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Summary 

The channel model for wireless infrared communication is unique: it combines the 

intensity-modulation constraints of the Poisson photon-counting channel with the multi-

path dispersion, limited bandwidth, and Gaussian noise of the conventional radio channel. 

The objective of this thesis is to develop and analyze new power-efficient modulation, 

coding, and equalization schemes that are well-suited to the wireless infrared channel. Our 

strategy is to combine new trellis codes with precoding, so that the coding gain of the 

trellis code is obtained in combination with the equalization performance of a decision-

feedback equalizer. 

We investigate the performance of several candidate uncoded modulation techniques 

in terms of error probability, bandwidth expansion, information rate, cutoff rate, and sensi

tivity to multipath dispersion. To mitigate intersymbol interference, we propose a partial-

response precoding scheme that is compatible with the infrared channel. For each modula

tion scheme, we compare the performance of symbol-by-symbol equalizers such as the 

linear equalizer, the decision feedback equalizer, the maximum a posterior detector, and 

the proposed precoder to the optimum maximum-likelihood sequence detector. 

We design new trellis codes based on multiple pulse-position modulation that offer 

high power efficiency. We randomly search for the optimal code that produces the trellis 

code with the largest minimum Euclidean distance. To verify our results, we derive an 

approximation for minimum distance. We combine partial-response precoding with par

allel decision-feedback detection to equalize and to decode the trellis codes. The perfor

mance of the proposed scheme is compared to linear equalization, decision feedback 

equalization, parallel decision-feedback detection, and super-state maximum-likelihood 

sequence detection. Together, the proposed trellis codes and precoding schemes are an 

effective solution to the signaling design problem, especially in the face of severe multi-

path dispersion. 



CHAPTER 1 

I N T R O D U C T I O N 

The rapid growth of the laptop and handheld computer industries has elevated the 

importance of indoor wireless communications and wireless local area networks. There 

are several options for the transmission medium in indoor wireless communication: radio 

wave, microwave, millimeter wave, and infrared radiation. In both research and commer

cial products, radio and microwave with frequencies less than 30 GHz are the most com

monly used. Millimeter wave (30 ~ 300 GHz) lies between the microwave and far infrared 

region. There is currently an interest in the millimeter wave near 60 GHz because of its 

high attenuation due to oxygen absorption. This frequency band is useful for applications 

requiring a high attenuation beyond the normal service area to reduce co-channel interfer

ence [1]. However, devices operating at this frequency are still very expensive. 
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An attractive alternative is infrared radiation with wavelengths in the 750-1000 nm 

range. As a medium for indoor wireless networks, nondirected infrared radiation offers 

several advantages over radio, microwave, and millimeter wave as follows: 

• Infrared offers an immense window of unregulated bandwidth. On the con

trary, the spectral regions for radio, microwave, and millimeter wave are 

strictly regulated to use and almost scarce. 

• Infrared radiation cannot penetrate walls and the transmitted signal remains 

in the same room where it originates. This prevents eavesdropping and 

interferences from neighboring rooms. (But, the signal confinement in a 

room is also a drawback since it limits the range covered). 

• The dimension of infrared detector is much larger than the operating wave

length. This leads to an equivalent spatial diversity which prevents the mul

tipath fading. 

1.1 WIRELESS INFRARED COMMUNICATIONS 

At present, most infrared links are directed, line-of-sight (LOS) transmission in the 

850-950 nm range as shown in Fig. 1-1-a. In directed, LOS links, a directional transmitter 

and receiver are used and must be aimed to establish a link. This type of link depends on 

the existence of a LOS path between the transmitter and receiver to maximize the power 

efficiency and to minimize multipath distortion. For example, JOLT announced a 125 Mb/ 

s LOS system that employs a 1° transmitter beam and a 6° receiver field of view. British 

Telecommunication Laboratory reported a 155 Mb/s directed, LOS link using on-off 

keying (OOK) [2]. In 1993, a consortia of over 150 companies formed the Infrared Data 

Association (IrDA) to set and to support hardware and software standards that create 

infrared communication links [3]. IrDA developed the standard for short range, low cost, 
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and low power LOS links operating at a bit rate of 4 Mb/s using 4 pulse-position modula

tion (PPM). In 1995, Microsoft announced support for IrDA connectivity to Windows'95, 

enabling wireless connectivity between Windows'95 based PCs and peripheral devices. 

IrDA-compliant IR ports are now an integral feature of most laptop computers, printers, 

and electronic organizers, and they will be incorporated into cellular phones, pagers, 

watches, and automatic teller machine [4]. 

Consider next the nondirected, non-LOS, or diffuse configuration as shown in Fig. 1-1-

b. In a diffuse link, the transmitter and receiver are not aligned, and the link design does 

not depend on the LOS path, but depends on reflections from ceiling, walls, and other 

reflectors. A diffuse link is the most convenient and easy-to-use, but it has a higher path 

loss than the LOS configuration. For example, Spectrix Corporation has developed a 4 

ftX.KX.X.X.X.X.X.X.-X^ 
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Fig. 1-1. Two most typical wireless infrared links, (a) Directed, LOS link (b) 
Nondirected, non-LOS, or diffuse link [9]. 
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Mb/s wireless LAN employing OOK with an operating range of 15 m [5]. This configura

tion is designed to communicate between a portable transceiver and a host computer in 

large open areas such as offices, factories, or the trading floors of stock markets. Photonics 

and IBM developed a diffuse infrared ad hoc LAN operating at 1 Mb/s using 16-PPM 

within a 10 m room. This type of link is employed to achieve direct, peer-to-peer commu

nication between a number of portables and fixed terminals. Finally, the performance of a 

50 Mb/s diffuse link using OOK was demonstrated by an experiment at UC Berkeley [6]. 

Table 1-1 summarizes the key features of several infrared links. All systems listed, except 

the first prototype by IBM, use OOK or pulse-position modulation (PPM). Compared to 

the diffuse links, the directed, LOS links achieve higher data rates. 

Since Gfeller and Bapst's pioneering work [7] in diffuse infrared communication in 

1979, there has been a growth in research activity and product development in this area. 

Kotzin [8] described the design of an experimental prototype for a portable telephone 

system. Barry made contributions in modulation analysis [9], channel modeling [10], and 

link design [11]. Since 1994, Kahn and his students at UC Berkeley have made numerous 

contributions, including experimental characterization of the nondirected indoor infrared 

channel [12] [13], performance evaluation of modulation, coding, and equalization based 

on measured channels [ 141[ 15][ 16J[ 17], and channel reuse strategies. Kavehrad and his 

students [18] at the University of Ottawa have worked on the measurement of the channel 

frequency response, the design of a diffuser, and diversity techniques. Researchers at 

Aveiro University [19] have worked on modeling and simulation for the indoor infrared 

channel. 
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TABLE 1-1: Examples of infrared links. 

Affiliation Year Type Modulation Bit rate 

IBM 1979 diffuse BPSK 125 Kb/s 

ATS 1985 directed, LOS OOK lOMb/s 

Spectrix 1987 diffuse OOK 4Mb/s 

IrDA 1993 directed, LOS 4-PPM 4Mb/s 

IBM/Photonics 1993 diffuse 16-PPM IMb/s 

Apple 1994 directed, LOS OOK 38.4 Kb/s 

UC Berkeley 1994 diffuse OOK 50 Mb/s 

BTLab 1994 directed, LOS OOK 155 Mb/s 

1.2 MODELING OF WIRELESS INFRARED CHANNEL 

In a wireless optical system, the most practical modulation technique is intensity mod

ulation, in which the information modulates the instantaneous power of the carrier. The 

most practical detection technique is direct detection, in which a photodetector produces a 

current proportional to the received instantaneous power. The model of the infrared 

channel with intensity modulation / direct detection (IM / DD) is illustrated in Fig. 1-2 

[11]. The transmitted signal x(t) is the instantaneous optical power of the infrared trans

mitter. The received signal y(t) is the instantaneous current in the receiving photodetector, 

which is proportional to the integral of received optical power over the photodetector sur

face. 

The appropriate channel model for wireless optical communications systems using IM 

/ DD depends on the intensity of the background light. In low background light, it is 

common to model the received signal as a Poisson process with rate \s(t) + Xn, where 
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Xs(t) is proportional to the instantaneous optical power of the received signal, and Xn is 

proportional to the power of the background light. When Xn is zero, the channel is 

quantum limited. However, the background light in typical indoor environments is very 

intense; even after a narrow-band (10 nm) optical filter, Xn will be between 1011 and 10 

photons/s, depending on the proximity to a window [7]. Therefore, the photodetector shot 

noise is accurately modeled as an additive white Gaussian noise (AWGN) plus a d.c. offset 

[20]. Also, as illustrated in Fig. 1-2, typical detector areas are millions of square wave

lengths, leading to spatial diversity that prevents multipath fading. Furthermore, because 

Input 
Current ¥ 

LED 
or L D / Optical 

Power 
x(t) 

Photodetector 

Photocurrent 

(a) 

1 

• © • ? ( ' ) 

AWGN n(t) 

x(t) • hit) 

1 

• © • ? ( ' ) 

AWGN n(t) 

x(t) > 0 
<x(t)><P 

1 

• © • ? ( ' ) 

AWGN n(t) 

(b) 

Fig. 1-2. (a) Transmission and reception in an infrared link with intensity 
modulation and direct detection, (b) modeling link as a baseband linear, time-
invariant system having impulse response hit) with additive noise nit). [11] 
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the multipath propagation destroys spatial coherence, the effects of multipath propagation 

can be characterized by a baseband linear filter [12] [13]. This leads to the following equiv

alent baseband channel model, the additive white Gaussian noise (AWGN) model, for 

wireless infrared communications using intensity modulation and direct detection as 

shown in Fig. 1-2-b [9]: 

oo 

y(t)= J x{%)h{t - T) dl + n(t), (1-1) 
—oo 

where x(t) represents die instantaneous optical power of the transmitted signal, y(t) repre

sents the instantaneous current of the receiving photodetector, h(t) represents the multi-

path-induced temporal dispersion, and n{t) is white Gaussian noise. The same model (1-1) 

is used to represent conventional radio channels, where the input x{i) represents amplitude 

of transmitted signal and must satisfy (x2(t)) < P0, where P0 is the average power con

straint of the radio transmitter.1 However, x{t) represents optical power in our application, 

so it must satisfy: 

x(t) > 0 and (x(t)) <P, (1 -2) 

where P is the average optical power constraint of the transmitter. These constraints dra

matically alter the choice of modulation schemes. 

In a diffuse infrared channel, the transmitted signal arrives at the receiver after mul

tiple reflections from the ceiling, walls, and other reflecting objects. Since each reflecting 

surface has a reflectivity of less than one, the received signal undergoing multiple reflec-

••<•>• r'T- 2 ? J > > < * 
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tions has a smaller power than that of the transmitted signal. A natural model for the 

impulse response of the multipath channel is an exponential decay: 

h(t) = We-Wtu(t), (1-3) 

where W is the 3-dB bandwidth and u(t) is unit-step function. Note that the channel has 

unity D.C gain. Carruthers et al. [13] derived the ceiling-bounce model for the wireless 

infrared channel. In the ceiling-bounce model, the impulse response due to diffuse reflec

tion from a single infinite-plane reflector such as a large ceiling is: 

h(t)=-^—u(t), (1-4) 
(t + a) 

where a = 2HI c, H is the height of the ceiling above the transmitter and the receiver, and 

c is the speed of light. Compared to (1-3), (1-4) provides a slightly better fit to the mea

sured channel [13]. But, ceiling-bounce model assumes the transmitter and receiver are 

colocated. The exponential decay model is more general because it does not depend on the 

geometry of transmitter and receiver, and is characterized by one parameter, W. For 

example, the measured value of W for an empty conference room having dimension (7.5 

m x 5.5 m x 3.5 m) is 34 MHz [9]. Hence, we will use this model from here on. 

The unique characteristics of this channel model have motivated recent research in 

search of power-efficient and bandwidth-efficient modulation and coding techniques that 

are well-suited to the channel [4][6][8][9][14]-[17][21][28][30][63]. Many of the conven

tional digital communication results do not hold for this channel. For example, quadrature 

amplitude modulation (QAM), which is frequently used in conventional channels, is not 

suitable for the diffuse infrared channel because of its poor power efficiency. Similarly, 
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coded modulation schemes designed for the conventional channel may not perform well 

on the infrared channel. Instead, as will be shown in chapter 2, the constraint (1-2) favors 

modulation schemes with low duty cycle, such as pulse-position modulation. 

1.3 THESIS OUTLINE 

The goal of this thesis is to develop and analyze new power-efficient modulation, 

coding, and equalization schemes that are compatible with the infrared channel. 

In chapter 2, we try to find some efficient uncoded modulation schemes on an ideal 

channel. First, we compare the performance of several candidate uncoded modulation 

techniques by calculating the required bandwidth and the average optical power required 

at a given bit rate to achieve a desired bit error rate. We also calculate the exact bandwidth 

of each modulation scheme from its power spectrum density. We derive a bound for the 

power and bandwidth efficiency of multiple-pulse position modulation. 

In chapter 3, we take into account intersymbol interference (ISI) due to the multipath 

distortion. We compare the performance of several equalization techniques for the 

uncoded modulation schemes considered in chapter 2. First, we derive a vector channel 

model for MPPM on an ISI channel. We calculate the exact error probability when the 

receiver does not use equalization, and derive the Gaussian approximation for the special 

case of PPM. We then derive an upper bound for the error probability of the optimum 

maximum-likelihood sequence detection (MLSD) over a vector channel. To mitigate the 

effect of ISI with reduced complexity, we propose a partial-response precoding scheme 

and compare it with several symbol-by-symbol equalization schemes, including zero-
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forcing block decision feedback equalization (ZF-BDFE), zero-forcing linear equalization 

(ZF-LE), and maximum a posteriori (MAP) detection. 

In chapter 4, we consider the achievable information rate and cutoff rate for modula

tion schemes as a limit of performance. We present expressions for these parameters on an 

ideal channel when the input codewords are independent, identically uniform-distributed. 

We then derive lower and upper bounds for the information rate over an ISI channel. We 

also calculate the required optical power to achieve a specific cutoff rate. 

In chapter 5, we design a new trellis codes so as to improve the overall power effi

ciency. First, we consider convolutional coded PPM and derive an upper bound for the 

minimum Euclidean distance. We then present an expression for the coding gain of trellis

coded OPPM. Finally, we present the design procedure and computer search results for 

new trellis codes based on MPPM. We derive an approximation for the minimum 

Euclidean distance of trellis coded MPPM and compare it to the well-known simplex 

bound. 

In chapter 6, we evaluate the performance of the coded modulation schemes developed 

in chapter 5 on a multipath channel by employing superstate MLSD, LE with MLSD, DFE 

with MLSD, parallel decision feedback detection (PDFD), and the proposed precoding 

scheme with PDFD. 

In chapter 7, we conclude our study with some interesting topics for future research. 



CHAPTER 2 

P E R F O R M A N C E O F 
M O D U L A T I O N 
S C H E M E S 

As we indicated in section 1.2, conventional modulation schemes do not work well 

under the constraints (1-1) and (1-2). As we will see, the probability of error depends on 

x(t) rather than x(t), and a signal set whose peak-power-to-average-power ratio is large 

offers better performance in terms of power efficiency. Therefore, in this chapter we con

centrate on modulation schemes having a low duty-cycle. Most modulation schemes we 

consider here have been used for the photon-counting channel. However, due to the unique 

nature of the diffuse infrared channel, we cannot apply the results of photon-counting 

channel to our case directly. 
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In section 2.1, we calculate the power efficiency and bandwidth efficiency of several 

uncoded modulation schemes. In 2.2, we calculate the accurate bandwidth of each modu

lation scheme by calculating the power spectrum density. In 2.3, we derive the MPPM 

bound as a limit of performance of MPPM when the codeword length is arbitrarily large. 

2.1 POWER EFFICIENCY AND BANDWIDTH EFFICIENCY 

When we evaluate the performance of modulation schemes, the two most important 

criteria are power efficiency and bandwidth efficiency. The power efficiency corresponds 

to the required power to achieve a specific bit error rate, and the bandwidth efficiency cor

responds to the bandwidth occupied to achieve a specific bit rate. In this section, we intro

duce several candidate modulation schemes and compare these schemes based on the two 

criteria. 

2.1.1 Definitions 

We first review the classic problem of determining the error probability for an L-ary 

modulation scheme in the presence of additive white Gaussian noise, assuming maximum-

likelihood (ML) detection, and neglecting intersymbol interference [22][23]. The trans

mitter conveys information at a rate of ify, bits/second by transmitting one of L nonnega-

tive signals {x-^it), tf2(*)> ••• yXL{t)} every T = log2L/ify, seconds, and the channel adds 

white Gaussian noise with power spectrum N0. To prevent intersymbol interference, each 

signal is confined to the interval [0, T). The signal set satisfies (1-2) with equality, so that 

the average signal power is •=• fLfeft)) = P. For example, an on-off-keying (OOK) trans-
Ld 

mitter emits a rectangular pulse of duration 1 /R^ and of intensity IP to signify a one bit, 
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and no pulse to signify a zero bit. The bandwidth required by OOK is roughly Rb, the 

inverse of the pulse width. 

To simplify analysis, we make the high-SNR assumption that the probability of bit 

error is dominated by the two nearest signals, so that: 

Pr[bit error] » Q(dmin/2 JN~Q\ (2-1) 

where dmin is the minimum Euclidean distance between any pair of valid signals: 

dlun = T \(xi(t)-Xj(t))2dt. (2-2) 

In fact, (2-1) is exact for OOK (and any time L = 2); the minimum distance between the 

two signals in the OOK signal set is: 

2P dOOK = -f=» (2-3) 
*JRb 

and the probability of bit error, assuming ML detection, is 

Pr[bit error] = Q 
( p ^ 

.W 
(2-4) 

bJ 

We will use OOK as a benchmark to compare the power efficiencies of various modu

lation schemes. The power required by OOK to achieve a given bit error rate (BER) is 

POOK = jNQRb Q'^iBER). The power required by any other modulation scheme to 

achieve the same BER is approximately P - (dgQK/dmin)PQQK, assuming the SNR is 

high enough that (2-1) is accurate. Therefore, in the remainder of the chapter we will use 

the distance ratio dQ0K/dmin to characterize the power requirement of any modulation 

scheme. 
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2.1.2 Pulse-position Modulation (PPM) 

Pierce first proposed communication using pulse-position modulation (PPM) with 

direct detection by photon counting at the receiver [24]. In a PPM scheme, each symbol 

interval of duration T = \og2L/Rb is partitioned into L sub-intervals, or chips, each of 

duration T/L, and the transmitter sends an optical pulse during one and only one of these 

chips. Fig. 2-1 shows an example of 4-PPM. PPM is similar to L-ary FSK, in that all sig

nals are orthogonal and have equal energy. PPM can be viewed as the rate-log2L/L block 

code consisting of all binary L-tuples having unity Hamming weight. A PPM signal satis

fying (1-2) is: 

L - i 

x(t) = LP ]T ckp(t-kT/L), (2-5) 
k = o 

where [c0, cl5 ...,C£_;J is the PPM codeword, and where p(t) is a rectangular pulse of 

duration T/L and unity height. All of the signals are equidistant, with: 

dliin = Z1) J (*/(*) - *j(t))2dt = 2LP2\og2L/Rb. (2-6) 

Therefore, the average power requirement is approximately [9]: 

4P 
1 0 0 0 

01 0 0 

0 0 1 0 

0 0 0 1 
0 T/4 T/2 3T/4 T 

Fig. 2-1. Four pulse-position modulation (PPM). 
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PpPM/POOK~d00K
/dmin= lj-^—£. (2-7) 

From (2-7) we see that, for any L greater than 2, PPM requires less optical power than 

OOK. In principle, the optical power requirement can be made arbitrarily small by making 

L suitably large, at the expense of increased bandwidth; the bandwidth required by PPM to 

achieve a bit rate of Rb is approximately the inverse of one chip duration, 

B = L/T = LRb/log2L: 

flpPM/tf6=_. (2-8) 

2.1.3 Multiple-Pulse Position Modulation (MPPM) 

One generalization of PPM is multiple-pulse position modulation (MPPM), suggested 

by Sugiyama and Nosu [25]. In MPPM, each symbol interval of duration T = \og2L/Rb is 

partitioned into n chips, each of duration T/ n, and the transmitter sends an optical pulse 

during w of these chips. Fig. 2-2 shows an example of (2)-MPPM. The transmitted signal 

is given by: 

7 1 - 1 

x(t) = a £ ckty(t-kT/n), (2-9) 
k = 0 

where [c0, c1?..., cn _ J is a binary rc-tuple of weight w, where <j)(0 = Jn/T pit) is a unit-

energy rectangular pulse of duration T/n, and where the constant a is chosen so that the 

average optical power is P: a = (P/w) Jnf = d00K Jn^°Ei^ /^w- T n e r e are (J) binary 

rc-tuples of weight w, but it may be desirable to use only a fraction L of these; for example, 
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we may choose the codewords to have a large minimum Hamming distance d. That is, we 

may restrict attention to an (n, d, w) constant weight code [26] [27], which is a set of 

binary n-tuples having weight w and minimum Hamming distance d. 

For a given n, d, and w, let L < (£) be the number of valid codewords. We must have 

d>2, because it is impossible for two binary n-tuples of weight w to differ in only one 

position. If we admit all binary n-tuples of weight w, then L = (£,) and d = 2. The band

width is roughly n/T, the inverse of the chip duration, so that [28]: 

B MPPM' ^b /RK = n 
log2L' 

(2-10) 

Because {§(t - kT/n)} is an orthonormal set, (2-9) implies that the Euclidean distance 

between any two MPPM waveforms xfi) and Xj(t) is a Jd^-, where d^ is the Hamming 

distance between the corresponding binary n-tuples. Thus, the minimum distance is 

dmin -ajd, where d is the minimum Hamming distance and a - doog Jn\og2L /2w. 

The ratio of doo% to dmin gives the average power requirement: 

PMPPM/POOK = 
1w 

Jnd\og2L 
(2-11) 

2P 
1 1 00 

1010 

1 001 

0 1 1 0 

0 1 0 1 

001 1 
T/4 T/2 3T/4 T 

Fig. 2-2. The (2) multiple-pulse position modulation. 
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Note that PPM is a special case of MPPM with n=L,d = 2, and w = 1, and that (2-

11) reduces to (2-7) in this case. 

(2,)-MPPM can be viewed as a binary permutation modulation, introduced by Slepian 

[29]. All codewords are generated by permuting the initial vector CQ, which can be repre

sented in general form: 

c0 = i 000...0 111... 1 f. (2-12) 
v v v ' 

n-w w 

The other codewords are obtained by permuting the order in all possible ways, and the 

number of codewords is: 

L = (n)= * ! „ . (2-13) 
[wj w\(n-w)\ 

Since all codewords have the same length and weight, they lie on a sphere with a radius of 

square-root of signal energy. For example, (^-MPPM codewords can be obtained by per

muting the initial codeword c0 = [001 l]T: 

{[OOlltf [OlOlf, [OllOf, [100lf, [1010]r
f [llOOf}. (2-14) 

The receiver on an ideal channel decides on the codeword cj that maximizes the corre

lation [29][30]: 

Al = eiTyk forZ = 0, . . . , L - l . (2-15) 

Note that PPM is also a permutation modulation with w = 1. 

Permutation modulation is a special case of a group code [31]. A code is defined as a 

group code if its codewords are generated by multiplication of an initial vector c0 with 

nxn orthogonal matrices Oh 02,..., Og, and this collection of matrices forms a group F 
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under matrix multiplication. In other words, there is a member in V that will map any 

given codeword c; into any other codeword cy In general, the order g of the group is 

greater than the number of codewords, M, andg = n\ for a permutation modulation. 

A group code is a set of vectors with complete symmetry, that is, all codewords have 

(a) the same error probability, (b) the same set of distances to the other codewords, and (c) 

the same energy. In general, the error probability of MPPM is given by [30] (see 

section 3.3.3): 

Pr[error] < £ NkQ 
k = l 

ks 
'2 AT V 

(2-16) 

where N^ = Ck)(nkw) is the number of codewords with mutual distance 2k and 

s = (P/w)Jn\og2L/Rb . Note that MPPM satisfies all the properties of a group code. 

PPM is also a cyclic group code because group T is the set of matrices whose elements 

are the powers of a generator matrix O. In other words, codewords are obtained by: 

Ci = Olc0 fori = 0, 1, ...,L~ 1, (2-17) 

where O = 

0 0 ... 0 1 
1 0 ... 0 0 

0 0 ... 1 0 

2.1.4 Overlapping Pulse-Position Modulation (OPPM) 

We define (£) overlapping pulse-position modulation (OPPM) code as a subset of 

MPPM code, where the w ones are constrained to be consecutive. In other words, each 
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symbol interval of duration T = \og2L/Rb is divided into n chips, each of duration 77 n, 

and a rectangular pulse spanning w chips is transmitted, beginning at any of the first 

L - n - w + 1 chips. For example, among the six (2)-MPPM codewords, we choose the 

three OPPM codewords in which the two ones are consecutive, as shown in Fig. 2-3. The 

motivation for constraining the w ones to be consecutive is the decreased bandwidth that 

results; unfortunately, this benefit is offset by the reduced alphabet size, because L drops 

from (£,) to n - w + 1. Note that this definition of OPPM is slightly more general than the 

usual definition [32], because it allows the possibility that n/w is not an integer. We refer 

to the ratio a = w/n as the duty cycle. Note also that specifying L does not uniquely 

specify n and w; for example, 4-OPPM can arise from (1)»(3)»(4)» e tc- Thus, it takes two 

parameters to specify OPPM, either n and w or L and a. 

The bandwidth of OPPM is n/(wT), where T = \og2L/Rb, so that: 

B OPPM /Rh = n/w 
\og2{n-w + 1)' 

(2-18) 

which is clearly smaller than that of PPM, since n/w is less than L. The minimum Ham

ming distance between OPPM codewords is 2, so that the minimum Euclidean distance 

2P 

5» 

1 1 0 0 

0 1 1 0 

0 0 1 1 

0 T/4 T/2 3T/4 T 

Fig. 2-3. Choose overlapping pulse-position modulation (OPPM) 
codewords from MPPM codewords. 
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between received signals is dmin = Jla = (P/w)j2nT. Dividing CIQQ^ by dmin yields 

the average power requirement for OPPM: 

POPPM/POOK= , , • (2-19) 

A]2n\og1{n - w + 1) 

With w = 1, n becomes L, and this equation reduces to (2-7). 

2.1.5 Pulse Amplitude and Position Modulation (PAPM) 

Another way of increasing the throughput of PPM is by amplitude-modulating p(t) in 

(2-5). The information is conveyed by the amplitude as well as the position of pulse. The 

advantage of this modulation is to increase the number of information bits without 

increasing the bandwidth and to maintain the low duty cycle property of PPM. This leads 

to a combination of pulse amplitude modulation (PAM) and PPM. Since PAM is a band

width efficient modulation [9] and PPM is a power efficient one, the combination of PAM 

and PPM enjoys the advantages of both schemes. We define n as number of slots and M as 

number of levels. The M-n-pulse amplitude and position modulation (M-n-PAPM) signal 

set is given by: 

n-\ 
x(t) = nAP ]T Ckp(t - kTIn), (2-20) 

Jfe = 0 

where A e {1/M, 3/M, ..., (2M - 1)/M}, and [c0, ch . . . ,cL_!] is the PPM codeword. 

Fig. 2-4 shows an example of 2-4-PAPM. For each pulse slot of 4-PPM, there is 2 levels, 

and the number of codewords is 8. In general, the number of codewords L for rc-M-PAPM 
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is equal to nM. The bandwidth of rc-M-PAPM is same as that of n-PPM, so that the nor

malized bandwidth requirement: 

B PAPM' ^b /Rh = n 
log 2nM' 

(2-21) 

which is smaller than that of PPM. The minimum Euclidean distance of the received 

signal is dmin - JlnT IM, where T = log2L / R^. Dividing d0QK^y dmin provides the nor

malized power requirement for PAPM: 

PAPM / POOK = 
2M' 

\n\o%^nM 

Note that when M= \,n becomes L, and (2-22) reduces to (2-7). 

(2-22) 

2P 

6P 
' 

2P 

6P 

2P 

6P 

" 

0 T/4 T/2 3T/4 T 

Fig. 2-4. The 2-4-pulse amplitude and position modulation. 
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2.1.6 Discussion 

The bandwidth and power efficiency for various modulation schemes on the AWGN 

channel are shown in Fig. 2-5. The benchmark modulation OOK is marked with the 

symbol *x\ PPM requires less power as L increases, but its bandwidth increases as well. 

MPPM with weight 2 outperforms PPM both in terms of bandwidth efficiency and power 

efficiency. MPPM with weight 8 is even more bandwidth efficient, but it requires a large 

number of chips n to achieve good power efficiency. OPPM with a duty cycle of a = 1/2 

is extremely bandwidth efficient. Decreasing the duty cycle to a = 1/4 increases the 

power efficiency at the expense of bandwidth. 2-n-PAPM is more bandwidth-efficient but 

less power-efficient than L-PPM. 

2.2 ACCURATE BANDWIDTH CALCULATION 

There is no single universal definition of bandwidth [33]. The bandwidth of an MPPM 

modulation scheme can be roughly approximated by the inverse of the shortest pulse 

width that corresponds to the width of the main spectral lobe. This definition is a simple 

and popular measure of signal bandwidth. Thus, the bandwidth required by OOK is 

roughly the bit rate R^, and the bandwidth required by MPPM, OPPM and PPM to achieve 

a bit rate R^ is the inverse of the duration of the shortest pulse, or nR^/XogyL, 

(n/w)Ri)/log2L, and L7?5/log2L, respectively. For example, (2)-MPPM, (2)-OPPM and 

8-PPM require 1.5, 1.4, and 2.7 times more bandwidth than OOK, respectively. More 

accurately, it is common to specify the bandwidth Bx that includes x% of the signal power 

[34][35]. Under the assumption that the codewords are chosen independently and with 

equal probability, a general expression for the power spectral density (PSD) of any L-ary 

modulation scheme is given in [35]: 
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Fig. 2-5. Power and bandwidth efficiency of uncoded modulation 
schemes on an ideal channel. 
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L-\ 

w-w'Lnff-^j, 
1 = 0 

L-\ 

I P,(f) 
1 = 0 

V*£ <f-% (2-23) 

where Pt(f) is the Fourier transform of the signal corresponding to the l-th codeword. 

Applying this result to L-PPM, (5)-MPPM, and (£)-OPPM yields the following expres

sions for the continuous part of the PSD, respectively: 

Q tf\ - \p(ft\y I1 sm(nfT) 
bppMin - -^-[[-\Zsm(KfT/L 

2n 
(2-24) 

2 f 1 n ~ I 

SMrrulf) = W l (»-*)|l + «^"*™f -
L k = 1 

n - 1 sin(nfT) 
L sin(nfT/L) 

(2-25) 

o (f) _ \P(f)\ i i 
'OPPM^ 

1 sin (LnfT/n) 
L s'm(nfT/n) 

(2-26) 

where P(/) is Fourier transform of transmitter filter p(t). 

In Fig. 2-6, we plot the continuous part of the PSD of 4, 8-PPM, Ci), (1
2
7)-MPPM, and 

(2 ). (f )-OPPM, using the results of (2-24) - (2-26). The results for the PPM are shown in 

Fig. 2-6-a. where the first null of the spectrum, which corresponds to our approximation of 

the inverse of shortest pulse-width, is close to B90. For 4-PPM, the first null is at 4 / T and 

B90 = 4.3/T, and for 8-PPM, the first null and B90 are both at 8 /T. For both (1
2
2)-MPPM 

and (27)-MPPM, B90 nearly coincides with the first null of the PSD as shown in Fig. 2-6-b. 

However, the first-null approximation is less accurate for OPPM as shown in Fig. 2-6-c. 

For (I )-OPPM, the first null is at 2.5/T whereas B90 = 3.5/T, and for (f )-OPPM, the 

first null is at 2/T whereas B90 = 3.2/T. Thus, the bandwidth of OPPM is not accurately 

approximated by the inverse of the pulse duration especially at high duty cycles. 
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Fig. 2-6. Power spectral density of modulation schemes (a) 
PPM, (b) MPPM, (c) OPPM. 
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Observe that the sidelobe of the PSD for (f )-OPPM is larger than that for ( \ )-OPPM. 

To illustrate this result, consider a (3)-OPPM signal when the codeword (000111) is fol

lowed by the codeword (Oil 100), producing a chip sequence of (000111011100). The iso

lated 0 chip in position 7 requires more bandwidth than that predicted by the inverse of the 

pulse width. 

2.3 MPPM BOUND 

In Fig. 2-5, the performance of modulation schemes using the finite length of code

word was shown. In this section, we calculate the performance of MPPM when we 

increase the codeword length arbitrarily large. We use Stirling's approximation [36]: 

( £ ) - > 2 a s n ^ o o , (2-27) 

where h(x) - -xloggc - (1 - x)log2(l - x) is the binary entropy function shown in Fig. 2-7. 

We can find a bound on the power and bandwidth efficiency of MPPM by applying (2-27) 

to (2-10) and (2-11): 

pMPPM/pOOK -> , > (2-28) 
Jh(a)/2 

BMPPM/Rb -> ^7—x» (2-29) 

asn->oo and a-win. We call (2-28) and (2-29) the MPPM bound, because these equa

tions represent the limit in the performance of power efficiency and bandwidth efficiency 

for all (^)-MPPM. We plot the power and bandwidth efficiency of various (^)-MPPM 

with the MPPM bound in Fig. 2-8. Note that MPPM with weight 2 outperforms PPM both 
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in terms of both bandwidth efficiency and power efficiency. MPPM with more weight is 

even more bandwidth efficient, but it requires a large number of chips n to achieve good 

power efficiency. The MPPM bound shows that as a —> 1/2, PMPPM / POOK —> 1 / 2 (— 

1.5 dB) and BMPPM /Rb -> 1. As a -> 0, PMPPM /POOK ~> 0 a n d BMPPM
 /Rb ~> °°-

2.4 SUMMARY AND CONCLUSIONS 

We have examined the performance of uncoded modulation schemes by calculating 

their power efficiency and bandwidth efficiency. We have shown that MPPM and PPM are 

power-efficient modulations and OOK and OPPM are bandwidth-efficient. We calculated 

the accurate bandwidth of each modulation scheme by calculating the power spectrum 

density, and compared this result with our first-null approximation. Our approximation is 

quite accurate for most modulation schemes considered except for high-duty cycle OPPM. 

To understand the behavior of MPPM, we derived a bound for the power and bandwidth 

efficiency of MPPM as the codeword length n —> °o. The MPPM bound implies that using 

1 

0.8 

_0 .6 

^0 .4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 

x 

Fig. 2-7. Binary entropy function. 
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certain MPPM with infinite codeword length, at least theoretically we can achieve the 

same bandwidth as OOK with 1.5 dB less power, or achieve an arbitrarily low power 

requirement at the expense of infinite bandwidth. 
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CHAPTER 3 

E Q U A L I Z A T I O N 

In the previous chapter, we examined the performance of uncoded modulation 

schemes on an ideal channel, where additive white Gaussian noise (AWGN) is the primary 

source of performance degradation. In this chapter, we will include the effects of multi-

path distortion which degrade the performance further. We will consider several strategies 

to mitigate the effect of this multipath distortion. 

3.1 INTRODUCTION 

In the diffuse link, from transmitter to receiver the signal experiences temporal disper

sion due to reflections. Usually, the received pulse duration is much larger than the symbol 

duration, especially at high bit rates, and there is a cross-talk or spill-over from one 
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symbol to another. This intersymbol interference (ISI) degrades the performance of the 

receiver. Equalization is the mitigation of ISI through signal processing. We consider three 

equalization techniques: maximum-likelihood sequence detection (MLSD), symbol-by-

symbol equalization, and precoding. 

3.1.1 Maximum-Likelihood Sequence Detection (MLSD) 

Forney [37][38] showed that the optimum detector for linear PAM signals in the pres

ence of ISI consists of a whitened-matched filter (WMF) followed by a Viterbi detector. 

This method is referred to as maximum-likelihood sequence detection (MLSD). The com

plexity of the MLSD grows exponentially with the channel memory. In reduced state 

sequence detection (RSSD) [39] [40], the complexity of MLSD can be reduced by forming 

groups of states and tracking only one surviving path per group of states in the Viterbi 

algorithm. In delayed decision-feedback equalization (DDFE) [41], the complexity of 

MLSD is reduced by considering a few states of the channel. The ISI due to the remainder 

of the states is estimated using a feedback detection analogous to that of decision feedback 

equalizer (DFE). As in the DFE, error propagation affects this algorithm. The price paid 

for these methods for reduction in complexity is a performance degradation due to the 

reduction of minimum distance. Barry [21] and Audeh et al [15] used MLSD to detect 

PPM on a multipath channel. 

3.1.2 Symbol-by-symbol Equalization 

Symbol-by-symbol equalization is a suboptimal strategy for detection in the presence 

of intersymbol interference. Its primary advantage over maximum-likelihood sequence 

detection is a reduction in complexity. Two basic approaches to symbol-by-symbol equal-
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ization are used: linear equalization (LE) and decision feedback equalization (DFE). The 

equalization structure can be derived under the zero-forcing (ZF) criterion, which com

pletely removes the ISI, or under the minimum mean-square error (MMSE) criterion, 

which weighs both ISI and noise. In ZF-LE, we choose an equalizer after a sampled 

matched filter as the inverse of the folded spectrum of the channel. If the equalizer simply 

inverts the channel, the receiver would enhance the noise over frequency regions where the 

channel has a null. This phenomenon is called noise enhancement. The ZF-DFE recreates 

the postcursor ISI from its data decision and subtracts the result from the incoming signal. 

One obvious potential problem with the DFE is that any decision error will cause a cor

rupted estimate of the ISI. The result is that a single error causes a reduction in the margin 

against noise for a number of future decisions. This phenomenon is called error propaga

tion. Price [42] first observed that the SNR gap to capacity at high signal-to-noise ratio is 

the same for channels with ISI as it is for ideal channels, as long as ZF-DFE is used at the 

receiver. In MMSE-LE, we are willing to accept more ISI after equalization to reduce the 

noise enhancement. While a ZF-DFE forces the ISI to zero at the slicer input, a MMSE-

DFE minimizes the variance of the slicer error. Barry [21] and Audeh et al. [16] proposed 

symbol-rate and chip-rate ZF-DFE for PPM. 

Another type of symbol-by-symbol equalization is based on maximizing the a poste

riori probabilities (MAP detection) developed by Abend and Fritchman [43]. MAP detec

tion is optimum in the sense of minimizing the probability of symbol error. Simulation 

results indicate that the performance of MAP detector is superior to that of DFE and com

parable to that of MLSD [22]. But unlike other equalization schemes, MAP detection 

requires the knowledge of the statistics of the noise. It has found little application in prac-
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tice due to its high complexity. Recently, Williamson et ah [44] developed a MAP detector 

based on DFE (MAP-DFE). Although more complex than conventional DFE, MAP-DFE 

outperforms DFE. 

3.1.3 Precoding 

Precoding is a technique similar to DFE that eliminates error propagation by moving 

cancellation of the postcursor ISI from the receiver to the transmitter. However, this 

requires knowledge of the channel response at the transmitter, a requirement that is com

patible only with channels that are stationary or slowly time-varying. Simply performing 

linear equalization at the transmitter is not practical because it increases both average and 

peak power of the transmitter signal. It also violates the nonnegative constraint of (1-2). 

Tomlinson and Harashima [45] [46] used a modulo operation to reduce these power penal

ties (TH precoding). Recently Laroia, Tretter, and Farvadin (LTF) [47][48] introduced a 

new precoding scheme referred to a LTF precoding. In LTF precoding, the postcursor ISI 

is quantized to the nearest point in predetermined constellations, and only the difference 

between the data signal and the quantization error is transmitted. The advantage of LTF 

precoding scheme is that it supports constellation shaping on ISI channels. 

In fact, with uncoded systems, precoding has not received much attention in practice. 

Its performance is no better than that of ZF-DFE under the ideal decision assumption. As a 

result, DFE has generally been preferred for uncoded systems over precoding because it 

does not require information about the channel at the transmitter. We remark that the TH 

precoding and LTF precoding are incompatible with the constraint (1-2). 
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3.1.4 Outline 

The remainder of this chapter is organized as follows. In section 3.2, we develop a 

vector channel model for MPPM on an ISI as a generalization of [21]. In section 3.3, we 

analyze the performance of an unequalized receiver, and in section 3.4, we analyze the 

performance of maximum likelihood sequence detection. In section 3.5, we consider three 

symbol-by-symbol equalization strategies: zero-forcing block decision equalizer, zero-

forcing linear equalizer, and maximum a posterior detector. In section 3.6, we propose a 

partial-response precoding scheme to be compatible with the infrared channel as a gener

alization of LTF precoding without considering shaping gain. 

3.2 SYSTEM MODEL 

Consider the system model shown in Fig. 3-1-a. Information bits with rate Rb (b/s) 

enter the encoder, which maps each block of log2L bits into one of L-MPPM codewords 

co ••• cL-\- We consider only binary codewords of length n and Hamming weight w. The 

nP/w 
xk 

ENC 
*/ 

P/S »« Pit) 

nit) 

—® J hit) \-*@-^\ fit) \-^ 

yj 

S/P S /P 

Vk 

Equalizer 

n/T 
rate rate rate 

log2L/T 1/T n/T (a) 

rate rate rate 
n/T 1/T 1/T 

Fig. 3-1. (a) Block diagram of MPPM system, (b) equivalent vector channel. 
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output of the encoder is a sequence of codewords {x^} with rate l/T = Rfj/\og2L. This 

sequence is serialized to produce the binary chip sequence {XJ) with rate n/T, where 

xk = \-xkny xkn +1» • • • »xkn + n- i\T- The binary chip sequence drives a transmitter filter with 

a rectangular pulse shape p(t) of duration T/n and unity height. To satisfy the power con

straint of (1-2), the filter output is multiplied by (nP/w) before the signal is sent across 

the channel. 

As we explained in section 1.2, the channel model for diffuse link without fading is an 

exponential decay model given by: 

h(t) = We~Wtu(t), (3-1) 

where W is a 3-dB bandwidth and u(t) is the unit-step function. 

As shown in Fig. 3-1-a, the receiver uses a unit-energy filter fit) and samples the 

output at the chip rate n/T producing yj. The receiver groups the samples yj into blocks of 

length n, producing a sequence of observation vectors {yk}, where y^ - [y^, ykn + l, ... , 

ykn + n - \\T- The receiver passes each observation vector through an equalizer to form an 

estimate x^ of x^. For the symbol-by-symbol equalizer, the decision device is memory-

less and has no decoding delay, however, for the maximum-likelihood sequence detector, 

the decision device will have memory and a decoding delay. 

The equivalent discrete-time channel between transmitted and received chips is: 

oo 

yj= X hixj-i + nj = sj + nr <3"2) 
i = - o o 

where hj is the equivalent chip-rate impulse response: 
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hj = ?£(p(t)*h(t)*f(t) (3-3) 
t = jT/n 

and where SJ is defined by (3-2). 

We assume that f(t) has unit energy and is the whitened-matched filter. In this case, the 

noise samples [rij] will be independent zero-mean Gaussian random variables with vari

ance iV0. As shown in Fig. 3-1-b, the equivalent vector channel between transmitted code

words xk and observation vectors yk is given by: 

oo 

yk= X Hjxk-j + nk=sk + rik, (3-4) 

j = o 

where the channel impulse response is a Toeplitz sequence H^, with [H^]y = h^ + i _j, the 

signal component is sk = [skn, skn + h ..., skn + n_ j] r , the noise component is nk - [nkn, 

nkn + i» • • • ' nkn + n - J7- To simplify the analysis, we will consider only \i nonzero terms in 

the impulse response {H^} in (3-4). 

3.3 UNEQUALIZED RECEIVER 

3.3.1 Error Probability for MPPM and OPPM 

By definition, the unequalized receiver uses the decision device that would be optimal 

were there no ISI. In other words, it decides on the codeword ct that maximizes the corre

lation: 

Kl = Cl
Tyk for/ = 0, . . . , L - l . (3-5) 
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This unequalized decision rule is illustrated in Fig. 3-2. If we knew that xk = ct, and if we 

knew all past codewords X' = {..., xk _ 2, xk _ i}, then the probability of error x k * xk 

could be bounded using the union bound: 

Pr[error \ xk = eit X'] < £ Pr[A{ < Aj \ xk = cb X'], 
j = 0,j*i 

L-\ 

= x PrU°i - c/yk < ° I ** = <* X-], 

j = 0, j * i 

L-\ 

= £ Pr[(ct - Cj)
Tnk > (ct- - Cj)

T8k | xk = ct, X'], (3-6) 
j = 0,j*i 

where the last equality follows from (3-4). But (ct -Cj)Trik is a zero-mean Gaussian 

random variable with variance dijN0, where dy = d#(Cj, c-) is the Hamming distance 

between codewords ct and cj. Therefore, (3-6) reduces to: 

Pr[error I xk = cit X'] < £ Q ". k 

j = 0,j*i \ »JdijN0 J 
(3-7) 
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Fig. 3-2. Decision device for the unequalized receiver. 
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Averaging overall possible codeword sequences gives: 

Pr[error]< - L ^ £ £ Q (ci~c/si 
J^JN 

(3-8) 
o ; 

where the first summation is over all X' e C ̂ , where C is the set of L valid codewords and 

|j, is the number of nonzero terms in the impulse response {H^,}. 

Finally, following [26], the bit-error probability is: 

l / log2L 
(3-9) Pr[bit error] = 1 - (1 — Pr[error]) 

For example, the 6 codewords of ( \ )-MPPM are: 

c0 = [ 1 1 0 0 f , c1 = [10 1 0 f , c 2 = [ 1 0 0 l f , 

c3 = [0 1 1 0]T, c4 = [0 1 0 1] T, and c5 = [0 0 1 l]T. 

Thus, from (3-7), the symbol error probability for MPPM given that c 0 is transmitted is: 

Pr[error \ xk = c0, X'] < 

Q 
S\ ~ S 2 

+ Q 
' S j - S A 

oy 
+ Q 

S 0 _ S 2 + Q 
oy 

S 0 _ S 3 

07 

+ Q 
SQ + 5 J — S2 ~ S3 

0 y 

(3-10) 

where s;, i = 0, ..., 3, represents the chip-value of signal vector s at the output of channel. 

On an ideal channel without ISI, s0 = «i = s - (P/w)Jn\og2L/Rb, and S2 = S3 = 0, so that 

(3-10) simplifies to 4Q(s/j2N0) + Q(s/JW0), independent of the transmitted codeword 

Xk-

As another example, (f )-OPPM has L = 4 codewords: 
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c0 = [1 1 1 0 0 0]T, c, = [0 1 1 1 0 0]T, c2 = [0 0 1 1 1 0]T, and c3 = [0 0 0 1 1 1]T. 

Following the previous reasoning, we have: 

Pr [error I x^ = c0, X'] < 

Q 
(<* - < ? ^ ( 's0 s3} + Qi. 

.J™o. 
+ Q 

S0 + Sl ~S3 ~S4 

W 
s0 + SI + s2 - s 3 -S4-S5 

v^; 
(3-11) 

If there is no ISI, the symbol error probability reduces to the following, independent of the 

transmitted codeword: 

Pr [error] < l-[6Q(s/J2N~0) + 4Q(s/JW0) + 2Q{Jls/J2N~0)]. (3-12) 

3.3.2 Extension to On-Off Keying 

The model of Fig. 3-1-a can also be used for on-off keying (OOK) by setting the block 

length to 7i = 1 and by setting the weight parameter to w = 1 / 2 . In this case, the bit stream, 

symbol stream, and chip stream are all one in the same. If all previous bits x' = {..., Xj_ 2, 

Xj_ \} were known, then the bit error probability would be [9]: 

Pr[error \x'] = -Q 
_ 1 j V 2 - 2 > n * , - - n l • \Jh0/2 + Z'xnhj_n 

J*~o 2^ V^~o 
(3-13) 

where the prime indicates that the term n = 0 is to be omitted from the summation. By 

averaging over all possible bit streams {x'}, the total bit error probability is: 

1 Pr[bit error] = —V Q 
X 

(h0/2-^'xnkj_n 

Wo 
(3-14) 

where the summation is overall all binary |X-tuples {x'\. 
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3.3.3 Simplifications when the Channel is Ideal 

In this section we present simplified expressions for the symbol error probability for 

the special case of an ideal channel, without ISI. 

First, consider MPPM: when the channel has no ISI, the expression (3-8) simplifies to: 

Pr[error] < £ NkQ 
k = l 

\2N,j 
(3-15) 

where Nk = Ck)Ckw) is the number of codewords with mutual distance 2k, and where 

s = (P/w))Jnlog2L/Rb. This expression follows from the ISI-free results for the photon 

counting channel of [49]. When w - 1, (i.e., for PPM), (3-15) simplifies further to: 

Pr[error] < (L - l)Q(-i=], (3-16) 

^V^V 

where s = PjL\og2L/Rb and this agrees with [17]. 

Next, consider (^)-OPPM: when the channel has no ISI, the expression (3-8) simpli

fies to: 

^ ™ ] 4 i M J ^ r h e r e M H ?-".»-.+ut-A"',,"1'<3-i7> 
k = i v i °y L 

where again s = (P/w)Jn\og2L/Rb. This result uses the photon-counting results of [49], 

Finally, consider OOK: when the channel has no ISI, then hj from (3-3) reduces to 

(2P/ jR~b)Sj, and so the error probability from (3-14) simplifies to Q(P/ jN0Rb) which 

agrees with the result of chapter 2. 
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3.3.4 Probability of Error Approximation for PPM 

Exact evaluation of the probability of error in (3-8) is computationally infeasible as \i 

becomes large. We now consider a simpler estimate for PPM based on a Gaussian approx

imation [50]. 

To illustrate the proposed technique, consider first OOK. Since [xj] for OOK are i.i.d. 

random variables, the ISI term ^'hnXj_n is the sum of independent random variables 

and can be treated roughly as a Gaussian random variable with mean 0.5^'hn and vari

ance 0.25 ]T 'hn. This Gaussian approximation leads to the following estimate of the bit 

error rate for OOK [9]: 

( hjl 
Pr[bit error] ~ Q 

KjN0 +0.251'h2J 
(3-18) 

We can use a similar technique to approximate the error probability of PPM. From (3-

4), the input to the PPM decision device can be written as the sum of signal plus ISI plus 

noise: 

yk = YL&ck + z + nk, (3-19) 

where z is the ISI contribution: 

* = X ' H * * * - , , (3-20) 

where again the prime indicates that the I = 0 term should be omitted from the summation. 

From (3-6), the probability that the &-th decision is erroneous given the past codewords is: 

L - l 

Pr[error IX'] < £ Pr[(Ci - Cj)
T(nk + z) < - (cf - c/H0C; I xk = ct, X']. (3-21) 

j = 0,j*i 
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Note that the mean \itj and variance a ^ of (CJ - c-fz are: 

l l ^ i r C c f - c / H j l , (3-22) 

P 2 . . - A Y'l l lT.TV,. . _-r..MI2_L _ V I / „ ^ A?! az
l}- = j - Z'HH,'(cf - c,)llz + - 2 1/ I (Ci - c / H z l I , 0-23) 

where 1 = [1, 1 ... l]T. If we approximate (CJ-CI)TZ as a Gaussian random variable with 

mean |i,y and variance a2y, then (3-21) reduces to: 

L~' L~' '(c,.-c/H0cI + H; 
Pr[error] = I £ £ Q 

i = 0 j = 0, j * i ^A/||cl-cJ2iV0 + 4 ; 
(3-24) 

As we will see the above approximation is accurate for small R^/W. Note that on the ideal 

channel, the above equation reduces to (3-16). 

To reduce computational complexity, we truncate the vector channel of (3-4) to four 

terms, so that y^ = V , H;££ _ i + n^. This truncation will have no appreciable effect 

when n is large or when R^/W is small, although it may not be accurate for small n and 

large R^/W. To validate our reasoning, we calculate the ratio of the fractional energy of 

h(t) contained outside the truncation length to the total energy of h(t); 

oo 

I h2(t)dt 

e = Sc , (3-25) 

jh2(t)dt 2. 

n 
o 

where Ttr represents the truncation time. We truncate up to 4n chip samples, so that Ttr = 

4T. We list the fractional energy ratio for various R^IW in Table 3-1. Except OOK and 2-
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PPM at Rfr/W = 1 and 2, more than 99.999% of energy is contained within the truncated 

samples for the modulation schemes we consider. Hence the channel energy we are dis-

TABLE 3-1: Fractional energy ratio (%) of impulse response for various R^ I W. Note 
that"-" means < 0.001%. 

Rb/W = 0.01 Rb/W=0A Rb/W=l Rb/W=2 

OOK — 0.3% 2% 

2-PPM — — 0.3% 2% 

4-PPM — — — 0.03% 

8-PPM — — — 0.006% 

16-PPM — — — — 

32-PPM — — — 

(J)-MPPM — — — 0.003% 

(^)-MPPM — — — — 

(])-MPPM — — — — 

(S)-MPPM — — — — 

(J
2
2)-MPPM — — — — 

(^-MPPM — — — — 

(?)-OPPM — — — — 

(S)-OPPM — — — — 
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carding by truncating the channel is negligible. We calculate the optical power required to 

achieve a 10~6 bit-error-rate for 4-PPM over this ISI channel using the exact method (3-8) 

and the Gaussian approximation method (3-24). The results are summarized in Fig. 3-3, 

where the normalized power requirement is plotted versus the bit-rate-to-bandwidth ratio, 

Rb/W. The power requirements are normalized by PooK= J^o^b Q-1(10 ), m e power 

required by OOK in the ideal case (W = <*>) to achieve a 10 bit error rate. We can see that 

when Rb/W is small, the Gaussian approximation method agrees well with the exact 

method. However, when Rb/W > 0.3 the approximation is not accurate. For example the 

difference between the two methods is about 3 dB when Rb/W = 0.5. We can conclude 
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method (3-8) for the unequalized receiver. 
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that when ISI is small, the Gaussian assumption provides a reasonable approximation for 

the error probability. 

3.4 MAXIMUM-LIKELIHOOD SEQUENCE DETECTION (MLSD) 

Using an argument similar to the scalar case [37], we can derive an upper bound for 

the symbol error probability for the maximum-likelihood sequence detector. The MLSD 

for PPM is derived in [21], and it easily generalizes to MPPM and OPPM. The MLSD 

chooses the vector sequence x^ that minimizes the metric: 

*»= X11^ - X H ^ _ , I I 2 . (3-26) 
* j 

Because the input symbol x^ is chosen uniformly and independently from the set of L 

valid MPPM codewords, every symbol sequence {x^} is equally likely. We define the state 

of trellis at time k as: 

sk-ixk-hxk-2*'-^xk-\ji* (3-27) 

and there are LP states in the trellis. If the estimated codewords from the Viterbi detector 

are {x^}, then the corresponding estimated state at time k is: 

Sk = \.xk-\> xk-2>-~> xk-\il (3"28) 

Suppose the estimated path diverges from the correct path at time k and remerges with the 

correct path at time k + l + 1. Thus, S ^ = S^ and S ^ + / + j = Sk + 1 + h but S i * St for k + 

\<i<k + l. We call this an error event. We define an error vector e of length I - j i+ 1 cor

responding to the error event as: 
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e = [xk-xk,xk + 1-xk + 1,...txk+i_Vi-xk + i_VLl (3-29) 

Let E be the set of all nonzero error events starting at time k and let w(e) be the number of 

decision errors due to error event. The probability of symbol error for the MLSD at time k 

is upper-bounded by: 

Pr[error]< ]£ w(e)Pr[e]. (3-30) 
eeE 

Let N(e) be the event that an addition of the transmitted sequence {xk, xk _ j , ..., x^ +; _ H} 

to the error sequence {ek, ek_ly ..., ek + ;_^J results in the valid sequence. Then, Pr[e] in 

(3-30) is upper bounded by [37][50]: 

Pr[e] <Pr[Xx + e>Xx\N(e)]Pr[N(e)\ (3-31) 

where Pr[kx + e > Xx I iV(e)] is the probability that the sum of the branch metrics of the esti

mated path exceeds the sum of the branch metrics of the correct path; 

MK + e > *» I #(«)] = *H X " II* - I %* ,• - / < X ibr* - X H ,̂- _/],(3-32) 
i = k 7 = 0 i = jfe 7 = 0 

= iV[ X " X HA" -y" *i -j) + »»«2 < I "»»»2L (3-33) 
i = A j = 0 i = k 

= Pr[ f II I H ^ ^ + ^II^ f " " A (3-34) 
i = k j = 0 i = k 

k+l-\i k + l-\i 

= Pr[ X 2 s ^ > X 'M2L (3-35) 
t = A j = A 
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where s, = ^ ^ H ^ _j. But 2 / 1 * H 2 s / n t is a zero-mean Gaussian random variable 

with variance WQ^^'^WsiW2. Then (3-35) reduces to 

Pr[Xx + e<Xx \N(e)] = Q ViU = k \ri\\ 

2 ^ o 
= Q 

0 J 2 ^ o 

2A 

(3-36) 

The Pr[N(e)] depends only on the statistical properties of the input sequence. Because 

the input symbol x^ is chosen uniformly and independently, then for PPM: 

Pr[N(e)] = Y[L -wH(M) (3-37) 

where w^i •) is the Hamming weight. Using (3-30), (3-31), (3-36), and (3-37), we can cal

culate the upper bound of symbol error: 

Pr[error] < £ w(e) ]JL 
eeE 

-">ff(iej) 
Q 

•lui'rim^fii.j 2 \ 

^tt 
(3-38) 

Let Emin be the set of error events corresponding to dmin, the minimum distance 

between received sequences: 

k+l-n n 

i = k j = 0 

(3-39) 

Then, the upper bound for probability of symbol error (3-38) can be approximated by sum

ming over Emin rather than E: 

Pr[error] < ]£ w(e) \[L -«MM) Q 
eeE» 

( d • ^ 

y^Woj 
(3-40) 
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At high SNR, (3-40) is well approximated by [51]: 

Pr[error] « Q 
dmin 

2 ^ 0 
(3-41) 

0 / 

In Fig. 3-4-a, we plot power requirement versus Rb/W using (3-8) when equalization 

is not used. We use the same truncated vector channel considered in the last section. We 

see that some modulation schemes are more sensitive to ISI than others. At large band

width (Rfr/W < 0.1), the ISI penalties are small. At one extreme is OOK, with a power 

requirement increasing slowly with decreasing bandwidth. At the other extreme is OPPM, 

for which the power requirement grows rapidly with decreasing bandwidth. With Rb/W = 

0.5, the ISI penalties, as compared to the ideal channel for OOK, ( \ )-MPPM, 4-PPM, and 

(f )-OPPM, are 4.8 dB, 7.8 dB, 8.8 dB, and greater than 12 dB, respectively. It is thus 

highly desirable to use signal processing at the receiver to mitigate ISI, either symbol-by-

symbol equalization or maximum-likelihood sequence detection. 

In contrast to the unequalized results of Fig. 3-4-a, the results of Fig. 3-4-b are based 

on the maximum-likelihood sequence detector (MLSD). Comparing Fig. 3-4-a and 

Fig. 3-4-b, we see that MLSD offers significant improvement. The power requirements do 

not grow as rapidly as in the unequalized case, and the normalized power requirement is 

always less than 12 dB, even when Rb/W = 1. For example, when the bit rate is equal to 

the bandwidth, Rb/W = 1, the ISI penalties for OOK, ( | )-MPPM, (f )-OPPM, and 4-

PPM are 4.6 dB, 8.1 dB, 9.3 dB, and 9.5 dB, respectively. We note that MLSD is far more 

effective in reducing the power requirement for OOK than for other modulation schemes. 
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The bandwidth efficiency and power efficiency for PPM both using the unequalized 

receiver and the MLSD are summarized in Fig. 3-5. For a small Rfj/W, the difference in 

power requirement of both receivers is negligible for all L, but for large R^/W, the differ

ence is appreciable. Also, when MLSD is employed each PPM-based scheme suffers 

approximately the same penalty due to ISI. For example, at Rb/W = 0.1 and R^/W = 0.5, 

each PPM-based scheme requires 1-2 dB and 6-7 dB more power, respectively, to achieve 

the 10"6 BER than is required at Rb/ W = 0.01. 

0.01 0.1 1 0.01 0.1 1 
Bit-Rate/ Bandwidth (Rb/W) Bit-Rate/Bandwidth (Rb/W) 

(a) (b) 

Fig. 3-4. The required power versus bit rate on an ISI channel (a) 
unequalized system, (b) with MLSD. 

1 I I I I I I II I I I M i l l 
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We also compare the performance of PPM and MPPM when the receiver uses MLSD. 

The results are summarized in Fig. 3-6. We see that MPPM is less sensitive to ISI than 

PPM. For example, power penalties for 2, 4, 8, 16, and 32-PPM at Rb/W= 1 are 9.5, 9.5, 

11, 13, and 15 dB respectively. Even 32-PPM starts to require more power than 16-PPM as 

the Rb/W approaches 0.2. Power penalties for (J), (f), (I), (2), Ci), and (^-MPPM at 

Rb/W = 1 are 8, 8, 8, 8.5, 9, and 10 dB, respectively. From Fig. 2-8, we can also expect 

that MPPM is less susceptible to ISI than PPM because MPPM has better bandwidth effi

ciency than PPM for a given length of codeword n. This fact motivates us to develop trellis 

coded MPPM for the multipath channel (see the section 5.4). 
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3.5 SYMBOL-BY-SYMBOL EQUALIZATION 

In the previous section, we examined the performance of MLSD for MPPM. The 

MLSD employs the Viterbi algorithm so that its complexity grows exponentially with the 

channel memory, and so that it has a decoding delay. In this section, we will consider sev

eral symbol-by-symbol equalization techniques to mitigate the effect of ISI with reduced 

complexity, as well as with small or no decoding delay. 
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3.5.1 Zero-forcing Block Decision Feedback Equalization (ZF-BDFE) 

A zero-forcing block decision feed-back equalizer (ZF-BDFE) is shown in Fig. 3-7 

[21]. The received signal is passed through a forward filter of HQ . Decisions x^ are fed 

through a feedback filter HQ H(Z) - 1 , and the result is subtracted from the input of a 

vector slicer. Assuming correct decisions, x^ = xk, the slicer input, is then: 

™k = HQ1 yk-fk= £ H o ! Hjxk -j + H o ! nk - X wo Hj*k -j = *k + H'1 nk. (3-42) 

There are two decision devices that operate on wji=xk+ HQ n^. the suboptimal com-

parator that minimizes II wk - x^ II and can be implemented using a simple "choose max" 

device for PPM, and the ML slicer, which minimizes II K0wk - BQxk II2. 

A suboptimal decision device chooses x^ to minimize II x^ - wk II or to maximize 

the correlation: 

*! (** + H o l n *) (3-43) 

This device is suboptimal because H0 n^ is not white. 

* * . B(z) 

nk r 

%^>yk 
Ho"1 +./Os wk> 

0̂ Decision 

fk Ho" 1 ! ^ ) - ! ^ 

X-i 

Fig. 3-7. Block diagram of ZF-BDFE [21]. 
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If we knew that x^ = ct, then the probability of error x^^x^ can be bounded using the 

union bound: 

L-\ 
r - i Pr[error \xk = ct]< £ Pr[ c/{ct + H 0 nk) > ct

L(ct + H 0 nk) I xk = c J , 
j = 0,j*i 

L-\ 
J l T - 1 = £ Pr[(c,- - c ^ Ho1 " * > llcjl2 - c/ci I ** = c J , (3-44) 

j = 0J*i 

. T T T - 1 and (cy - ci) H 0 ra^ is a zero-mean Gaussian random variable with variance iV0ll (c, -

Ci)TWQ
x II2. Therefore, (3-44) reduces to: 

Pr[error \xk = ct]< £ Q 
J = o, J * i 

Averaging over all possible codewords gives: 

L - l L-\ ( 

M 

II2 T 
HI - C J C » 
(c^.-Ci^H^Hy 

Pr[error] < i ]T £ Q 
i = 0j = 0,j*i V • V^O 

1,2 T 
C4 'CjCi 
(Cj-CifH.on; 

(3-45) 

(3-46) 

The optimal (maximum likelihood) slicer chooses x^ so as to minimize II H 0u?^-

H0 ir^ II. Since the noise nk is white, the probability of error depends mainly on the 

Euclidean distance d2 = II H ^ - H0Jt^ II2. We can derive an upper bound for the ML 

slicer considering all the error events [16]: 

L-\ L-\ /i 

Pr[error]<jr^ £ Q 
i = 0j = 0,j*i V 

HpCc^-c,-; 

iM 
(3-47) 
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3.5.2 Zero-forcing Linear Equalization (ZF-LE) 

A chip-rate zero-forcing linear equalizer (ZF-LE) uses the inverse filter g(z) = h(z)~l 

where h{z) is the equivalent chip-rate impulse response as shown in Fig. 3-8. The equiva

lent channel between the transmitted chips and output of equalizer is: 

rj ~ XJ + zr (3-48) 

where z; is the Gaussian random variable with zero-mean and variance oz
2 = 

^ f h~ (eJ )dQ. Because h(z) is a causal, minimum phase filter, h(z)~l is stable, and Gz 
271J-Ji 

is finite. We group the chip samples into blocks of length n, and the equivalent vector 

channel is: 

rk=xk+zk. (3-49) 

As we did in the previous section, the decision device chooses x^ to minimize Wx^ - rk\\ 

T 
or to maximize the correlation: xk (xk + zk). 

If we knew that X}i = ci, then the probability of error x^x^ could be bounded using the 

union bound: 

Tli 

Xk P/S x,- i^TPK^yHH^ 10 S / P Decision * * * 

L J 

Fig. 3-8. Block diagram of chip-rate linear equalizer. 
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L - l 

Pr[error \xk = ct]< £ P r t cf(ci + zk) ^ ciT(ci + zk)' xk = cil 
j = o,j*i 

L-\ 

= I M(cj - Cifzk > Ucfl2 - c/ci I xk = ct], (3-50) 
j = 0,j*i 

and (CJ - ci)Tzk is a zero-mean Gaussian random variable with variance (cy - Cj)r Z (cy -

Cj), where Z = ij^z^-71]. The matrix E is a Toeplitz matrix with [L]^ = A ^ o S ^ + j - j • 

Averaging over all possible codeword gives: 

Pr[error]<^ £ Q 
L - \ L - \ f ii II2 Tn 

INI ~CjCi 
i = oj = o,j*i \jNo(Cj-cij

rIl(Cj-ci). 
(3-51) 

We calculate the BER of DFE with suboptimal slicer, DFE with ML decision device, 

and LE with their analytical upper bounds (3-46), (3-47), and (3-51), respectively. The 

results are summarized in Fig. 3-9 for 8-PPM when R^/W = 1. All simulations for DFE 

include error propagation. The results of our simulation (denoted by circles) approach the 

calculated upper bounds (dashed line) as the SNR increases. Therefore, we can use the 

analytical upper bound to describe the performance of the DFE and LE at lower BER. 

We compare the performance of the unequalized receiver, MLSD, DFE with ML deci

sion, and chip-rate LE for 16-PPM. We calculate the required power to achieve the 10"6 

BER using (3-8), (3-41), (3-47), and (3-51). The results are summarized in Fig. 3-10. 

When Rfj/W is small, all receivers show almost the same performance. When R^/W is 

large, the receiver employing equalizers shows better performance than the unequalized 
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receiver. DFE, especially, shows better performance than the LE. DFE requires 0.3 dB 

more than MLSD w h e n R b / W = \ . 

3.5.3 Maximum a Posteriori Probability (MAP) Detection 

We now examine the performance of a symbol-by-symbol detection method based on 

maximizing a posteriori probabilities (MAP) developed by Abend and Fritchman [43]. 

10"1t 
G> +-» 
(0 

DC 
2 10-

i _ 

LU 
OQ 

10 

10" 

-3 

10 -5 

I I I I L E I 
I I 

"•Qv x » 

LE, 

^SN 
upper bound 

\ J • 
L E ^ 

\\ 

I I I I I 

6 7 8 
SNR (dB) 

(b) 

Fig. 3-9. Bit error rate of equalization schemes and their upper 
bounds for 8-PPM at bit-rate-to-bandwidth ratio of 1: (a) DFE with 
suboptimal decision device (DFE-COM) and DFE with ML decision 
device, (b) LE. 

10 
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We want to decide the codeword x^ given the received sequence {yk, yk + h..., y^ + p _ ]}, 

where the delay D is chosen to satisfy D>\i. Based on the received sequences, we decide 

onax^, that maximizes a posteriori probabilities (MAP) [43]: 

*k= ™ax pi*kiy*»y* + i» - . y * + i > - i ) -
xk 

(3-52) 

By Bayes' rule: 

p(xk\yk,yk + h...,yk+D-i) = 
p(yk>yk + v->yk+D-\\xk)p(xk) 

p(yk>yk + v --^yk+D-i) 
(3-53) 

12 

10 
CD 

• • — • 

0 8 
£ 
0 
•3 6 

CT 

CC 4 
0 
o 

Q_ 
•D 
0 
.N 
"co 
£ 

-2 

0 . 0 1 

J I I I I I 

0 .1 

Rhl W 

Fig. 3-10. Normalized power requirement of equalization 
schemes for 16-PPM. 
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wherep(yk,yk + \, • • •, Vk + D -1)1S common to all, and the codewords are equally probable, 

pixfi) = 11L. The MAP criterion is equivalent to choosing the x^ that maximizes: 

£ = max p(yk,yk + l,...,yk+D-i\xk\ (3-54) 
xk 

= ™ a x X I - X p(yk>yk + \->yk+D-\ixk,Xk + \-~>Xk+D-\)> O 5 5 ) 

where each summation is taken over the L possible codewords. We assume input code

words {xk} are equally probable and independent of the noise. Equation (3-55) can be cal

culated recursively beginning with k = 1: 

*\= m^x^^--^p(y^y2-^yD^xhx2...,xD), 
' Xj 3 D 

= m
r

a x S Z - - - Z ^ ^ 1 ^ ' -••> XD-»)••• p(yi\x2>x\)p(y\ i*i)> O56) 
' X2 X-^ X'D 

where p(yD I *D , ..., xD _ H) = (27iiVro)",l/2exp( - II yp - Xm = 0 H /*^ -™ l | 2 / 2N'o)» a n d w e 

assume that x^ = 0 for & < 0. Unlike the other equalizer, the MAP detector must know the 

variance of the noise. Observe that (3-56) involves a large number of computations, 

including the summation of exponential factors, thus making it difficult to implement the 

MAP detector in real applications, especially when L is large. 

Williamson et al. [44] developed a MAP-like detector based on the decision feedback 

equalizer structure when D = \i + 1, as shown in Fig. 3-11. The received codeword yk is 

buffered to generate a sequence of D signals, {yk, y^ + 1? ..., yk + p _ 1}. An input signal in 

each DFE is subtracted by the output of feedback filter. The input vectors for the decision 

device are: 
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j = i 

(3-57) 

The MAP decision device chooses x^ based on the {w^1, wj2, ..., WJP). We can rewrite 

the MAP decision rule (3-52) as [44]: 

xk = ™*p(xk\yk,yk + ],...,yk+D_1) = m™p(xk\wk\wk
2,...,wk

D,ek = 0), (3-58) 
xk xk 

where ek = xk - x^, and where the second equality (3-58) assumes no error propagation. 

Using the same argument used in (3-54)-(3-56), 

yk 

yk ^-x 

z 
H^+.-.+H^ k 

yk+i 
-H + 

.-u 
H22_1+...+H^+1 

yk+D-2 

Y^iQ 
.-1 

z°-] I 
H^"1 

yk+D-i 

Fig. 3-11. Block diagram of the MAP-DFE. 
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* * = ™X11- I p(wh
l.wh

2,...,u,h
D\xk,xh^i,...,xk+D.i,ek = 0). (3-59) 

* Xk+l*k + 2 Xk + D-1 

We can interpret (3-59) as a structure equivalent to symbol-by-symbol detector (3-55) 

coupled with decision feedback equalizer. We can see that the complexity of MAP-DFE 

(3-59) is much smaller than the original MAP detection (3-55) because w^1 contains less 

ISI terms than yk+t-i to average out assuming correct decisions. Williamson et al. [44] 

showed that the performance of MAP-DFE range from conventional DFE to the MLSD 

depending on D. 

3.6 PARTIAL-RESPONSE PRECODING SCHEME 

Precoding is a technique similar to DFE that eliminates error propagation by moving 

cancellation of the postcursor ISI from the receiver to the transmitter. One advantage of 

using precoding over DFE in our applications is the reduction of complexity at the 

receiver. Usually, the battery powered portable receiver is required to consume little 

power. Therefore, equalization at the transmitter can reduce the power consumption of the 

receiver. We move the feedback filter in Fig. 3-7 to the transmitter as shown in Fig. 3-12-a. 

However, simply moving the equalizer to the transmitter is not practical because of the fol

lowing reasons. 

• The transmitted signal x-^-b^- f^ violates the average power and nonneg-

ative constraint of (1-2). 

• If we add a positive constant vector p to compensate all negative compo

nents of Xfr and satisfy the constraint (1-2), which decreases the distances 

between the transmitted codewords. 

• The resulting x^ loses the low duty-cycle property. 
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nk 

V© f—*-* + 

fk 
Ho^H^-Ik 

H(2) 
*>k 

(a) 

(b) 

(c) 

yk 

Fig. 3-12. Precoding operation (a) moving DFE to the 
transmitter, (b) the proposed precoding scheme, (c) equivalent 
block diagram for (b). 
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To overcome the above problems we stated, we now propose a new precoding scheme 

as a modification of LTF precoding [47][48]. Let C = {c0,ch ..., cL_ i) is a set of L valid 

MPPM codewords, and Q is a set of L codewords defined later. In the proposed precoding 

scheme as shown in Fig. 3-12-b, the output of feedback filter fa = ^ HQ H/jty _j is not 
J'SI 

subtracted directly from the input signal 6^, but is quantized to the closest codeword qk in 

Q, and only the quantization error e^-fa- q^ is subtracted. The output of the precoder is: 

xk = bk-ek, (3-60) 

= bk + qk- X H ^ - i - (3-61) 
j*l 

From (3-61), the equivalent operation of quantizer in Fig. 3-12-b is obtained by adding qk 

to the input ck as shown in Fig. 3-12-c. To satisfy the (1-2), we add a positive constant 

vector p to xk. At the output of the channel, after removing the constant: 

yk=yk- ^Hjp, (3-62) 
j '^o 

= H0*ik+ X H j * A - j + »*. (3"63) 
j * \ 

= H0(bk + qk) + nk. (3-64) 

Equation (3-64) is obtained by applying (3-61) to (3-63). 

A 

The first type of receiver to recover b ^ from yk uses inverse precoder as shown in 

Fig. 3-13. The decision device chooses b^ + q^, which minimizes the Euclidean distance 
A f\ A A 

II yk - H0(6 k + 9 k) " • In order to recover 6 ^ from b ^ + q & we invert the operation of 

the precoder [52]. From (3-60), (3-61), we can recover b^ - e^ by subtracting the feed-
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back signal fa from b^ + q ^ We then obtain the codeword bk by adding e ^ to the b^ -

*k' 

To make this precoding effective, we should design Q to ensure that (1) it minimize the 

average energy of ek, in order to minimize the increment of power at the transmitter, and 

(2) ensure that [b^ + q^} are distinctive, in order to decode effectively. This design of Q is 

the most challenging problem of our precoding scheme. Since ek=fa- qk, qk should be 

selected to be close to the fa. We assume that the equivalent discrete channel coefficients 

hj are a monotonically decreasing sequence, so that the feedback signal fa = 

]£ HQ HJxk_jdepends mainly on H~0 Hjx k _\ = H~0 Hx(bk_x-ek_\). We choose theL 
J * I 

codewords, Q, according to the value of bk _ ^ 

Vk 

l*iP 

GA DEC 
bk + qk 

-tO 
fk H0-'H(z)-l bk-ek 

+ y-H + + bk 

choose 
closest qk 

= H 0 6 £ + H l 6 f c - 1 

Fig. 3-13. Two types of receiver for precoding scheme; the upper one 
is an inverse precoder and lower one is for partial-response 
precoding. 
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qke Q={H" 1 H 1 c 0 , H"1 H l C l , ..., H ^ H ^ . x } , (3-65) 

where ct is a valid MPPM codeword. Therefore, {bk + qk} are not valid MPPM code

words and the number of codewords is L2. We can expect the performance of this pre

coding to be inferior to the ideal ZF-DFE because of the reduced minimum distance 

among the signal set for {bk + qk} compared to {b^}. 

In the first type of receiver, we considered q^ as a valid codeword in Q. However, in 

the second type of receiver we can think from a different point of view. We quantize the 

feedback signal fk= ^ HQ Hya^ _j to qk = HQ H\ b^ _ t, and the quantization error is ek 

7 * 1 

= ]T HQ "HjXk _j - HQ HJ e^ _ j . Then the output of channel is: 

yk= X H / ^ - j + n ^ (3_66) 
.7*0 

= H0(bk + qk) + nk, (3-67) 

= H0(&* + Ho1 H! 6^ _ i) + nk, (3-68) 

= H06ft + H1&ft_ ! + **. (3-69) 

Therefore, the precoding operation truncates the ISI channel from (X + 1 taps to 2 taps. We 

call this scheme partial-response precoding . The effect of ISI caused by the truncated 

channel can be mitigated using any of the equalization schemes, with reduced complexity, 

that we considered in this chapter. For example, the MAP detector and its DFE implemen

tation of Fig. 3-11 are complex. However, after partial-response precoding, we can imple

ment the MAP equalizer at the receiver with reduced complexity, as shown in Fig. 3-14. 

2. The term partial response is used in connection with precoding since the response to an input sym
bol is spread over two symbol period. 
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3.7 NUMERICAL RESULTS 

Fig. 3-15 shows the bit-error-rate performance of all equalization schemes we have 

considered at Rb/W = 1 assuming 4-PPM is used. We can see that all equalization 

schemes are reasonably effective at mitigating the effects of ISI. The best performance is 

achieved by the MAP detector using the two-stage DFE with D = 2; it is about 0.2 dB from 

the optimum ML sequence detector. If we use more stages, the performance will be com

parable with MLSD [44]. As we derived in the previous section, when we use partial-

response precoding at the transmitter, its operation approximately truncates the ISI 

channel memory length to 1. We can use several effective receiver equalization methods 

with reduced complexity. For example, partial-response precoding with MAP-DFE 

(Fig. 3-14) shows better performance than conventional DFE with ML decision. However, 

partial-response precoding at the transmitter with DFE at the receiver to remove the 1 

memory ISI, or precoding with inverse precoder, does not show better performance than 

/v 

I bk 
t i • 

i i 

Fig. 3-14. MAP-DFE at the receiver when transmitter uses partial-
response precoding. 

yk 

Vk *6> 
w*J 

-1 H{z - l 

W z 
yk+\ ™k 

DECISION 
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DFE. The performance of the DFE with comparator is almost the same as the LE. Note 

that if the receiver does not employ equalization, the BER performance does not improve 

significantly, even at high SNR. 

Fig. 3-16 shows the performance of equalization schemes in terms of receiver com

plexity and performance. The x-axis represents the number of floating-point operations 

(flops) per bit and the^-axis represents the required SNR to achieve 10"3 bit-error-rate. In 

calculating the flops, we use the f l o p s command in MATLAB. MLSD achieves the best 

performance with largest complexity. The complexity of the MAP-DFE and the precoding 

with MAP-DFE is smaller than MLSD, but it is much larger than those of the other 

symbol-by-symbol equalization schemes. LE requires the least complexity but its perfor

mance is poor. DFE and precoding with DFE shows good performance and small com

plexity. Especially in our applications, precoding at the transmitter and DFE at the receiver 

is a good choice because of its relatively simple receiver structure. 

3.8 SUMMARY AND CONCLUSIONS 

We examined the performance of MPPM and its variants on ISI channels using several 

equalization schemes at the receiver. Compared to conventional LE and DFE, MAP-DFE 

performs well, and its performance is close to the optimum MLSD. However, its com

plexity is large and does not seem to be compatible with coding. The DFE with ML deci

sion device is effective at mitigating ISI. We developed a new precoding scheme called 

partial-response precoding as a modification of LTF precoding. Accounting for both com

plexity and performance, partial-response precoding with DFE is a good choice for our 

application. 
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CHAPTER 4 

A C H I E V A B L E 
I N F O R M A T I O N R A T E 
A N D C U T O F F R A T E 

Although bit error rate analysis in the previous chapters provides us with valuable 

information about the performance of uncoded modulation schemes, it does not give us 

information about the limit of performance. In this chapter, we will consider more funda

mental questions of information transfer such as: 

• What is an achievable rate at SNR of 10 dB using a specific modulation 

scheme? 

• How much SNR is required to achieve a cutoff rate of 2 bits / channel sym

bol using 4-OPPM?. 
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4.1 INTRODUCTION 

The channel capacity is the highest rate in bits per channel use at which information 

can be sent with arbitrarily low probability of error [53]. The capacity of a discrete-time 

memoryless channel subject to various input constraints has been studied since the advent 

of information theory by Shannon. The most common input constraint is the average-

power, and the associated capacity of a Gaussian channel has already been determined by 

Shannon. Channel capacity for an average-power and peak-power limited input is 

achieved by discrete random variables taking on a finite number of values [54]. Capacity 

for average amplitude with positive input constraint such as the wireless indoor infrared 

channel (see (1-2)) has not been reported (see section 7.2.1). 

Tsybakov [55] derived the channel capacity for discrete-time ISI channels with an 

average input power constraint. In that case, the capacity is achieved by letting the input 

sequence be correlated Gaussian random variables. Hirt [56] approximated the informa

tion rate with an independent, identically distributed (i.i.d.) input, using the Monte Carlo 

method. Shamai [57] derived lower and upper bounds on the information rate for a scalar 

Gaussian channel with i.i.d. input. The bounds are represented in terms of the average 

mutual information of a memoryless Gaussian channel with scaled i.i.d. input symbols. 

The cutoff rate is another measure of communication efficiency. While the capacity of 

a channel is the rate beyond which it is impossible to communicate over the channel, the 

cut-off rate is widely believed to be the rate beyond which it is very expensive to commu

nicate over the channel [58]. This parameter was initially considered in conjunction with 

sequential decoding of convolutional codes. Massey [59] recognized the cutoff rate as a 
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figure of merit for modulation schemes. Biglieri [60] derived the cutoff rate of an ISI 

channel using random coding bounds. 

Georghiades [49] investigated channel capacity and cutoff rate for MPPM, OPPM, and 

PPM over a photon counting channel without ISI. 

In section 4.2, we present expressions for achievable information rate and cutoff rate 

on the ideal channel when the input codewords are independent and identically distributed 

with a uniform distribution. In section 4.3, we derive lower and upper bounds to the infor

mation rate over ISI channels and compare it to a Monte Carlo approximation. We also 

present cutoff rate, and calculate the power to achieve log2L bits per channel symbol. In 

section 4.4, we present numerical results for our channel. 

4.2 MEMORYLESS CHANNEL 

In this section, we will consider two fundamental limits of information transfer, 

achievable information rate and cutoff rate. We assume an ideal AWGN channel with 

independent and identically distributed uniform input. 

4.2.1 Achievable Information Rate 

In a memoryless channel, H 0 = I, Hj = 0, ... in (3-4). The information rate (bits per 

channel symbol) under the i.i.d. with a uniform distribution/?^) = 1 / L over the AWGN 

channel is represented by the mutual information between input and output vectors: 
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1 i.i.d. = *(**» x + n) = 

iyL-u- r~ 1 -b-*il / 2 i V°i0aJ e . (4_1} 

As for one-dimensional signals [58], we substitute z = (y - x{) I JWQ and vm-xml JN~0. 

The above equation then becomes: 

W = ^g2L-j-J4 = 0 \ _ . . . J _ — ^ e log2^Xm = 0
e * J ^ - (4"2) 

The above equation contains an n dimensional integral and has no simple closed form 

solution. As a consequence, the Monte Carlo method is used to estimate Iiid. 

4.2.2 Cutoff Rate 

The cutoff rate RQ is defined when the input codewords are i.i.d. with a uniform distri

bution p(xk) = 1IL as [59]: 

Ro = - iog2 f - 2 l f : d Y t ~ = o e ~ p l ~ V m f / * ) b i t s ' c h a n n e l symbol> <4-3) 

where v =xI JN~0. 

We can simplify for the special case of MPPM using the results for the photon 

counting channel [49]: 

«o, MPPM = log2£ - log2 ( X L oNke~k"2/4). (4-4) 
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p 
where s = — Jn\og2L/RbN0, and Nk = Ck)(n~kw) is the number of codewords with 

mutual distance 2k. 

Recall that PPM is a special case of MPPM with n = L and w = 1. Because PPM code

words have a unity weight and equal Hamming distance of 2, the cutoff rate can be simpli

fied to: 

*o, PPM = hg2L - log2( 1 + (L - 1 )e~s / 4 ) , (4-5) 

where s = PjL\og2L/RbN0. 

For OPPM, we use the results for the photon counting channel [49]: 

R0, OPPM = l og2L " log2f 1 + 7 X L iMke'kS / 41 > (4"6) 

, , , \2(L-k) k = l,2,...,w-l P r-
whereM,= ( L _ M ; ) ( L _ M ; + 1 ) A = w , and s = -Jnlog2L/RbN0 

For OOK: 

-sV8 * o, OO^ = 1 " log2( 1 + e~s ), where s = 2P/jRb~N~0. (4-7) 

4.3 ISI CHANNEL 

Following [57], we can also represent the channel using matrix notation: 

Y = HX + N = S + N, (4-8) 
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where Y = \y0
T, yi

T,...,y^f, X = [x0
T, x^ ..., x^f, S = [s0

T, s^, ..., sN_^]T, and N 

= [n0
T, n-^,..., nN_iy]T are all Nn x 1 column vectors. The two equations (3-4) and (4-8) 

are equivalent as N —> °o, and the rows of H are specified by circular shifts of {H;}: 

H = 

H0 0 0 ... 0 

Hj H0 0 ... 0 

0 0 HH H0 

(4-9) 

The achievable information rate for under the i.i.d. constraint with a uniform distribu-

t ionp(^ )= l /L i s [53] [56] : 

J ^ = ^ i / ( Y ; X » = „^WY)-MY|X)), (4-10) 

LN-\ 

=iog2ẑ  urn i x | i - j : 1 1 -MI2/2 

1 = 0 
•*oTN~ Nn/2 

L 2n 

log2 

rLN-\ 2 A 
y e-(S (-Sm)z-| |S,-Sm | |2/2 

Vm = 0 

<fo.(4-ll) 

Exact evaluation of this expression is not possible, so we resort to upper and lower 

bounds. In the following discussion, we present lower and upper bounds for the informa

tion rate under the i.i.d. constraint. Our presentation is a straightforward generalization of 

the scalar results of Shamai [57] applied to the vector channel (3-4). 

4.3.1 Lower Bound of the Information Rate: J^ 

Following [57], we represent the entropy of the output vector by using the chain rule: 

*N-\ h(Y) = I?:o
lHyl\yl_vyl_2,...yQ). (4-12) 

Because conditioning decreases the entropy: 
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h(Y)>Yfj0
lh(sl + nl\sl_l, ...,s0,nz_!, . . . ,n 0 ) , 

= Y?:o
lh(sl + nl\sl_l,...,s0), (4-13) 

where the last equality follows because s/, nh ni_i, ..., n0 are independent. Since s/ = 

£ Hl_jXj, (4-13) reduces to: 

h(Y)>Yf=~oh(H0xl + nl). (4-14) 

Therefore, the mutual information between the input and output vectors is: 

7(X;Y) = A(Y)-A(N)^XfL'o {HH^ + n^-hi^)} , (4-15) 

= 2fL"o1^Ho*/+ , i^i)- <4-16> 

This equation leads to the following lower bound IL for the information rate under the 

i.i.d. constraint: 

^limMI/(X;Y) > hmJ^S*J(H0*Z + n,;*,) = / ( H 0 * + n;x) = IL. (4-17) 

We can evaluate the above equation by replacing x with HQ# in (4-2). As we can see, the 

lower bound of the information rate is equivalent to the mutual information between the 

input and the output of an error-free zero-forcing block decision feedback equalizer (ZF-

BDFE) with ML-decision (see section 3.5.1) [211. 
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4.3.2 Upper Bound of the Information Rate: I(j 

We now present an upper bound IJJ for the information rate Ind. °f (4-11) as an exten

sion of [57]. By using the chain rule, we can represent the mutual information between the 

input and output of (4-8) as: 

7(Y; X) = X f L ' o J ( Y ^ h - i ' **-2' - ' *o)> 

= XfLV W*'|*'-:i>*7-2> ...,xQ)-h(xl\xl_l,xl_2, ...,x0,Y)]. (4-18) 

Because {x^} are i.i.d. and conditioning decreases the entropy: 

/(Y; X) < 

Xz = o [h(Xi\x0, xv ..., xl_l,xl + l,xl + 2, ...,xN)~ 

h(xi\x0, x}, ..., Xi_ j, xl+ j, xi + 2, ..., xN, Y)] , 

= ^Ll = 0 I(Xl>X0> Xl> •••>xl-i> xl + l> xl + 2> •••> XN> * ) ' 

= Xz=~o I(xi'&oxi + no>'K\xi + n\> •••>mv.
xi + n

v)' 

= XfL"o7^ Y), (4-19) 

where Y = H*z + N , and where H = [H0
r, H / , . . . , H/]T, and N = [w0

T, nx
T,.... w / ] T . 

~ rp ~ ~ rp 

Let V = H Y = Ba;j + a>, where H is a matched filter, so that B = 

£m = o Hm
THm , and a? is a zero-mean Gaussian vector with correlation matrix 

EiwwT] =NQB. Because B is positive definite, it can be factored into B = TTT for some 

matrix T [61]. We can whiten the noise by applying T to V, yielding Z = T V = TTxi 

+ n, where n has the same distribution as /*/, a zero-mean Gaussian vector with correlation 
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matrix NQI. Since both the matched filter and noise whitener are information lossless, we 

have l(xi, Y) = I{xt\ V) = I{xt\ Z). Therefore, (4-19) reduces to: 

7(Y; X) < £fL'o /(*,; TTxt + nt). (4-20) 

Finally, taking the limit as N —> °o yields our upper bound Iy of the information rate under 

the i.i.d constraint: 

Jim ^ / ( X ; Y ) < lim ^^-oI(<xi + ni*i) = KTTx + n;x) =IV. (4-21) 

We can evaluate (4-21) by replacing x with TTx in (4-2). Note that, for the scalar case, the 

matrix TT reduces to j £ |/*m|2, and the upper bound (4-21) reduces to the matched filter 

bound [57]. 

4.3.3 Cutoff Rate 

Following the discussion of [60], we can generalize the results of the scalar channel to 

the vector case. Let S = (xk_l,xk_2, ...,xk_n;xk_v xk_2, ..., xk_]l), and let 

S = (xk;xk) denote a state pair and a input pair respectively, and define: 

1 / 

0(S,S) = — exp 
Lt 

|2 \ 

Ho(**-**)+ I H r a(^_m- i ,_ r a) /8JV0 
m = 1 II 

(4-22) 

We can derive the cutoff rate of the vector ISI channel using a random coding bound 

[62]: 

# 0 = - l o g A ax, (4-23) 
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where Xmax is the maximum eigenvalue of a L2^ x L2^ matrix A, where Atj = ®(Sj, 5 ) , if 

a state pair <Ŝ  can be reached from Sj for some input pair S and A -̂ = 0 otherwise. 

For example, if L = 2 (with codewords c0 and ej) and |i = 1, then the matrix A is given 

by: 

A = 

a b b a 
c d e c 
c e d c 

a b b a_ 

(4-24) 

where a = 1 , 

1 -PKCo-cOlVsiVo 

6 = -e 

1 -HHotCo-cOlVsiVo 
c = -e 

d = le-lHo(Co-c1) + H1(c0-c1f/SN0 a n d 

4 
1 -fHoCco-cO + H.C )||2/8iV0 

The cutoff rate can be calculated by finding the maximum eigenvalue of A and can be 

approximated at high SNR as: 

R0~ 1 - log 2 ( l +e"
(,|Ho(Co~c,),|2 + , , H , ( C o _ C l ) | , 2 ) / 8 J V o ) (4-25) 

4.4 NUMERICAL RESULTS 

Because there is no simple closed form for (4-2), we use Monte Carlo methods to esti

mate the multiple integral. Fig. 4-1 shows the approximate information rate using the 

Monte Carlo method and cutoff rate for 4-PPM at Rb I W = 0.01 and Rb I W = 0.5. To 
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evaluate the information rate, we use 1000 Gaussian sample vectors for each estimate 

[63]. To achieve 1 bit / channel symbol, there are about 1.1 dB difference between the 

information rate and the cutoff rate for the 4 PPM at a bit rate Rb I W = 0.5. 

In Fig. 4-2, Iideai (4-2), II (4-17), and Iy (4-21) are shown and compared to the 

approximate information rate. Our results show that IL and IJJ are 0.5 dB apart at moderate 

SNR at Rb I W = 0.5. When the channel is ideal, at SNR = 3.3 dB, the information rate is 

0.95 bits/channel symbol; however the information rate is only 0.18 bits/channel symbol 

when Rb/W = 0.5. To achieve a information rate of 0.95 bits/channel symbol using 2-

PPM at Rb/W - 0.5, the required SNR is 9.5 dB. In contrast, we see that an uncoded 2-

PPM system with MLSD requires an additional 3.3 dB, or 12.8 dB SNR, to achieve 10"6 

BER at Rb/ W = 0.5 (see Fig. 3-4-b). Thus, in this case, the coding gain for a code based 

o 
£ 
>. 
CO 

"33 
c 
c 
cd 

m 

-10 -8 -2 0 2 
SNR (dB) 

8 10 

Fig. 4-1. Approximate information rate, I i i d , and cutoff rate, 
R0, for 4-PPM as a function of SNR at Rb I W = 0.01 and Rb I 
W = 0.5. 
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on 2-PPM can be at most 3.3 dB. Higher coding gains are possible for higher-order alpha

bets. 

For each modulation scheme, we have calculated the optical power required to achieve 

a cutoff rate of (log2L - e) bits / channel symbol over this ISI channel, where e is an arbi

trary small number. The power requirements are normalized by POOR
 = 

jN0Rb /log f —— I the power required by OOK in the ideal case (W=oo) to achieve a 

(1 - e) bits / channel symbol. The results are summarized in Fig. 4-3 for e = 10 , where 

the normalized power requirement is plotted versus the bit-rate-to-bandwidth ratio, R^/W. 

The normalized power requirement is always less than 12 dB, even when Rb/W = 1. For 

0.9 
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o 
-*̂  w 0.3 
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Fig. 4-2. Bounds on the information rate for 2-PPM over an ISI 

channel as a function of SNR -PI jRbN0; information rate for 

the memoryless channel Itdeab lower bound IL, upper bound Iv, 

and approximate information rate4;.d. 
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example, when the bit rate is equal to the bandwidth, Rb/W = 1, the ISI penalties for 

OOK, (% )-OPPM, (I )-MPPM, and 4-PPM are 4.5 dB, 9 dB, 9.1 dB, and 9.2 dB, respec

tively. 

4.5 SUMMARY AND CONCLUSIONS 

We have examined the achievable information rate and cutoff rate of MPPM and its 

variants PPM, OPPM, and OOK on an ISI channel with additive white Gaussian noise. We 

have presented expressions for the information rate under the i.i.d. constraint and cutoff 

rate on an ideal channel for each modulation scheme. When input codewords are i.i.d. with 

uniform distribution, we have derived bounds for the information rate on an ISI that can be 

_̂̂  12 
CQ 
2, 10 
4_^ 

C 
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E 
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Rbl W 

Fig. 4-3. The required power to achieve a cutoff rate of (log2L -

e) bits / channel symbol (e = 10"3) normalized by POOK> versus bit 

rate on an ISI channel. 
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expressed as the information rate of an ideal channel. We show that the lower bound of the 

information rate is equivalent to the mutual information between the input and the output 

in the block zero-forcing decision feedback equalizer (ZF-DFE) with ML decision, and 

that upper bound of the information rate is equal to the vector version of matched filter 

bound. We also calculate the optical power to achieve a cutoff rate of (log2L - e) bits / 

channel symbol. Our results quantify the unavoidable penalties due to ISI. Among all the 

modulation schemes considered here, OOK is much less sensitive to ISI than any of the 

PPM-based modulation schemes, thus agreeing with the results in section 3.4. 
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CHAPTER 5 

C O D E D 
M O D U L A T I O N 

So far, we have examined the performance of uncoded modulation schemes on both 

ideal and ISI channels. In this chapter, we will combine coding with modulation to 

improve the error rate performance. Here we consider only convolutional code and trellis 

code because we prefer to use the Viterbi algorithm at the receiver. We assume ideal chan

nels (no ISI), and the effects of ISI will be considered in chapter 6. 

5.1 INTRODUCTION 

The performance of modulation schemes can be improved by combining them with 

coding techniques. Conventional coding operates by inserting redundant symbols into the 
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data to allow the receiver to correct errors and erasures that occur in transmission. Because 

the signal bandwidth is proportional to the symbol rate, this increases the bandwidth. 

Rather than treating the coding and modulation as separate processes, coded modulation 

techniques combine them by matching the coding to the modulation scheme. The basis of 

coded modulation is to treat coding and modulation as one entity; coded modulation is a 

single process that converts the data stream directly into a suitable waveform for transmis

sion over the channel. Fig. 5-1 shows a block diagram of a coded modulation scheme. The 

coded modulation performs two mapping operations. A block of (log2L - 1) information 

bits, a, is mapped onto a log2L bits label vector 6 by a rate (log2L - 1) / log2L convolu-

tional encoder. The label vector b is then mapped onto a codeword x, and this mapping is 

denoted by fljb) = x. In general, the mapping operation is memoryless and nonlinear. 

In 1982, Ungerboeck [64] suggested trellis coded modulation (TCM) to improve the 

performance without bandwidth expansion using set partitioning. He showed that a coding 

gain of 6 dB relative to an uncoded system could be achieved using a trellis code with 128 

states and without bandwidth expansion. Calderbank and Sloane [65] observed that the 

signal constellation may be regarded as a finite set of points taken from an infinite lattice, 

and the partitioning of the constellation into subsets corresponds to the partitioning of a 

lattice into a sublattice and its cosets. 

S / P 

k 

log2L - 1 
w 

Mapper 
S / P 

w 
• • • 

log2L - 1 W 
• • • 

Mapper 
S / P 

w 

log2L - 1 

w 

Mapper 

a b 

Fig. 5-1. Block diagram of coded modulation. 
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Because the error probability of a trellis code at high SNR primarily depends on the 

minimum Euclidean distance between sequences, dmin, the calculation of this parameter is 

the most important task. In general, in order to evaluate the dmin of a trellis code, all pairs 

of encoded sequences must be considered. Large complexity saving in calculating dmin 

may be achieved if we may assume that the all-zero path may serve as the reference path. 

This has already been observed by Ungerboeck and subsequently by Zehavi and Wolf 

[66], Here, we consider a condition of symmetry for the signal set developed by Zehavi 

and Wolf, the Z.W. condition for a rate (log2L - 1) / log2L trellis code. The Z.W. condition 

requires that when the signal set is partitioned into two subsets, the distance weight pro

files of the two subsets be identical. If a trellis code satisfies this Z.W. condition, dmin can 

be calculated from the all-zero path. Benedetto [67] summarized the performance evalua

tion issue in detail, analyzing different symmetry properties of trellis code design. 

Optimal codes may be selected by performing an exhaustive search [64]. For a given 

constraint length, we consider every possible generator polynomial, and choose the poly

nomial that gives the largest dmin. No other method is known that produces the optimal 

code. However, as the code complexity increases, an exhaustive search become imprac

tical. In such cases, limited searches are necessary, even if they do not always provide the 

optimal code. One simple limited search algorithm is to choose a code at random. This 

natural method [68] has been reported recently. More detailed works and references on 

TCM can be found in [69]. 

For a photon counting channel, Forestieri et al. [70] suggested several convolutional 

coded PPM schemes, Georghiades [49][71] considered trellis coded OPPM and trellis 
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coded MPPM, and Pottie [72] applied the Z.W. condition to find a good trellis coded 

OPPM based on the Georghiades metric. 

In section 5.2, we consider convolutional coded PPM and derive an upper bound for 

the dmin of convolutional coded PPM. In section 5.3, we calculate the coding gain of 

trellis-coded OPPM. In section 5.4, we present a design procedure and computer search 

results for new trellis codes based on MPPM, and derive an approximate upper bound for 

the dmin of trellis-coded MPPM. 

5.2 CONVOLUTIONAL CODED PPM 

In this section, we will combine convolutional encoder with PPM. Uncoded PPM is a 

power-efficient modulation, and its error rate performance will be improved further using 

coding, at the cost of increased bandwidth. 

5.2.1 Rate 1 / log2L Convolutional Coded L-PPM 

One method for combining a convolutional code and PPM is a rate l/log2L convolu

tional code followed by a L-PPM encoder [70]. For every information bit coming in, a 

single pulse is transmitted. Thus, the symbol rate and bit rate are identical, and the 

required bandwidth is roughly LIT, so the normalized bandwidth requirement is: 

BCC,i/\og2L
/Rb=L- (5-1) 

The bandwidth increases linearly with L. 

A simple convolutional coded 4-PPM and one stage of its trellis diagram are shown in 

Fig. 5-2. Associated with each transition on the trellis diagram is a 4-PPM codeword. 
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Consider a rate l/log2L convolutional code with constraint length v (i.e., with v 

memory elements). We will use a similar argument as in [73]. An information sequence of 

length K bits results in a sequence of K+v PPM symbols. Because of the encoder 

memory, two information sequences that differ by only a single bit will result in two trellis 

paths that disagree in exactly v + 1 consecutive transitions. For example, the trellis in 

Fig. 5-3 shows the two paths corresponding to the all-zero sequence and a single one bit. 

Two paths can differ in more than v + 1 consecutive transitions, but never less. As illus

trated in Fig. 5-3, the Hamming distance between any two branches is either zero or 2. 

Therefore, an upper bound on the squared minimum Euclidean distance for convolutional 

coded PPM is: 

d2
min<2(v+l). (5-2) 

If we design the convolutional encoder so that the distance in each of the v + 1 transitions 

is always 2, then the Hamming distance due to a one-bit error is 2(v + 1). In particular, the 

squared minimum Euclidean distance for the convolutional encoded PPM system of 

Fig. 5-2 is dmin = 6, so it satisfying with equality. 

Fig. 5-2. A convolutional coded 4-PPM and its 
trellis. 
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The PPM waveform during each symbol period has the form of (2-9), where the con

stant a is chosen so that the total average power is P; since there are L chips per symbol, 

a = PjL/Rb. The minimum Euclidean distance between coded PPM sequences is scaled 

by a. Therefore, the average power requirement for convolutional coded PPM is: 

PCC,\/\og2L
/POOK = 

fi4ni L(v+1) ' 
(5-3) 

in 

the last approximation being valid when (5-2) is approximately satisfied with equality. 

5.2.2 Rate (log2L - l ) / l o g 2 L Convolutional Coded L-PPM 

A rate (log2L - l)/\og2L convolutional code can also be combined with PPM. The 

(log2L - 1) bits of information are shifted into the encoder at each symbol period and the 

log2L bits of the encoder output are converted to a L-PPM symbol. The chip duration is 

T/L and the bit rate is R^ = (log2L - 1)/T, so the bandwidth expansion factor is: 

B CC, (log2L-l)/(log2L) 

Ru iog2L- r 
(5-4) 
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Fig. 5-3. An error event with Hamming distance 2(v + 1). 
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Following the same argument used in section 5.2.1, we can derive the upper bound for 

the minimum distance. The minimum distance of convolutional coded PPM is the smallest 

among the distances of pairs of sequences arising from an error event. Each trellis path of 

length I involves I PPM codewords. We define the trellis path vector X = [x0
T, xx

T, ..., xt _ 

iT]T of dimension IL, where xi is an L-PPM codeword. If Sa and S^ are two trellis states 
yrl \ i 

that are connected by a path of length Z, then the number of trellis paths is M(l) = 2 if 

I > v [74] where K = (\og2L - 1). The minimum distance is less than an average distance: 

M - 1 M - 1 

dmin = g {^-^}<d2
avg = — 1 — X I IKMCTI2 (5-5) 

V Ji = 0 j = 0 

M-lM-l 

= M(M_X) I I [iiyii2 + i i» ' i i2-2(y,»)]. (5-6) 
( i = 0 j = 0 

J*l 

When two trellis paths, X1 and X7, are orthogonal to each other, (X1 , X7) = 0, (5-6) is 

upper-bounded: 

? M - 1 

*2min*]zl IIX¥ = 2Z = 2 1 + | Y | , (5-7) 
i = 0 L J 

where the first equality follows from fact the that every trellis X1 contains I weights, K is 

equal to (log2L - 1), and L«J takes the integer part of its argument. We can see that for K = 

1 (L = 4), the upper bound (5-7) reduces to (5-2). 

In comparison, the simplex bound is [74]: 

4 <min^lll(1+h\). (5-8) 
mln i>l 2Kt_j l , |_KJJ > 
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Fig. 5-4 shows the calculated minimum distance of convolutional coded PPM with its 

upper bounds (5-2) and (5-7), and simplex bound (5-8). We can see that our upper bound 

is tighter than the simplex bound. To calculate the dmin of rate 1 / 3 convolutional coded 8-

PPM and rate 1/4 convolutional coded 16-PPM, we use the generator polynomial listed 

in Table 11.1 of [75]. For rate 1/3 convolutional coded 8-PPM and rate 1/4 convolutional 

coded 16-PPM, the calculated dmin achieves the upper bound up to v = 10 and v = 12 

respectively. For rate 2 / 3 convolutional coded 8-PPM and rate 3 / 4 convolutional coded 

16-PPM, we use the search results listed in [14]. In these cases, the search results ofdmin 

achieve the upper bound for every v we consider. As in (2-9), the constant a is chosen so 

that the total average power is P; unlike (2-9), however, there are L chips per symbol, not 

log2L, and the symbol period is T = (log2L - l)/i?&, not 1/ify,, so that 

a = PAjL(\og2L- l)/Rb. Therefore, dooK^^min giy e s m e power requirement as: 

PCC,(\og2L-\)/(\og2L)/POOK- / 2 ~ / , ,y (5"9) 
4LKd2

min J L K ^ 1 + I Y | J 

the last approximation being valid when dmin ~ 2[ 1 + Y. J, where K = (log2L - 1). 

From (5-4) and (5-9), we see that, with respect to bandwidth efficiency and power effi

ciency, the rate (log2L - l)/log2L encoders are better than the rate l/log2L encoders. 

We also compare the performance of convolutional coded 16-PPM with the cutoff rate 

bound. The cutoff rate bound for a coded system is defined as the SNR at which the cutoff 

rate, RQ, is equal to the same number of information bits per symbol period [68]. We cal-
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culate the RQ bound using the equation (4-5). For convolutional coded 16-PPM, 3 informa

tion bits are transmitted per symbol period. The result is shown in Fig. 5-5. For 
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convolutional coded 16-PPM with v = 6, the SNR needed to achieve 10"6 BER is 0.6 dB 

more than that of the cutoff rate bound. However, uncoded 8-PPM, which has the same 

number of information bits per symbol period as coded 16-PPM, requires 3.7 dB more 

than the cutoff rate bound. 

5.3 TRELLIS CODED OPPM 

If we use a convolutional code to reduce the probability of error, there is an inevitable 

increase in bandwidth, as derived in the section 5.2. It is well known that trellis-coded 
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modulation (TCM) is a technique that improves performance without increasing the band

width. Because PPM has the same Hamming distance between any two codewords, no 

gains can be made through set partitioning. OPPM is an attractive alternative since it has a 

low duty cycle and equal energy signals [49][71]. But doubling the number of (L / 2)-

OPPM symbols without increasing bandwidth, as Ungerboeck suggested [64], requires 

that the overall duty cycle a = w/n remain fixed, and so the number of slots in each baud 

interval must increase from nu = (L/2 - 1)/(1 - a) to nc = (L - 1)/(1 - a), which, in 

turn, decreases the minimum distance. Ideally, the coding gain achieved through set parti

tioning will be large enough to compensate for the decreased minimum distance. Trellis

coded L-OPPM has a bit rate of Rb = log2(L/2) / T and a bandwidth expansion factor of: 

BTc, L-oppM/Rb = i^TTTy ( 5 " 1 0 ) 

which is the same as L/2-OPPM. However, now the required power is: 

PTC, L-OPPM/POOK= l~~2 • (5-11) 
idz

min,c ( l - a ) l o g 2 ( L / 2 ) 

In contrast, the requirement for uncoded (L / 2)-OPPM is: 

P0PPM/P00K= H 4 ( L / 2 " ' ) C t 2 . (5-12) 
CL min, u • ( l -oc) log 2(L/2) 

where dmin^ c and dmin^ u = Jl are the minimum Euclidean distance for the coded and 

uncoded systems respectively. The asymptotic coding gain is [28]: 

( W . / 9 _ 1 \ rf2~:- ^ /<*-.- . 
Asymptotic Coding Gain = 101og10 ( L/2— I) d min,c\ i n , „ ( min,c\ / c n\ 

-rrr) • —2-\" m°H^-)- (5"13) 
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where the first term represents loss due to expansion in size of constellations and the 

second term is gain due to coding. To get improved performance using TCM, the min

imum Euclidean distance must be greater than about 2. 

The signal sets for 8-OPPM (L = 8, nc = 14, wc = 7) and its set partitioning are shown 

in Fig. 5-6. If we use a 4-state TCM, the minimum Euclidean distance is Js, which is the 

distance for a parallel transition resulting from the set partitioning. From (5-13), therefore, 

the asymptotic coding gain relative to uncoded 4-OPPM (with nu = 6,wu = 3) is 1.2 dB. 

We have seen that trellis coded OPPM improves the power efficiency without band

width expansion. But, the improvement is not appreciable due to its relatively small 

number of codewords given the length of codeword. 

5.4 TRELLIS CODED MPPM 

In the previous sections, we combined coding with PPM or OPPM. Convolutional 

coded PPM improves the power efficiency with a large sacrifice in bandwidth efficiency. 

Trellis coded OPPM achieves better power efficiency than the uncoded OPPM without 

bandwidth expansion. But, as we indicated before, this scheme does not provide us with 

good power efficiency compared to the other coded modulation schemes. 

In this section, we will develop new trellis codes based on MPPM. Since MPPM is 

both power-efficient and bandwidth-efficient, trellis-coded MPPM improve the power-effi

ciency without significantly increasing the bandwidth. 



94 

5.4.1 Design of Trellis Coded MPPM 

In general, l o g 2 0 is not an integer, therefore MPPM can not be used straightfor

wardly at the output of convolutional encoder. The design rule is to choose n and w so that 

(w) is close to the power of 2 in order to minimize the loss of throughput. For w > 2, n 

must be too large to get good power efficiency. Therefore, we choose w = 2 as a good 

starting point. The MPPM codewords with w = 2, can be mapped into a plane. Fig. 5-7 

shows (")-MPPM codewords for n = 5, 7, 9, 13, and 17. This idea is similar to [76], where 

an optical pulse is mapped into a plane by assigning the starting time of a pulse to the x-

c0 c, c2 c3 c4 c5 c6 c7 

(C0, Ch C2, C3, C4, C5, CQ, C 7 ) 

/ \ 

( C 0 , C 2 , C 4 , CQ) (Ch C3, C5, C 7 ) 

/ \ / \ 
(c0,c4) (c2,c6) (chc5) (c3,c7) 

d2 

Lb T 

Fig. 5-6. The 8-OPPM signal set and its set partitioning [71]. 
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axis and the ending time to thejy-axis. In our case, the *-axis represents the position of first 

pulse, and the j'-axis represents the position of second pulse. For example, codeword [1 1 

0 0 0]Tis mapped into (1, 2), [ 0 0 1 0 lj^is mapped into (3, 5), and so on. Note that Ham-
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Fig. 5-7. Constellations for (2)-MPPM; the shaded circles 
represent the chosen L codewords and unshaded circles 
represent the unused codewords. The *-axis represents the 
position of first pulse and the y-axis represents the position of 
second pulse, (a) L = 8 and n = 5, (b) L = 16 and n = 7, (c) L = 
32 and n = 9, (d) L = 64 and n = 13, (e) L = 128 and n = 17. 
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ming distance between the two codewords having the same ^-component or ^-component 

is two, and Hamming distance between the two codewords having different ^-component 

and ̂ -component is four. 

The Zehavi and Wolf condition requires that when the signal set is partitioned into two 

subsets, S^ ' and S^\ the distance weight profiles of the two subsets be identical. The dis

tance weight profiles of a subset with respect to log2L-tuple binary error vector e is 

defined as [66][67]: 

F(SF>, e, Z) = X ^ H ( / ( 6 ) ' A 6 e e > ) fori = 1, 2, (5-14) 
d 

where Nd is the number of codewords having Hamming distance d between the codeword 

fib) and codeword fib © e), and the summation is taken over all the possible d. If trellis 

code satisfies this Z.W. condition, then dmin can be calculated from the all-zero path. In 

Fig. 5-7, the shaded circles represent the L selected codewords, and the number below 

each constellation point represents the label of the codeword. Fig. 5-8 shows set parti

tioning of 8-MPPM. The 8-MPPM signal set is partitioned into two subsets, S (1) = {0, 2, 

4, 6}, and S^ = {1, 3, 5, 7}. The distance weight profile of these subsets are listed in 

Table 5-1, and they are identical. Therefore the resulting 8-MPPM satisfies the Z.W. con

dition. By calculating the distance weight profile (5-14), we can prove that the other 

MPPM signal sets, shown in Fig. 5-7 also satisfy the Z.W. condition. 

We choose (27)-MPPM as an uncoded modulation scheme upon which to design a 

trellis code. From d) = 136 MPPM codewords, we choose 128 codewords to combine 

with the rate 6/7 convolutional encoder, as shown in Fig. 5-7-e. For trellis coded 128-
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MPPM, a random search is executed over systematic feedback convolutional encoder as 

shown in Fig. 5-9. The rate 6/7 convolutional encoder operates on 6 bits, ak = 

[ak,ak,ak,ak,ak,ak] , and produces 7 encoded bits, a labeling vector b^ = 

[bk, bk, bk, bk, bk, bk, bk] . The coded bits are mapped into one of the 128-MPPM code

words according to the mapping rule /(•). We choose a systematic feedback configuration, 

because it has a smaller number of coefficients to search than that of feedforward configu

ration, also it is free from catastrophic condition [64]. For 128-MPPM with constraint 

length v, the number of coefficients to search is 27^v ~ ̂ , making it is almost impossible to 

perform an exhaustive search for a large constraint length. 

d4 
mm 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Fig. 5-8. Set partitioning of 8-MPPM. 
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TABLE 5-1: The distance weight profile of trellis coded 8-MPPM. 

Error 
vector e 

S r i>={0,2,4,6} S ( 2 )= {1,3,5,7} 

000 4 4 

001 2Z2 + 2Z4 2Z2 + 2Z4 

010 4Z2 4Z2 

011 4Z2 4Z2 

100 4Z4 4Z4 

101 4Z2 4Z2 

110 2Z2 + 2Z4 2Z2 + 2Z4 

111 2Z2 + 2Z4 2Z2 + 2Z4 

The random search results are shown in Table 5-2. We compare this trellis coded 

MPPM with the uncoded modulation that has same bandwidth efficiency. Trellis coded L-

MPPM has a bit rate of Rb = log2(L / 2) / T, and bandwidth and power efficiencies are: 

TC, L-MPPM 

Ru 
n 

l og 2 (L /2 ) ' 
(5-15) 

TC, L-MPPM 2w 

*00K Jnd2
min,clog2<iL/2) 

(5-16) 

where dmin c is the minimum Euclidean distance of coded sequences. Define the integer 

L so that L -PPM has the same bandwidth efficiency as trellis coded L-MPPM. The 
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asymptotic coding gain over L -PPM, with the same bandwidth efficiency and minimum 

Euclidean distance dmin u = Jl, is: 

Asymptotic Coding Gain = lOlogjo 
' <nlog2(L/2) f 

w Llog2^ 
,(dB) (5-17) 

J 

where the first term represents loss due to expansion in size of constellations and the 

second term is gain due to coding. We find L = 9 for PPM since trellis coded 128-MPPM 

and 9-PPM have approximately the same bandwidth efficiency, BI Ri~ 2.8 in both cases. 

Using the constraint lengths 4, 7, and 12, we achieve an asymptotic coding gain relative to 

uncoded 9-PPM of 1.4, 2.3, and 2.9, respectively. 

Fig. 5-9. Systematic feedback encoder for trellis coded 128-
MPPM with constraint length v and parity check coefficients hm

n, 
m = 1, 2, . . . ,v-1 andra = 0, 1, ...,6. 
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TABLE 5-2: Parity check coefficients for trellis coded 128-MPPM in octal form. Coding gains are 
calculated as compared to the uncoded 9-PPM which has the same bandwidth 
efficiency as coded 128-MPPM. Random search is used to find the coefficients of 
trellis codes. To validate the search result, we compare this with the davg and the 
simplex bound. Note that the performance of trellis codes for v = 5 and 6 are no 
better than v = 4, and trellis codes for v = 8, 9, 10, and 11 are no better than V = 7. 

V Parity Check Coefficients d 2 

umin 
'req 

(dB) 

Cod

ing 

Gain 

[dB] 

aavg 

(Sim 

plex) 

V 

h° hl h2 h3 h4 h5 h6 

d 2 

umin 
'req 

(dB) 

Cod

ing 

Gain 

[dB] 

aavg 

(Sim 

plex) 

4 23 10 06 14 16 00 04 4 -7.0 1.4 4 

(4) 

5 65 14 34 22 12 20 16 4 -7.0 1.4 4 

(4) 

6 103 054 072 016 014 024 066 4 -7.0 1.4 7 

(8) 

7 357 144 014 024 040 140 102 6 -7.9 2.3 7 

(8) 

8 443 102 040 064 276 022 164 6 -7.9 2.3 7 

(8) 

9 1057 0516 0324 0546 0720 0604 0206 6 -7.9 2.3 7 

(8) 

10 3341 1406 1330 0176 1266 1746 1156 6 -7.9 2.3 7 

(8) 

11 7433 0736 1162 1316 2032 2272 3302 6 -7.9 2.3 7 

(8) 

12 10017 02102 05242 03314 01374 07550 01044 8 -8.5 2.9 11 

(12) 
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5.4.2 An Approximation for the dmin of Trellis Coded MPPM 

In this section, we derive an approximation for the minimum distance of trellis coded 

MPPM for a given constraint length. The minimum distance of a trellis code is the 

smallest among the distances of pairs of sequences arising from an error event. Each trellis 

path associated with the error event of length I involves I MPPM codewords. We define the 

trellis path vector, X = [x0
T, xx

T, ...,xi_ iT]T of dimension In where xt is the (^)-MPPM 

codeword corresponding to the i-th branch in the path. Observe that the trellis vector X is a 

valid ([J)-MPPM codeword with length N = In, and weight Q. = Iw. As we indicated in 

section 2.1.3, any valid MPPM codeword has the same set of distance with respect to the 

other codewords, and the number of codewords for (Jj)-MPPM with mutual Hamming dis

tance 2m is Nm = (")(N^Q). We can calculate the average distance for (JJ)-MPPM as: 

L - i L - i 2 

davg = L(L-l)^ £ l x i - X i • (5"18> 

^ ^V-Xf , (5-19) 

Q 

I 
m = 1 

i B 

= ZZ-11.2mNm- (5-20) 

(5-21) 
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where L = (£) is the number of extended MPPM codeword. Since not all valid (JJ)-MPPM 

-1 
codewords are included in the set of {X}, the davg in (5-18) is only an approximation for 

d2 

rnin ' 

We also can apply this approximation method to trellis-coded PPM by treating the 

trellis-coded PPM sequences of length I as extended MPPM codewords with length N = IL 

and weight Q = Z, and then apply (5-21). 

The approximation based on average distance are listed in Table 5-2. For comparison, 

we calculated the simplex bound: 

. ~ K * + 1 

,2 . mm 2 (. 
min t>\2Kt_\ v 

where K = (log2L - 1), and |_*J takes the integer part of its argument. We can see that 

approximation method is tighter than the simplex bound. 

5.5 PERFORMANCE OF CODED MODULATION SCHEMES 

We calculate power efficiency and bandwidth efficiency of coded modulation schemes 

using (5-1), (5-3), (5-4), and (5-9) for convolutional coded PPM; (5-10), (5-11) for trellis 

coded OPPM; and (5-15), (5-16) for trellis coded MPPM. We assume each coded modula-

tion has dmin = 4, 6, ..., 16. We ignore the complexity problem to achieve this, since this 

assumption may require a large constraint length for some coded modulation schemes. 

The result along with MPPM bound is shown in Fig. 5-10. The most power-efficient 

scheme is convolutional coded 16-PPM with bandwidth efficiency of B I R^ - 5.3. The 

most bandwidth-efficient scheme is trellis coded 8-OPPM, but it has poor power effi-

(5-22) 
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ciency. The next power-efficient scheme with moderate bandwidth efficiency of B I Rb = 

2.83 is trellis coded 128-MPPM. Note that this scheme requires approximately a half 

(2.83/5.3 = 0.53) of the bandwidth required by the convolutional coded 16-PPM. There-
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Fig. 5-10. Power efficiency and bandwidth efficiency of coded 
modulation. 
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fore, over a multipath channel trellis coded 128-MPPM is very promising, because it is 

less susceptible to ISI than convolutional coded 16-PPM. 

5.6 SUMMARY AND CONCLUSION 

We derived upper bounds for the minimum distance of convolutional coded PPM and 

an approximation for the minimum distance of trellis coded MPPM, and compared our 

results with the well-known simplex bound. Numerical results showed that our upper 

bounds are tighter than the simplex bound. We designed new trellis codes based on 

MPPM, and performed a code search for the parity check polynomials of trellis-coded 

MPPM which give a large minimum distance. We calculated the power efficiency and 

bandwidth efficiency for coded modulation schemes. Of all the schemes considered, trellis 

coded 128-MPPM, both power-efficient and bandwidth-efficient, is most suitable for our 

applications. 
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CHAPTER 6 

C O D E D 
M O D U L A T I O N O N A 
M U L T I P A T H 
C H A N N E L 

In this chapter, we will evaluate the performance of the coded modulation schemes 

developed in the previous chapter on a multipath channel using several equalization strate

gies developed in chapter 3. 

6.1 INTRODUCTION 

Decoding of TCM over an ISI channel via the MLSD is an optimal way to jointly pro

cess ISI and coding. TCM in the presence of ISI is modeled by a single finite state 
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machine consisting of a TCM encoder, the channel, and a WMF [77][78][79]. The com

plexity of this super-trellis, which results from the combination of TCM and ISI, is often 

very large. Reduced states sequence detection (RSSD) considered for uncoded sequence 

detection can also be used for coded sequences. The complexity of the RSSD trellis ranges 

between that of the encoder trellis and that of the super-state trellis. When we apply the 

Viterbi algorithm to the original trellis encoder, but perform decision-feedback equaliza

tion on each survivor path in the trellis based on the history of that path [80], we imple

ment parallel decision feedback decoding (PDFD). If N states exist in the trellis, then N 

distinct postcursor equalization filters are used. Each filter uses the decisions from one of 

the N survivor paths to construct the next decoder input. 

Recently, Lee et al. [14] suggested trellis coded PPM which applied the Ungerboeck 

set partioning rule to the PPM signal set accounting for the effects of multipath dispersion. 

Conventional LE or DFE can be used with the Viterbi decoder at the receiver to decode 

the trellis encoded sequences in the presence of ISI. Thapar [81] applied linear equaliza

tion (LE) for voiceband telephone modem, and Wong and Mclane [82] used fractional 

spaced LE for ISI channels that contain an in-band spectral null, such as high frequency 

(HF) radio systems. However, on channels with severe attenuation, the performance of LE 

is poor because LE enhances and correlates the noise. By using DFE, noise enhancement 

can be substantially reduced. Also, ideal ZF-DFE results in an ideal AWGN channel. Price 

[42] first observed that as long as ideal zero-forcing decision feedback equalization (ZF-

DFE) is used at the receiver, the SNR gap to capacity at high signal-to-noise ratio is the 

same for ISI channels as it is for ideal channels. Thus, channel coding, such as trellis 

coded modulation (TCM), has potentially the same benefit on channels with ISI as on 
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ideal channels. The problem using channel coding with DFE is that DFE requires imme

diate reliable decisions and cannot tolerate decoding delay. Precoding is a technique sim

ilar to DFE in that it eliminates error propagation by moving cancellation of the postcursor 

ISI from the receiver to the transmitter [45][46]. Ideally, using precoding, the coding gain 

of the trellis code is obtained in combination with the equalization performance of the 

ideal ZF-DFE [42]. Trellis precoding was invented by Eyuboglu and Forney [83] as a gen

eralization of TH precoding. Recently, Laroia, Tretter, and Farvadin (LTF) [47][48] intro

duced a new precoding scheme which is comparable in performance to trellis precoding 

[52]. But, as we indicated in section 3.6, a precoding scheme based on MPPM cannot 

achieve the ideal performance of ZF-DFE. Instead, the result of precoding approximately 

truncates the channel memory length to one. We called this scheme partial-response pre

coding. We can use a simple equalizer at the receiver to remove this ISI and decode the 

trellis-coded signal. 

In this chapter, we consider five equalization strategies: 

• LE with VA 

• DFE with VA 

• superstate MLSD 

• PDFD 

• partial-response precoding with PDFD. 

In section 6.2, we develop a channel model for coded modulation on an ISI channel. In 

section 6.3, we employ MLSD on the combined trellis formed by the convolutional 

encoder and channel ISI to perform equalization and decoding simultaneously. In 

section 6.4, we consider PDFD to reduce the complexity of superstate MLSD. In 
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section 6.5, we combine partial-response precoding with PDFD. In section 6.6, we com

pare the performance of the various equalization schemes. 

6.2 SYSTEM MODEL 

Consider the system model shown in Fig. 6-1. Information bits with rate Rb ( b / s ) 

enter the trellis encoder, which consists of a linear convolutional encoder and a signal 

mapper. The (log2L - 1) / log2L convolutional encoder transforms the input bits into coded 

bits and the mapper converts each block of log2£ bits into one of L codewords c0 ... c^ _ {. 

The output of the encoder is a sequence of codewords {x^} with rate l/T = Rb/\og2L. 

This sequence is serialized to produce the binary chip sequence {XJ} with rate n/T, where 

xk - \-xkw xkn + i» • • •»xkn + n - \\T- The binary chip sequence drives a transmitter filter with 

a rectangular pulse shape p(t) of duration T/n and unity height. To satisfy the power con

straint of (1-2), the filter output is multiplied by (nP/w) before the signal is sent across the 

channel. 

As shown in Fig. 6-1, the receiver uses a unit-energy whitened matched filter f(t) and 

samples the output at the chip rate n/T producingyy The receiver groups the samples yj 

into blocks of length n, producing a sequence of observation vectors {3^}, where 

yk = lykw ykn + i>---*ykn + n-i]T- A s shown in Fig. 6-1, there are several options to pro

cess yk. The receiver passes each observation vector through a LE or DFE to eliminate the 

ISI. Then, we perform MLSD on the trellis formed by the convolutional encoder. Or we 

perform MLSD on the combined trellis formed by the convolutional encoder and channel 

ISI to perform equalization and decoding simultaneously. Yet another option is to perform 

PDFD on the trellis formed by the convolutional encoder in order to perform equalization 
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and decoding simultaneously. In the final option, we combine the precoding scheme with 

PDFD to reduce the complexity further. 

6.3 SUPERSTATE MLSD 

The trellis encoded signal is a function of the convolutional encoder state oĉ  and the 

information bits ak: 

xk = fak, ocA), (6-1) 

Xk X: 

nP/w 

x{t) I 
n- h, TCM 

Encoder 
Xk 

P / S Pit) 

nP/w 
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" i W 
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(\og2L-l)/T 

rate 
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Fig. 6-1. Block diagram of coded modulation on an ISI channel. 
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and the state transition equation is as follows: 

Uk + l=8(ak> a * ) - (6"2) 

Trellis encoded signals in the presence of ISI are modeled as a single finite-state 

machine. For a rate of (log2L - 1) / log2Z/ trellis coded MPPM, there are (L / 2)^ ISI states 

associate with each encoder state. The states for the combined finite-state machine are: 

fik = (ak-ii>ak-\vak-\i+h . . . ,OA_I) . (6-3) 

If the convolutional encoder has 2m states, the combined trellis has L^2m ~ ^ states with LI 

2 transitions emerging from each state. 

We perform MLSD on the combined trellis formed by the convolutional encoder and 

channel ISI. In the presence of ISI and AWGN, the MLSD determines the trellis coded 

vector sequence, {£#}, that minimizes the branch metric: 

lljp»- £ H i * A - i - H 0 * A l l 2 . ( 6 .4 ) 
i = 1 

The complexity requirement of this optimum decoder grows exponentially with the 

channel memory \i. In practice, this makes it difficult to implement for large \i. The perfor

mance of superstate MLSD is approximated at high SNR: 

Pr[error] « Q 
(d„, \ 

mm (6-5) 
v2^ roy 

where dmin is the minimum Euclidean distance over the set of all possible error events in 

the super-trellis. 
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6.4 PARALLEL DECISION FEEDBACK DETECTION (PDFD) 

Complexity of the ML sequence detector can be reduced by truncating the vector 

channel memory from \i to 5, where 0 < 8 < \i. A Viterbi decoder operates on a reduced 

number of combined encoder and ISI states. The number of states of this reduced state 

sequence detector (RSSD) is given by L 2m . To compensate for the performance degra

dation, DFE is used in the branch metric computation. ISI terms not considered by the 

truncated states are estimated from the past codewords and subtracted. When 8 = JLI, RSSD 

becomes optimum superstate MLSD. When 8 = 0, RSSD reduces to parallel decision feed

back detection (PDFD). PDFD applies the Viterbi algorithm to the original trellis encoder 

(p£ = otyk), but performs decision-feedback equalization on each path survivor in the trellis 

based on the history of that path. Instead of using only one sequence of decisions in the 

feedback path of the DFE, equalization is accomplished by a unique sequence of decisions 

for each path of the trellis. The PDFD searches the trellis coded vector sequence {x^\ that 

minimizes the branch metric: 

n 
\\yk- X H ^ _ ; ( a £ ) - H 0 * £ l l 2 , (6_6) 

i = 1 

where minimization is taken over all trellis branches originating from encoder state, {a^}, 

to the next state, {oi^+i}- Since PDFD uses a reduced trellis, it is suboptimal, and it has a 

smaller minimum distance than the superstate MLSD. 

6.5 PRECODING 

Price results discussed in chapter 3 can be extended to coded modulation as follows. 

The SNR gap to channel capacity using the coded modulation is the same for ISI channels 
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at high SNR as it is for ideal channels, as long as the receiver uses ideal DFE followed by 

MLSD. However, to decode a trellis coded signal, DFE cannot be combined with MLSD 

in a straightforward way, because a DFE requires delay-free feedback decisions, which are 

in fact available only after long decoding delay. As shown in Fig. 6-2, we combine DFE 

and VA using tentative decisions: the DFE generates tentative decisions x^ and then sub

tracts them from the incoming signal. The input to the MLSD is: 

n n 

r* = Ho*jfc+ 2 H / * * - J " XHj*£-j + n*- (6_7) 
j * \ j*i 

The tentative decisions can be unreliable, and it is expected that there will be error propa

gation which degrades performance. 

When we assume correct decisions, x^ = xk> the trellis decoder chooses the coded 

vector sequence {x^} that minimizes the branch metric: 

II r * - H o * * II2. (6-8) 

When the precoding scheme described in section 3.6 is combined with the trellis 

coded signal, this configuration is a general description of LTF precoding [47]. In LTF 

precoding with QAM signals, bk represents the signal point in the constellation of X = Z2 

r\ Jk * j r\ n . Trellis 
Decoder ) * j y 

V V 

w 
Trellis 
Decoder —•—• * j y 

V 

DEC 
* j y 

V 

H ( z ) - I M H ( z ) - I 
Xu 

Trellis 
Encoder 

• Trellis 
Encoder 

*k U(z) Sk>( • Trellis 
Encoder w 

U(z) 
*\ 

Trellis 
Encoder 

Fig. 6-2. Block diagram of DFE with tentative decision and MLSD. 
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+ (1 / 2, 1/2) and q^ represents the signal point in the constellation of XC-TL . If a b^ is 

valid trellis coded sequence, bk + q^ is also a valid trellis coded sequence. 

But in our precoding scheme, bk + qk at the output of the ISI channel is not a valid 

MPPM codeword. We can decide b^ from the extended codeword {b^ + q^} using the 

inverse precoder. Or we treat bk + qk as the output of the 1 -memory ISI channel (partial-

response precoding). We consider here the latter method. At the output of channel, 

removing the constant (3-69); 

yk=-B<f>k + Tlxbk_x+nk. (6-9) 

We can use an equalization scheme to remove the truncated ISI, and to decode the 

trellis coded signal with reduced complexity. 

6.6 NUMERICAL RESULTS 

We show the performance of trellis coded 128-MPPM and 16-PPM on a multipath 

channel using superstate MLSD in Fig. 6-3. We use the coefficients listed in [14] for trellis 

coded 16-PPM. We use the same truncated vector channel considered for the uncoded 

case. As in the uncoded case, we calculated the optical power required to achieve a 10"6 

bit-error rate over this ISI channel. Trellis coded 16-PPM shows better performance up to 

a bit-rate-to-bandwidth ratio of 0.15. But above that, trellis coded 128-MPPM outperforms 

trellis coded 16-PPM. At a bit-rate-to-bandwidth ratio of 1, the normalized powers for 

trellis coded 16-PPM with constraint lengths v = 4 and 7 are 3.4 dB and 2.9 dB, respec

tively. But the required normalized powers for trellis coded 128-MPPM, with v = 4 and 7, 

are 2 dB and 1.5 dB, respectively. Therefore, trellis coded 128-MPPM requires 1.4 dB less 
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power than the trellis coded 16-PPM when both schemes use the same constraint length at 

Rb/W=l. 

Fig. 6-4 shows the performance of convolutional coded 8-PPM with constraint length 

v = 4 at Rb IW = 1. The parity check coefficients for convolutional coded 8-PPM are h° = 

23, hl = 16, and h2 = 12. When we use superstate MLSD, the number of states in the 

super-trellis is 1024. The best performance is achieved by PDFD; it is about 1 dB from an 

optimum superstate ML sequence detector when bit error rate is equal to 10~3. With pre-

coding at the transmitter, we use PDFD at the receiver to remove the residual ISI, and to 

decode the coded signal. Its performance is almost the same as the PDFD and outperforms 
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the DFE with VA and LE with VA. We also show the performance of trellis coded 128-

PPM with constraint length v = 7 at Rh IW = 1 in Fig. 6-5. We can see that precoding wth 

PDFD is also effective to remove the ISI, and to decode the coded signal for trellis coded 

MPPM. 

Fig. 6-6 shows the performance of equalization schemes in terms of receiver com

plexity and performance. The #-axis represents the number of floating-point operations 

(flops) per bit and the ^-axis represents the required SNR to achieve 10~3 bit-error-rate. 

Superstate MLSD achieves the best performance with largest complexity. PDFD and par

tial-response (PR) precoding with PDFD achieve the almost same performance, but par-

LE with VA 

Fig. 6-4. Performance of equalizer for the convolutional coded 8-

P P M a t i V W = 1 . 
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tial-response precoding with PDFD requires less complexity than that of PDFD. LE with 

VA requires the least complexity but its performance is poor. Especially in our applica

tions, precoding at the transmitter and PDFD at the receiver is a good choice to perform 

equalization and decoding simultaneously. 

6.7 SUMMARY AND CONCLUSIONS 

Superstate MLSD is an optimum way to jointly perform equalization and decoding for 

coded signals in the presence of ISI. But its complexity is large even for short ISI chan

nels. First we compared performance of trellis-coded 128-MPPM and trellis coded 16-
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Fig. 6-5. Performance of equalizer for the trellis coded 128-
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PPM using the superstate MLSD. The trellis coded 128-MPPM outperforms trellis coded 

16-PPM when bit-rate-to-bandwidth ratio is large. We also compared the performance of 

various equalization schemes for the coded signal. Precoding at the transmitter resulted in 

a truncated ISI channel of memory one, which reduced the complexity of receiver signifi

cantly. Numerical result showed that partial-response precoding with PDFD is a good 

choice for our applications in terms of both error probability and complexity. 
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CHAPTER 7 

C O N C L U S I O N S A N D 
F U T U R E W O R K 

7.1 CONCLUSIONS 

This thesis has concentrated on the design of coded modulation and equalization for 

high-speed wireless infrared communications with severe ISI. We proposed new trellis 

codes based on MPPM and new equalization schemes. 

Due to its unique channel characteristics, we had to reevaluate the relative perfor

mance of various modulation schemes. In chapter 2, we made comparisons of power effi

ciency and bandwidth efficiency for each candidate modulation scheme. It turned out that 

MPPM and PPM are power-efficient modulation, and OOK and OPPM are bandwidth-

efficient. Calculating the power spectrum density confirmed our first-null approximation 
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for the bandwidth calculation. The MPPM bound provided the performance limit for 

bandwidth and power efficiency of uncoded MPPM and its variants. It was shown that cer

tain MPPM can achieve the same bandwidth as OOK with 1.5 dB less power, or can 

achieve the arbitrarily low power requirement with infinite bandwidth. 

The performance comparisons of MPPM and its variants on ISI channels using several 

equalization schemes were addressed in chapter 3. We proposed a new precoding scheme 

compatible with the infrared channel. When we used DFE at the receiver to remove the 

residual ISI, the proposed precoding scheme showed good performances in terms of both 

complexity and error probability. 

We calculated the achievable information rate and cutoff rate of MPPM and its vari

ants as theoretical performance limits in chapter 4. 

When we combine coding with modulation, we can improve the overall power effi

ciency. We combined existing convolutional codes with PPM and developed a new trellis 

coded MPPM in chapter 5. We performed a computer search for the parity check polyno

mials of trellis coded MPPM that gives a large minimum distance. We calculated an 

approximation for the minimum distance and compared our results with the well-known 

simplex bound. We calculated the power efficiency and bandwidth efficiency for coded 

modulation schemes. Since poor bandwidth-efficient schemes are sensitive to multipath 

distortion, we chose both power-efficient and bandwidth-efficient coded schemes such as 

trellis coded 128-MPPM. We compared the performance of trellis coded 128-MPPM and 

trellis coded 16-PPM using the superstate MLSD. Trellis coded 128-MPPM outperforms 

trellis coded 16-PPM on a severe ISI channel. We showed that trellis coded 128-MPPM is 
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the most power-efficient scheme developed so far in indoor infrared channel, especially in 

the face of severe multipath dispersion. 

Although superstate MLSD is an optimum way to jointly perform equalization and 

decoding for coded signals in the presence of ISI, its complexity is large even for short ISI 

channels. We proposed suboptimal methods of equalization and decoding to reduce the 

complexity in chapter 6. Conventional LE and DFE did not work well with the coded 

signal. We proposed to use partial-response precoding at the transmitter and to use PDFD 

at the receiver to equalize and to decode the coded signals, thus reducing the complexity 

of the receiver significantly. Numerical result showed that the proposed partial-response 

precoding scheme combined with PDFD is an effective solution for our application. 

7.2 FUTURE WORK 

7.2.1 Channel Capacity of Wireless Infrared Channel 

An interesting problem is the calculation of the channel capacity of (1-1) under the 

constraint of (1-2). The solution of this problem may lead to useful insight into the signal 

set design problem. Consider an ideal AWGN channel with average amplitude input con

straint: 

yk=xk+nh (7-1) 

under the constraints x^ > 0 and Eix^} < P, and n^ is white Gaussian noise with variance 

N0, and is assumed to be independent of x^. The average mutual information between the 

channel input and output is [53]: 

I(xk; yk) = H(yk) - H(yk I xk) = H(yk) - H(nk\ (7-2) 
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where the conditional entropy Hiy^ I x^) is equal to the noise entropy and independent of 

input distribution. Thus, the problem of finding the capacity for an additive noise channel 

reduces to maximize the output entropy Hiy^) subject to the input constraint: 

c = max K } = max H(y ) _ H{ y ( 7 . 3 ) 

Px(*k) Px(xk) 

Since yk=xk + nfa E{xk) -P implies E{y^} < P. The general strategy is to find^y^) 

with jT ykPY^k) dyk < P to maximize H(y&), and then try to find an input distribution 

px(xk) that yields /?yCy&). Finding a channel capacity reduces the problem of maximizing 

entropy, H(yk) = J ^ pY(yk) \og\pY(yk)] dyk, over all pY(yk) satisfying: 

pY(yk) ^ °> J l PYW dyk=\y and £ ykPY^k) dyk < p- 0~4) 

The maximum entropy principle [36] implies that the maximum entropy is infinite, and 

that there is no maximum entropy distribution. Therefore, the channel capacity under the 

average amplitude constraint is infinite. We can show that the capacity of the multipath 

channel is also infinite using the arguments similar to those in section 4.3. This result is 

not surprising since the capacity of the Poisson channel under the same constraints is also 

infinite [84]. 

There are several interesting questions arising from this result: (1) How can we 

achieve the infinite channel capacity? (2) What is the optimum signal set for this channel? 

(3) If it is impossible to achieve it, what are more practical constraints for the input? What 

is channel capacity under the modified constraints? These questions still remain open. 
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7.2.2 Concatenated Codes 

In section 5.2, we combined the convolutional code and PPM as shown Fig. 7-1-a. 

Information bits with bit rate R^ enter the (log2L - 1) / log2L convolutional encoder. The 

PPM encoder maps each block of log2L bits into one L-PPM codeword. The advantage of 

this type of scheme is the use of low duty-cycle modulation, such as PPM, at the output of 

the transmitter. But it has a poor bandwidth efficiency: 

S / P log2L LPPM 

(a) 

H S / P L-1 PPM 
L - l C.C. 

(b) 

(c) 

Fig. 7-1. Serial concatenated codes: (a) convolutional coded PPM, (b) 
PPM with convolutional code, (c) a systematic feedforward 
convolutional encoder for configuration (b). 
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Pi = 
Bandwidth 

Tu log 2 L-l 
(7-5) 

One possible modification of this scheme is exchange the order of convolutional 

encoder and PPM mapper as shown in Fig. 7-1-b. Information bits with rate R^ enter the 

(L - 1) PPM encoder, which maps each block of log2(Z/ - 1) bits into one of L - 1 PPM 

codeword. The (L - 1) / L convolutional encoder transforms the L - 1 input bits into L 

coded bits. The bandwidth efficiency of this configuration is: 

P2 = Bandwidth 
Rl log2(L-l) 

(7-6) 

We can see that this configuration is more bandwidth efficient since the ratio of (7-5) to (7-

6) is: 

(32 log2L-l 

p! log2(L-l) 
<1 (7-7) 

Table 7-1 lists the ratio fi^ I (32. 

TABLE 7-1: The bandwidth-efficiency ratio between two 
serial concatenated schemes. 

L Pi/fc 
4 0.63 

8 0.71 

16 0.77 

32 0.81 
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To maintain the low duty-cycle property of PPM, we can use a systematic feedforward 

convolutional encoder as shown in Fig. 7-1-c. The weight of the output of the convolu-

tional encoder is only one or two depending on the value of x^0. 

However, to handle a large number of alphabets, the (L - 1) / L convolutional encoder 

should be high-rate. For example, the rates of convolutional encoder are 4/5, 8/9, and 16/ 

17 for 4, 8, 16-PPM, respectively, and the numbers of outgoing branches from each state 

are 16, 256, 65536, respectively. Therefore, the use of high-rate convolutional codes with 

Viterbi decoding becomes problematic. To avoid this complexity problem, we can use a 

punctured convolutional code [85]. 

7.2.3 Turbo Codes 

In 1993, Berrou et al. [86] reported a new class of code called turbo codes, whose per

formance in terms of BER was a few tenths of a dB from the Shannon limit. Since then, 

many researchers have focused on the design and development of turbo codes. A turbo 

encoder is based on a parallel concatenation of two recursive systematic convolutional 

code and an interleaver. While TCM is a bandwidth-efficient scheme, turbo coding is a 

power-efficient scheme. Surely, turbo codes are good candidates for wireless infrared 

channel, where power efficiency is the most important parameter. However, the perfor

mance of turbo codes over a multipath channel is unknown. 

7.2.4 Synchronization 

In wireless infrared communications, highly peaked and narrow optical pulses are 

used to achieve high power efficiency, but accurate timing synchronization is also required 

for ideal detection. In this thesis, we have assumed perfect symbol synchronization. But 
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there exists a timing offset in any real system, and this offset influences the performance of 

the receiver [87]. Consider first the OOK system where a timing error A (0 < A < 772) 

exists, such that sampling occur at T + A. In Fig. 7-2, we show the four possible cases for 

current symbol during interval [0, T) and the next symbol during [T, 2T). When a received 

bits arrive, the matched filter convolves with only portions of the current pulse and also 

with some portions of the next pulse, and sampling occurs at kT + A. Following the anal

ysis of [87], we can calculate the bit error rate for OOK considering all four cases in 

Fig. 7-2: 

Pr[bit error] = \Q{-^== 
2 ^WoRi 2^ .V^Pi 

_2A> 
TJ (7-8) 

w rpppivpH bite w rpppivpH bite received bits 

receiver clock 

) I T i 2T o ! T \ IT 
received bits 

receiver clock 
A T+A A T+A • 

received bits 

receiver clock 

(a) (b) 

A A 4 4 

fc- received bits 
) ; T \ 

T+A 

2T^ '"" "~ ( 

• receiver clock 

) | T | 2T 

receiver clock 
A 

T \ 

T+A 

2T^ '"" "~ ( 

• receiver clock 
A T+A w 

(c) (d) 

Fig. 7-2. Effects of timing error for OOK when (a) current bit = 0 and 
next bit = 0, (b) current bit = 0 and next bit = 1, (c) current bit = 1 and 
next bit = 0, (d) current bit = 1 and next bit = 1. 
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When A —>0, the above expression reduces to (2-4). When A —>T I 2, the above expres

sion approaches to 1 / 2, and the system does not work at all. 

Similarly, we can calculate the probability of symbol error for PPM when there exists 

a timing error A, using the result of [87] and section 3.3: 

*™<i'&-$r<>-«{,&-ii- "•" 
where Tc = T I L is the chip interval. We can derive a similar expression for the symbol 

error probabilities of MPPM. However, the loss of orthogonality in MPPM may make this 

calculation more difficult than PPM. 

Georghiades and his students in Texas A & M university [88][89] have studied the 

frame and symbol synchronization for MPPM and its variants on a Poisson channel. Their 

results should be very helpful in a similar study for our channel. 

7.2.5 System Implementation 

As we indicated in section 1.1, most real systems have used OOK or PPM. But we 

showed that theoretically, MPPM is a very good choice for both uncoded and coded mod

ulation schemes on a severe multipath channel. Both for academic and practical purposes, 

complete system design and implementation of high-speed wireless infrared communica

tion using MPPM is very promising. 



127 

REFERENCES 

[1] A. R. Tharek, "Indoor Communication and Other Applications at Millimeter-
wave Band," IEEE Tencon' 90, pp. 241-245, 1990. 

[2] M. J. McCullagh and D. R. Wisely, "155 Mb/s Optical Wireless Link Using a 
Bootstrapped Silicon APD Receiver," Electronic Letter, vol. 30, no. 5, pp. 430-
432, 1994. 

[3] Infrared Data Association (http://www.irda.org). 

[4] J. M. Kahn and J. R. Barry, "Wireless Infrared Communications," Proceedings of 
the IEEE, vol. 85, no. 2, pp. 265-298, February 1997. 

[5] Spectrix Corporation (http://www.spectrixcorp.com). 

[6] G.W. Marsh and J. M. Kahn, "50-Mb/s Diffuse Infrared Free-Space Link Using 
On-Off Keying with Decision Feedback Equalization," IEEE International Sym
posium on Personal, Indoor and Mobile Radio Communications, pp. 1086-1089, 
1994. 

[7] F. R. Gfeller and U. Bapst, "Wireless In-House Data Communications via Dif
fuse Infrared Radiation," Proceeding of IEEE, vol. 67, no. 11, pp. 1474-1486, 
November 1979. 

[8] M. D. Kotzin, "Short-Range Communications Using Diffusely Scattered Infra
red Radiation," Ph.D. Dissertation, Northwestern University, Evanston, IL, June 
1981. 

[9] J. R. Barry, Wireless Infrared Communications, Kluwer Academic Publishers, 
1994. 

[10] J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, "Sim
ulation of Multipath Impulse Response for Wireless Optical Channels," IEEE 

http://www.irda.org
http://www.spectrixcorp.com


128 

Journal of Selected Areas in Communication, vol. 11, no. 3, pp. 367-379, April 
1993. 

[11] J. M. Kahn, J. R. Barry, M. D. Audeh, J. B. Carruthers, W. Krause, and G. W. 
Marsh, "Non-Directed Infrared Links for High-Capacity Wireless LANs," IEEE 
Personal Communications Magazine, vol. 1, no. 2, pp. 12-25, Second Quarter 
1994. 

[12] J. M. Kahn, W. J. Krause, and J. B. Carruthers, "Experimental Characterization 
of Non-Directed Indoor Infrared Links," IEEE Transactions on Communica
tions, vol.43, no. 2-4, pp. 1613-1623, February-April 1995. 

[13] J. B. Carruthers and J. M. Kahn, "Modeling of Non-Directed Wireless Infrared 
Channels," IEEE International Conference on Communications, Dallas, Texas, 
pp. 1227-1231, June 1996. 

[14] D. C. Lee, M. D. Audeh, and J. M. Kahn, "Trellis-coded Pulse-Position Modula
tion for Indoor Wireless Infrared Communications," IEEE International Sympo
sium on Personal, Indoor and Mobile Radio Communications, pp. 349-353, 
Taipei, Taiwan, October 1996. 

[15] M. D. Audeh, J. M. Kahn and J. R. Barry, "Performance of Pulse-Position Mod
ulation on Measured Non-Directed Indoor Infrared Channels," IEEE Transaction 
on Communications, vol. 44, pp. 654-659, June 1996. 

[16] M. D. Audeh, J.M. Kahn and J.R. Barry, "Decision-Feedback Equalization of 
Pulse-Position Modulation on Measured Non-Directed Indoor Infrared Chan
nels", submitted, to IEEE Transaction on Communications, June 1996. 

[17] M. D. Audeh, "Power-Efficient Modulation for High-Speed Non-Directed Infra
red Communication," Ph.D. Dissertation, Univ. of California, Berkeley, 1995. 

[18] H. Hashemi, G. Yung, M. Kavehrad, R. Behbahani and P. A. Galko, "Indoor 
Propagation Measurements at Infrared Frequencies for Wireless Local Area Net
works Applications," IEEE Transaction on Vehicular Technology, vol. 43, pp. 
562-576, August 1994. 

[19] R. T. Valadas, "Interference Modeling for The simulation of IEEE 802.11 Infra
red Local Area Networks," IEEE International Symposium on Personal, Indoor 
and Mobile Radio Communications, pp. 257-261, Taipei, October 1996. 

[20] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-
Hill, 1984. 



129 

[21] J. R. Barry, "Sequence Detection and Equalization for Pulse-Position Modula
tion," IEEE International Conference on Communications, New Orleans, LA, 
pp. 1561-1565, May 1994. 

[22] J. G. Proakis, Digital Communications, Third Edition, McGraw-Hill, 1995. 

[23] R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Principles, 
Plenum Press, 1992. 

[24] J. R. Pierce, "Optical Channel: Practical limits with Photon Counting," IEEE 
Transactions on Communications, vol. 26, no. 12, pp. 1819-1821, December 
1978. 

[25] H. Sugiyama and K. Nosu, "MPPM: A method for improving the Band-Utiliza
tion Efficiency in Optical PPM," Journal of Lightwave Technology, vol 7, no. 3 
pp. 465-472, March 1989. 

[26] G. E. Atkin, K. S. Fung, "Coded Multipulse Modulation in Optical Communica
tion System," IEEE Transactions on Communications, vol. 42, no. 2, pp. 574-
582, February 1994. 

[27] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, "A New Table of 
Constant Weight Codes," IEEE Transactions on Information Theory, vol. 36, no. 
6, pp. 1334-1380, November 1990. 

[28] H. Park and J. R. Barry, "Modulation Analysis for Wireless Infrared Communi
cation," IEEE International Conference on Communications, Seattle, WA, pp. 
1182-1186, June 1995. 

[29] D. Slepian, "Permutation Modulation," Proceedings of IEEE, vol. 53, pp. 228-
236, March 1965. 

[30] H. Park and J. R. Barry, "The Performance of Multiple Pulse-Position Modula
tion on Multipath Channels," IEE Proceedings, Optoelectronics, vol. 143, no. 6, 
pp. 360-364, December 1996. 

[31] D. Slepian, "Group Codes for the Gaussian Channel," Bell Syst. Tech. J., vol. 47, 
pp. 575-602, April 1968. 

[32] I. Bar-David and G. Kaplan, "Information Rates of Photon-limited Overlapping 
Pulse Position Modulation Channel," IEEE Transactions on Information Theory, 
vol. 30, no. 3, pp. 455-463, May 1984. 



130 

[33] F. Amoroso, "The Bandwidth of Digital Data Signals," IEEE Communications 
Magazine, vol. 18, pp. 13-24, November 1980. 

[34] S. G. Wilson, Digital Modulation and Coding, Prentice-Hall, Inc., 1996. 

[35] W. A. Gardner, Statistical Spectral Analysis: A Non-probabilistic Theory, Pren
tice-Hall, 1987. 

[36] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & 
Sons, 1991. 

[37] G. D. Forney, Jr., "Maximum-likelihood Sequence Estimation of Digital 
Sequences in the Presence of Intersymbol Interference," IEEE Transactions on 
Information Theory, vol. 18, no. 3, pp. 363-377, May 1972. 

[38] G. D. Forney, Jr., "The Viterbi Algorithm," Proceedings of IEEE, vol. 61, no. 3, 
pp. 268-278, March 1973. 

[39] M. V. Eyuboglu and S. U. H. Qureshi, "Reduced-State Sequence Estimation with 
Set Partitioning and Decision Feedback," IEEE Transactions on Communication, 
vol. 36, no. 1, pp. 13-20, January 1988. 

[40] M. V. Eyuboglu and S. U. H. Qureshi, "Reduced-State Sequence Estimation for 
Coded Modulation on Intersymbol Interference Channels," IEEE Journal of 
Selected Areas in Communication, vol. 7, no. 6, pp. 989-995, August 1989. 

[41] A. Duel-Hallen and C Heegard, "Delayed Decision-Feedback Sequence Estima
tion," IEEE Transactions on Communication, vol. 37, no.5, pp. 428-436, May 
1989. 

[42] R. Price, "Nonlinearly Feedback Equalized PAM versus Capacity for Noisy 
Channel Filters," IEEE International Conference on Communications, pp. 22.12-
22.17, 1972. 

[43] K. Abend and B. D. Fritchman, "Statistical Detection for Communication Chan
nels with Intersymbol Interference," Proceeding of IEEE, vol. 58, no. 5, pp. 799-
785, May 1970. 

[44] D. Williamson, R. A. Kennedy, and G. W. Pulford, "Block Decision Feedback 
equalization," IEEE Transactions on Communication, vol.40, no. 2, pp. 255-264, 
February 1992. 



131 

[45] M. Tomlinson, "New Automatic Equalizer Employing Modulo Arithmetic," 
Electronic Letters, vol. 7, no. 5/6, pp. 138-139, March 1971. 

[46] H. Harashima and H. Miyakawa, "Matched Transmission Technique for Chan
nels with Intersymbol Interference," IEEE Transactions on Communication, vol. 
20, no. 4, pp. 774-780, August 1972. 

[47] R. Laroia, S. A. Tretter, and N. Farvardin, "A Simple and Effective Precoding 
Scheme for Noise Whitening on Intersymbol Interference Channels," IEEE 
Transactions on Communication, vol. 41, no. 10, pp. 1460-1462, October 1993. 

[48] R. Laroia, "Coding for Intersymbol Interference Channels - Combined Coding 
and Precoding," IEEE Transactions on Information Theory, vol. 42, no. 4, pp. 
1053-1061, July 1996. 

[49] C. N. Georghiades, "Modulation and Coding for Throughput-Efficient Optical 
Systems," IEEE Transactions on Information Theory, vol. 40, no.5, pp. 1313-
1326, September 1994. 

[50] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Pren
tice-Hall, Englewood Cliffs, NJ, 1987. 

[51] E. A. Lee, D. G. Messerschmitt, Digital Communication, Second Edition, Klu-
wer Academic Publishers, 1994. 

[52] R. F. H. Fischer and J. B. Huber, "Comparison of Precoding Schemes for Digital 
Subscriber Lines," IEEE Transactions on Communication, vol. 45, no. 3, pp. 
334-343, March 1997. 

[53] R. G. Gallager, Information Theory and Reliable Communication, Wiley, 1968. 

[54] J. G. Smith, "The Information Capacity of Amplitude and Variance-Constrained 
Scalar Gaussian Channels," Information and Control, vol. 18, pp. 203-219, 1971. 

[55] B. S. Tsybakov, "Capacity of a Discrete Time Gaussian Channel with a Filter," 
Problemy Peredachi Informatsii, vol. 6, no. 3, pp. 78-82, July-September 1970. 

[56] W. Hirt, "Capacity and Information Rates of Discrete-Time Channels with Mem
ory," Ph.D. Dissertation, Swiss Federal Institute of Technology, Zurich, 1988. 

[57] S. Shamai (Shitz), L. H. Ozarow, and A. D. Wyner, "Information Rates for a Dis
crete-Time Gaussian Channel with Intersymbol Interference and Stationary 



132 

Inputs," IEEE Transactions on Information Theory, vol. 37, no. 6, pp. 1527-
1539, November 1991. 

[58] R. E. Blahut, Principles and Practice of Information Theory, Reading, MA, Add-
ison-Wesley, 1987. 

[59] J. L. Massey, "Coding and Modulation in Digital Communication," Proc. Int. 
Ziirich Seminar on Digital Communications, Switzerland, E2 1-4, March 1974. 

[60] E. Biglieri, "The Computational Cutoff Rate of Channels Having Memory," 
IEEE Transactions on Information Theory, Vol. 27, No. 3, pp. 352-357, May 
1981. 

[61] R. A. Horn, and C. A. Johnson, Matrix Analysis, Cambridge University Press, 
1985. 

[62] A. J. Viterbi, and J. K. Omura, Principles of Digital Communication and Coding, 
McGraw-Hill Book Company, New York, 1979. 

[63] H. Park and J. R. Barry, "Performance Analysis and Channel Capacity of Multi
ple Pulse-Position Modulation on Multipath Channels," IEEE International Sym
posium on Personal, Indoor and Mobile Radio Communications, pp. 247-251, 
Taipei, October 1996. 

[64] G. Ungerboeck, "Channel Coding with Multilevel / Phase Signals," IEEE Trans
actions on Information Theory, vol. 28, no. 1, pp. 55-67, January 1982. 

[65] A. R. Calderbank and N. J. A. Sloane, "New Trellis Codes Based on Lattice and 
Cosets," IEEE Transactions on Information Theory, vol. 32, no. 2, pp. 177-195, 
March 1987. 

[66] E. Zehavi and J. K. Wolf, "On the Performance Evaluation of Trellis Codes," 
IEEE Transactions on Information Theory, vol. 33, no. 2, pp. 196-202, March 
1987. 

[67] S. Benedetto, M. Mondin, and G. Montorsi, "Performance Evaluation of Trellis 
Coded Modulation Schemes," Proceedings of IEEE, vol. 82, no. 6, pp. 833-855, 
June 1994. 

[68] F. Wang and D. J. Costello, "Probabilistic Construction of Large Constraint 
Length Trellis Codes for Sequential Decoding," IEEE Transactions on Commu
nication, vol. 43, no. 9, pp.2439-2447, September 1995. 



133 

[69] E. Biglieri, D. Divsalar, P. McLane, and M. Simon, Introduction to Trellis-coded 
Modulation with Applications, Mcmillan, 1991. 

[70] E. Forestieri, R. Gangopadhyay, and G. Prati, "Performance of Convolutional 
Codes in a Direct-Detection Optical PPM Channel," IEEE Transactions on Com
munications, vol. 37, no. 12, pp. 1303-13, December 1989. 

[71] C. N. Georghiades, "Some Implications of TCM for Optical Direct-Detection 
Channels," IEEE Transactions on Communications, vol. 37, no.5, pp. 481-487, 
May 1989. 

[72] G. J. Pottie, "Trellis Codes for the Optical Direct-Detection Channel," IEEE 
Transactions on Communications, vol. 39, no. 8, pp. 1182-1183, August 1991. 

[73] J. A. Heller, "Sequential Decoding: Sort Constraint Length Convolutional Code," 
JPL Space Program Summary, 37-54, vol 3, pp. 171-177, December 1967. 

[74] A. R. Calderbank, J. E. Mazo, and V. K. Wei, "Asymptotic Upper Bounds on the 
Minimum Distance of Trellis Codes," IEEE Transactions on Communication, 
Vol. 33, No. 4, pp. 305-309, April 1985. 

[75] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applica
tions, Prentice-Hall, 1983. 

[76] G. L. Bechtel and J. W. Modestino, "Pulsewidth-constrained Signaling and Trel
lis-coded Modulation on the Direct-detection Optical Channel," IEEE Global 
Telecommunications Conference, vol. 2, pp. 842-847, 1988. 

[77] P. R. Chevillat and E. Eleftheriou, "Decoding of Trellis-Encoded Signals in the 
Presence of Intersymbol Interference and Noise," IEEE Transactions on Commu
nication, vol. 37, no. 7, pp. 669-676, July 1989. 

[78] I. Oka and E. Biglieri, "Error Probability Bounds for Trellis Coded Modulation 
over Sequence Dependent Channels," The Transactions of IEICE, vol. E72, no. 
4, pp. 375-382, April 1989. 

[79] J. E. Porath, "On Trellis-coded Modulation for Gaussian and Band-limited Chan
nels," Tech. Rep. 221, Chalmers University of Technology, Goteborg, Sweden, 
1991. 

[80] K. Wesolowski, "Efficient Digital Receiver Structure for Trellis-coded Signals 
Transmitted through Channels with Intersymbol Interference," Electronic Let
ters, vol. 23, no. 24, pp. 1265-1267, November 1987. 



134 

[81] H. K. Thapar, "Real-Time Application of Trellis Coding to High-Speed Voice-
band Data Transmission," IEEE Journal of Selected Areas in Communications, 
vol. 2, no. 5, pp. 648-658, September 1984. 

[82] L. N. Wong and P. J. Mclane, "Performance of Trellis Codes for a Class of 
Equalized ISI Channels," IEEE Transactions on Communication, vol. 36, no. 12, 
pp. 1330-1336, December 1988. 

[83] G. D. Forney Jr. and M. V. Eyuboglu, "Combined Equalization and Coding 
Using Precoding," IEEE Communications Magazine, pp. 25-34, December 1991. 

[84] M. H. A. Davis, "Capacity and Cutoff Rate for Poisson-type Channels," IEEE 
Transactions on Information Theory, vol. 26, no. 6, pp. 710-715, November 
1980. 

[85] J. B. Cain, G. C. Clark, Jr., and J. M. Geist, "Punctured Convolutional Codes of 
Rate (n-\) I n and Simplified Maximum Likelihood Decoding," IEEE Transac
tions on Information Theory, vol. 25, pp. 97-100, January 1979. 

[86] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-cor
recting Coding and Decoding: Turbo-codes," IEEE International Conference on 
Communications, Geneva, Switzerland, pp. 1064-1070, May 1993. 

[87] R. M. Gagliardi and S. Karp, Optical Communications, Second Edition, John 
Wiley & Sons, Inc., 1995. 

[88] S. Patarasen and C. N. Georghiades, "Maximum-Likelihood Symbol Synchroni
zation and detection of OPPM Sequences," IEEE Transactions on Communica
tion, vol. 42, no. 6, pp. 2282-2290, June 1994. 

[89] R. Velidi and C. N. Georghiades, "Frame Synchronization for Optical Multi-
Pulse Pulse-Position Modulation, IEEE Transactions on Communication, vol. 
43, no. 2-4, pp. 1838-1843, April 1995. 



135 

Vita 

Hyuncheol Park was born in Pusan, Korea on June 7, 1960 and grew up in Seoul, 

Korea. He received B.S. and M.S. both in Electronics Engineering from Yonsei University, 

Seoul, Korea in 1983 and 1985, respectively, and Ph.D. in Electrical Engineering from 

Georgia Institute of Technology, Atlanta, USA in 1997. From 1985 to 1991, he was a 

research engineer in Samsung Electronics Co, Suwon, Korea where he developed the 

broadcast satellite receivers, microwave low-noise amplifiers, and automatic vehicle mon

itoring systems. From 1992 to 1997, he was a graduate research assistant in Georgia Insti

tute of Technology, Atlanta, USA. His current research interests include coded 

modulations, wireless infrared communications, and information theory. 


