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CHAPTER 1

INTRODUCTION

This thesisconsiderghe designand adaptatiorof finite-tapequalizerdor combating
linear intersymbolinterference(ISI) in the presenceof additve white Gaussiamoise,
underthe constraintthat decisionsare madeon a symbol-by-symbobasisby quantizing
the equalizeroutput. We also considerquadrature-amplitudenodulation(QAM), deci-
sion-feedbaclequalizer§DFE), andmultiusersystemsbut thelinear S| pulse-amplitude
modulation(PAM) channelwith a linear equalizerof Fig. 1-1 captureghe essentiafea-
turesof the problemunderconsiderationThe channelinput symbolsx;, aredrawn inde-
pendentlyanduniformly from anL-ary PAM alphabef{+1, +3, ... (L —1)}. Thechannel
is modeledby animpulseresponsé,; with memoryM andadditive white Gaussiamoise,
yielding a receied signal of

M
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Therecevedsignalis passedhroughafinite-taplinearequalizere, the outputof whichis
quantizedto producea delayedinput estimatex ;, _p, whereD accountdor the delay of
both the channeland the equalizer This thesisconsiderstwo classicand well-defined

guestions:

* How should we desiga?
* How should we adapt?

The corventionalanswerto the first questionis to choosee to minimize the mean-

squared error (MSE):

MSE = E[(y, - x5, _p)?], (1-2)

leadingto the so-calledminimum-MSE(MMSE) equalizer A commonalgorithmusedto
realizethe MMSE equalizeris the least-mearsquare(LMS) algorithm, which is a sto-
chasticgradientalgorithmwith low complexity. However, amuchlessunderstoodbut nev-
erthelesghe mostrelevantequalizeris thatwhich minimizesthe symbol-errorate (SER)
or bit-errorrate(BER). Therehasbeensomework over thelasttwo decade$n minimum-
BER equalizatiorandmultiuserdetection1]—-[6], whichwill bereviewedin sectionl1.2.3.

Some analytical resultson minimum-BER equalizerand multiuser detectorstructures
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Fig. 1-1. Block diagram of channel, equalizer, and memoryless decision device.



were derived in [1][2][4], and severa adaptive minimum-BER algorithms were proposed
in [3][5][6]. However, none of the proposed adaptive algorithms guarantees convergence
to the global minimum, and the adaptive algorithms proposed in [3][5] are significantly

more complex than the LM S algorithm.

In the remainder of this chapter, we review some relevant background materials for
this thesis. In section 1.1, we review both IS channels and multiuser interference chan-
nels. In section 1.2, we review general equalizers and multiuser detectors, their conven-
tional design criteria, and some prior work on designing equalizers and multiuser detectors

based on the error-probability criterion. In section 1.3, we outline this thesis.

1.1 INTERFERENCE CHANNELS

Interferences in communication channels are undesirable effects contributed by
sources other than noise. In this section, we discuss two types of channel interferences: (1)
intersymbol interference where adjacent data pulses distort the desired data pulse in a
linear fashion and (2) interference in multiuser systems where users other than the

intended contribute unwanted signals through an imperfect channel.

1.1.1 Intersymbol Interference

ISl characterized by (1-1) isthe most commonly encountered channel impairment next
to noise. 1Sl typically results from time dispersion which happens when the channel fre-
guency response deviates from the ideal of constant amplitude and linear phase. In band-
width-efficient digital communication systems, the effect of each symbol transmitted over
atime-dispersive channel extends beyond the time interval used to represent that symbol.

The distortion caused by the resulting overlap of received symbolsiscaled ISl [7]. 1S] can



significantly close the eye of a channel, reduce noise margin and cause severe data detec-

tion errors.

1.1.2 Multiuser Interference

Multiuser interference arises whenever areceiver observes signals from multiple trans-
mitters [32]. In cellular radio-based networks using the time-division multiple-access
(TDMA) technology, frequency re-use leads to interference from other users in nearby
cells sharing the same carrier frequency, even if there is no interference among users
within the same cell. In networks using the code-division multiple-access (CDMA) tech-
nology, users are assigned distinct signature waveforms with low mutual cross-correla-
tions. When the sum of the signals modulated by multiple users is received, it is possible
to recover the information transmitted from a desired user by correlating the received
signal with areplica of the signature waveform assigned to the desired user. However, the
performance of this demodulation strategy is not satisfactory when the assigned signatures
do not have low cross-correlations for all possible relative delays. Moreover, even though
the cross-correlations between users may be low, a particularly severe multiuser interfer-
ence, referred to as near-far interference, results when powerful nearby interferers over-
whelm distant users of interest. Similar to ISl, multiuser interference reduces noise margin

and often causes data recovery impossible without some compensation means.

1.2 EQUALIZATION AND DETECTION

In the presence of linear 1Sl and additive white Gaussian noise, Forney [22][23]
showed that the optimum detector for linear PAM signals is awhitened-matched filter fol-
lowed by a Viterbi detector. This combined form achieves the maximum-likelihood

sequence-detector (MLSD) performance and in some cases, the matched filter bound.



When the channel input symbols are drawn uniformly and independently from an al phabet
set, MLSD is known to achieve the best error-probability performance of all existing
equalizers and detectors.

Although MLSD offers significant performance gains over symbol-by-symbol detec-
tors, its complexity (with the Viterbi detector) grows exponentially with the channel
memory. For channels with long 1Sl spans, a full-state MLSD generally serves as a mere
benchmark and is rarely used because of its large processing complexity for computing
state metrics and large memory for storing survivor path histories. Many variants of
MLSD such as channel memory truncation [24], reduced state sequence detection [26],
and fixed-delay tree search with decision-feedback [25] have been proposed to reach good

tradeoffs between complexity and performance.

Because of the often high complexity associated with MLSD, suboptimal receivers
such as symbol-by-symbol equalizers are widely used despite their inferior performance
[7]. Among all equalizers and detectors used for combating IS, linear equalizers are the
simplest to analyze and implement. A linear equalizer combats linear 1S by de-con-
volving a linearly distorted channel with a transversal filter to yield an approximate
inverse of the channel, and a simple memoryless dlicer is used to quantize the equalizer
output to reconstruct the original noiseless transmitted symbols. Unlike MLSD, equaliza-
tion enhances noise. By its design philosophy, alinear equalizer generally enhances noise
significantly on channels with severe amplitude distortion and consequently, yields poor
data recovery performance.

First proposed by Austin [27], the DFE is a significant improvement of the linear
equalizer. A DFE is a nonlinear filter that uses past decisions to cancel the interference

from prior symbols [29]-{31]. The DFE structure is beneficial for channels with severe



amplitude distortion. Instead of fully inverting a channel, only the forward section of a
DFE inverts the precursor 1SI, while the feedback section of a DFE, being a nonlinear
filter, subtracts the post-cursor 1SI. Assuming the past decisions are correct, noise
enhancement is contributed only by the forward section of the equalizer and thus noise

enhancement is reduced.

An obvious drawback of a DFE is error propagation resulting from its decision-feed-
back mechanism. A wrong decision may cause a burst of errors in the subsequent data
detection. Fortunately, the error propagation is usually not catastrophic, and this drawback

is often negligible compared to the advantage of reduced noise enhancement.

1.2.1 Conventional Design Criteria

For symbol-by-symbol equalization, zero forcing (ZF) is a well-known filter design
criterion. Lucky [7]-10] first proposed a ZF agorithm to automatically adjust the coeffi-
cients of alinear equalizer. A ZF equalizer is ssimple to understand and analyze. To combat
linear 1SI, a ZF linear equalizer simply eliminates ISl by forcing the overall pulse, which
is the convolution of the channel and the equalizer, to become a unit-impulse response.
Similarly, the forward section of a ZF-DFE converts the overall response to be strictly

causal, while its feedback section completely subtracts the causal 1Sl.

An infinite-tap ZF equalizer can completely eliminate ISl if no null exists in the
channel frequency response. By neglecting noise and concentrating solely on removing
ISI, ZF equalizers tend to enhance noise exceedingly when channels have deep nulls.
Although it has a ssimple adaptive algorithm, a ZF equalizer is rarely used in practice and

remains largely atextbook result and teaching tool [7].



Following the pioneering work by Lucky, Gersho [11] and Proakis [12] proposed
adaptive algorithms to implement MM SE equalizers. Unlike a ZF equalizer, an MM SE
equalizer maximizes the signal-to-distortion ratios by penalizing both residual 1Sl and
noise enhancement [7]-{18]. Instead of removing ISI completely, an MMSE equalizer

alows someresidual ISl to minimize the overall distortion.

Compared with a ZF equalizer, an MM SE equalizer is much more robust in the pres-
ence of deep channel nulls and modest noise. The popularity of the MMSE equalizer is
due in part to the smple LMS algorithm proposed by Widrow and Hoff [16]. The LMS
algorithm, which is a stochastic agorithm, adjusts equalizer coefficients with a small
incremental vector in the steepest descent direction on the MSE error surface. Since the
MSE error surface is convex, the convergence of the LMS algorithm to the global min-

imum can be guaranteed when the step size is sufficiently small.

1.2.2 Low-Complexity Adaptive Equalizer Algorithms

To reduce the complexity of the LMS agorithm, several simplified variants of the
LMS agorithm have been proposed. The approximate-minimum-BER (AMBER) algo-
rithm we propose in chapter 3 is remarkably similar in form to these LM S-based algo-

rithms even though it originates from a minimum-error-probability criterion.

The sign LMS algorithm modifies the LMS algorithm by quantizing the error to +1
according to its sign [20]. By doing so, the cost function of the sign LM S algorithm is the
mean-absolute error, E[ly, — x; _pl], instead of the mean-squared error as for the LMS
algorithm. The trade-offs for the reduced complexity are a Slower convergence rate and a

larger steady-state M SE.



The dual-sign LM S algorithm proposed in [19] employs two different step sizes on the
sign LMS algorithm. The algorithm penalizes larger errors with a larger update step size
and therefore improves the convergence speed of the sign LMS algorithm with a small
complexity increase.

The proportional-sign algorithm proposed in [21] modifiesthe LM S algorithm in order
to be more robust to impulsive interference and to reduce complexity. The algorithm uses
the LMS agorithm when the equalizer output errors are small and switches to the sign

LM S algorithm when the equalizer output errors are large.

1.2.3 The Minimum-Error-Probability Criterion

Minimizing MSE should be regarded as an intermediate goal, whereas the ultimate
goal of an equalizer or amultiuser detector isto minimize the error probability. In this sec-
tion we review prior work that proposes stochastic adaptive algorithms for minimizing
error probability or analyzes the structures of the minimum-error-probability equalizers or
multiuser detectors [1]-{6].

Shamash and Yao [1] were the first to consider minimum-BER equalization. They
examined the minimum-BER DFE structure for binary signaling. Using a calculus of vari-
ation procedure, they derived the minimum-BER DFE coefficients and showed that the
forward section consists of a matched filter in tandem with a tap-delayed-line filter and the
feedback section is a tap-delayed-line filter operating to completely cancel postcursor 1SI.
While the feedback section is similar to the MM SE DFE, the forward section is a solution
to a set of complicated nonlinear equations. Their work focused on atheoretical derivation
of the minimum-BER DFE structure and did not consider a numerical algorithm to com-
pute the forward filter coefficients; nor did it compare the performance of the minimum-

BER DFE to that of the MM SE DFE. Finally, an adaptive algorithm was not proposed.



For arbitrarily small and arbitrarily large SNR scenariosGalko and Pasupatl [2]
derived the minimum-BERIlinear equalizerfor binary signaling.For the arbitrarily large
SNR case the minimum-BERIinear equalizerwas formedby maximizingthe minimum
eye opening.On the otherhand,for the arbitrarily small SNR case they shavedthatthe
minimum-BERIinearequalizeiis the averagematchedilter andproposednefficient off-
line algorithmto calculatethe equalizercoeficients.Minimum-BER linear equalizerdor
arbitrary SNR and adap# equalization algorithms were not considered.

Chenet al. [3] obsenred that the decisionboundaryformed by the minimum-BER
equalizercanbe quite differentfrom the decisionboundaryformedby the MMSE equal-
izer andthat significantBER reductioncomparedwith the MMSE equalizeris possible.
They proposeda stochastidDFE algorithm basedon the BER gradientin an attemptto
converge to the minimum-BER DFE. However, their algorithm requiressignificantly
highercompleity thanthe LMS algorithmto estimatethe channelandthe noisevariance
andto computethe gradientof the BER. In addition, the corverged DFE coeficients
would not be the exactminimum-BERDFE coeficientssincenoisy, insteadof noiseless,
channeloutputswereusedto evaluatethe gradientof the BER. Moreover, their algorithm

does not guarantee global gergence to the minimum-BER solution.

LupasandVerdu[4] proposedhe maximumasymptotianultiuserefficiency (MAME)
linear multiuser detectorwhich, as noise power approachezero, minimizesBER in a
CDMA system.They alsoproposedhe decorrelatingdetectoy which offers a substantial
improvementin asymptoticefficienoy comparedwith the conventional matched-filter
detector In fact, the nearfar resistanceof the decorrelatingdetectorequalsthat of the
optimummultiuserdetector Neverthelessthey shaved that asymptoticefficiengy of the

MAME lineardetectoris higherthanthatof the decorrelatingletectorHowever, adaptve
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implementation of the MAME detector was not proposed. Moreover, the MAME linear
detector does not minimize BER when the noise power is nonzero.

Similar to the approach taken by Chen et al. [3], Mandayam and Aazhang [5] pro-
posed a BER-gradient algorithm attempting to converge to the minimum-BER multiuser
detector in adirect-sequence CDMA (DS-CDMA) system. They jointly estimated the data
of all usersin the maximum-likelihood sense and used these estimates to extract an esti-
mate of the noiseless sum of all transmitted signature waveforms. This estimate was then
used to compute unbiased BER gradients. The complexity of the algorithm is exceedingly
high, especially when the number of usersislarge. In addition, the algorithm can converge

to anon-global local minimum.

Based on a stochastic approximation method for finding the extrema of a regression
function, Psaromiligkos et al. [6] proposed a simple linear DS-CDMA detector algorithm
that does not involve the BER gradient. They derived a stochastic quantity whose expecta-
tion is BER and applied a stochastic recursion to minimize it. However, the algorithm can

also converge to anonglobal local BER minimum detector.

Although some important issues on minimum-error-probability equalizers and mul-
tiuser detectors were addressed by the above-mentioned prior works, a unified theory for
minimum-error-probability equalization and multiuser detection is still not in place. In
addition, the performance gap between the MM SE and minimum-error-probability equal-
izers and multiuser detectors has not been thoroughly investigated. Also, none of the
above-mentioned prior works considered non-binary modulation. Most importantly, a
simple, robust, and globally convergent stochastic algorithm had not yet been proposed to

be comparable to its MM SE counterpart, the LM S algorithm.
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1.3 THESISOUTLINE

Thisthesisaimsto design and adapt finite-tap equalizers and linear multiuser detectors
to minimize error probability in the presence of intersymbol interference, multiuser inter-
ference, and Gaussian noise.

In chapter 2, we present system models and concepts which are essentia in under-
standing the minimume-error-probability equalizers and multiuser detectors. We first derive
a fixed-point relationship to characterize the minimum-error-probability linear equalizers.
We then propose a numerical algorithm, called the exact minimum-symbol-error-rate
(EMSER) algorithm, to determine the linear equalizer coefficients of Fig. 1-1 that mini-
mize error probability. We study the convergence properties of the EM SER algorithm and
propose a sufficiency condition test for verifying its convergence to the global error-prob-

ability minimum. We also extend the EM SER algorithm to QAM and DFE.

In chapter 3, we use afunction approximation to alter the EM SER algorithm such that
avery simple stochastic algorithm becomes available. We form a stochastic agorithm by
incorporating an error indicator function whose expectation is related to the error proba-
bility. The proposed algorithm has low complexity and is intuitively sound, but neverthe-
less has some serious shortcomings. To overcome these shortcomings, an adaptation
threshold is added to the stochastic algorithm to yield a modified algorithm, called the
approximate minimum-bit-error-rate (AMBER) agorithm. Compared with the original
stochastic algorithm, the AMBER algorithm has a faster convergence speed and is able to
operate in a decision-directed mode. We compare the steady-state error probability of the
AMBER equalizer with that of the MM SE equalizer. In addition, we device a crude char-
acterize procedure to predict the ISl channels for which the AMBER and EMSER equal-

izers can outperform MM SE equalizers.
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In chapter 4, we study the convergence properties of the AMBER algorithm and pro-
pose a variant to improve its convergence speed. We first take the expectation of the
AMBER algorithm to derive its ensemble average. By obtaining its ensemble average, we
anayze the global convergence properties of the AMBER algorithm. We then propose

multi-step AMBER algorithms to further increase the convergence speed.

In chapter 5, we extend the results on the EMSER and AMBER equalizers to mul-
tiuser applications. Multiuser interference is similar in many respects to the ISl phenom-
enon in asingle-user environment. We study the performance of the AMBER algorithm on

multiuser channels without memory.

In chapter 6, we conclude our study and propose some interesting topics for future

research.
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CHAPTER 2

MINIMUM-SER
EQUALIZATION

2.1 INTRODUCTION

As mentioned in chapter 1, an MM SE equalizer is generally different from the min-
imum-error-probability equalizer. Although most finite-tap linear equalizers are designed
to minimize an MSE performance metric, the equalizer that directly minimizes symbol-
error-rate (SER) may significantly outperform the MMSE equalizer. In this chapter, we
first derive the minimum-SER linear equalizer for PAM. We study the properties of the
minimum-SER equalizer by exploring its geometric interpretation and compare its SER
performance to the MM SE equalizer. We also devise a numerical algorithm, called the
exact minimum-symbol-error-rate (EMSER) algorithm, to compute the equalizer coeffi-
cients. We study the convergence properties of the EMSER algorithm. Finally we extend

the derivation of the minimum-SER linear equalizer for PAM to QAM and DFE.
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In section 2.2, we present the system model of the ISl channel and the linear equalizer,
and we explain the concepts of signal vectors and signal cones, which are essential toolsin
deriving and understanding the minimum-SER equalizer and its adaptive algorithm. In
section 2.3, we derive a fixed-point relationship to characterize the minimum-SER equal-
izer, and we compare the minimum-SER equalizer with the MM SE equalizer when the
number of equalizer coefficients approaches infinity. In section 2.4, based on the fixed-
point relationship, we propose a numerical method to compute the minimum-SER equal-
izer coefficients. We then study the convergence properties of the numerical method and
state a sufficiency condition for testing convergence of the numerical method to the global
SER minimum. In section 2.5, we extend the minimum-SER results on PAM to QAM. In

section 2.6, we derive the minimum-SER decision-feedback equalizer.

2.2 MODELS FOR CHANNEL AND EQUALIZER

2.2.1 System Definition

Consider the real-valued linear discrete-time channel depicted in Fig. 2-1, where the
channel input symbols x; are drawn independently and uniformly from the L-ary PAM
alphabet {+1, +3, ..., £ (L - 1)}, h;, isthe FIR channel impulse response nonzero for & = 0
... M only, and n,, is white Gaussian noise with power spectral density 2. The channel

output ry, is

np
Xp )\ Ty Ve XrD
"l ) > 4,_1_,7 >

Channel Receiver

Fig. 2-1. Block diagram of channel, equalizer, and memoryless decision device.
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M

ry = Z hi Xp _i+ np, (2-1)
1=0

where M is the channel memory. Also shown in Fig. 2-1 isalinear equalizer with N coef-
ficients, described by the vector ¢ = [ ... ciy_11%. The equalizer output at time & can be

expressed as the inner product:
Vi = cTrk, (2-2)

where the channel output vector r, = [ry, ... 7, _n, 117 is

ry = ka +ng, (2-3)

wherex, =[x, ... 2,37 w4117 IS avector of channel inputs, ny, = [n, ... nj,_n, 11" isa
vector of noise samples, and H is the N x (M + N) Toeplitz channel convolution matrix

Sﬁtleylng HIJ = hj—i:

H = : (2-4)
0...0hy ... hy

As shown in Fig. 2-1, the decision &, _p about symbol x;, _p is determined by quan-
tizing the equalizer output y,, where D accounts for the delay of both the channel and the
equalizer. This memoryless decision device is suboptimal; better error probability perfor-
mance can be achieved by performing maximum-likelihood sequence detection on the

equalizer output.

After presenting the system definition, we are to derive the SER, the averaged proba-

bility %,_p #x,_p, of an equalizer ¢ on aPAM system. Let f7 = eTH = [fy ... fyso 1]
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denotethe overall impulseresponserepresentinghe cascadeof the channelr, andthe

equalizere,. The noiseless equalizer output is

cTka = fok

=fpXp_p+ ';fixk—i, (2-5)

wherethefirst term fp x;, _ p representshe desiredsignallevel, whereaghe seconderm

represents residual ISI. The noisy equalizer output of (2-2) is gtsessed as:
Yr=IpXk_p+ ;ﬁxk—i +c'ny, (2-6)

SincetheresiduallSI is symmetricaboutthe desiredsignallevels,the memorylesgjuan-
tizer, in the presenc®f zero-mearGaussiamoise,is optimalwith its detectionthresholds
atthemidpointsof successie signallevels,i.e. {0, £ 2fp, ..., £ (L — 2)fp}. The SERIs eval-

uated in the folleing theorem:

Theorem 2.1: With a memoryless quantizeéhe SERP,(¢) as a function of an

equalizete is

_ T
P,(c) = 2LT2E[QEf 20 2-7)

Hellol)”
wherex is arandomvectorwith distribution P(x) = P(xy, lx;_p = 1), i.€.,, & is uni-

formly distributedover thesetof K= LM +N -1 L-aryx;, vectorsfor whichx;, 5, = 1.

Proof. The SER foi.-ary FAM is computed as follws:

Pe(c) =P(J’(\2k_D ¢xk_D)
L
= z P(fck_Dixk_Dlxk_D = 2l—1—L)P(xk_D = ZZ—I—L) (2-8)
=1



17

SNl

P(fck_D;txk_Dlxk_D=21—1—L), (2-9)
1

”Mb‘

l

where we substitute P(x;, _p = 2 —1-L) with % in (2-9) under the assumption that
al L symbols are equally likely to be transmitted. Recall that the L-ary PAM
alphabet has 2 outer symbols, i.e. +(L —-1), and L -2 inner symbols, i.e. {1, ...,
+(L -3)}. If an inner symbol is transmitted, an error occurs when the equalizer
output either exceeds the upper threshold or falls below the lower threshold of that
particular inner symbol. The events that an equalizer output is above its upper
threshold and is below its lower threshold are digoint and thus the error probability
Ply, >TOP or y, < LOW] equals Ply; > TOP] + Ply;, < LOW]. On the other hand, if
the outer symbol (L — 1) is transmitted, an error occurs only if the equalizer output
falls below the lower threshold (L — 2)fp; If the outer symbol —(L — 1) is transmitted,
an error occurs only if the equalizer output exceeds the upper threshold —(L — 2)fp,.

Based on the above observations, (2-9) becomes:

P,c) = % EP[yk>—(L—2)fDka_D=-(L—1)]+
Ply, >-L-4)fp)lxy_p=—L-3)]+Plly,<—L-2fp)lap_p=—L-3)]+
. + Pl <@L -4)fp)lx,_p=L-31+Plly,>L-2)fp)lxp_p=L-3]+

C
P[yk<(L—2)fD|xk_D =L-1] E (2-10)

Manipulating the expressions in (2-10) after substituting y,, into (2-10), we get

Po) =

=

C
[P[—cTnk <fp+ ;fixk—i] +
C i

Pl-c'ny, < fp+ ;ﬁxk—l] + Ple"ny, <fD—.;fixk_i] + ..+

13 1
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P[cTnk < fp- ;fixk_i] + P[—cTnk <fp+ ;ﬁxk_i] +

1

C
Ple"n;, < fp —Z)fixk-i] E (2-11)

Note that in (2-11) we have removed the condition on the value of x;, _p from al
expressions in (2-10) since they do not depend on the condition any more. In addi-
tion, the random variables —¢’n;, and _-Zofixk _; respectively have the same proba-
bility distributions as ¢'n;, and -Zuﬁxk _li and we can exchange them to simplify (2-

11) asfollows:

1C
Ple)= 7 EP[cTnk </p +i;fixk—i] +
P[cTnk < fp+ Z)fixk_i] + P[cTnk <fp+ ;ﬁxk_i] + ...+
Ple™n;, < fp+ ;fixk_i] + Pl-cTn;, < fp+ ;fixk_i] +
Plc™n;, < fp+ ;fixk—i] E
i O

2L -2
= = Ple’m; < fo+ 3 fisi-i

1

_ 1< & ppT T,.)
= KzizlP[c n, <f'x"]
_ 1o & ,ffxlg

- L Kzi:1QD||c||g O

- 2-2plof A0

(2-12)

where @ is the Gaussian error function, wherexP, @, ... ¥ are any ordering of
the K distinct x vectors, and where the expectation is over the K equally likely x

vectors. Q.E.D.

Therefore, minimizing SER of an L-PAM system is equivalent to minimizing the term

2L -2
L

T.
E [Q Ef_’fD} . Inthe case of a2-PAM system, the factor

in (2-12) reduces to unity.
el ol (2-12) y
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Even though it is most relevant to minimize the error probability of (2-12), by far the
most popular equalization strategy is the MMSE design. With the MMSE strategy, the

equalizer ¢ is chosen as the unique vector minimizing MSE = E[(y, — x;,_p)?1, namely:

eymse = HHAT + DAy, g, (2-13)

where hp, , 1 isthe (D + 1)-st column of H. This equalizer is often realized using a sto-

chastic gradient search known as the least-mean square (LM S) algorithm [7]:

cri1=cp— U, —xp_pry, (2-14)

where [ is asmall positive step size. When training data is unavailable, the equalizer can

operate in a decision-directed mode, whereby the decision x , _p is used in place of x;, _ p.

Instead of minimizing MSE, our goal is to minimize SER (2-12). For a binary sig-
naling channel it is obvious that BER isthe same as SER. However, for a non-binary PAM
channel, the exact relationship between SER and BER is not trivial. With the Gray code
mapping of bits, the relationship is well approximated by [13]:

1
log L

2

BER [

SER. (2-15)

Therefore, if an equalizer minimizes SER, it approximately minimizes BER.

2.2.2 Signal Vectors and Signal Cones
In this section, we introduce the signal vectors and the signal cone, two useful geo-
metric tools that will be used extensively throughout the thesis to derive and understand

minimum-SER equalizers.
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We now establish the relationship between error probability and signal vectors.

Observe that the error probability of (2-12) can also be expressed as

_2L-2 reTHxpj i
Pe) = == E[Q = D}, (2-16)
where the expectation is over the K equally likely L-ary x vectors. We define the signal

vectors by

sV=Hx" i=1.. K (2-17)

From (2-3) we see that these s® vectors represent the K possible noiseless channel output
vectors given that the desired symbol is x;, p, =1. With this definition, (2-16) can be
expressed as

2L -2 £ rels()
Pe(C) = T leDWD (2'18)
l =
Observe that the error probability is proportional to the average of the K @ function terms,
the argument of each being proportional to the inner product between the equalizer and a

signal vector.

In this thesis we will often assume that the channel is equalizable:

Definition 1. A channel is said to be equalizable by an N-tap equalizer with delay
D if and only if there exists an equalizer ¢ having a positive inner product with all

{s"”} signal vectors.

A positive inner product with all {s”} vectors implies that the noiseless equalizer output

is aways positive when a one was transmitted (x;_p = 1); thus, achannel is equalizable if
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and only if its noiselesseye diagramcan be opened.In termsof the {s%)} vectors,a
channelis equalizablgaf andonly if thereexists a hyperplanepassingthroughthe origin

such that all §¥} vectors are strictly on one side of thghrplane.

Givena setof signalvectors{s”} thatcanbe locatedstrictly on onesideof a hyper-
planepassingthroughthe origin, we definethe signal cone asthe spanof thesevectors

with non-n@ative coeficients:

Definition 2. The signal cone of an equalizable channel is the set:

S={%as?:a;20}

Obsenrethatif thechannels equalizablethereexistsatleastone“axis” vectorwithin the
signalconesuchthatall elementf the signalconeform anangleof strictly lessthan90°
with respecto the axis vector We remarkthatno suchaxisvectorexistsif the channeis

not equalizable, because the sBtd;s® : a; > 0} is a linear subspace @& in this case.

With the signalvectorsandthe signalconedefined,we arenow equippedto charac-

terize the minimum-SER equalizer

2.3 CHARACTERIZATION OF THE MINIMUM-SER EQ UALIZER

2.3.1 Fixed-Pint Relationship

Let egpser denotean equalizerthatachieresexactminimum-SER(EMSER) perfor-
mance,minimizing (2-16). Obsene that becaus€2-16) dependsnly on the direction of
theequalizefegysgr is notunique:if ¢ minimizesSER,thensodoesae for ary positve
constantz. Unlike the coeficient vectorey sg (2-13) that minimizesMSE, thereis no
closed-formexpressionfor cgysgr- However, by settingto zero the gradientof (2-16)

with respect t@:
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0,P,(c) = (e s)zﬁ”"”%“’Ts"} 0, (2-19)

1
— E[ Xp
/210 Dlel202l |3

we find that egprsgr, Which isaglobal minimum solution to (2-16), must satisfy
Il e IPfe) = e*fle)e, (2-20)

where we have introduced the function /: RY - R¥, defined by

fle)=E [expEQ" llzso)zgs} (2-21)

The expectation in (2-21) is with respect to the random vector s over the K equally likely

s® vectors of (2-17). Thus, fie) can be expressed as aweighted sum of s vectors:

-a1/2 ~a3/2 —a%/2
fle) = Il{ Ce N2y o @ K s®g (2-22)

where a; = ¢’s®/(||e|| o) is anormalized inner product of s with ¢.

The function f{e) plays an important role in our analysis and has a useful geometric
interpretation. Observe first that, because the exponential coefficientsin (2-22) are all pos-
itive, fle) is inside the signal cone. Because exp( D) is an exponentially decreasing func-
tion, (2-22) suggests that fle) is dictated by only those s vectors whose inner products
with ¢ are relatively small. Because the {s®} vectors represent the K possible noiseless
channel output vectors given that a one was transmitted (i.e. x,p = 1), the inner product
s® with ¢ is a noiseless equalizer output given that a one is transmitted. It follows that a
small inner product is equivalent to a nearly closed eye diagram. Therefore, fie) will be

very nearly alinear combination of the few s vectors for which the eye diagram is most
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closed. For example, if one particular s vector closes the eye significantly more than any
other s vector, then fie) will be approximately proportional to that s vector.

Returning to (2-20) and the problem of finding the EM SER equalizer, we see that one
possible solution of (2-20) is fie) = 0. We now show that fic) = 0 is impossible when the
channel is equalizable. Recall that, if the channel is equalizable, then there exists a hyper-
plane passing through the origin such that all of the {s, ..., s“} vectors are strictly on
one side of the hyperplane. Thus, any linear combination of s® with strictly positive coef-
ficients cannot be zero. Furthermore, (2-22) indicates that fie) is a linear combination of
{sW} vectors with strictly positive coefficients. Thus, we conclude that fie) = 0 is impos-

sible when the channel is equalizable.

Since fle) = 0 is impossible when the channel is equalizable, the only remaining solu-

tion to (2-20) is the following fixed-point relationship:

c = afle), (2-23)

for some constant a. Choosing a = 0 results in P, = (L — 1)/L, which is clearly not the
minimum error probability of an equalizable channel. The sign of a does not uniquely
determine whether ¢ = afie) isalocal minimum or local maximum; however, in order for

¢ = afie) to be agloba minimum, ¢ must be positive:

Lemma 2-1: If ¢ minimizes error probability of an equalizable channel, then

¢ = af(c) witha > 0. (2-24)

Proof. By contradiction: Suppose that ¢ = af{e) minimizes error probability with

a < 0. Then ¢ isoutside the signal cone generated by {s®}. Let P denote any hyper-
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plane,containingthe origin, thatseparatea from the signalcone.Let ¢” denotethe
reflectionof ¢ aboutP suchthate” andthe signalconeareon the samesideof P. It
is easyto shav thatcomparedwith e, ¢~ hasalargerinnerproductwith all s® vec-
tors.From(2-18)it follows thatthe errorprobabilityfor ¢” is smallerthanthe error
probability for ¢, which contradictsthe assumptiorthat ¢ minimizeserror proba-

bility. Q.E.D.

Unfortunately the fixed-pointrelationshipof (2-24)is not sufficient in describingthe
EMSERequalizer;it simply statesa necessargonditionthatthe EMSER equalizermust
satisfy The existenceof at leastone unit-lengthvector ¢ = -

lel

intuitively explained: The hyperspheref all unit-lengthvectorse is closed,continuous,

satisfying(2-23) canbe

and bounded Eachpoint on the hyperspheres mappedto a real value via the differen-
tiable andboundederror probability function of (2-18) andforms anotherclosed,contin-
uous, and boundedsurface. Becausethe resultantsurfaceis everywheredifferentiable,
closed,andboundedjt hasat leastonelocal minimum.In generalthereexist morethan
one local minima, as illustrated in the follmg example.
Example 2-1: Considerbinary signaling x;, {1} with a transfer function
H(z)=-0.9 +z7 and a two-tap linear equalizer (N = 2) and delay D = 1. In
Fig. 2-2 we presenta polar plot of BER (for BPSK, the error probability equals
BER) versusp, whereﬁ = [cos6, sine]T. Superimposednthisplot aretheK = 4
signalvectors{s'V, ..., s}, depictedby solid lines. Also superimposedrethree
unit-lengthequalizevectors(depictedoy dashedines):the EMSERequalizemwith
an angle of 8 =-%7.01"°, the MMSE equalizerwith 8 =-36.21°, and a local

minimumequalizer(e ;,ocaz) With 6 = 35.63°. (A fourthequalizemwith anangleof

0 = -5.84 ° is also depictedfor future referenceit is the approximateminimum-
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BER (AMBER) equalizer defined by Theorem 3.1 of section 3.2.) The shaded
region denotes the signal cone. Although both ¢ gasr @d € 1ocaz, Satisfy (2-23)
with a > 0, the local-minimum equalizer e ooz, does not minimize BER, and it

does not open the eye diagram. These equalizers assume SNR = 20 dB.

While Lemma 2-1 provides a necessary condition for the EMSER equalizer, namely

¢ = afle) with a > 0, the previous example illustrates that this fixed-point condition is not

~ = = = 4= %AMBER
' °EMSER

Fig. 2-2. A polar plot of BER versus 6 for Example 2-1. Superimposed are the
signals vectors (scaled by a factor of 0.5), and four equalizer vectors (dashed
lines).



26

sufficient; both egyrspr ander,pcar, satisfye = afie) with a > 0, but only egpspr Mini-
mizes error probability

As anaside aninterestingexamplecanbe constructedo shav thatthe EMSERequal-
izer may not openthe eye evenwhenopeningthe eye is possible(i.e. whenthe channels
equalizable)The following exampleis somavhat counterintuitive andis a resultof the
highly irregular shape of the error probability sacé.

Example 2-2: Considerthe binarysignalingchanneH(z)=1-2z7 +1.222 with a

two-tap equalizer D = 3, and SNR= 10 dB. Although the channelis equalizable,

neither the EMSER equalizer nor the MMSE equalizer opens/éhe e

2.3.2 The MM SE Equalizer vs. the EM SER Equalizer

We now comparghe MMSE andthe EMSERequalizersWith afinite numberof taps,
the MMSE andthe EMSERequalizersreclearlytwo differentequalizersasillustratedin
Example2-1. We furtheremphasizehe differencedetweerthe two equalizerdy evalu-
ating their errorprobability performanceand by plotting their eye diagramsin the fol-
lowing examples.

Example 2-3: Consider a binary-signaling channel with transfer function
H(z) = 1.2 + 1.1z7 —0.222. In Fig. 2-3, we plot BER versusSNR= 3 , h 2/ o2 , for
both the MMSE and EMSER equalizerwith threeandfive taps.The figure showvs
thatwith threeequalizertapsandadelayof D = 2. D is chosento minimize MSE.
TheEMSERequalizethasamorethan6.5dB gain overthe MMSE equalizerWith
5 equalizertapsandadelayof D = 4, the EMSERequalizethasa nearly2 dB gain
overthe MMSE equalizerin Fig. 2-4, for the samechannelwe presentartificial”

noiselesswye patternsfor 5-tap EMSER and MMSE equalizersassumingSNR =
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30 dB. These patternswere obtained by interpolating all possible noiseless
equalizeroutputswith atriangularpulseshapeBoth equalizersverenormalizedo
have identical norm (and thusidentical noiseenhancement)\Ve seethat the two
eye diagramsare drasticallydifferent. The interestingdifferencebetweenthe two
diagramsresultsfrom the MMSE equalizers effort to force all possibleequalizer
outputsto the targets{+1}, despitethe benefitsof sparingthe outputswith large
noise immunity. Although the MMSE equalizerachieves a lower mean-squared
error, its errorprobabilityis morethanamagnitudenigherthantheerrorprobability

of the EMSER equalizer

Example 2-4: Considera 4-PAM ISI channebith transferfunction H(z) = 0.66 +
21 ~0.66 22 . In Fig. 2-5, we plot SERversusSNR= 3,22/ 02, consideringooth
MMSE andEMSERequalizerawith five taps.Thefigure shavs thatwith a delayof
D = 3, theEMSERequalizeihasamorethan16 dB gain overthe MMSE equalizer
In Fig. 2-6, we again present‘artificial” noiselesseye patternsfor 5-tap EMSER
andMMSE equalizersassumingSNR = 30 dB. We obsene thatthe eye patternsof
the MMSE equalizerare somavhat uniform, whereasthe eye patternsof the
EMSERequalizerconsistmainly of “sub-clusters. In a certainsensethe EMSER
equalizerstrives only to openthe eye of the channel,and can be regardedas a
somevhat “passve” equalizationtechnique where as the MMSE equalizationis
“aggresste” in thatit pushesll equalizeroutputstowardsthe desiredconstellation
points.Again, we obsene thatthe EMSER equalizerachiezesa muchlower error

probability than the MMSE equalizesven though it has a much higher MSE.
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Fig. 2-3. The BER performance comparison of the EMSER and the
MMSE equalizers for the 2-PAM system of Example 2-3.

2 T T T 2 T T T T

BER = 8.5x10° . BER = 2.9x10°8
N 1 t MSE = 4.9 dB

(@) (®)

Fig. 2-4. Equalized noiseless eye diagrams of the (a) MMSE and (b)
EMSER equalizers for the 2-PAM system of Example 2-3.
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Fig. 2-5. The SER performance comparison of the 5-tap EMSER and
MMSE equalizers for the 4-PAM system of Example 2-4.

4 T T T T
BER = 2.2x10°
|MSE = -9.1 dB

BER = 5.4x10~
MSE =-16.2 dB

(a) (b)

Fig. 2-6. Equalized noiseless eye diagrams of the (a) MMSE and (b)
EMSER equalizers for the 4-PAM system of Example 2-4.
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It is obvious from the above two examples that the finite-tap MM SE and the EMSER
equalizers are different. Here we investigate the possibility that the infinite-tap MM SE and

the EM SER equalizers are the same by proposing the following conjecture:

Conjecture:  For any noise variance, the MMSE equalizer converges to the

EMSER equalizer as the number of equalizer taps approaches infinity.

Example 2-5. Consider a binary-signaling system with transfer function
Hz)=12+112z% -0.222.InFig. 2-7, we plot SNR required to achieve BER =
10 versus the number of equalizer taps for the EMSER and MMSE equalizers.
For each number of equalizer taps, the delay D is chosen to minimize MSE. We see
that the SNR gain of the EMSER equalizer over the MM SE equalizer approaches

zero as the number of equalizer taps increases.

40
0 ’
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Number of Equalizer Coefficients

Fig. 2-7. SNR requirement vs. equalizer length for the binary signaling
channel in Example 2-5.
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Example 2-6. Consider another binary-signaling system with transfer function
Hz)=12+0.72z1 —0.9 22 In Fig. 2-8, we again plot SNR required to achieve
BER = 10® versus the number of equaizer taps for the EMSER and MMSE
equalizers. It is interesting to note that the required SNR for BER = 10® actually
increases for the MM SE equalizer as we increase the number of taps from three to
four. Although increasing the number of an MM SE equalizer taps strictly decrease
MSE, it does not strictly decrease error probability. Again, the SNR gain of the
EMSER equalizer over the MMSE equalizer approaches zero as the number of

equalizer taps becomes large.

As the noise variance approaches zero, it is well known that the MMSE equalizer
approaches the zero-forcing (ZF) equalizer. We note that the infinite-tap EM SER equalizer

also approaches the infinite-tap ZF equalizer as the noise variance approaches zero by the

36
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Fig. 2-8. SNR requirement vs. equalizer length for the binary signaling
channel in Example 2-6.
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following reasoning: If an equalizer ¢ has an infinite number of taps, it can invert a FIR
channel completely, i.e. there exists a zero-forcing vector ¢ such that the inner products
between ¢ and all signal vectors s® are unity. If the infinite-tap minimum-SER equalizer
does not equal the zero-forcing vector, some inner products ¢Zs® are smaller than others
and thus, as the noise variance approaches zero, the overall SER is solely dictated by the @
term associated with the smallest inner product. A lower SER can be obtained by adjusting
¢ to increase the smallest inner product until it equals the largest inner product, or when

the equalizer becomes the ZF equalizer.

It is not clear whether the infinite-tap MM SE equalizer equals the infinite-tap EMBER
equalizer with an arbitrary noise variance. An interesting observation is that the MM SE
linear equalizer with alarge number of taps tends to make the residual ISl Gaussian-like,
although this Gaussian-like distribution is bounded. A true Gaussian random variable is

unbounded.

2.4 ANUMERICAL METHOD

In section 2.3, we have gained some good understanding of the EMSER equalizer by
characterizing it with a fixed-point relationship. We now proceed to devise a numerical

algorithm to actually compute the EM SER equalizer coefficients.

2.4.1 The Deterministic EMSER Algorithm

Example 2-1 in the previous section illustrates that the error probability function may
not be convex. Nevertheless, a gradient algorithm may still be used to search for a local
minimum. In particular, using the gradient (2-19) of the SER (2-16), we may form a gra-

dient algorithm:
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Cre1=Cp— H1le, P

= %1 — ey e/ |l ey ||2E0k + Wfiep)

= E1 - e, fie)/ lleg IBE Fep + ; “ch(uc e ”2ﬂck)D, (2-25)
—Heprieg)/ ey

wherethefunctionf(0lis definedby (2-21).Recallthatthe normof ¢ hasnoimpacton P,,
andobsenre thatthe first bracletedfactorin (2-25) representsn adjustmenbf the norm
of ¢;, 1. Eliminating this factorleadsto the following recursionwhich we referto asthe

EMSER algorithm:
1 = € + Uficy). (2-26)

The transformationfrom (2-25) to (2-26) affects the corvergencerate, the steady-state
norm ||e,, ||, and possiblythe steady-statelirectione,/||c ||, SO it is no longerappro-
priateto call (2-26)a gradientsearchalgorithm.The updateequation(2-26) canbeviewed

as an iteratie system designed to reeo the solution to the fed-point equation (2-24).

2.4.2 Convergence

Although the EMSER algorithm cannotin generalbe guaranteedo corverge to the
global SER minimum, it is guaranteedo corverge to somelocal extremum solution

within the signal cone generated 4, as stated in the follsing theorem:

Theorem 2.2: Given an equalizable channel, the EMSER algorithm of (2-26) con-

verges to a locab@éremum solution satisfying = af{e) with a > 0.

Proof. The proof for Theorem 2.2 is in Appendix 2.1.
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2.4.3 A Sufficiency Condition for Convergence to the Global Minimum

One general method for finding the EMSER equalizer is to find all solutions to the
fixed-point equation ¢ = af{e) with a > 0, and choose the solution that yields the smallest
error probability. Fortunately, this brute-force method can be avoided in certain cases by

taking advantage of the following sufficiency test:

L-1

Theorem 2.3: If ¢ = afie) for a > 0and P,(c) < TR

, then ¢ minimizes SER.

Proof. The proof for Theorem 2.3 isin Appendix 2.2.

This is a sufficient but not necessary condition for minimizing error probability

L-1
LK
ciently low. Note that the condition in Theorem 2.3 implies that the equalizer opens the

because even the minimum error probability may exceed when the SNR is suffi-

eye diagram.
Taken together, Theorem 2.2 and Theorem 2.3 suggest the following strategy for

finding the EMBER equalizer. First, iterate the deterministic EMSER algorithm of (2-26)

until it converges. If theresulting SER P, < I}J;KI , stop. Otherwise, initialize the determin-

istic EMSER algorithm somewhere else and repeat the process. This is an effective
strategy when the initial condition of the EMSER algorithm is chosen carefully (e.g.
L-1

within the eye opening region) and when the SNR is not so small that P, < TK isimpos-

sible.

2.5 EXTENSION TO QUADRATURE-AMPLITUDE MODULATION

Quadrature-amplitude modulation (QAM) is widely used on bandwidth-limited chan-
nels. Although thus far we have only discussed the EM SER equalizersfor PAM systems, a

QAM system can be thought as two PAM systems in parallel. The results of the EMSER
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linear equalizer on the PAM system can be extended in a straightforward manner to the
QAM system.
An L?-QAM symbol is complex and consists two PAM symbols, one as its real part

and the other asitsimaginary part:

x =« +jxl, (2-27)

where xf and x! are two independent L-PAM symbols. To detect an QAM symbol, a 2-
dimensional quantizer is used. However, the quantizer actually uses two 1-dimensional
quantizers to separately detect x® and «!. In that sense, we can treat an L2-QAM system as

two L-PAM systems and thus, its error probability can be treated as

P

NI =

P,=zPY 42 P! (2-28)

NI

where Pf and Pg are thereal and imaginary SER.

_-ﬂ[ d"Tsl)RD dcTsj)ID L .
= B\ o *EQEEs i e

where we have introduced signal vectorss; and s; for a QAM system where

SRl = Hle and SII = Hxll (2'30)

where SR, is a random vector uniformly distributed over all noiseless QAM channel
output vectors given that the real part of the desired symbol is 1, i.e. x,f_ p =1, whereas
S, isarandom vector uniformly dis represent all possible noiseless QAM channel output

vectors given that the quadrature part of the desired symbol is 1, i.e. x}lc _p=1L
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To extend the EMSER algorithm to the QAM system, we take the derivative of the
error probability of (2-29) with respect to the in-phase equalizer coefficient vector ¢® and
the quadrature equalizer coefficient vector ¢!. Following the derivation of (2-25), we

obtain the EMSER a gorithm for ¢%:

cfi1 = ef +ufep), (2-31)
and the EMSER algorithm for ¢”:

chiq = cf + ey, (2-32)

where the driving vector term £ E(e) is

OrenT \E20 OrenTe \L120
=—|(C S8 —|(C § :
fRe)=E exp%% f +E eXp i ZJ)Z] I (2-33)
J
O 2lel"0” g 0 2[ell”0™ g

and the driving vector term (¢, is:

0T \B20 05T \20
—|{(C 8§ —|(C S .
fle)=—E expmu "+E expDu B\ (2-34)
] 2 2 Ol 2 2 J
0O 2lell”c” 7 0 2lel“c” O

Combining equations (2-31)-(2-34), the EM SER update equation for a QAM system is
Cr+1= Cpt+ Wqamicy) (2-39)

where

Orele \E120 Or(ele 120
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2.6 EXTENSION TO DECISION-FEEDBACK EQUALIZATION

A decision-feedback equalizer is a straightforward extension of alinear equalizer. As
mentioned in chapter 1, the feedback filter of an MM SE DFE subtracts off the post cursor
ISl in order to minimize M SE. In this subsection, we show that similar to the MM SE DFE,
the feedback filter of the EMSER DFE is also chosen to eliminate the post cursor IS. In
fact, we can show that if aforward filter of a DFE is fixed and opens the eye of a channdl,
then the feedback filter of a DFE need only eliminate the post cursor ISI in order to mini-
mize error probability. In this subsection we concentrate the derivation of the minimum-
SER DFE for the PAM systems. Its extension to QAM is straightforward.

Lete=1lco... ¢y 1" andd =[d; ... dy 1" denote respectively the forward and the
feedback filters of a DFE. Let fT= ¢'H = fo---fp ...fM+N1_1] denote the impulse
response of the convolution of the forward filter and the channel. The noiseless equalizer

output prior to decision feedback subtraction is
flay = z,-D:_(l)fixk-# fp%k-p+ zlf:];fllﬁxk-i- (2-37)

For now we assume that the length of the feedback filter is the same as the length of the
postcursor residual 1S, i.e. N, = M + N; — 1. Observethat the error probability with cor-
rect decision feedback is

M+N;-1

2L—2E[QEZL-D=_(1)fixk—i+fD+ Zi=D+1(fi_di—D)xk—iD}
0

P d)=——= O, 2-38
e 3 [elo g @3

N, -

where the expectation is over the LM v ! equally likely L-ary x vectors. For agivenf,

we determine the coefficient vector d in order to minimize the error probability of (2-38).
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We see that there are LP possible points from ZiD_(l)fixk_i + f which form acloud
centered at f;. When we add Z”j:]]\;l: (f;—d;_p)xj,_; t0 Zf:'(l)flxk _,+fp toformthe
noiseless equalizer output, we in a sense add a sub-cloud to each of the L points. Each
sub-cloud disappearsif (f;—d; _p)=0fori=D+1.. M+ N; - 1. However, if (f,—d;_p) is
not zero for some i, the error probability becomes strictly greater than for (£, —d;, _p) = 0

for al i. We explain this by constructing the following inequality:

2Q(A) < QA +B) + Q(A-B), (2-39)

where A is positive. Thisinequality isan immediate result from the fact that the @ function
is a monotonously and exponentially decreasing function. The inequality in (2-39)
becomes a strict equality only when B is zero. Thus we conclude that if the length islong
enough, the feedback section of a EMSER DFE subtracts off the post-cursor 1SI com-

pletely.

In the case when the length of the feedback filter is greater than the length of the post-
cursor residual 1Sl (i.e. N, > M + N; — 1), the additional taps of the feedback filter will
be zeros. On the other hand, when the length of the feedback filter isless than the length of
the postcursor residual ISl (i.e. N, < M + N, - 1), based on the inequality of (2-39), the
EMSER equalizer setsd; _p=f;fori=D+1... N,.

We now construct a numerical algorithm to recover the coefficients of a minimum-

BER DFE. The numerical algorithm for the forward section of the DFE is
Cry1 = Cp + Wfley, dy), (2-40)

where
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2

D—(cTs— , Mo gx )0
fle,d) = E| expH Z’:;’*; s (2-41)
O 2|lel"o 0

We see that the forward filter is driven by its noiseless input vectors weighted by their con-
ditional error probabilities. We can set the feedback section of the DFE to be the same as

the post cursor 1SI:

d=fps1 . fy,] (2-42)

2.7 SUMMARY AND CONCLUSIONS

In this chapter, we have introduced the concepts of the signal vectors and signal cone
and used them to characterize the EMSER linear equalizer for the PAM 1Sl channel. We
have shown that the EMSER equalizer must satisfy a particular fixed-point equation. We
have shown that error probability function is generally not a convex function of the equal-
izer coefficients, and there are usually multiple solutions to the fixed-point equation. To
find the EM SER equalizer, we have constructed a numerical agorithm based on the fixed-
point equation. We have proved that the algorithm is guaranteed to converge to a solution
to the fixed-point equation for any positive step size. Further, we have proposed a suffi-
ciency condition for testing whether the algorithm has indeed converged to the global
EMSER solution. In addition, we have extended the EMSER results on PAM to both

QAM and DFE.

From our theoretical analysis and some numerical examples, we have concluded that
the EMSER equalizer can be very different from the MM SE equalizer, depending on the
ISl channel and the number of the equalizer taps. Some dramatical SNR gains of the
EMSER equalizer over the MM SE equalizer found in this chapter have motivated us to
proceed to finding an adaptive equalizer algorithm to minimize SER instead of MSE.
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APPENDIX 2.1

PROOF OF
THEOREM 2.2

In this appendix, we prove Theorem 2.2 on page 34: For any equalizable channel, the
EMSER agorithm of (2-26) converges to a local extremum solution satisfying e = afie)

fora > 0.

Since the s® vectors generate asignal cone, we can find a hyperplane P, containing the
origin, such that all s vectors are strictly on one side of P. Every s® makes an angle of 6;
([0, 90°) with the normal to P and consists of two components. one (with norm
lIs @|1sin®;) parallel to P and the other (with norm ||s @]jcos8;) perpendicular to P. At each
update, the correction vector pfie) is strictly inside the signal cone and its norm is lower
bounded by pexp(-ls1% 4’ 2021 8 lminC0SBmax, Where I8 llmin = Mt s@ I}, 115 llmax =

max;{ | s® [}, and 8,5 = max,{8;}. At iteration M + 1, the sum of the past M correction
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vectorsis a vector strictly inside the signal cone and has a norm lower boundedby
Muexp(—llsllrznax/ 202)||'8 |lninc0SBmax- We concludethat, for ary initial ¢, with a finite
norm,thereexistsafinite M suchthate,,, ; is strictly insidethe cone.In addition,we con-

clude that equalizer norne}||| gravs without bound a& increases.

Shawing that ¢, corverges to the direction of an extremum solution satisfying
¢ = af(e) with a > 0 is equivalentto shaving thatthe anglebetweenc;, andfi¢ ), where
¢, equalse; /|| e, ||, approachegero. First we obsene that ¢, mustcorverge to some
fixed vector ¢ ,, since||e;, || becomesarbitrarily large while the norm of the update,||
uAle ) ||, is upperboundedoy p|s ||,ax- It followsthatfie ;) corvergesto fie ), andthus,
for any € > 0, thereexists a finite k(¢) suchthatfor all & > k), ||[|fc )= lc ) Il < |l
fle) — fle ») || < €. Manipulatingthe inequalitiesyields that the anglebetweery(e ;) and

fle ) is less than son(e), where

(2-43)

B(e) = cos! [—1 — S/Hf(éw)"} :

1+e/|f(C,)

M-1

Forany M > 0, ZO f (€ k) + ) IS avectorstrictly within theconeWlfl¢ ,); 6(€)] consisting
of all vectorslejs_sthan 0(e) away from fle ,,). For aey e with afinite norm,we canfind a
finite M suchthatey,e),pr = cpee) + uMZ_:f (€ r(e) + ) IS strictly inside Wif(c ); B(&)]. As €
approache9®, 0(s) approache® an]d_thusthe angle betweency,) , p andfle ) + 1)

approaches as well.Q.E.D.
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APPENDIX 2.2

PROOF OF
THEOREM 2.3

In this appendix, we prove Theorem 2.3 on page 35: If ¢ = afie) for a > 0 and the error
L-1
LK
Let E O RY denote the set of al eye-opening equalizers having unit length, i.e., E is

probability is less than , then e minimizes error probability.

the set of unit-length vectors having positive inner product with all s® signal vectors. This
K
set is not empty when the channel is equalizable. We can write E = N [E;, where

i=1
E;={e:e’s? >0, ||e| =1}. Observe from (2-18) that the condition P,(c) < Ii;{l

implies that the equalizer ¢ opensthe eye, ﬁ OE.

We now show that if ¢ OJE and e = af{e) with a > 0 then ¢ globally minimizes error
probability. First, observe from (2-18) that any equalizer not in IE will have an error prob-
ability of Ii;Kl or greater, whereas at least one equalizer within IE (namely ¢) has an error

L-1

probability P, < T 2 that the global minimum must be in the eye-opening region [E .
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However, as shown below, error probability has only onelocal minimum over EE ; thus, the
local extremum ¢ = af{e) must be alocal minimum and thus must be the global minimum.

It remains to show that error probability has only one local minimum over the eye-
opening region IE . Let B be a map from the unit-radius hypersphere B to R¥ according
to B(e) = P(e)e. The function B shrinks each element of the unit-radius hypersphere by its
corresponding error probability. Let B(B) O RY denote the resulting surface. Because
Q(D)< 1, the error probability surface B(B) is wholly contained within the unit-radius
hypersphere B . Observe that P(c) of (2-18) isthe arithmetic average of K separate @ func-
tions, so that B(e) = I%Zf{: , Bi(e), where By(e) = Q(e’s") o)e. Geometrically, each con-
tributing surface B,(B) ORY has the approximate shape of a balloon when poked by a
finger, with aglobal minimum in the direction of s®. In Fig. 2-9 weillustrate the four con-
tributing surfaces B;(IB) through B4(B) for the channel of Example 2-1. Although each
surface B;(IB ) isnot convex over the entire sphere B, each is convex when restricted to the
hemisphere E ;, and hence so is B;(IE ). (A surface is convex if the line connecting any two
points on the surface does not touch the surface.) Being the sum of convex functions, it
follows that B(E) = Il{zfi Bi(IE) is convex over the eye-opening region E. But a

convex function has at most one local minimum. Q.E.D.



Fig. 2-9. lllustration for Proof of Theorem 2.3 based on the channel of
Example 2-1. The BER surface B(IB) in (e) is the arithmetic average
of the surfaces B;(IB ) through B,(IB) in (a) through (d). The shaded
regions in (a) through (d) are IE; through IE 4 respectively. The
shaded region in (e) is the eye opening region IE, defined as the
intersection of IE; through IE,. Because each B,(IE;) is convex,
B(IE ) is convex.

&)

. B = unit circle
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CHAPTER 3

ADAPTIVE
EQUALIZATION
USING THE AMBER
ALGORITHM

3.1 INTRODUCTION

Although the EM SER algorithm of the previous chapter is useful for finding the min-
imum-SER equalizer of known channels, it is poorly suited for adaptive equalization. We
now propose the approximate minimum-bit-error-rate (AMBER) algorithm for adapting
the coefficients of an equalizer for both PAM and QAM channels. While less complex
than the LM S algorithm, AMBER very nearly minimizes error probability in white Gaus-
sian noise and can significantly outperform the MMSE equalizer when the number of

equalizer coefficientsis small relative to the severity of the intersymbol interference.
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In section 3.2, we approximate the fixed-point relationship of the EM SER equalizer. In
section 3.3, we propose a globally convergent numerical algorithm to recover the solution
to the approximate fixed-point equation. In section 3.4, we transform the numerical algo-
rithm into a stochastic equalizer algorithm, namely the AMBER a gorithm. We discuss
some key parameters, such as an error indicator function and an update threshold, of the
AMBER agorithm. We then extend the AMBER algorithm to QAM and DFE. In
section 3.5, we perform computer simulations to evaluate and compare the error proba-
bility performance of the MMSE, the EMSER, and the AMBER equalizers. In addition,
we empirically characterize the ISl channels over which the EMSER and the AMBER
egualizers are more beneficial than the MM SE equalizer. In section 3.6, we summarize our

results.

3.2 FUNCTIONAL APPROXIMATION

As mentioned in chapter 2, by setting to zero the gradient of (2-12) with respect to the
equalizer ¢, wefind that the ¢ minimizing error probability must satisfy the EM SER fixed-
point equation ¢ = af(c) for some a > 0. For convenience, we again state fle) of (2-22)

here:

—aZ/9 —a2/2 —a%/2
fle) = I_lf Ce Mo o 2@ 4 K s(K)S, (3-1)

where a; = ¢Ts®/(|le|| o) isanormalized inner product of s® with e.

Instead of using the EMSER fixed-point relationship, we use an approximate fixed-
point relationship for reasons that will become apparent later on. Recall that the error

function Q(a) is upper bounded and approximated by 0.5 exp(a2/2), asshown in Fig. 3-1



48

[14]. Observe that the two functions have slopes close to each other. With this approxima

tion, we can approximate f{e) as follows:

Jom

o= 2= fonQUaps™ + axQap)s™® + .. + 4 Qap)s ™3

= % Upmin FREDSY + Qx)s® + ... + Qag)s®

= mamlng(c)y

(3-2)

(3-3)

(3-4)

where a,,;,, = min{a;}, and where we have introduced the vector functiong : RV - RY:

g©) = = Qs + Qugs® + .. + Qags®

=E[QE’$%}

Fig. 3-1. A comparison of @(a) and %exp(02/2).

(3-5)

(3-6)
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Comparing (3-1) and (3-5), we see that the vector function g(e) has the same form as fle),
but with @(a) replacing exp(—a2/2). The approximation in (3-3) is valid because only the
termsin (3-2) for which a; = a,,;, are relevant, and the other terms have negligible impact.
In analogy to the EM SER fixed-point relationship, we define the approximate minimum-

bit-error-rate (AMBER) fixed-point relationship by:

¢ = ag(e), for somea > 0. (3-7)

We define that the equalizer satisfying (3-7) asthe AMBER equalizer. Because () isaso
an exponentialy decreasing function, (3-5) suggests that g(e) is dictated by only these
signal vectors whose inner products with ¢ are relatively small. Thus, the AMBER equal-
izer will be very nearly a linear combination of the few signal vectors for which the eye

diagram is most closed.

The following theorem shows that, although there may be numerous unit-length solu-
tions to the EM SER fixed-point equation e = af{(c) for a > 0, there is only one unit-length
solution to ¢ = ag(e) for a > 0; cal it ¢ oyprr- This is one obvious advantage of this
approximate fixed-point relationship (3-7) over the EMSER fixed-point relationship (2-
24).

Theorem 3.1. For an equalizable channel there is a unique unit-length vector

¢ aympER Satisfying the AMBER fixed-point relationship of (3-7).

Proof. The proof of Theorem 3.1isin Appendix 3.1.

We will learn in section 3.4 that a more important advantage of the approximate fixed-
point relationship over the EMSER fixed-point relationship is its amenability to a simple

stochastic implementation.



50

While the equalizer e4pgrr NO longer minimizes error probability exactly, the accu-
racy with which Q(x) approximates %e‘xz/ 2 for large x suggests that capprr Closely
approximates the EMSER equalizer at high SNR. The simulation results in section 3.5

will substantiate this claim.

3.3 ANUMERICAL METHOD

Recall that we constructed a numerical algorithm to recover solutions to the EMSER
fixed-point relationship of (2-24). To recover solutions to the AMBER fixed-point rela

tionship, we use asimilar approach by proposing the following numerical algorithm:
C+1= ¢ + Hglep), (3-8)

where U is apositive step size.
Because there exists only one unigque solution to e = ag(e) for a > 0, we can prove the

global convergence of this numerical algorithm:

Theorem 3.2: If the channel is equalizable, the numerical algorithm of (3-8) is
guaranteed to converge to the direction of the unique unit-length vector ¢ syBrr

satisfying ¢ = ag(e) fora > 0.

Proof. The proof of Theorem 3.2 isin Appendix 3.2.

3.4 STOCHASTIC IMPLEMENTATION

As mentioned before, the EMSER al gorithm is useful only when the channel is known
and thus is not suitable for stochastic implementation. The main advantage of the numer-

ical algorithm of (3-8) isthat there exists a simple stochastic implementation.
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3.4.1 Error Indicator Function

At first glance, (3-8) is only more complicated than the EMSER algorithm of (2-26).
However, the replacement of the exponential function with the Gaussian error function
motivates a simplified adaptation algorithm. Let us first introduce an error indicator func-
tion I(x;, p , y;) to indicate the presence and sign of an error: let I = 0 if no error occurs, let
I = 1 if an error occurs because y,, istoo negative, and let I = 1 if an error occurs because

3, 1St00 positive. In other words:

1, if yk<(xk_D—1)fDand xp_p#*-L+1,
Ixpp,yp)=0[4, ify,>@,_p+fpandx, p#L -1, (3-9)
Lo, otherwise.

Thus, we see that the expectation of the squared error indicator function issimply the error

probability:

T
B2 = 2L=2 E[Q MD} (3-10)

L Hel ol

This equation suggests that there maybe a connection between the error indicator function
and the numerical algorithm of (3-8), where the equalizer is adapted by signal vectors
weighted by their conditional error probabilities. In fact, we can relate the error indicator

function to g(e) by the following theorem:

Theorem 3.3: The error indicator isrelated to g(e) by

Ellr,] = ZLL—‘Z {se) - ee)c}. (3-11)

where g(e) isasmall positive constant.

Proof. The proof of Theorem 3.3 isin Appendix 3.3.
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Theorem3.3 allows us to usethe error indicator function to simplify the numerical

algorithm of (3-8) as folls:

Cri1 = 1, + Hgley) (3-12)
= c;, + WEII 1] + €ley)ey) (3-13)
= (1 + peleg))ey, + LELL 1] (3-14)
= ¢y, + UE[I 1], (3-15)

where the approximation in (3-15) is accurate wh&a) is small.

Whenthe stepsizep is significantlysmall,anensembleaveragecanbe well approxi-
matedby a time average,andwe canremove the expectationin (3-15) to yield the fol-

lowing stochastic algorithm:

cp1=c¢Cp+ UIry,. (3-16)

We referto this stochastiaupdateasthe approximate minimum-BER (AMBER) algorithm.

In chapted we will address its caergence properties in details.

We remarkthat (3-16) hasthe sameform asthe LMS algorithm,exceptthatthe error
indicatorfunctionof the LMS is Iy y;5 = x;,_p — y5- Obsene thatAMBER is lesscomple
thanLMS becausg3-16) doesnot requirea floating-pointmultiplication. Recallthatthe

sign-LMS algorithm is

Cri1=Cp + Wlgign Lys Th (3-17)
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where g, 1ms = sgn(lrys). AMBER can be viewed as the sign LMS algorithm modi-

fied to update only when a symbol decision error is made.

3.4.2 Tracking of fp

The LM S agorithm penalizes equalizer outputs for deviating away from constellation
points and thus controls the norm of the equalizer so that the main tap of the overall
impulse response is approximately unity, e.g. fp = 1. On the other hand, 1, is not neces-

sarily close to unity for the AMBER agorithm.

Knowledge of 1, is not needed for binary signaling since the decisions are made based
on the sign of the equalizer outputs. However, for general L-PAM, the value of the indi-
cator function I depends on f5,, which changes with time as ¢ is being updated.

To estimate fp, we propose an auxiliary update algorithm. First, we let f p(k) denote
the estimate of fp at time k. For a given x;, _ p, the equalizer output y, equals the sum of
fpxz, _p and a perturbation term resulting from residual ISl and Gaussian noise. Since the
perturbation term has zero mean, the mean of the equalizer output is fpx;, _ p, and that

v/ xp,_p hasamean of ;. We can thus track /, using asimple moving average as follows:

Fo+ 1) = (1=NFpk) + A —F— (3-18)

XL-D

where A is a small positive step size. The estimated detection thresholds are then {0,

+2f p(k), ..., (L - 2)F p(B)}.

3.4.3 Update Threshold

Because the AMBER algorithm of (3-16) updates only when an error occurs, i.e. when

the error indicator I # 0, the convergence rate will be slow when the error rate is low. To
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increase convergence speed, we can modify AMBER so that the equalizer updates not
only when an error is made, but also when an error is almost made, i.e. when the distance
between the equalizer output and the nearest decision threshold is less than some small

positive constant T. Mathematically, the modified indicator function is

1, ifyk<(xk_D—1)fD+‘[ andxk_D;t—L+1,
Licp_pyr)=0[41, ify,>@,_p+1fp-Tadux,_p#L-1, (3-19)
Lo, otherwise.

Observe that when T = 0, the modified AMBER algorithm reverts back to (3-16).

We note that the expectation of the squared modified-error-indicator function is no
longer the error probability, but rather
T
E[7,2] = ZLL—‘2 E[Q g’”cs—":g] (3-20)
The original AMBER algorithm (t = 0) requires knowledge of x;, _p; In other words, it
requires a training sequence. When a training sequence is not available, the original
AMBER agorithm cannot be operated in adecision-directed manner: if decisions are used
in place of actual symbols, the indicator function would be identically zero since it is not
possible for AMBER to tell whether an error has occurred, and hence the equalizer would
never escape from its initia condition. Fortunately, the threshold modification has a
second advantage: besides increasing the convergence speed, the modified algorithm can
also be implemented in a decision-directed manner by using x,_p in place of x, _p in (3-
19). Because a decision-directed algorithm cannot recognize when an error is made, the
modified algorithm in decision-directed mode updates only when an error is almost made.
We can expect that the impact of decision errors on this decision-directed algorithm will

be negligible when the error probability is reasonably small, perhaps 102 or less,
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3.4.4 Extension tothe QAM Channel

Extending the AMBER equalizer to L2-QAM is straightforward since the in-phase and
guadratic components of a QAM system can be viewed as two parallel PAM systems.
Replacing the exponential function by the Gaussian error function in equations (2-35)-(2-

35), we obtain the deterministic AMBER agorithm for QAM as
Crs1= Cpt+ HEQamlcr) (3-21)
where

[(cTs )RD [(cTs )ID
k°1 * k]
E . 3-22
:| + |:Q|:|||ck||0' %SJ:| ( )

gaamier) = E| QG——1"[s

R [ 1 [exlo &
Once again, if we assume the effect of noise on the received channel output vector is not
significant, we can replace the ensemble averagesin (3-21)-(3-22) by the following simple

stochastic update for the complex QAM equalizer:

Chr = € + WLy, (3-23)

where I = T(xf_ D> yf ) + jIT(xi _D> yé) and where the superscripts R and I are used to

denote real (or in-phase) and imaginary (or quadrature) parts, respectively.

3.4.5 Extension to Decision-Feedback Equalizer

A decision-feedback equalizer is basically a cascade of alinear equalizer and a deci-
sion-feedback device, where the forward section of a DFE is the linear equalizer. We
replace the exponential function by the Gaussian error function in the EMSER update

equation (2-40) for the forward filter of a DFE as follows:
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Cr+1 = Cp + Uppaler, dp), (3-24)

where

T N2
He s—z._Ddixk_i)D
,d)=E| Q3 L s |.
Efud(®> D {QD lelo D}

(3-25)

Based on the deterministic AMBER update of (3-24), we can then form an amost iden-

tical stochastic update for the forward filter:
Cr+1 = Cp + W Ty, (3-26)

where I; isthe error indicator function evaluating the equalizer outputs after decision feed-

back and r, isthe equalizer inputs for the forward filter of the DFE.

As mentioned in section 2.6, the feedback filters of both the MM SE and the EMBER
DFEs are to eliminate post-cursor ISl and we can update the feedback filter of the

AMBER DFE with the LM S algorithm:
dpi=dp—Yerx, _p_q, (3-27)

where ¢, is the difference between the DFE output and the desired signal, and where

le—D—l =[x,_p_q - xk_Nz] Is the past data vector and is replaced by the data deci-

. T . - : .
sionvector &, _, 4 =[%;,_p_q - %, _y,] inthe decision-directed mode.
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3.5 NUMERICAL RESULTS

3.5.1 SER Simulation

In this subsectionye considerseveral examplesto comparethe SER performanceof
the EMSER,AMBER, andMMSE equalizersWe alsoplot someeye diagramsof equal-

izer outputs to illustrate the féefence between the MMSE and the AMBER equalizers.

Example 3-1: We first considerinear equalizatiorfor a binary signalingchannel
H) = 1.2 + 1.1z1 - 0.2272. In Fig. 3-2 we plot BER versusSNR =y ,4;,2/ 02,
consideringhe MMSE, EMSER,andAMBER equalizersof lengththreeandfive.
With threeequalizertapsanda delayof D = 2, the AMBER equalizerhasa more
than6.5 dB gain over the MMSE equalizer With five tapsandD = 4, the AMBER
equalizethasanearly2 dB gain over MMSE. Obsene thatthe AMBER (solid) and
EMSER (dashed)curves are nearly indistinguishable.In Fig. 3-3, we present
“artificial” noiselesye patterndor the EMSER,AMBER, andMMSE equalizers,
assumingdfive equalizertapsand SNR = 30 dB. Thesepatternsare obtainedby
interpolatingall possiblenoiselessqualizeroutputswith a triangularpulseshape.
All equalizersare normalizedto have identical norm (and thus identical noise
enhancement)The EMSER and AMBER eye patternsare virtually identical,
whereaghe MMSE eye patternis drasticallydifferent. The interestingdifference
betweenthe MMSE and AMBER equalizersresultsfrom the MMSE equalizers
effort to force all possibleequalizeroutputsto { +1}, despitethe benefitsof sparing

the outputs with laye noise immunity
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Fig. 3-2. Performance of linear equalization for the channel H(z) = 1.2 +
1.121-0.2272

BER=2.9x1078

MSE=-4.9dB
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BER=2.9x107 BER=3.5x10"°

MSE=-4.9dB MSE=-9.0dB

@ (b) 2 ©

Fig. 3-3. Equalized noiseless eye patterns for 5-tap (a) EMSER; (b)
AMBER; and (c) MMSE for the channel H(z) = 1.2 + 1.1z7 -0.2 2 2.
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Example 3-2: We now considera 4-PAM channelwith transferfunction H(z) =
0.66 + 2™ —0.66z . In Fig. 3-4 we plot error probabilityversusSNR = 3 |, [2/ o
for threedifferentfive-taplinear equalizersMMSE, EMSER,and AMBER. The
delayis D = 3, which is optimal for the MMSE equalizer The coeficients of the
MMSE and EMSER equalizersare calculated exactly, whereasthe AMBER
coeficients were obtained via the stochastic AMBER update (3-16), with
1 =0.0002, T = 0.05, and 10° training symbols.The error probability for all three
equalizersis then evaluated using (2-16). Obsere from Fig.3-4 that the
performanceof AMBER is virtually indistinguishablegrom that of EMSER, and
thatthe AMBER equalizeroutperformghe MMSE equalizetby over 14 dB at SER

=10°°.
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> \
n \

\
\
N
| | | | |
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Fig. 3-4. Error-probability comparison for the 4-PAM channel with
H(z)=0.66 + 2% —0.6622.



Example 3-3: Here we consider a 4-QAM channel with linear equalization and
H(z) = (0.7-0.2)) + (0.4 — 0.5z + (0.2 +0.3))z72, and SNR =5, | h; 12/ 0% As
shown in Fig. 3-5, the 4-tap (D = 3) AMBER linear equalizer outperforms MM SE
equalizer by about 18 dB. With five taps, the gain drops to slightly more than 2 dB.
In Fig. 3-6 we present the noiseless constellation diagrams for the 4-tap AMBER
and MMSE linear equalizers. Observe the interesting structure of the AMBER
constellation clouds; they result in a higher MSE than the MM SE clouds (which

appear roughly Gaussian), but the edges of the AMBER clouds are further apart.

104

() w3sNY

BER

10°° T Y T Y Y
20 22 24 26 28 30 32 34 36 38 40 42

SNR (dB)

Fig. 3-5. BER comparison for linear equalizer on the 4-QAM channel
with H(z) = (0.7 =0.27) + (0.4 —0.5 j)z7 + (0.2 + 0.3 j)z 2.
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Fig. 3-6. Noiseless equalized constellations of 4-tap (a) AMBER and
(b) MMSE equalizers at 25 dB SNR on the 4-QAM channel with H(z) =

(0.7-0.27) + (0.4 0.5 )z + (0.2 + 0.3 j)z"2.

Example 3-4: We now consider a 16-QAM system with channel H(z) = (0.5 +
0.3)+ (1.2 + 0.9)2%1 -(0.6+04/)z2. In Fig.3-7 we plot symbol-error
probability versus SNR for afour-tap linear MM SE equalizer and a four-tap linear
AMBER equalizer. The MMSE delay D = 3 is used on both cases. The coefficients
of the MM SE equalizer are exact, whereas the AMBER coefficients are obtained
via (3-16) with p =0.0002, T = 0.05, and 10° training symbols. Both curves are
obtained using Monte-Carlo techniques, averaged over 30 x 10 trials. Observe that
AMBER outperforms MMSE by more than 6 dB. In Fig. 3-8 we plot the first
guadrant of the noiseless 16-QAM constellation diagrams after the AMBER and
MM SE equalizers. The equalizers are scaled to have the same norm and therefore

the same noise enhancement. Observe that the distance between the AMBER

61
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clouds is greater than the distance between the MM SE clouds. Thus, athough the
MSE of the AMBER equalizer is 0.5dB higher than the MSE of the MMSE

equalizer, the error probability is smaller by afactor of 17.

Example 3-5: Here we consider abinary signaling channel with atransfer function
of Hz)=0.35 + 0.821 + 22+ 0.8z, but this time with decision-feedback
equalization. In Fig. 3-9 we compare the BER performance of AMBER to MM SE.
For afive-tap DFE (3 forward and 2 feedback taps), AMBER has a more than 5 dB
gain over MMSE at BER = 107 . For a seven-tap DFE (4 forward and 3 feedback
taps), AMBER outperforms MMSE by about 1.8 dB. Observe that the 5-tap

AMBER DFE outperforms the 7-tap MM SE DFE.

102

1073

SER

107

107° |

25 27 29 31 33 35 37

SNR (dB)

Fig. 3-7. Error probability performance comparison for the 16-QAM
channel with H(z) = (0.5 + 0.3/) + (1.2 + 0.9/)z7 (0.6 + 0.4/)z2.
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Fig. 3-8. Noiseless constellations (first quadrant only) of the 16-QAM
channel with H(z) = (0.5 + 0.3)) + (1.2 + 0.9/)z1 — (0.6 + 0.4/)z2: (a)
after MMSE (MSE=-5.9 dB, P,=69.6 x 10*5); (b) after AMBER

(MSE=-5.4 dB, P, =4.0 x 10?).

BER

23 24
SNR (dB)

Fig. 3-9. BER comparison of DFE for the binary channel with
H(z)=0.35+0.820 + 22+ 0.823.
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3.5.2 ISl Channel Characterization

Basedon our simulationresultsin the previous subsectionwe suspecthat without
enoughequalizettaps,the AMBER (andthe EMSER)equalizersrelik ely to significantly
outperformthe MMSE equalizerson severe ISI channels However, the above claim is
rathervagueandmoreconcretescenariogreneededo quantifythe claim. In this subsec-
tion we devisean|SI channekharacterizatioprocedurdo identify scenariosn whichthe

AMBER and the EMSER equalizers significantly outperform the MMSE equalizer

We have realizedfrom our previous simulationresultsthat drasticallydifferenterror
probability performancearereflectedn theeye diagramsMore specifically themorethe
MMSE eye patternis closedthe morepotentialis the AMBER equalizerto improve error
probability performance.As we have mentionedearlier the noiselesseye patternis
formed by plotting the noiselessequalizeroutputsand equialently, the inner products
betweerthe equalizerandthe signalvectors.We will now give two rules-of-thumlbased

on our empirical obseations.

Rule 1. For an MMSE equalizerif its smallestoutputis significantlylessthanthe
desiredsignal(e.g. thesmallesinoiselesequalizeroutputis 0.1 andthe desiredsignal
is 1), thenit is possible to have the AMBER andthe EMSER equalizerssignificantly

outperform the MMSE equalizer

Rule 2. If someMMSE equalizeroutputs,which significantly closethe eye of the
channelhave largedispersionthenthe AMBER andthe EMSERequalizersarepossi-

ble to have lage SNR @ins over the MMSE equalizer
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Of course the above rules do not aways hold, but they are in general good. We now
design a crude characterization procedure to predict the SNR gains of the n-tap AMBER

and EMSER equalizers over the n-tap MM SE equalizer.

Step 1. Given a channel, compute the n-tap MMSE equalizer at a high SNR. Obtain

noiseless equalizer outputs by convolving the channel and the MM SE equalizer.

Step 2. Of all the MM SE equalizer outputs corresponding to x;, , = 1, pick one tenth
with smallest values and average them. The predicted SNR gain of the AMBER and
the EM SER equalizers over the MM SE equalizer is

0o OuT O

SNR,,;,, = 20 1oglogo—avgm (3-28)
gam UTsmallestD’

where OUT,,, is the average of the one tenth MM SE equalizer outputs with the smallest
values and OUT,, 1165t 1S the smallest MM SE equalizer output. At very high SNR, the
smallest of equalizer outputs dictates the error probability performance; Thus OUT,,  1est
is the effective signal strength for the MM SE equalizer at high SNR. On the other hand,
we have observed that both the AMBER and the EMSER equalizers tend to passively
“cluster” equalizer output into sub-clusters, and OUT,,, is used to roughly estimate the
mean of the sub-cluster that nearly closes the eye of the channel. The predicted SNR gains
of the AMBER and the EM SER equalizers over the MM SE equalizer are thus the ratios of

OUT,g over OUTgpa11e5t IN decibels.

In Fig. 3-10, we plot the actual versus the predicted SNR gains of the EMSER equal-
izers over the MM SE equalizer. With various equalizer taps and two hundred equalizable
3-tap and 4-tap channels, we perform simulations to find the actual SNR gains of the

EMSER equalizer over the MM SE equalizer at error probability lessthan 10 . In general,



66

the characterization procedure predicts well whether an EMSER equalizer is likely to sig-
nificantly outperform an MM SE equalizer. In Fig. 3-11, we plot the actual versus the pre-
dicted SNR gains of the AMBER equalizers over the MM SE equalizer.

3.6 SUMMARY AND CONCLUSION

We have derived the approximate minimum-BER (AMBER) equalization algorithm
for both PAM and QAM. The stochastic AMBER algorithm for adaptive equalization has
the following attributes: it closely approximates the minimum-error-probability equalizer;
it does not require knowledge of the noise variance; it has low complexity, even lower than
the LMS algorithm; and simulation results suggest that the algorithm is globally conver-
gent. We also have carried out a simple ISl channel characterization procedure to predict

SNR gains of the EMSER and AMBER equalizers over the MM SE equalizer.

14

12 -

10 _

Predicted SNR gains (dB)
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Fig. 3-10. The actual vs. the predicted SNR gains of the EMBER
equalizers over the MMSE equalizers.
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Fig. 3-11. The actual vs. the predicted SNR gains of the AMBER
equalizers over the MMSE equalizers.
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APPENDIX 3.1

PROOF OF
THEOREM 3.1

In this appendix, we prove Theorem 3.1: For any equalizable channel thereis aunique
unit-length vector, ¢ oyprr, Satisfying the fixed-point relationship ¢ = ag(e) for a > 0.

By contradiction: suppose both ¢; and ¢y satisfy ¢ =ag(e), a>0, where
leill=]lea]l=1. Let P denote the plane containing the origin and the perpendicular
bisector of ¢ ; and ¢ 5, as shown in Fig. 3-12 for a three-tap equalizer. This plane bisects
the signal cone S ={Z;a;s"”) : @; 20} into two subcones A and B, so that S=A B,
where A is the intersection of S with the set of vectors on the ¢ ; side of P, excluding P,
and B is the intersection of S with the set of vectors on the ¢, side of P, including P.
Observethat ¢ ; 1A and ¢ 5 (B and that A and B are digoint, A n B = [I.

From (3-5), g(¢ 1) can be decomposed into two summations over signal vectors from A

and B:
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ECT (l)D , ECT (J)
gley) = ; QD—DS'() 2 QD—EB(J) (3-29)
@ A 0]

S

Now consider g(e,); it too can be expressed using (3-29), but with different weights.
Compared with ¢ 1, the vector ¢, forms alarger angle cos™(¢,7s®/|| s® |) with all vectors
s® from A, while it forms a smaller or equal angle with all vectors from B. Thus, com-
pared with the weights for g(e,), the weights Q(e,’s®/ o) for g(es) in (3-29) strictly
increase for the s® vectorsin A, while they either decrease or remain the same for vectors
in B. Since g(ey) = ¢; 04, it follows that g(ey) is aso in A. But this contradicts

¢y = g(ey), Since ¢y [1B. Q.E.D.

Fig. 3-12. Dividing the signal cone into two subcones A and B with the plane P.
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APPENDIX 3.2

PROOF OF
THEOREM 3.2

In this appendix,we prove Theorem3.2. Let s® be the i-th of the LM*N-1 possible
signalvectors.Sincethe channelis equalizableall s vectorsform a conesuchthatwe
canfind a vectorhaving anangleof strictly lessthan90° with all s* vectors Becausehe
s® vectorsform a cone,we canfind a hyperplaneP, containingthe origin, suchthatall s®
vectorsarestrictly on onesideof P. Every s makesanangle6; ([0, 90°) with thenormal
to P andconsistf two componentsone(with norm|fs®|sin8) parallelto P andthe other
(with norm |ls”|lcos8) perpendiculato P. At eachupdate the correctionvectorpg(ey,) is
strictly inside the cone and its norm is lower boundedby pQ(|ls [lnax” )|l [IninSTMmin,
where|ls|jnin = mindlls O|}, |Is [lnax = max{|js O[}, and 6, = max;(6;}. At iterationM + 1,
the sumof the pastm correctionvectorsis a vectorstrictly insidethe coneandhasanorm

of at leastMuQ(|ls |nax” 9)IIs | IninSiNBmin- We concludethat, for ary initial ¢, with afinite
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norm, there exists afinite M such that ¢, ; is strictly inside the cone. In addition, we con-

cludethat || e;, || grows without bound as % increases.

Showing that ¢;, converges to the direction of a solution satisfying e = ag(e) fora > 0
is equivalent to showing that the angle between ¢, and g(c;) approaches zero, where
¢, = ¢/ || e, ||. Because ||ex|| grows without bound while the norm of the update, ||ug(e 2,
is upper-bounded by p|| s [lmax it follows that ¢, must converge to some fixed vector ¢ o, SO
that g(c ;) convergesto g(e .,). Thus, for any € >0, there exists afinite £(€) such that for all
k> EkE), ||llglep)ll=llg(c L)l < llgter) —g(€ )| < €. Manipulating the inequalities yields

that the angle between g(¢ ) and g(¢ ,) isless than some 6(¢), where

(3-30)

B(e) = cos? [—1 _S/”‘I(E“)”

1+¢/ ||q(60°)||

For any M > 0, Zi” —01 g(ex() + ) isavector strictly within the cone Wg(e o,); 6(€)] con-
sisting of &l vectors forming an angle of less than 8(g) with g(e.,). For a ey, with finite
norm, we can find a finite M such that e, , 57 is strictly inside Wig(e ,); 6(€)]. As €
approaches 0, 6(g) approaches 0 and thus the angle between ey , 3y and g(€p ) + m)

approaches 0 aswell. Q.E.D.
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APPENDIX 3.3

PROOF OF
THEOREM 3.3

This appendix proves Theorem 3.3: The ensemble average ElIs;] is the same as
E[IHx;] or HE[Ix;]. We equivalently derive the ensemble average E[Ix;] by finding the
scalar E[lIx;, _ pl and the vector E[Iz] where we have defined the vector z =[x, ..., Xz p+ 1,
XD 1 - XN+ 1] Dy discarding the (D + 1)-st component of .

Let “left”, “right”, and “inner” denote the events of x,_p = -L +1, x, p =L -1, and

xpp O{£1, £3, ..., £(L-3)}, respectively. (If L = 2, “inner” isthe null event.) Then:

Ellx, 1= Ellx; p | eft]Plleft] + ElLx, p | right]P[right] + Ellx,_

p linnerIPlinner] (3-31)

_L+1 L-1 . L-2
=—7F E[Ileft] + T E[IIright] + T

ElIx, p linner]. (3-32)
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But I isindependent of x;,_, whenx;_p isaninner point, so that the last term is zero:

E[lx,_p linner] = E[Ilinner]E[x,_p |inner] = E[Z1inner] x 0 = 0. (3-33)

Thus, (3-32) reduces to:

Ellx,p] = ‘% E—E[ T1left] + ElI 1 right] @ (3-34)
_ Lol %-(—P[ b7z + Tny, > fp)) + Pz + Ty, <—fp] % (3-35)
_L-1Ggly E’C’.T—"Tﬂ R E{Qm%} - (3-36)

L 770 lelo g 0 llelo 0o
=kt :Q gl’”:"fz@} . (3-37)

We thus have the surprising result that the ensemble average E[! x;, 1, ] does not depend
on x, ! We have defined the vector b = [f;, ..., fp_1. fps1s - Fursn_1] L by discarding the
(D + 1)-st component of f. The last equality follows because z and -z have the same dis-
tribution. The derivation of E[Iz] is asfollows:

Ellz] = %E[Iz |left] + %E[Iz Iright] + ’% E[Iz linner] (3-39)

E[E[Ilz, |eftlz + ElI |z, rightlz + (L — 2)E[l | 2, inner]z] (3-39)

T T

C Op+tb 20 [p-b 20C

L-2)[Q D QBD—D[z}
C

_ (3-40)
0O lelo o "0 lelo o
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T T
_ +b" 2z _ -b 2z
_L-lg QgD—& _L-lg QgD—& (3-41)
L 0 lelo O L 0 lelo O
T
oL-2 [ Op*b 20
= E . 342
L [Qm ldlo u} (342

The ensemble E[Iz] does not depend on x;, _ p either. Combining (3-37) and (3-42), we

have
T .
_ 2L -2 e’ Hxp-
Ellx] = TE[QDHCHO %r} (3-43)
and
9L -2 s
Blfs,] = ElTHx,] = 22=2 E[Q Eﬁ%%} (3-44)

where x is arandom vector with distribution p(x) = p(x 1, _p = 1), i.e, x isuniformly

distributed over the set of LM*N~1 L-ary x;, vectorsfor whichx;, _p=1and s =Hx.

We now derive the ensemble average E[In;]. We first partition E[Ir;] into three condi-

tional expectation terms as follows:

Elln,] = ZE[Ink 1I=1,2=2Pll=12=21+
ZE[InkII=—1, 2=21P[[=-1,2=2"1+

ZE[Ink 1I=02=21PlI=0,z=2", (3-45)

where each term is summed over LM*N —1 possible z vectors. Note that the last summation
term in (3-45) is a zero vector since I = 0 and In; = 0. We first concentrate on the first
summation term in (4-18) by finding the conditional expectation E[In,, |11 = 1, z = z'] and

the joint probability P[I = 1, z = 2/]. Here we determine Elln,|I=1, z =2
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Elln,|I=1,z=21=E[n,I1=1, z=2] (3-46)
=ElngleTn, < —fp-bT2, x,_p#z-L+11 (347
=Elny,e"n;, < —fp - b2 (3-48)

Let U be any unitary matrix with first column equal to the unit-norm equalizer vector
¢/|le|. Then n = UTn, has the same statistics as n;,, namely, the components of n are
ii.d. zero-mean Gaussian with variance o®. Furthermore, ¢’U =] c|le;, where

e;=[100 ... 0],and n;, = Un . Continuing on (3-48), we have

Elln,|I1=1,z=2"1 =E[Un |¢fUn <-f;-bT21 (3-49)
= UE[n ||¢|n, <—fp-bT2" (3-50)
~ T 1
. Ny [ptbz
=UE|n|l—>—=—— 3-51
e (3-51)
T 1
_ -ny ny; fp+b z
_—GUE[ ik } ) (3-52)
T 1
_ fp*tb 2
_—GE[mD Telo D}c/”c”, (3-53)
where we have introduced the function
e_ﬂz/2 A
m(n) = ———= E[X | X=n], (3-54)
J21Q(n)

where X is a zero-mean unit-variance Gaussian random variable. We now derive the joint

probability P[I = 1, z = 2/1:

PlI=1,2z=21=PlI=1lz=2"1P[z =2 (3-55)



T 1
_L-1,0p+b #0_1
- L D "c"o' DLM+N_1.

Combining (3-53) and (3-56), the first summation term in (3-45) becomes

ZE[Inkllz 1,z=21PlI=1,2z=2
T 1,2
—(L-1)0 O{fp+b'2) O¢
= M+N =" 5 2 el
L JS2n O 2le|*0” Ol€

_ ™ 2
_L-Nop FUp*0 2) 5le
L2n | 0 gle|?s® Oflel

expt——=0|/— -
L.J2m ®|le| 2020 lell

_ —(L—l)oE_ EL(cTE)QD} c

It is not hard to show that

ZE[Ink 1I=1,2=21PlI[=1,z=2]

= ZE[Ink II=-1,2z=21P[[=-1,z =2,

and therefore, we conclude that

.2
_ O(els) O

Elln,] = - 2L-2 0 eXpDMD <
L fon 2| 2020 lell

Q.E.D.

76

(3-56)

(3-57)

(3-58)

(3-59)

(3-60)

(3-61)
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CHAPTER 4

CONVERGENCE
ANALYSIS

4.1 INTRODUCTION

In the previous chapter, we proposed a low-complexity stochastic equalizer algorithm
(AMBER) that very nearly minimizes error probability. In this chapter, we discuss its
global convergence properties and propose a variant to increase its convergence speed.

Assuming the equalizer coefficients vary slowly (which is true for a sufficiently small
step size), a stochastic equalizer update can then be expected to follow a deterministic tra-
jectory [15]. In this chapter, we first derive the ensemble average of the stochastic
AMBER algorithm to approximate its time average in order to study its mean convergence
behavior. Because of the highly complicated and nonlinear nature of the update dynamics,
instead of arigorous mathematical proof, we describe the likely global convergence prop-

erty of the AMBER algorithm and propose aglobal convergence conjecture based on sim-
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ulation results and some analytical understanding on the update dynamics. Finaly, we

propose a variant with faster convergence speed.

4.2 ENSEMBLE AVERAGE OF AMBER

The AMBER algorithm proposed in the previous chapter is

Cri1=Cp + Wiry, (4-1)

whose ensemble average can be derived by taking expectation of both sides of (4-1). The

deterministic trajectory of the equalizer coefficientsis described by

Ch+1 = Cf + HELL7] (4-2)

= ¢j, + UE[L,s] + PE[Ln;], (4-3)

where we separate the noisy channel output vector r;, into the noiseless channel output

vector s;, and the noise vector n;,. We now find the ensemble averages E[I;s;,] and E[I;n;].

Theorem 4.1. The ensemble average of the AMBER algorithm of (4-2) is

T 0. T2 _ 20
(e, s—TLL o o{(c,$=T1) | ¢
Ccpi1=Cp + uE{QB—ES} -u—=E| exp . (4-9)
- Oflexlo ] "vam | " 5 2)e,)%0” glexl

Proof. The proof of Theorem 4.1 isin Appendix 4.1.

4.3 GLOBAL CONVERGENCE PROPERTY

Having derived the ensemble average of the AMBER agorithm in the previous sec-

tion, we now discuss the global convergence property of AMBER by analyzing the deter-
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ministic trajectory of the equalizer coefficient vector. From the results of the previous

section, the ensemble average of the stochastic AMBER algorithmis

Cr+1= Cp + W1 ElLry]

= ¢ + WEMs;] + W ELny]

EL‘,Z;—TEL o E—(cg‘§—r)2% c;,
=c, + UE {QD—[S} —p—E| exp , (4-5)
Ofexlo o] "am | "5 2)e,?0” gfle
where i = 2LL_2 M. Rearranging (4-5), we get
O 0,.T~ 2ME T~
0 T(eps—1) AIC (e, s —T0
Cri1 = - Lo E exp Ek—zz% [cp+ HE|:QDk—|:S:| . (4-6)
0 2y 2le,|%0” BIC Oflexlo O
0 k O ” k” O C

By inspection, we see that when the step size | is chosen sufficiently small, the norm of

the equalizer in (4-6) is shrunk by some positive factor (less than 1) before the equalizer
els-1

vector is adjusted by the steering term E[QB—’Q—-S———%} We denote the vector term

o Hefs-1)20)| e, Olexlo O
—E O as the shrinking vector since it reduces the equalizer norm.
J2m [ 020 D} e

Before we analyze the convergence property, we would like to point out from (4-5)

that the equalizer update stops, or ¢, 1 = ¢, When the steering term equal s the shrinking

term:

Te Dels — 120
[e, s —TOL —(c, 8T c
E{ k ex® =0 o) % (47)

9]
QO Ds} = E| exp )
Oledlo 0] J2m | " g2je,|?0® glle

The equilibrium condition of (4-7) directly implies: (1) the steering vector points in the
same direction as the equalizer vector when the equalizer converges, and (2) the magni-

tudes (or norms) of the steering vector and the shrinking vector are the same.
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4.3.1 ThelLocus

Recall that the original AMBER (t = 0) equalizer is uniquely characterized by the
fixed-point relationship ¢ = ag(e) for some a > 0, where only the direction of ¢ matters.

However, for T > 0, the norm of ¢ matters as well. We now define a new fixed-point rela

tionship:
- e (@9)
- Jgte)]
where
[¢T§—T

Following the proof in Appendix 3.1 which shows that there is a unique unit-length vector
satisfying the fixed-point relationship ¢ = ag(e) for somea > 0, it is not hard to show that
for a positive number M, there exists a unique equalizer with equalizer norm M satisfying

the new fixed-point relationship of (4-8).

When the norm of ¢ isvery small relative to t, the term E[Q g’ﬁq%} Isessentially
[ o ” Eﬂ or E[s] (Qw) = 1 when w << 0). ¢ = E[s] simply means that ¢ is the
average of al signal vectors. On the other hand, when the norm of ¢ is very large relative
to T, we have g(c) = g(e) since the effect of T in (4-9) is effectively eliminated by the large
denominator.
Geometrically, the new fixed-point relationship defines a locus of equalizer vector ¢
parameterized by 1. Given a channel, a noise variance 02, and an update threshold T, we

can form alocus realizing (4-8) by plotting the norm and the direction of ¢ for all values of

lle]| = 0.
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Example 4-1: Here we use atwo-tap equalizer to illustrate alocus. We consider a
two-tap binary-signaling channel where the channel has atransfer function H(z) = —
0.6 + z7. In this example, we use SNR = 10 dB and t = 0.1. In Fig. 4-1, we plot
three different-norm equalizer vectors satisfying (4-8). The dashed circles are
circles whose radii are the norms of the equalizers. We see these vectors point in
three different directions. In Fig. 4-2, we plot the locus by connecting all equalizers
(with norms from 0.001 to 2.0) satisfying (4-8). We see that the portion on locus
corresponding to large equalizer norms is nearly a straight line, whereas when the

equalizer norm is small, the effect of T makestheinitial curvy segment of the locus.

It is harder to visualize alocus when we consider equalizers with more than two taps
since the locus would then live in ahigher dimensional space. We now attempt to describe
alocusin an intuitive way: A N-dimensional space is occupied by a N-dimensional onion
with the center of the onion at the origin of the space. The onion has infinite layers of skin,
each skin layer is a hollow hypersphere with a certain radius. In Fig. 4-1 and Fig. 4-2, the
dashed circles are the onion skin layers in the two-dimensional space. As demonstrated
Fig. 4-1, for each skin layer, there is a hole pierced by a unique vector whose norm is the
radius of the layer and whose direction is characterized by (4-8). The locusislike athread

passing through the holes of all skin layers of the onion as seen in Fig. 4-2.
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Fig. 4-1. Equalizer vectors satisfying the locus equation of (4-8) with
norms (a) 0.02, (b) 0.06, and (c) 0.4.
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Fig. 4-2. The locus for a 2-tap equalizer for the channel in Example 4-1.
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4.3.2 Global Convergence

In this subsectionye conjecturghatthe AMBER algorithmcornvergesglobally with a
sufficiently small stepsize. To substantiat@ur conjecturewe first studythe equilibrium

state of AMBER with the folling claim:

Lemma4-1. Theequilibrium statedescribedoy (4-7) cannotbetruefor ae with
anarbitrarylarge or smallnorm. In addition,thereexists somee with afinite non-

zero norm satisfying the equilibrium state.

Proof. The proof for Lemma 4-1 is in Appendix 4.2.

We now investicate whetherthe AMBER algorithm indeedcornverges globally. We
startwith the conceptof the hyperspacenion. For ary positve numberM, thereexists a
hollow hypersphergonion skin layer) with radius M and there exists a unique vector
¢ (M) with norm M satisfyingthe fixed-pointrelationshipof (4-8). We now malke the
claimthatthelocusactsasan*“attractor” which attractshe updatetowardsit, startingwith

the following lemma:

Lemma 4-2: If ¢, ande(||eg||) form anangleq, thereexists a sufficiently small

stepsizep suchthattheanglebetweere,, ; ande”(||e;||) is strictly smallerthen.

Proof. The proof for Lemma 4-2 is in Appendix 4.3.

Conjecture: In orderto formally claim that the updatebecomesasymptotically
closerto the locus,we needto shav thatthe anglebetweenc,, ; ande (||e;,1]|) is
lessthan the anglebetweene;, ande”(||eg||). Although it hasnt beenrigorously
proved, simulationresultsin section4.5 have shavn thatthe rate of changeof the

enclosedanglebetweene(||e;||) ande (||ex,1]]) is slower thanthe rateof change
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of the enclosed angle between ¢;, and ¢, ; and thus we conjecture that the update

trajectory gets closer to the locus for a sufficiently small update step size.

We observe that once the update trgjectory gets close enough to the locus, the equal-
izer update process is more norm adjusting (expanding or shrinking the equalizer norm to
reach the equilibrium state) than direction adjustment. We will substantiate our claim with

computer simulation results in section 4.5.

4.4 MULTI-STEP ALGORITHMS

The update frequency, and consequently the convergence speed, of the origina
AMBER (t = 0) is proportional to error probability. Although we have incorporated an
update threshold 1 to increase its convergence speed, a further increase in convergence
speed may still be possible.

It iswell known that the recursive least-squared (RLS) algorithm [7] yields the fastest
convergence speed and the best steady-state MSE performance. One may be tempted to
ask this question: what is the best algorithm in terms of convergence speed and steady-

state error-probability performance (closest to the minimum error probability)?

Unfortunately, the counterpart of the RLS algorithm in the minimum error probability
criterion isdifficult to find. Neverthel ess, we recognize that by s mply varying the step size
of an update algorithm, we can increase the convergence speed. Instead of finding the best
error-probability-based algorithm to maximize speed of convergence, here we attempt to
give areasonably good step size function to improve convergence speed.

Recall that the error indicator function of AMBER is binary (either there is an update
or there is no update), and the expectation of the error indicator function is the Gaussian

error function. It relies on a long training sequence in order to approach its expectation.
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Thus, we predict that if the error indicator function of the stochastic update is the Gaussian
error function, then the update frequency, and consequently the convergence speed, should
become higher. Assuming that the noise variance is known or can be estimated, we can
form a update agorithm by using the noisy, instead of the noiseless, channel output

Vector:

Cr+1 = Cp + Wiaglp (4-10)

where the update decision I;y iS

Iiag =

osen(xy, _p)y, — (|2, _p| —1)f pO
k-0 ~ (i -l = D7 pg if y, <x,_pfpadx, p#-L+1,

C A

B Eﬁgn(xk_D)yk _(|xk—D| -fpo . (4-11)
[ E "ckuo %'fyk>xk—DfDandxk—D¢L_1’

L 0, otherwise,

where y;, is the noisy equalizer output and the term [sgn(x; p )y — (lxpp 1) fpl is a
noisy inner product between ¢ and a signal vector s. With some increased complexity, i.e.
noise variance estimation and calculation of equalizer norm, we have devised a new
update algorithm approximating the ensemble average of the AMBER agorithm. The

convergence behavior of (4-10) is numerically studied in the next section.

We can apply the dual-sign concept in [19] to obtain an update algorithm with a com-
plexity lower than the algorithm of (4-10) but with a faster convergence performance than

that of (4-1). Instead of a single step size, we may use multiple step sizes so that updates
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Hy “Ir(yk)

1
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:ATZ—> fD(xk_D +1)

fplep -1 o*rp

Fig. 4-3. lllustration of a 2-step AMBER algorithm.

occur more frequently. For example, a 2-step AMBER uses |1, and p, for thresholds 14
and 1,, asillustrated in Fig. 4-3. The 2-step AMBER algorithm adjusts an equalizer with a
larger increment when the equalizer output is further away from the desired signal fpx;,_p-

Higher-step AMBER algorithms can be constructed likewise.

45 NUMERICAL RESULTS

In this section, we first use computer simulation results to substantiate our claim that
the AMBER agorithm converges globally. We then compare the convergence speed of the
AMBER agorithm and its variants. Finaly, we investigate the decision-directed mode

performance of the AMBER agorithm.

4.5.1 Global Convergence

In this subsection, we first plot the loci of two simple equalizable channels and the
deterministic AMBER trgjectories to confirm our analytical predications. We then perform
simulations on channels to investigate the globa convergence property of the stochastic

AMBER algorithm.
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We first use the simple channel H(z) = 0.6 + 2z from Example 4-1. For visualization
purpose, we update a two-tap equalizer so that we can plot the update trajectory in a two-
dimensional space. Weuse SNR=10dB andt =0.1. InFig. 4-4, we plot the locus and the
trgectory with theinitial condition [-2, 1]. In Fig. 4-5, we plot the locus and the trgjectory
with theinitial condition [-1, —1]. The equilibrium point is[0.2031, 0.5014].

We substantiate our claim with another simple channel: H(z) = 0.4 + z% —0.222.
With SNR = 10 dB and T = 0.1. In Fig. 4-6, we plot the locus and the update trajectory
with theinitial condition [-1, —1]. In Fig. 4-7, we plot the locus and the trgjectory with the
initial condition [1, 1]. The equilibrium point is[-0.2278, 0.6629] .

As predicted by our analytical reasoning in section 4.3, the deterministic trajectories
from above two examples first approach the loci and then “slide” along the loci to reach
the equilibrium points.

Besides observing the deterministic trajectories of the ensemble averaged AMBER
algorithm, we a'so perform computer simulations to substantiate our claim on the global
convergence property of the stochastic AMBER a gorithm. We pick one hundred equaliz-
able three-tap ISl channels, whose taps are distributed uniformly between -1 and 1, and
apply three-tap equalizers. All equalizers are initialized with small random numbers. All
equalizers converge closely to their minimum-error-probability solutions. For each
channel, we first find the EMSER solution and thus find the minimum-SER value. Each
equalizer learning curve is plotted with time % versus SER,/SER,,;,,. Instead of plotting
one hundred different equalizer learning curves, we average the one hundred learning
curves and plot the averaged learning curve in Fig. 4-8. All equalizers use a step size of

=0.0001 and athreshold of T =0.1.
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Fig. 4-4. The locus and the 2-tap equalizer trajectory (with initial
condition [-2, 1]) for the channel H(z) = 0.6 + z 7.
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Fig. 4-5. The locus and the trajectory (with initial condition [-1, —1]) for
the channel H(z) = 0.6 + z%.
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Fig. 4-6. The locus and the 2-tap equalizer trajectory (with initial

condition [-1, —1]) for the channel H(z) = 0.4 + z1—0.222.
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Fig. 4-7. The locus and the 2-tap equalizer trajectory (with initial
condition [1, 1]) for the channel H(z) = 0.4 + z% - 0.222.
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Fig. 4-8. The averaged learning curve of 3-tap equalizers over 100 3-tap
channels.

4.5.2 Convergence Speed

In this subsection, we compare convergence speed of the AMBER algorithm, the 3-
step AMBER agorithm, and the “infinite-step” AMBER algorithm of (4-10) on one hun-
dred 3-tap 2-PAM channels with SNR = 20 dB. All equalizers have three taps and the
delays Ds are chosen to minimize MSE. We use 4 = 0.0001 and T = 0.1 for the AMBER
algorithm. For the 3-step AMBER, we use parameters p; = 0.0004, p, = 0.0002, Pz =
0.0001, 11 =0, T9 = 0.05,and 15 = 0.1. For the “infinite-step” AMBER algorithm, we use u
=0.01. In Fig. 4-9, we see that the “infinite-step” AMBER algorithm has the best conver-
gence performance, the 3-step AMBER algorithm is next, while the 1-step AMBER algo-

rithm has the worst convergence performance.
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Fig. 4-9. Averaged convergence comparison of the AMBER, 3-step
AMBER, and infinite-step AMBER algorithms.

4.5.3 Decision-Directed Adaptation

In this subsection, we evaluate the decision-directed mode of the AMBER agorithm.
After using atraining sequence to initialize the equalizer with some acceptable error prob-
ability, we switch the adaptation to a decision-directed mode to see whether the algorithm
is able to converge closely to the minimum error-probability performance.

In Fig. 4-10, we plot the learning curve of a 3-tap AMBER algorithm on the 4-PAM
channel H(z) = 1 + 1.67z7. We use i = 0.0005, T = 0.1, and SNR = 30 dB. After 2500

training data, we switch the adaptation to a decision-directed mode. Observe that the algo-
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rithm continues to converge closely to the minimum error-probability state. In addition,
we add the learning curve obtained with training data and observe that it behaviors closely

to the decision-directed learning curve.

4.6 SUMMARY AND CONCLUSIONS

In this chapter, we have obtained the deterministic trajectory equation of the AMBER
algorithm by taking expectation of the stochastic update algorithm. We found that the
expectation of the noise component term of the received channel output vector constituted
a shrinking term which is always in the opposite direction of the equalizer. Based on the
deterministic tragjectory of AMBER, we have gained some understanding of its update

dynamics. Because of its highly nonlinear and complicated dynamical behavior, we have

Switch to decision-directed mode
1072

SER

_3 Without training data
10

1074 | with training data

Minimum Error Probability

10—5 1 1
0 5000 10000 15000

TIME

Fig. 4-10. Learning curve comparison of a 3-tap AMBER equalizer with
and without training data after 2500 iterations.
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not been able to rigorously prove global convergence. However, we can qualitatively pre-
dict the nonlinear dynamics. Further, we have substantiated our claim of the global con-

vergence property with computer simulation results.

In addition to the discussion on the global convergence, we have proposed a multi-step
variant of AMBER to increase convergence speed. We have shown that the “infinite-tap”
AMBER equalizer converges rather quickly at a cost of some complexity increase. By
incorporating the ideas of the dual-sign algorithm and the continuous function of the
expected error indicator function, we have used variable step sizes to increase update fre-

guency and convergence speed.
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In this appendix, we prove Theorem 4.1. This proof closely follows the proof in

Appendix 3.3 and will only be sketched here.

We first find the ensemble average E[Ix,] by finding the scalar E[Ix; _pl and the

vector E[ITZ] wherez = [Xk, e X D+ 1 XD 1 o+ X MN+ 1]T.

Following the notationsin Appendix 3.3, we have:

Ellx,pl= ‘LL+ 1 EIZ, | left] + LZ 1 E[I, | right]
_ T
~1C fpn—-b z-10 fp+b z-100O
Loliglei2 = A 4E|Qi2 - =" flg
L 7170 lelo g O lelo 0
r T
2L -2 ptb z-1U
- E Q D ’
L "0 lelo D}

(4-12)

(4-13)

(4-14)
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whereb =[fo, ... fp_1. fps1s - Farsn_1] L. The derivation of E[I,2] is similar to the deriva-

tion of E[/z] in Appendix 3.3 and is:

T
_ +b z-10
BiI 2= 2L=2g[ o0 2710 1 (4-15)
L O lelo ©
Combining (4-14) and (4-15), we have
9L -2 e Hx -1
Ell o] = 227 E[QD el %x} (4-16)
and
oL -2 Ts 1
Ell,s;] = E[I,Hx;] = TE[Q E‘W%} (4-17)

where x is arandom vector with distribution p(x) = p(x 1, _p = 1), i.e, & isuniformly

distributed over the set of LM*N~1 L-ary x;, vectorsfor whichx;, _p=1and s =Hx.

Again, following the derivation of E[In.] in Appendix 3.3, the ensemble average

Elln;]is

Elln,] = ZE[ITnk 1I,=1,2=21Pl,=1,z=2"1+

ZE[ITnk I =-1,2z=21PlI,=-1,2z=21, (4-18)

where the conditional expectation E[I,n;, 1 I; = 1, z = 211 is:

fp+b'z -1

Elln; I, =1, z=2'1=—0FE [m T Tolo

He/lel (419

where the function m(n) is defined in (3-54).
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We now derive the joint probability P, = 1, z = 2']:

PlI,=1,2=2=Pll, =112 =21 Plz = 2] (4-20)

Lo IptbE -t

T BLM’“N‘I' (4-21)

Combining (4-19) and (4-21), the first summation term in (4-18) becomes

~ 2
(L - Oels-1)0
Bl | =1, 2= 21 Pl = 1, 2 = 2] = "e—HOp oy ;€ 81 pL€ - (4.99)
L.J2m 0 2le|2062 Ollel

It is not hard to show that

ZE[ITnk 1I,=1,2=2Pl[,=1,z=2]

- ZE[ITnk I =-1,z=21PI[;=-1,2=2], (4-23)

and thus

(4-24)

T~ 2
2L-2 O Ue's—-1) Yl e
—E| expl-———~0|—=
L A/2n{

Ellin,] = - — Xp .
Tk 0 2je|6> Olell

Q.E.D.
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APPENDIX 4.2

PROOF OF
LEMMA 4-1

In this appendix, we prove Lemma 4-1: The equilibrium state described by (4-7)
cannot be true for ae with an arbitrary large or small norm. In addition, there exists some
¢ with afinite non-zero norm satisfying (4-7).

Recall that alocus depicts norms and directions of equalizers satisfying the fixed-point
relationship of (4-8). However, not al equalizers on the locus satisfy (4-7). For referencing

convenience, here we again state the equilibrium condition of (4-7):

~ ~ 2
E[QB’TS_T§} -2 exp%mg < (4-25)
Ulelo J2m 0 2i¢|?c? O)lell

Here we show that an equalizer e (on the locus) with an arbitrary large or small norm

cannot satisfy (4-25). In order for (4-25) to be true, the norms of both sides have to be
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equal. We see that when an equalizer satisfies (4-25), the norm of the left hand sideterm in
(4-25) is

T~ T T~
e s—1 e s—Tx] _ e Ts - Te's )
HE[QD elo %}H i Qe ) = Blef e Dncn} (4-26)

T o7
since the vector E[Q Ep":—”;r%;} and the unit-norm vector < o ae in the same direction
T-

and their inner product equals the norm of E[Qg'”cs"ot%} . The norm of the right hand

sidetermin (4-25) issimply

2
Dl 5-1) O
—E expm%m <
0 2lle)%c? O)llel

Thus, the equilibrium point(s) on a locus needs to satisfies both (4-25) and the fol-

2
(el s )0

-2 expﬂ%ﬂ. (4-27)

J2n 0 2e|”0” O

lowing norm equality:

T T~ Ty 2
[QngEp_s} = —G—E exp BMD . (4-28)
lelo Olel | = Jan 0 2[e?6”

Now if |e| isarbitrarily large, the effect of T in (4-28) is zero and the left hand side

term of (4-28) effectively becomes E[QE"C "s E’Tl "s } and the right hand side term of (4-

D75
28) becomes 2 g {exp EL—E-)—ZD} and we will show that the two terms cannot be equal
21| e)®0™0
under the assumption that ¢ opensthe eye of the channel (| e. theinner products ¢ TS > 0).
T~

Let ﬁ; = w and use the fact that J2_1 exp E’;’ H is strictly a upper bound for
Tiw

Q(w), we prove the following inequality:

T~ T~

e sge s _ )
| Qfjegotfers ) = FlQUw] 29

2
< L E [exp E’% E} (4-30)

J2m



99

a8 2
= —E[exp 3—(0 ) D}. (4-31)
2le|®o

Thus, the existence of an equalizer with an arbitrarily large norm is not possible at equilib-
rium. We now show the existence of an equalizer with an arbitrarily small norm is not pos-
sible at equilibrium. As [le| - 0, the effect of T in (428) dominates the term ¢ 5 and the

T~

- i - O-Tres ~
left hand side of (4-28) effectively becomesE[QE"c|| Dllcll} orE[r"} (Q(w) lifw

<< 0), and the right hand side of (4-28) effectively becomes )

exp E’r—————D or0
= ]

Re|*0*0
(exp(w) =0 if w << 0).

We now prove that there exists some e satisfying (4-25). Let Z be the difference
between the two norms of (4-28):
T~ T~ T~ 2
@—S‘TE’”—S} _ O | eprte 0 7 4-32
| Tefo Ore ﬁm[mhzw%z | @32
We seethat Z is acontinuous function of e. Since Z < 0 when |e| isarbitrarily large and Z

> 0 when |e| isarbitrarily small, we conclude that there exists some ¢ with afinite non-

zero norm which yields Z = 0 and thus, satisfies the equilibrium state. Q.E.D.
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APPENDIX 4.3

PROOF OF
LEMMA 4-2

In this appendix, we prove Lemma 4-2: There exists a sufficiently small step size such
that if ¢, and ¢"(||e||) form an angle @, then the angle between ¢;,; and ¢”(||c|]) is

strictly smaller then @.

Without loss of generality, we sketch a three-dimensional space example (a 3-tap
equalizer) in Fig. 4-11 and Fig. 4-12. The sphere in Fig. 4-11 has a radius of el and
¢ (|lexl]) isthe unique vector, with the norm ||c k|| , satisfying (4-8). The darker shaded cir-
cular cone has a base angle of @, and hase”(||e|]) at its center and ¢, at its perimeter. The
lighter shaded irregular cone isthe signal cone as discussed in chapter 2.

In Fig. 4-12, we plot the top cross-sectional view of the cones. Let P denote the plane
containing the origin and the perpendicular bisector of ¢; and ¢”(||c;||). This plane divides

the signal cone S ={3;a;5® :q; >0} into two subcones A and B, so that S =A 0B,
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where A istheintersection of S with the set of vectorson thee(||e||) side of P, excluding
P, and B is the intersection of S with the set of vectors on the ¢, side of P, including P.
Observe that ¢”(||e||) 0 A and e, OB and that A and B are disjoint, A n B = 1.

The function g(c”(||ez|[)) can be decomposed into two weighted summations over

signal vectorsfrom A and B:

* ~(1) * 7~(J)
* e (e )Ts" -t e (e s =T (;

g:c (”ck”)) 0 Z Q0 (” k”) [S(l)“‘ 2 Q0 (" k") ES(J). (4-33)

fga U lea]o O fgp U €10 a

Instead of gi(c"(||ex])), we look at g(ep); it too can be expressed using (4-33), but
with different weights. Compared with ¢"(||ez||), the vector ¢, forms a larger angle with
al vectors s from A, while it forms a smaller or equa angle with all vectors from B.
Thus, compared with the weights for g.(¢”(||e||)), the weights for g.(e;) in (4-33) strictly
increase for the s® vectorsin A, while they either decrease or remain the same for vectors
in B. Since g.(¢ (|lex]])) O e (llexl])D A, it follows that g (c;,) is dso in A as shown in
Fig. 4-12. The vector ¢, isalinear combination of ¢, and g (c;,) and can be made inside
the circular cone if the step size is sufficiently small. Thus, the angle between ¢, ; and

¢’ (||eg]|) isless than the angle between ¢, and ¢”(||ey|]). Q.E.D.



Fig. 4-11. A three-dimensional sphere with radius ||ck|| a circular

cone, and the signal cone.

|
Fig. 4-12. A top view of the signal cone and the circular cone. The plane
P bisects the segment connecting ¢, ; and ¢ (e ).
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CHAPTER 5

APPROXIMATE
MINIMUM-BER
MULTIUSER
DETECTION

5.1 INTRODUCTION

Previous chapters have been devoted to deriving and evaluating the minimum error-
probability equalizers. In this chapter, we will extend the results on minimum-error-proba-
bility equalization to multiuser detection.

The class of linear multiuser detectors (which includes the conventional matched filter
(MF), decorrelator, and MMSE detectors) is particularly attractive because it offers the
advantages of low complexity, ease of adaptation, and the ability to operate in a decentral-

ized fashion, meaning that only a single user of interest need be demodulated. While the



104

MMSE detectoris widely regardedas a good multiuserdetectoy a better— indeed,the
best— linear multiuser detectorwould chooseits coeficients so as to minimize the

resulting error probability

Lupas and Verdu [4] proposed the maximum asymptotic-multiuseefficiency
(MAME) lineardetectorwhich minimizesBER in thelimit asthe noiseapproachegero.
An adaptve algorithm for realizing the MAME detectoris not yet available. Adaptive
algorithmsfor realizingthe minimum-BER multiuserdetectorwere proposedn [5] and
[6], but they areeitherhighin compleity or requireknowledgeof the signaturesequence
of theuserof interest. The AMBER multiuserdetectomproposecerehaslow compleity

and does not require kwtedge of the signature sequence of user of interest.

This chapteiis organizedasfollows. In section5.2, we presenthe problemstatement.
In section5.3, we discussthe exact minimum-BER (EMBER) multiuser detection.In
section5.4, we proposethe approximateminimum-BER(AMBER) multiuserdetectorin
section5.5, we presentnumericalresultscomparingthe AMBER, MMSE, decorrelatgr

and MF detectors.

5.2 MEMORYLESSMULTIUSER CHANNELS

The essentiafeaturesnf the multiuserdetectionproblemarecapturedoy the synchro-

nous CDMA channel model in which the re@iobseration waveform is gven by

N [ .
=S A S b\ st —kT) + n(t), (5-1)
i=1 k=-w

whereN is thenumberof active usersg;(¢) is the unit-enegy recevedsignaturesequence

for useri, A is therecevedamplitudefor users, bg) {1} is theinformationbit for user
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i during bit-epoch %, and n(z) is additive white Gaussian noise with PSD o2. Assume that

the signature sequence for user i is of the direct-sequence form
M B
s)="Y dVp@—;iT/m), (5-2)
j=1
where M is the number of chips per baud, p(¢) is a unit-energy Nyquist chip pulse-shape,
andd; = [d,V ... d;*)1T is aunit-norm vector representing the spreading code for user i.

The receiver may generate sufficient statistics by passing r(¢) through a filter matched
to the chip-pulse shape and sampling the output at the chip rate, which leads to the fol-

lowing equivalent discrete-time memoryless model:

r,=Hb, + n,, (5-3)
% R+ 1y

where H = [d; d, ... dy]A has dimension M x N, A = diag(A;), b, = [b\") ...\ 17, and
ny, is white Gaussian noise with PSD o2I. A decentralized linear multiuser detector for

user i isthen characterized by an M-vector ¢ and the decision rule:

I;I(:) = sgnfe’r). (5-4)

5.3 EXACT MINIMUM-BER MULTIUSER DETECTION

Based on (5-3), the probability that the decision of (5-4) for user i is erroneousis then

Pb,9 26,91 =Pb eTry, < 0]

=Pb eTHB,, + b\ ¢Tny, < 0]
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=E[ P16 ¢THB, + b\ ¢Tny, < 0 | bk]}
[ EL‘Tkub,(;)D}

G0 (5-5
O lelo g

where the expectations are over the 2V equally likely binary bit vectors b, O{=1}%.
Observe that the product b, bg) Isabinary vector with aonein the i-th component (corre-
sponding to the user of interest). Let 5V, ..., 8® denote any ordering of the K = 2N such
distinct vectors. Similar to the signal vectors defined by (2-17), the signal vectors for this

multiuser setup are:

sO=Hp?,1=1..K (5-6)

These s) vectors represent the K possible noiseless channel output vectors given that the

k-th bit from the desired user is unity, 5,® = 1. With this definition, (5-5) simplifiesto

K
_ 1 e s 0 i
BER = % Z QD"c"cj 5 (5-7)

Again, the BER depends on the direction e /|| ¢ || of ¢ only, and that the norm of ¢ isirrele-
vant; this is because the receiver decisions are determined by the sign of the detector

output only.

Similar to the assumption of the channel being equalizable in chapter 2, in this chapter
we assume that user i islinearly detectable, by which we mean that the signature d; of user
i does not lie within the interference subspace spanned by {d; » ;} .

Let egpprr denote alinear multiuser detector that achieves the exact minimum-BER
(EMBER) performance, minimizing (5-7). Unlike ¢ppsg = A;(HH' + o2I) d; that mini-

mizes MSE = E[(¢'r;, — b,?)?], there is no closed-form expression for egyprr. However,
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by setting to zero the gradient of (5-7) with respect to the multiuser detector ¢, we find that

CEMBER must also Sﬁtley

c =afle) forsomea >0, (5-8)

as seen for the equalization problem, where fle) is the function defined by (2-21). Similar
to itsrole in equalization, the fixed-point relationship of (5-8) characterizes local maxima
aswell aslocal minima for the BER cost function, and hence (5-8) is a necessary but not

sufficient criterion for the global minimum asillustrated by the following example.

Example 5-1: Consider the simplest nontrivial two-user system described by (5-3)
with dy=[1, 017 dy=1Ip, /1-p°1T, normaized correlation p=0.9, SNR;=
A,%2/0% =18 dB, and SNR,, = 14.6 dB. In Fig. 2-2 we present a polar plot of BER
for user 1 versus 0 for the unit-norm detector ¢ = [cos6, sin6]”. Superimposed on
this plot are the K = 2 signal vectors s and s, depicted by solid lines. Also
superimposed are the coefficient vectors of four detectors. the minimum-BER
detector at an angle of 6= —36.9°; the MMSE detector at 6 =-60.2 °; the MF
detector at 6 =0°; and the decorrelator at 6 = -64.2°. Observe that none of the
traditional detectors, not even the MM SE detector, are colinear with the minimum-
BER detector. We should point out that the minimum-BER detector is not always
colinear with the worst-case signal vector, but rather satisfies (5-8) in the general

case.

While (5-8) is a necessary condition for minimum-BER performance, the previous
example illustrates that the BER surface is not convex, and that there may exist solutions

to (5-8) that are non-global local minima. One general method for finding the minimum-
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BER solution (hence the EMBER detector) isto find all solutionsto (5-8), and choose the
solution that yields the smallest BER. However, we can avoid this brute-force method by
using this simple sufficiency test which has been employed in equalization setup: If
¢ = afic) and BER < 2, then ¢ minimizes BER. Thistest is based on the observation that
the eye diagram is open when the condition is satisfied, and that local minima arise only

when there exist certain combinations of interfering bits that close the eye.

To recover a solution to (5-8), we can use the EMSER algorithm proposed in 2.4:

Cr1 = Cp + Wflep). (5-9)

CDECORR

Fig. 5-1. A polar plot of BER; versus 6 for a two-user system with correlation

p =0.9. Superimposed are the signal vectors (scaled by a factor of 0.5) and the
MMSE, decorrelating, MF, and minimum-BER detectors.
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It has been shown that the EM SER algorithm is guaranteed to converge to a solution satis-
fying (5-8). However, convergence of the EMSER agorithm to the global minimum-BER

detector cannot in general be guaranteed.

Similar to the strategy for finding the EM SER equalizer, we use the following strategy
for finding the EMBER linear multiuser detector. First, iterate the EMSER algorithm of
(5-9) until it converges. If the resulting BER < 27V, stop. Otherwise, initialize the EMSER
algorithm somewhere else and repeat the process. This is an effective strategy when the
initial condition of the EMSER algorithm is chosen carefully and when the SNR is suffi-

ciently large that BER < 2V is possible,

5.4 APPROXIMATE MINIMUM-BER MULTIUSER DETECTION

Although the EMSER algorithm is useful for finding the minimum-BER detector of
known channels, it is poorly suited for adaptive implementation in time-varying applica-

tions. We now extend the AMBER algorithm of chapter 3 to the multiuser problem.

The numerical algorithm (5-9) can be transformed into a stochastic update equation by
using an error indicator function I, similar to the error indicator introduced in chapter 3,

where
1 (i)
Iby =5 (1 -sgnlby, " yD), (5-10)

where y, = ¢Tr;, is the decision statistic for the ™ bit. In other words, Iy, =1 when an
error is made (5% # b)) and I, = 0 when no error is made B = b{)). Note that
because the multiuser system we are considering is binary, we can effectively treat it as a
2-PAM system where there are no “inner” pointsin the constellation and thus, ssimplify the

error indicator in (3-9). With the error indicator and following the previous derivation for
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approximating the EMSER equalizer agorithm, we transform the EMSER multiuser

detector algorithm of (5-9) using the following equalities:

cre1 = Wflep)
~ . Dc,:fs 0
~r U O, ol
) . Eb,(;)cZkuEb e
=cp + U QWD p Hx0,

= cp+ pE[E[Iby 13 ku]E[bg‘)ku]}
= ¢, + MEIL,, b\ Hby]

= ¢}, + UEIT, b ] (5-12)

The approximation of (5-11) is valid assuming the effect of noise is insignificant at high
SNR. We can then form a ssimple stochastic update algorithm by simply removing the

expectation in (5-11):
Cry1=Cp + Ulbybl(;)rk~ (5-12)

We refer to this stochastic algorithm as the AMBER algorithm for linear multiuser detec-
tion. The detector is updated only when an error is made. It has an insightful geometric
interpretation. Recall that the noiseless output of the detector when aoneis transmitted by
the desired user is the inner product of ¢ withs?”). Most errors occur when this inner
product issmall, i.e., when the eyeis nearly closed. The AMBER update of (5-12) dictates
that each time an error is made, the detector coefficient vector ¢ takes a small step in space

towards the s vector that resulted in the error. Therefore, the next time the interfering
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users conspire to produce the same s vector, its inner product with ¢ will be larger. At
steady state, the detector ¢ will be attracted to each s by an amount proportional to the
conditional error probability given that s’ is the signal vector, which closely approxi-

mates the steady state of egpsrr described by (5-8).

Recall that the LM S algorithm for implementing the MM SE detector is:
Ch+1 = C — HepTy, (5-13)

wheree, =y, — bg) =clr, - bg) is the error signal. We see that the AMBER and LMS
agorithms are nearly identical, the only difference being that I, = 1 - b,(;)yk for LMS
and I, = %(1 - sgn[b,(:)yk]) for AMBER. In fact, AMBER has more in common with the

sign-LM S algorithm:
Ch+1 = € — Usgnieplry, (5-14)

because b,(ei) = —sgnfe,} when an error occurs (I, # 0). Thus, we can rewrite the stochastic

AMBER algorithm in the form of a modified sign-LM S algorithm:
Ch41 = €, — Wpysgnie,ry,. (5-15)

Simply stated, AMBER can be viewed as the sign-LM S algorithm modifiedto updateonly
whenan error is made The sign-LM S was motivated by its low complexity compared to
the LM S algorithm, despite its poorer performance. The simple modification for AMBER,
on the other hand, provides dramatic performance improvement, without any cost in com-

plexity.
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As mentionedin chapter3, a major dravback of the AMBER algorithmis its slow
cornvergenceat high SNR; becausdhe detectoris updatedonly whenanerroris made,a
low BER necessarilympliesslow corvergence We modify the errorindicatorfunction of

(5-10) by introducing a non-gative threshold = 0 as follows:
I 1 (@)
by= 5 (1 -sgnlby, "y, —TD. (5-16)

In otherwords, the modifiedindicatorfunction;, = 1 if bg)yk < T andly, = 0 otherwise.
This indicator function reverts back to the original (5-10) whent is zero. In addition,
insteadof a singleupdatethresholdt anda singleupdatestepsize, we canemploy mul-

tiple W's andrt’s to further increase the caxgence speed of AMBER detector

Fromchapter3, anotheradwantageof thethresholdr is to allow the AMBER multiuser

detector algorithm to operate in a decision-directed manner

5.5 NUMERICAL RESULTS

Lupasand Verdu[4] proposedhe asymptoticefficiency to evaluatethe error proba-
bility performancef amultiuserdetectorathigh SNR.Thekth userasymptoticefficiency

of the optimal linear te-user detector equals [4]

1-2|p|lA,/A, +A2/A2 if(A./A,)<
ni =B IplA;/ A, i (A;/AL) <Ipl (5-17)
01— pzj otherwise.

Ontheotherhand,the MMSE multiuserdetectorapproachethedecorrelatoasthe Gaus-
siannoisevarianceapproachegero,andthustheasymptoticefficiency of the MMSE mul-
tiuser detectoris the sameas that of the decorrelatar The asymptoticefficiency of the

decorrelator is [4]
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d
n, =1-p? (5-18)

Finally, the asymptotic efficiency of the MF detector is[4]

N

14

k

O C
Ny, =max’[0,1-p—L. (5-19)
O C

S

Given p in atwo-user system, we can plot the asymptotic efficiencies of the optimal linear
multiuser detector, the decorrelator, and the MF detector as functions of A;/A;. In
Fig. 5-2, we plot user 1 asymptotic efficiencies for p = 0.6. The asymptotic efficiencies of
the optimum linear multiuser detector and the decorrelator are the same when Ay /A4 is
larger than p = 0.6. In addition, the asymptotic efficiencies of the optimum linear multiuser
detector and the MF detector are very close when A5/A; is small. When the asymptotic
efficiencies of the MF detector and the decorrelator are about the same, the optimum linear

multiuser detector performs significantly better than both of them.

a 14 Optimum linear multiuser detector
— \ .
o \ ——— Decorrelating detector
= Yoot MF detector
> X

2 \ e
s e
= \
(11 \
(&) \
=] \
g
£ N
7} AN
< N

0 >
lpl Ylel

AglA,

Fig. 5-2. Asymptotic efficiencies in two-user case (p = 0.6) [4].
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With the asymptoticefficienciesof the optimal linear multiuserdetectoranddecorre-
lator derived by Lupasand Verdu [4], we can usethem as the boundson gain of the
EMBER multiuser detectorover the MMSE multiuser detector We will now compare
BER performance®f the EMBER, AMBER, MMSE, MAME of Lupasand Verdu [4],
decorrelatgrand MF detectorson a two-usersystemwith d; = [1, 017, dy, = [p, m i
andp = 0.9. We chooseheinterferencepower of Ay2/A,? = 4.15 dB sothattheasymp-
totic efficienciesof both the decorrelatorandthe MF detectorare significantly lessthan
that of the optimumlinear multiuserdetector andthuswe expectthe EMBER, AMBER,
andMAME detectorgperformsignificantlybetterthanthe MMSE, decorrelatingandMF
detectorsat high SNR. In Fig. 5-3 we comparethe BER performanceof the above six
linear multiuserdetectorsObsenre thatthe EMBER, AMBER, andMAME detectorsare
indistinguishableandthatthey outperformthe MMSE detectoby morethanl dB athigh
SNR and outperform the matched filter and the decorrelator byeannaéder magin.

We also considera simple three-useisystemdescribedby (5-3) with dq =[1, 0.117,
dy =10.9, 117, d5 = [0.1, 117, andSNR, = SNR,, = SNR4 = 20 dB. In Fig. 5-4 weillustrate
the performanceof AMBER, with parameters, = 0.2, T, = 0.4, Y and, initialized to
0.06 and0.02, andwith i, andp, cutin half every 200 iterations AlthoughAMBER can
not improve the BER performancefor user2, it improves BER of usersl and 3 over

MMSE solutions significantly

For comparisonpurposeswe include in Fig. 5-4 the performanceof the adaptve

detectorof Psaromiliglos et al. [6]. We usedparameter®f a,, = 12;_(0111)’ ¢, = 0.1n7925

(wheren is time),andathreshold\ = 0.08 The cornvergencerateof this algorithmis com-

parableto thatof AMBER. Unlike AMBER, however, it requiresknowledgeof all thesig-

nature sequences of users.
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5.6 SUMMARY AND CONCLUSIONS

Based on the derived fixed-point equation for the minimum-BER linear multiuser
detector, we have proposed a low-complexity stochastic multiuser detector algorithm
which approaches the minimum-BER performance. The algorithm has alower complexity
than the LMS algorithm but achieves significantly better BER performance when mul-
tiuser interference is severe as demonstrated by the short channels where the number of

usersis smaller than the dimension of the signal space.
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Fig. 5-3. BER comparison of various detectors.
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CHAPTER 6

CONCLUSIONS AND
FUTURE WORK

6.1 CONCLUSIONS

This thesis has concentrated on the design and adaptation of finite-tap equalizers and
multiuser detectors to minimize error probability. We have proposed |ow-complexity
equalizer and multiuser detector algorithms for combating ISl and multiuser interference
in the presence of additive Gaussian noise.

In chapter 2, we have derived and investigated the properties of the minimum-SER
equalizer. We have shown that a necessary but not sufficient condition, a fixed-point rela-
tionship, has to be satisfied by the minimum-SER equalizer. We then proposed, based on
the fixed-point relationship, a numerical algorithm to iteratively recover the minimum-
SER equalizer coefficients satisfying the fixed-point relationship. Because satisfaction of

the fixed-point relationship does not guarantee the minimum-SER equalizer, we have also



118

proposed a sufficiency condition for testing the convergence of the numerical algorithm to
the global-SER minimum. The sufficiency condition is based on the mild assumption that
the noise variance is sufficiently small. In addition, we have conjectured that the MM SE
equalizer approaches the minimum-SER equalizer as the number of equalizer taps
approaches infinity.

In chapter 3, we have used another exponential-like function, the Gaussian error func-
tion or @ function, to approximate the fixed-point relationship derived for the minimum-
SER equalizer in chapter 2. Instead of multiple solutions, there is a unique solution to the
approximate fixed-point relationship. We have constructed a numerical algorithm to
recover the unique solution to the approximate relationship. The numerical algorithm
(AMBER) based on the fixed-point relationship yields a low-complexity stochastic equal-
izer algorithm. We have evaluated its error-probability performance and compared it with
the MMSE and the EMSER algorithms. Finally, we have empirically characterized the
FIR channels over which the AMBER and the EM SER equalizers significantly outperform
the MM SE equalizer.

In chapter 4, we have discussed the convergence properties of the AMBER agorithm.
We have first determined the deterministic trajectory of the AMBER algorithm by taking
the expectation of the stochastic update equation. The deterministic trgjectory turns out to
be a complicated nonlinear dynamical system. We have then developed some analytical
intuition regarding the dynamical system and have discussed the global convergence prop-
erty of the AMBER algorithm. Although we have not been able to rigorously prove the
global convergence of the agorithm, we have argued that the algorithm is likely to glo-

bally converge. We have then proposed some multi-step variants of AMBER to increase
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convergence speed.We also have studied the corvergence performanceof decision-

directed mode.

In chapter5, we have extendedresultson the minimum-errofprobability equalizers
andupdatealgorithmsto multiusersystemsThe conceptf the signalvectorsandsignal
conesin asingle-uselSI channelcanbe extendedin a straightforvard mannerto a mul-
tiuser systemwhere multiuser interferenceis similar to the ISI phenomenonWe have
comparedthe performanceof the minimum-BER multiuser detectorwith the matched
filter detectorthe MMSE detectorthe decorrelatgrandthe MAME detectomproposedy
Lupas and ¥rdu [4].

6.2 FUTURE WORK

6.2.1 MMSE vs. Minimum-SER Equalizers with Infinite Number of Taps

In chapter2, we madea conjecturethat the MMSE equalizerapproacheshe min-
imum-BER equalizerwhenthe numberof equalizertapsapproachefinity. Otherthan
somesimulationresults,we currentlydo not have a rigorousmathematicaproof to con-
firm nor a counterexampleto contradictthe claim. A proof or a counterexampleto this
conjecturewould be enlighteningin understandindhe ultimate connectionbetweenthe

MMSE and the EMSER equalizers.

6.2.2 Global Convergence Proof

In chapterd we discussedhe global corvergencepropertyof the AMBER algorithm.
Ratherthana formal mathematicaproof, we completedhetopic with a mixture of obser-
vationsandanalyticalreasoningProving the globalconvergencepropertyrequiresa more

thorough understanding of this particular nonlinear dynamical system.
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6.2.3 Multiuser Channels with Memory

In this thesis,we developedand evaluatedminimum-BERresultson single-use Sl
channelsand memorylesanultiuserchannelsThe theoreticalresultson single userISI
channelsandmemorylessnultiuserchannelsanbe extendednaturallyto multiuserchan-
nelswith memory However, it will beof practicalinterestto numericallyevaluatethe per-

formance of the AMBER algorithm on multiuser channels with memory

6.2.4 Blind Equalization and Multiuser Detection

The AMBER algorithmin this thesis,similar to the LMS algorithm, requirescorrect
decisionsin initializing equalizersand multiuser detectors.Recentlythere has beena
suiged interestin blind equalization[42] and multiuser detectionresearch32]. Blind
equalizatiorandmultiuserdetectionarevaluablewhenatrainingsequencés eithercostly
or impossibleto transmit.Similar to the blind multiuseralgorithm proposedoy Honig,
Madhav, and Verdu[43], it will be of practicalinterestto constructsimple and robust
equalizerandmultiuserdetectoralgorithmsto minimize error probability without training

data.
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