof channelestimation,equalizationand
FEC decoding: first the channel is estimated, then the
transmittedsequenceas equalized,and finally the equalized
sequenceis decoded. This approachis suboptimal, and
performancecan be improved with iterative techniquessuch
as turbo equalizersand iterative channelestimators.In this
section we briefly ndew these tw techniques.

A key ingredientof iterative algorithmsis the use of soft
information,which, for a BPSK system takestheform of the
log-likelihood ratio (LLR):

Pr(a;, = 1|r)
A = log———— . 2
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Fig. 2. Transmitter and channel model.

The LLR fully describesthe a posteriori probability (APP)
Pr(ay | r) of a,. The BCIRalgorithm[8] computes\, exactly,
while the decision-aidedequalizer[16] and the soft-output
DFE [2] provide reduced-compldty approximations.The
LLR can be used to computedwmportant quantities:

* Maximuma posteriori (MAP) decision:a, = sign(A;) ,
 Aposteriori expectation:a, = E[ay | r] = tanh(A,/2) .

A. Blind Iterative Channel Estimators[1-2]

The blind channelestimationproblemcanbe simplified by
ignoring the presenceof the code,andinsteadassuminghat
the transmitsymbolsarei.i.d. uniform, and choosingk, 62,
anda soasto jointly maximizethe likelihoodp(ra; k, 62).
Even this simplified ML estimatoris infeasible when the
codevord length NV is large, however, sinceit would require
that all 2N possible sequences: be tested.Blind iterative
channel estimatorsbasedon the expectation-maximization
(EM) algorithm[1] computea sequencef estimatesh” and
& with non-decreasintjk elihood,and hencecan corverge
to the simplified ML solution with proper initialization.

The EM algorithm has high complity and is prone to
being caughtin a local maximumof the likelihood function.
To mitigate these problems, the extended-windw EM
algorithmwas proposed2]. Let ¢\’ = Elq, Ir; 2", 6”1 be
anestimateof thea posteriori expectedvalueof a;, computed
by the symbol estimator at iteration i assumingthat the
channeland noise standarddeviation are given by 2? and
8. Given 4\, the extended-winde channel estimator
computes

1 <L-1 ~ (i)
En=T ) hoo TRCk-n>

forn O{—, ..., 21} . (3)

Thenew channekestimateor iteration: + 1 is thentakento be
RO =(gs, ..., g5, 10 whered {4, ..., u} is chosersoas
to maximize the enegy of h“D. The noise varianceis
computed as:

(1), T ~

Sy =13 - af, (4)

wherea{” = [sign(a}’ ), ..., sign(a{’;_,)]".

B. Turbo Equalizers[11-13]

As seenin Fig. 1(b), a turbo equalizeris basedon the
exchange of information between the equalizer and the
decoder Key to its successis the fact that only extrinsic
informationis exchangedThe extrinsic informationprovided
by the equalizer can be seen as the information on the
transmittedbits gainedat the equalizingstageby exploiting
only the structure of the channel. Similarly, the extrinsic



informationprovided by the decodercontainsthe information
aboutthe transmittedbits that was not apparento the FEC-
ignorant equalizer The equalizer and decoder use this
extrinsic informationasa priori informationto computenew
valuesfor A,. The extrinsic information, denotedby A, is
computedasthe differencebetweenthis new valueof A, and
the etrinsic information used in its computation.

An ideal recever thatjointly equalizesanddecodesvould
find the information sequencem that maximizesp(r | m).
Solving this problemexactly is computationallyhard, since
the presenceof the interleaver implies that the number of
statesin the joint encoder channelsupettrellis would be
large. Turbo equalization provides a low-compleity
approximation.

C. FEC-Aware Blind Channel Estimation

One important aspectof turbo equalizersis that they
provide soft estimate®f the transmittedsequencehat benefit
from the FEC codestructureandaremuchmorereliablethan
theestimateprovidedby anequalizeralone.lts seemaatural
that using this information for channel estimation should
provide better results than using FEC-ignorant symbol
estimates,as is done in Fig.1(a). Thus, we proposethe
channelestimatorof Fig. 3, in which the symbolestimatorin
Fig. 1(a) is replaced by the turbo equalizer of Rigp).

The proposedestimatorof Fig. 3 iteratesbetweenthree
blocks:achannekstimatora soft-outputequalizeranda soft-
outputFEC decoderA recever would have to performthese
functionsarnyway, sotheir presencealonedoesnotimply ary
addedcomplity; the only addedcompleity is dueto fact
that these functions are performed multiple times as the
algorithmiterates The proposedestimatoiis a straightforvard
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Fig. 3. Integrating channel estimation with turbo equalization

combinationof the FEC-ignorantestimatorof [2] with a
cornventionalturbo equalizey but with two distinctions.First,
eachinstanceof the turbo equalizermay involve only one
iteration. Second the a priori informationfor the soft-output
equalizeris not initialized to zero for eachinstanceof the
turboequalizerbut instead extrinsicinformationfrom thelast
instance is used as the initial a priori information in thd.ne

It is instructve to comparethe proposedestimatorwith a
corventional recever that performs channelestimationjust
once, then usesthese estimatesin a turbo equalizer The
proposedestimator can be derived from this corventional
recevver by making just one modification: Ratherthan using
the initial channelestimatesfor every turbo iteration, the
proposed recever occasionally improves the channel
estimatedasedon tentatve soft decisions Specifically every
J-th iterationof theturbo equalizerthe soft-symbolestimates
producedby the FEC decoderare usedin (3) and (4) to
producebetterchannelestimatesyhich arethenusedfor the
next J iterations.The choiceof J is a designparametethat
can affect corvergence speed, steady-statebehaior, and
overall compleity. Becauseof the low compleity of the
channelestimatorrelative to the compleity of the equalizer
and FEC decoderwe have found empirically thatJ = 1 is a
reasonablechoice. With this choice, each time the FEC
decoderpassesextrinsic information to the equalizer the
channelestimatesare simultaneouslyimproved. This is only
mauginally more comple than a conventional recever that
usesturbo equalization,but the performanceimprovement
that results can abe significant.

I'V. SOFT DFE WITH A PRIORI INFORMATION

In [2] we shoved how a DFE canbe usedto approximatea
soft-output BCJR equalizer but with significantly lower
complity. We now expandthatideato incorporatea priori
information,makingit usefulasaninnerequalizerin aturbo
equalization system.

Let z;, bethe outputof an MMSE-DFE with r;, asits input,
N forward tapsand N, backward taps. This relationshipis
illustrated in Fig.4. Roughly speaking, the equalizer
eliminated S| from its output,sothatwe maywrite z;, = Aa;, +
vy, WhereA is the amplitude of the equivalent memoryless
channebetweery; andz;, andv,, is the equivalentnoisewith
variance o> . This noise includesresidualISI, but we may
approximateit as AWGN. We may thus approximatethe
extrinsic LLR by A, = 2Azk/0§. This extrinsic information
depend®nly on the structureof the S| channel Any a priori
informationfrom the FEC decodershouldbe addedto A, to
producethe full LLR A,. Sincethe full LLR will provide
much more reliable decisionsthan the extrinsic information



alone, A\, should be used to compute symbol estimates in the
feedback loop of the DFE, asillustrated in Fig. 4.

Computation of the coefficient vectors fand b is easy if the
channel is known [14, p. 542]. Obvioudly, the channel
information is not available, but in keeping with the iterative
paradigm of Fig. 3 we may compute f and b using the current
estimates & and 6. We also propose to use the soft
information a, = tanh(A,/2), as opposed to the traditional
hard information coming from a dicer, in the feedback loop.
Asin[2], weestimate A and o> using ascalar channel version
of EM.

V. SIMULATION RESULTS

In this section we present simulation results that illustrate
the performance of the proposed estimation algorithm. For all
the experiments, the channel estimates were initialized by
measuring the energy of the received signal, and assigning
half to signal and half to noise, yielding 6?0) = ZL:I ry /(2L)
and A =16,0, ..., 0l. e

We begin by showing how exploiting FEC can improve
channel estimates. Consider the system of Fig. 2, and assume
that K =2048 bits are encoded by a rate 1/2 recursive
systematic convolutional (RSC) code with parity generator
polynomial (1 + D2)/(1 + D + D?). The resulting 4096 coded
bits are interleaved with a random interleaver and transmitted
through an ISl channel with B = [0.5, 0.7, 0.5]. We use the
DFE-based soft-output equalizer of the previous section, with
N =15 forward and N, = 2 feedback coefficients.

In Fig.5 we plot the mean-square estimation error
MSE = E[|| h— h ||?] as a function of the per-bit SNR E}, /N,
after five iterations, for both the proposed estimator that
exploits FEC as well as an iterative blind estimator [2] that
ignores FEC. Also shown are the same two curves when the
DFE is replaced by BCJR. We see that the DFE-based
estimator that exploits FEC can attain the same level of
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Fig. 4. A soft-output equalizer based on a MM SE-DFE.

accuracy as the one that ignores FEC, but with an SNR that is
6 dB lower. Furthermore, the DFE-based estimator that
exploits FEC requires only 2 dB more SNR than the a BCJR-
based estimator that exploits FEC, to achieve the same MSE.

It is also interesting to note that the bit-error rate (BER)
performance of the proposed blind schemes are comparable to
that of a receiver with full channel knowledge. This can be
seen in Fig. 6, where we plot the BER versus E,/N, for
several iterations of the DFE-based and BCJR-based turbo
equalizers with channel knowledge, as well as the channel
estimators based on these two agorithms. We see that as the
number of iterations increases, the gap between the blind and
the non-blind equalizers decreases, until it is almost closed.
The blind scheme is seen to converge in about the same
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Fig. 6. Bit-error rate versus SNR for both DFE and BCR, both
with channel knowledge and using blind estimates.



numberof iterationsasthe schemewith channelknowledge.
Furthermore, we again see that the DFE-based system
requiresonly 2 dB more SNR thanthe BCJR-base@nefor a
BER of 102. Anotherimportantfeaturemadeclearin this
plot is the goodusethat the proposedFE makesof a priori

information, as evidencedby the 5 dB gap betweenthe first
and last iteration of the DFE-basedsystemwith channel
knowledge.

To analyzethe performancef the channelestimatoracross
different channels, we tested its performance over an
ensemblef 1000randomlygeneratedhannelsin eachcase,
K =400 messagebits were encodedby a rate 1/4 serially
concatenatedurbo code using two identical rate 1/2 RSC
encoderseachwith parity generator1 + D% /(1 + D + D?).
The channelswere generatedrandomly accordingto A =
u/ |ju||, whereu ~ A(0, I) is a circularly symmetricGaussian
random vector of length five, and the noise variance was
chosenso that £, /N, = 2 dB. The recever usedthe BCJR
algorithm for both equalizationand decoding. The turbo
decoderwent through only one iteration (J/ = 1) for each
iteration of the werall scheme.

In Fig. 7, we plot the estimatedrobability densityfunction
p,le) for the estimationerrore = || - h ||, producedafter 60
iterationsof the FEC-avare andthe FEC-ignorantextended-
window channelestimatorsWe obsene that the FEC-avare
estimatomproducederrorslargerthan—10dB in only 2.7% of
the experiments,while the errors producedby the FEC-
ignorantestimatorwere larger than—-10dB in 82.9% of the
experiments.To testthe quality of theseestimateswe used
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Fig. 7. Estimate of pdf of estimation erree ||h-h |P,
estimated from histogranver 1000 random channels.

themto performa turbo equalizationfor eachtrial. After 30
iterations of the turbo equalizey we could recover the
transmitted codevord without errors for 90.7% of the
channelsusing the FEC-avare estimates,while this was
possible for only 12.3% of the channelsusing the FEC-
ignorantestimatesThe benefitof using FEC informationfor
channel estimation are thus clear

It is well known that blind channel estimatorscannot
resohe delays.A blind equalizerthatestimatesi;, =a;_1 is
oftenjustasgoodasonethatestimatesi, = a;. However, this
delayis problematicwhenthe transmitterincludesa random
interleaver. For example,if we deinterleae a;, _; insteadof
ar, the resultwill bearno resemblancevhatsoser to ¢, _ 1.
TheframeboundariesnustbeidentifiedbeforeFECdecoding
is meaningfulln therandomchannekxperimentwe assumed
perfect frame synchronization. A truly blind frame
synchronizerwould be difficult to implementin practice.
Fortunately in practicetherewill exist sideinformationfrom
preamblesand pilot symbolsthat canbe usedto synchronize
the frame in a semiblinéhion.

VI. CONCLUSIONS

We proposeda blind iterative channel estimator that
benefitsfrom the presencef forward-errorcorrectioncoding.
The benefitscanbe significant.In one example,comparedo
anestimatorthatignoresFEC, an estimatorthat exploits FEC
canattainthe sameperformancewith 6 dB lessSNR. In our
simulations,the performanceof the proposedblind schemes
was as good as that of a turbo equalizer with channel
knowledge,andit corvergedequallyfast.We alsoproposedca
soft-output equalizerbasedon a DFE that incorporatesa
priori information.We shavedthat,eventhoughablind FEC-
awareschemebasedon this equalizemperformsslightly worse
than the scheme based on the BCJR algorithm, the
performanceof the DFE-basedsystem improves as the
iterations progress,providing a gain of 5 dB over a non-
iterative system with channel knowledge that emplo/s a
cornventional DFE folleved by a decoder
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