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SUMMARY

Two-dimensional magnetic recording (TDMR) is a new recording architecture that

supports a drastic increase in the data density on conventional magnetic recording hard disk

drives. The gain from TDMR comes from two directions: The shingled writing, where

the adjacent data tracks are written with partial overlap on top of each other in order to

squeeze many more number of tracks on the disk and increase the data density, and also

from powerful signal processing algorithms that enable efficient data recovery from highly

interfered and noisy read back signals.

This thesis develops synchronization and detection algorithms for current and future

generations of TDMR channel. In the current generation of TDMR, multiple readers are

used to detect a single data track at a time. A naiive read channel would first perform timing

recovery separately on every readback waveform received, and then it would equalize and

detect a track of interest. Therefore, the number of synchronization blocks needed would be

the same as the number of readback waveforms. This thesis proposes a new read channel

where equalization precedes timing recovery and detection. Consequently, the number of

synchronization blocks reduces to only one for every track being detected, and thereby the

proposed read channel significantly reduces the computational complexity of a conventional

read channel.

To achieve the full potential of TDMR, future generations of TDMR read channels,

however, will detect multiple tracks at a time. Multi-track detection utterly changes the

synchronization problem since adjacent tracks can have slightly different bit rates. The new

challenge, therefore, is the impossibility of simultaneously synchronizing the ADC sampling

times to multiple rates. In this context, synchronization can no longer be performed as a

separate block in the conventional fashion. This thesis proposes rotating-target (ROTAR)

algorithm as a first solution for joint detection of multiple asynchronous tracks from one or

more readback waveforms. ROTAR jointly performs the synchronization and detection tasks

xii



using a Viterbi detector based on a time-varying target that results when the asynchrony of

the tracks is absorbed into the underlying target. ROTAR also uses per-survivor processing

for estimating the unknown timings.

Further, this thesis completes a proposed read channel for future generations of TDMR

by proposing an equalization strategy to precede the ROTAR detector.
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CHAPTER 1

INTRODUCTION

Data-driven companies such as Google, Facebook, Yahoo, and Netflix rely on data storage

facilities to store and retrieve their data. Today, two of the most important data stor-

age/retrieval devices are hard disk drives (HDD) and solid state drives (SSD). HDD’s are

generally cheaper and can store larger volumes of data. In contrast, SSD’s are much smaller,

and faster in writing the data and reading the data back. For this reason, SSD’s dominate the

personal computer market, while HDD’s dominate the data center and large-capacity data

infrastructure markets.

1.1 The Physics of Magnetic Recording

Fig. 1.1 shows a typical HDD for desktop computers. Main components of a typical HDD

consists of up to 7 circular disks or platters that store the data, one write/read head mounted

on the tip of an actuator arm, one for each platter, a DSP chip with the firmware that controls

the operation of all the parts, and most importantly, signal processing software for recovering

3 Platters

Actuator Arm

Read/Write Head

Data Track

Sector

Figure 1.1: A typical HDD for desktop computers (left) [1] can have up to 7 platters. Each
platter (right) has a write/read head of it’s own which flies very close to the surface of the
platter when the platter rotates. Information bits are stored on and read back from concentric
circles called data tracks. These tracks are accessed in sections called sectors.
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Magnetized Layer

Soft  Underlayer

Monopole Write Head

S

N

Read Sensor

Figure 1.2: Perpendicular magnetic recording (adapted from [2]). The coil on the write
head produces magnetic flux perpendicular to the recording layer. As the write head moves
forward on the recording layer, this flux polarizes a few adjacent magnetized regions in one
of the two opposite directions to represent binary bits.

the information bits from the signals received from the read head.

Each platter is coated by a thin film of ferromagnetic material that can be polarized to

represent binary information bits. Depending on the direction of this polarization relative to

the surface of the ferromagnetic layer, we can have longitudinal or perpendicular magnetic

recording. Since each polarized region in perpendicular magnetic recording takes much

less area of the surface of the ferromagnetic layer compared to the longitudinal recording,

today, longitudinal magnetic recording is obsolete and only perpendicular recording is

implemented.

Fig. 1.2 shows perpendicular magnetic recording (adopted from [2]). The coil on the

write head produces a magnetic flux that is perpendicular to the ferromagnetic layer. The

write head records the information bits by polarizing a few adjacent magnetized regions

(also known as magnetic grains) on the recording layer in one of the two opposite directions.

As the write head moves along the recording layer, each bit is represented by a group of

adjacent grains with the same polarity. Fig. 1.3 displays a readback signal from the read

head sensor. The sensor detects the magnetization of the bit regions as the disk rotates

causing the readhead to scan the recorded data.

The main objective of the magnetic recording industry is to increase the areal density, as

measured by the number of stored bits per unit surface area of the disks. According to the

roadmap released by advanced storage technology consortium [3], the highest areal density

in today’s drives is about 1.3 Terabits per square inch of the medium, and is going to achieve

2
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Figure 1.3: Readback signal from perpendicular magnetic recording. The polarity of the
polarized region determines the polarity of the signal.

10 Terabits per square inch in 2025. One obvious way to increase the areal density is to

shrink the size of the magnetic grains that represent each bit. However, the magnetic grains

can only be shrunk to the point where they can be thermally unstable and lose their polarity.

This phenomenon is called the superparamagnetic limit which prevents the increase in the

areal density after some point [4]. To overcome this limit, there has been many attempts both

in changing and improving the magnetic medium itself and also in the recording technology

as a whole: heat-assisted magnetic recording (HAMR), bit-patterned magnetic recording

(BPMR), and more recently two-dimensional magnetic recording (TDMR) [5].

1.2 Two-Dimensional Magnetic Recording

Since 2010, the disk drive industry is pursuing a huge increase in the areal density up to

10 Terabits per square inch of the medium through two-dimensional magnetic recording

technology [6]. TDMR refers to the combination of shingled magnetic recording and data

detection based on multiple readback waveforms.

Fig. 1.4 (left) illustrates the conventional magnetic recording when the data tracks

are written side by side with some guard space in between to avoid interference between

adjacent tracks. To achieve higher densities, shingled magnetic recording (Fig. 1.4 (middle))

shrinks the guard space between the tracks allowing the tracks to overlap one another, like

roofing shingles. Although data is written with the same large write head, a narrower track

is all that remains after shingling. By allowing tracks to overlap, areal density can continue

3
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Figure 1.4: Conventional magnetic recording (left) versus shingled magnetic recording
(middle) [6] and the resulted 2D readback waveform from the shingled recording(right).

to scale without further shrinking the size of the write heads.

1.3 TDMR as a Communication Channel

The magnetic recording, regardless of HAMR, BPMR, and TDMR technologies, is modeled

as a communication system: The transmitter encodes, modulates, and writes the information

bits on the magnetic medium, the receiver reads and recovers the information bits from the

magnetic medium. Fig. 1.5 models the magnetic recording as a communication system.

Since in addition to the magnetic medium, the write and read head also changes the perfect

modulated signal, it is too a part of the communication channel. In this communication

system, the time replaces the position: The information is written and later read back

at another time instead of at another place. Similar to any communication system, the

information bits are error-correction coded and modulated into a continuous-time signal.

This signal is a current that runs through the coil in the write head producing the magnetizing

flux. The readhead senses the polarized regions and outputs a voltage signal, as illustrated

in Fig. 1.3. The entire signal processing unit that estimates the information bits from the

readback signal is referred to as the read channel.

In any communication system, ideally, we expect to receive the same signal we had

transmitted. In magnetic recording, we also expect to readback a signal very similar to

the current signal that wrote the bits on the medium. However, as it is the case for all

4
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Figure 1.5: Magnetic recording as a communication system. In addition to the magnetic
medium, in practice, the write and read head also change the ideal modulated signal.

communication systems, there is the channel effect: an unfortunate series of changes to

the original signal that make the data recovery a challenge. The channel effect in magnetic

recording include:

1. Intersymbol interference (ISI), in general, is the blurring of adjacent bits together

which makes the recovery of each individual bit difficult. In magnetic recording, ISI

refers to the blurring of the adjacent bits on the same data track, and not between the

adjacent tracks. ISI exists because the channel is bandlimited. A bandlimited channel

changes the shape of the pulse shape that arrives at the receiver. The write signal is a

perfectly rectangular signal. The readback signal, however, is more or less similar to

a superposition of shifted Gaussian pulses. Since the channel has a cut-off frequency,

each received pulse shape in the time-domain will be a never-ending pulse which

interferes with adjacent pulses and causes ISI.

2. Intertrack interference (ITI) is the blurring of the bits on adjacent tracks in magnetic

recording, similar to crosstalk in wireless communication. ITI is more severe in

TDMR technology. In fact, as illustrated in Fig. 1.4, the shrinkage of the track

widths gives rise to ITI in the crosstrack dimension. The shrinkage can continue to

increase the areal density to such an extent that ITI becomes as severe as the ISI in

5



the downtrack dimension. For this reason, continuous increase in the areal density

through shingled writing results in combination of ISI plus ITI in the two dimensions

and that explains the term 2D magnetic recording.

3. Media noise, as the name suggests, is the noise generated by the magnetic medium.

Fig. 1.3 seems to suggest that the impulse response, from one magnetic grain to

the next, does not change and the readback signal is only a superposition of shifted

identical impulse responses. To the contrary, the shape of the impulse response

changes from one magnetic grain to the next. The reason is that the magnetic grains

have irregular shapes. Therefore, bit regions will also have irregular and random

shapes. This irregularity changes the shape of the impulse response from one bit to

the next. The effect is that the impulse response will jitter from one bit to the next,

leading to an inaccuracy in the superposition signal of Fig. 1.3. This inaccuracy is

known as the media or jitter noise, which makes up a predominate portion of the total

noise. Media noise, however, is colored and data dependent, which can be exploited

by the read channel to reduce its impact.

4. Electronic noise is the well-known additive white Gaussian noise (AWGN) that is

common to almost all communication channels.

5. Position uncertainty: Fig. 1.4 (right) illustrates a typical readback waveform from

TDMR. Here, the 2D interference along with several other impediments of the

magnetic medium demand advanced signal processing strategies of manageable

complexity that are able to extract the user bits from a readback waveform similar to

Fig. 1.4 (right). the problem is that the positions of the bits on a readback waveform

are not exactly known. Knowing where the bits are, however, is a prerequisite to

knowing what the bits are. The mismatch between the write and read clock frequencies

and phases, or, in another words, the mismatch between the actual positions of the

bits and the times in which the analog-to-digital converter (ADC) samples the signal
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Figure 1.6: A typical read channel for magnetic recording consists of timing recovery,
equalization, and detection blocks.

creates this position uncertainty. Timing recovery or synchronization solves with

position uncertainty. Synchronization is an essential component of the state-of-the-art

read channel design for TDMR. It refers, in general, to a part of the read channel that

compensates for the asynchrony between the ADC sampling times and the desired

sampling times, as dictated by the positions of the bits.

1.4 Components of the Read Channel

As mentioned above, the TDMR channel affects the write signal by introducing position

mismatch, ISI, ITI, media, and electronic noise. A readback signal, bearing all those adverse

effects, is what is received as the input to the read channel. The read channel is the collective

signal processing blocks that aim at mitigating those effects for an optimal detection and

recovering the written bits. A typical read channel block diagram is shown in Fig. 1.6. Here,

we provide a brief introduction of its signal processing components:

1. Timing Recovery: The received readback signal is inherently continuous in time. For

an efficient and therefore digital read channel implementation, the very first step is an

ADC block. However, in practice, the ADC sampling times are not exactly aligned

with the positions of the bits. Therefore, the ADC output samples are not the ideal

samples for detecting the information bits. The timing recovery block receives these

misaligned samples and outputs a best possible version of the ideal aligned samples

that would have resulted if the ADC sampling times were exactly aligned with the

positions of the bits.
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2. Equalization: In magnetic recording, the blurring effect between adjacent bits spreads

over tens to hundreds of the adjacent bits in the downtrack dimension and over a

few bits in the crosstrack dimension. Continuous shrinkage of the track widths in

TDMR, however, can potentially spread the ITI in crosstrack dimension to the same

margins as the ISI in the downtrack dimension. Equalization refers to the signal

processing strategies that try to mitigate this blurring effect. In general, an equalizer

tries to either shorten the extent, or to reduce the severity, or to completely remove

this fusion of the adjacent bits. A zero-forcing (full-response) equalizer attempts to

completely remove the blurring by filtering the received signal with the inverse of the

channel frequency response, such that the overall result is a flat response throughout

the frequency domain. This is too extreme to be applicable. In part because even if the

channel response has finite length, the inverse response might be infinitely long. And

in part because the inverse response will have a large magnitude at those frequencies

where the channel response is weak. As a consequence, the equalizer boosts any noise

that comes after the channel at those frequencies and thereby destroys the overall

signal-to-noise ratio. A more balanced equalization does not equalize the signal all

the way to the delta function response like the full-response equalizer does. It only

partially removes the interference by shortening its extent and/or its severity. The

partial response (PR) equalization is a technique that equalizes the channel output to

the output of another fictitious channel that is significantly shorter in the length and

that causes less interference. This fictitious channel response is called the target.

3. Detection: A detector is an algorithm that receives a noisy train of modulating pulse

shapes which are partially blurred with other neighboring pulse shapes, and outputs

an estimate of the original information bits. Since both the noise and the written

bits are widely modeled as stochastic variables, the received discrete-time signal can

be viewed as the output of an stochastic process, where probabilistic detection is

optimal. Probabilistic detectors include maximum a-posteriori probability (MAP)

8



and maximum likelihood (ML) detectors. MAP detectors are the optimal detectors

since they minimize the probability of detection error. They reduce to ML detectors

whenever the written bits are equiprobable. For ISI channels with additive white

Gaussian noise (AWGN), a practical ML sequence detector is implemented through

Viterbi algorithm [7]. This algorithm finds the most-likely sequence of the written

bits. Also, the MAP detector is implemented with BCJR algorithm [8] that finds the

sequence of the most-likely written bits. Further, since the bits are error-correction

coded, the detector also includes a decoder for detection of the original uncoded bits.

1.5 Thesis Goal: Synchronization For TDMR

The TDMR literature includes countless state-of-the-art read channel designs that focus on

one or a combination of several blocks of the read channel, among which synchronization

has received less attention. This section discusses the goal of this thesis that is to develop

synchronization strategies for TDMR.

1.5.1 Synchronization for Single-Track Detection

Current implementations of read channels for TDMR detect one track at a time. Single-track

detection refers to detecting one track of interest at a time, using one or more readback signals

that can result from a single pass of an array of read heads or multiple passes of a single read

head. Single-track detection has been the norm from the very beginning, starting with the first

hard disk drives in the late 1950’s, up until today’s TDMR implementations with multiple

readers. In this setting ITI is a nuisance that should be avoided. The read channel designs

for single-track detection in TDMR try to suppress ITI prior to the detection. As a result,

the detection problem for TDMR is reduced to the conventional 1D detection problem of

1D magnetic recording. The benefit is that since the existing detection and synchronization

strategies for 1D magnetic recording are matured, here, they can be leveraged with no

additional cost.
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In this thesis we improve on 1D synchronization and detection strategies. In particular

we suggest alternative strategies in which the implementation cost of a typical read channel

is greatly reduced.

1.5.2 Synchronization for Multitrack Detection

Multitrack detection refers to a joint detection of multiple adjacent tracks, using one or

more readback waveforms. We expect a huge increase in the areal density as a result of

multitrack detection that embrace ITI rather than avoid ITI, similar to the increase in the areal

density that was achieved when partial response maximum-likelihood (PRML) strategies

that embrace ISI replaced peak detection strategies that avoid ISI. For this reason, future

implementations of TDMR will jointly detect multiple tracks [5], where the synchronization

problem will fundamentally change from its conventional 1D setting. As it will be detailed

in Chapter 5, the synchronization can no longer be performed separately. Rather, it must be

performed jointly within the detection.

In multitrack detection setting, unlike the conventional single-track detection, there has

been no prior published work that addresses the synchronization problem. In this thesis, we

propose a rotating-target (ROTAR) algorithm for jointly detecting multiple asynchronous

tracks from one or more readback waveforms.

1.6 Summary

We presented a brief introduction to the magnetic recording and TDMR technology. Magnetic

recording, in general, and TDMR, in particular, are modeled as a communication system

where the transmitter writes the data on the magnetic medium, the channel, and the receiver

reads back and recovers the data from the channel at a later time. We itemized the

channeling effects, the detection impediments of TDMR channel. We, also established

that synchronization is a prerequisite to the detection problem. Further, we classified

the entire detection and synchronization problem for TDMR into two categories: 1) the
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synchronization and detection for the past and the current implementations of TDMR, where

data tracks are detected on a one-by-one basis, and 2) the synchronization and detection for

the future implementations of TDMR, where data tracks are detected jointly. We established

the objective of the thesis to 1) improve upon the former category through reduction in

computational complexity, and 2) to devise a solution for synchronization and detection for

the latter category.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

In the magnetic recording literature, a detection strategy refers to the entire read channel ar-

chitecture aimed at detecting the information bits from the received waveform or waveforms.

In this chapter we first present a literature survey on TDMR detection strategies which

fall into a clear bifurcation based on the approach taken in modeling the TDMR channel.

Next, we focus on the problem of timing recovery and provide the necessary background

information and fundamental concepts that enable us to follow the synchronization and

detection algorithms of Chapters 4, 5, and 6. We further discuss the timing recovery

strategies that have been employed or proposed for 1D magnetic recording and also for

TDMR so far.

2.1 TDMR Models and Detection Strategies

There exist two distinct discrete-time channel models in TDMR prior art:

1. The two-dimensional (2D) ISI model, in which the written bits and the readback

waveforms are modeled as 2D signals with two interchangeable dimensions.

2. The multiple-input multiple-output (MIMO) model, in which the written bits and the

readback waveforms are modeled as vector-valued functions of time.

The choice of which model to use depends on the number N of available readback

waveforms. We denote N = NpNr where an array of Nr readers make Np passes over

different regions of a disk. The MIMO model is appropriate ifN is relatively small compared

to the length of the waveforms. The 2D ISI is appropriate if N is large and comparable in

size to the length of the waveforms. The MIMO model suits low-latency applications which
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cannot tolerate the delay caused by multiple passes of the read head array, whereas the 2D

model is appropriate for applications which can afford a scan over the entire surface of the

disk.

2.1.1 Detectors for the 2D ISI Model

The 2D model arises when the total number N of available readback waveforms is compara-

ble in size to the length of the waveforms. Therefore, the readback waveforms are represented

as a 2D signal (matrix) with the two dimensions comparable in size and interchangeable.

The channel impulse response is also a matrix which captures both ITI in the crosstrack

dimension and ISI in the downtrack dimension. The 2D model is obtained using a 2D

convolution of the channel impulse response with a large matrix of recorded bits. An

example of a 2D signal obtained from a 2D convolution is shown in Fig. 2.1 (left).

Detector design for the 2D channel is an active area of research. The maximum-

likelihood (ML) detector for the 2D ISI channel is prohibitively complex; there is no 2D

analog of the Viterbi detector that enables optimal performance with low complexity [9].

A variety of sub-optimal detectors with reduced complexity have been proposed, many of

which can be viewed as 2D extensions of 1D detectors. The detector in [10], for example,

uses four 1D decision-feedback equalizers (DFEs) to scan the 2D signal in four different

directions. The detector in [11] achieves near-ML performance by iterating between Bahl,

Cocke, Jelinek and Raviv (BCJR) [8] equalizer for the rows and DFE for the columns

of the 2D signal. The detector of [12] iterates between a binary and a non-binary BCJR

detector, respectively, for the rows and the columns of a coded 2D signal on a separable

2D ISI channel; this detector falls only 1 dB short of an interference-free channel and

thereby encourages equalizing a general 2D impulse response to a nearby (in MMSE sense)

separable matrix. A generalized belief propagation detector is proposed in [13] that exploits

the data-dependent media noise. Several other detectors have been proposed based on

iterative decision feedback, in which extrinsic information is exchanged in a turbo fashion
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Figure 2.1: Two approaches to TDMR detection: 1) 2D ISI model (left), versus 2) MIMO
model (right).

between modified BCJR detectors, including the row and column soft decision feedback

algorithm [14], iterative soft decision zig-zag algorithm [15], and a multi-row/column

detector coupled with a 2D equalizer [16].

2.1.2 Detectors for the MIMO Model

The MIMO model arises when the number N of available readback waveforms is small.

In practice, N can be as small as 2 readback waveforms collected from a single pass of an

array of Nr = 2 readers. Nevertheless, as Fig. 2.1 depicts, a connection between the two

models can be made: Assume a 2D readback waveform of Fig. 2.1 (left). The MIMO model

of Fig. 2.1 (right) can be obtained by discarding all but N ′ = 3 rows of the 2D readback

waveform. In other words, the MIMO model is a thin slice of the 2D model.

Detector design for MIMO channels has been studied for more than a decade [17, 18, 19,

20, 21]. A variation of the MIMO model arises from the multi-track scenario in which the

tracks are written in small groups, with guard bands between neighboring groups; this limits

the number of inputs and avoids the problem of unknown boundary conditions [18, 19, 20,

21]. For example, the performance of an ideal ML detector for the multi-track scenario was

analyzed in [18]. A variety of low-complexity multi-track detectors have been proposed.

For example, a method in [19] divides a low density parity check (LDPC) codeword into

three segments and records them on three adjacent tracks. The detector then iteratively
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detects between three inner detectors and an outer decoder to recover three input tracks from

N = 3 readback waveforms. The detector in [20] improves the recovery of the 2D-equalized

center track, from N = 3 signals, by first estimating the sidetracks and providing their ITI

information to the center track detector. A recently proposed detector [21] recovers four

input tracks from N = 2 readback waveforms using the joint detection and decoding of two

parallel detectors concatenated with two parallel LDPC decoders. Another recent detector

employs MMSE linear equalization to a 1D target in order to recover the middle track from

N = 3 readback waveforms [17].

Because of the fundamental differences between the two models, the detector design for

one cannot be applied to the other. The discriminating features of the two models are:

1. In the MIMO model, unlike the 2D model, the downtrack and crosstrack dimensions

are not interchangeable and the read back matrix is not a square. The downtrack

dimension dominates over the crosstrack dimension with thousands of bits over a

handful of readback waveforms.

2. The MIMO model can be underdetermined. The model is underdetermined in the

case where there are more input tracks that significantly contribute to the readback

waveforms but these tracks are not sufficiently covered by the read heads to be reliably

detectable. This feature represents the unknown boundary condition which is specific

to the MIMO model and is not generally a part of the 2D model.

In this thesis, we adopt the MIMO model for low-latency applications for the case when

there are no guard bands, so that the number of readback waveforms is smaller than the

number of contributing tracks and the system is underdetermined. We mainly focus on the

synchronization component of the detector where the detector should estimate the user bits

using the samples that are asynchronous to the recorded bits.
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2.2 Timing Recovery/Synchronization

The previous section provided an overview of TDMR detection strategies based on a

bifurcation in channel modeling. This section focuses on the timing recovery block and

provides fundamental concepts to understand its functionality.

Here, we can use a basic model for 1D magnetic recording channel to explain the basics

of timing recovery, since the following concepts transfer to more sophisticated models for

TDMR as well.

Consider a binary pulse-amplitude modulation (PAM) signal as a model for 1D magnetic

recording channel. The PAM readback signal is low-pass filtered to remove out-of-band

noise, yielding:

s(t) =
∑
`

a`f(t− `T − τ`) + n(t), (2.1)

where {a`} ∈ {±1} are the uncoded information bits, `T + τ` is the arrival time of the

`-th pulse carrying the `-th bit (or the position of the `-th bit in the downtrack dimension),

T is the ADC sampling period and τ` is the delay in the arrival of the `-th bit, f(t) is the

modulating pulse shape, assumed to be bandlimited to half the bit rate where the bit rate

depends on the nature of τ`, and the n(t) is the AWGN signal. (2.1) is a readback waveform,

input to the read channel. After low-pass filtering, an ADC that samples this signal at

intervals {kT}, yields:

sk =
∑
`

a`f(kT − `T − τ`) + nk (2.2)

The problem begins when the ADC sampling times {kT} differ from the arrival times of

the pulses {kT + τk}. Fig. 2.2 illustrates this situation. The solid waveform is the received

waveform r(t). We see that the pulses arrive at times {kT + τk}, hence the ideal times for

the ADC to sample are also {kT + τk}. These samples are marked with empty circular

markers. However, the ADC samples at times {kT} instead, which yields asynchronous

samples marked with a cross.
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Figure 2.2: Real vs. expected readback waveform. The solid waveform is the real readback
waveform where the pulses arrive at times {kT + τk}. However, the read channel expects to
receive the dashed waveform where the pulses arrive at ADC sampling times {kT}.

Also, the actual arrival times {kT + τk} are unknown to the read channel, that is to

say that the read channel expects the pulses to arrive at times {kT}. Therefore, the ideal

read back waveform from the read channel point of view is the dashed waveform where the

pulses arrive at {kT}. The difference between the actual arrivals of the pulses and the ADC

sampling times is referred to as the timing offset τk. There are mainly three different models

for the timing offsets, the choice of which determines which strategy should be employed

for timing recovery in the read channel. The timing offsets can adopt one or a combination

of different models together.

2.2.1 Models of Timing Offset

Fig. 2.3 illustrates the three main types of timing offsets in magnetic recording channel.

Also, Fig. 2.4 shows the implications of the three models on data tracks, where the upper

track is the track that the read channel expects, and the lower track is the real track. (The

misalignment between the bits on the both tracks are unrealistically exaggerated for effect.)

The simplest case is the constant phase offset in Fig. 2.3 (a), where

τk = θ. (2.3)

Here, the bit period is the same as the ADC sampling period T , and the delay in arrival
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times {τk} is a constant θ which occurs due to an initial position offset of the read head.

Therefore, using the constant phase offset model of (2.3) in the ADC outputs of (2.2), we

arrive at the model for the readback waveform with a constant phase offset, according to:

sk =
∑
`

a`h(kT − `T − θ). (2.4)

The expected readback waveform, according to the ADC sampling times, is the dashed

waveform, and the real waveform, the solid waveform, is simply a shifted version of the

expected waveform. Likewise, as Fig. 2.4 shows, the bit boundaries on the real track are

shifted by a positive value of θ, to the right.

The frequency offset is widely used and one of the most important models for timing

offset in magnetic recording. It results from the mismatch between the ADC and the write

head clock frequencies. The frequency offsets {τk} increase or decrease linearly in time,

according to:

τk = k∆T, (2.5)

where the bit period is T + ∆T , and where ∆T , the frequency offset parameter, determines

the severity of the offset. ∆T , in general, can be positive or negative with interesting

implications: A positive ∆T means that the bit period is larger than the ADC sampling

period, or in other words, the ADC is sampling faster than it should. Fig. 2.3 (b) shows a

positive ∆T , where the actual readback waveform gradually drifts away from the expected

waveform. Further, a positive ∆T means that the bits on the real track, Fig. 2.4 are wider

than anticipated by the ADC. A negative ∆T , on the other hand, means that the bit period is

smaller than the ADC sampling period, that is the ADC is sampling slower that it should.

It is important to note that a negative ∆T contradicts the Nyquist sampling theorem: In

the case where the underlying pulse shape is bandlimited to half the bit rate, the ADC

sampling rate should be higher than the bit rate. Nevertheless, since the practical values

of ∆T parameter in magnetic recording channel are quite small, even a negative frequency
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Figure 2.3: Models of timing offset in magnetic recording channel.

offset parameter does not necessary yield unreliable detection.

Using the frequency offset model of (2.5) in the ADC outputs of (2.2), we arrive at the

model for the readback waveform with frequency offset:

sk =
∑
`

a`h(kT − `T − `∆T ). (2.6)

The third model for timing offset is the random walk, as shown in Fig. 2.3 (c). Here, similar

to the constant phase offset, the ADC sampling period and the bit period are the same.

However, the timing offset τk at time k is the summation of Gaussian random variables

{wk} with zero mean and variance σ2
w, up to time k, according to:

τk =
k∑
i=0

wi. (2.7)
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Figure 2.4: Models of timing offset in magnetic recording channel.

Therefore, the model for readback waveform with random walk offset becomes:

sk =
∑
`

a`h(kT − `T −
∑̀
i=0

wi). (2.8)

Fig. 2.4 (c) illustrates this case where the bits on the real data track have slight random

misalignment compared to the bits on the expected track.

2.3 Synchronization in 1D Magnetic Recording

As mentioned, timing recovery is the process of correcting, or compensating for, the

misalignment between the ADC sampling times and the actual arrival times of the bits.

In this section we first layout the basics of timing recovery, next we explain the main

timing recovery schemes that have been employed on 1D magnetic recording channel so

far. Synchronization in 1D magnetic recording is mature. Fortunately, these strategies also

apply to the current generations of TDMR channel where tracks are detected one at a time.

2.3.1 The Basics of Timing Recovery

Timing recovery works based on the principle that, if we somehow know the timing offsets

{τk}, we can extract the correct samples either by controlling the ADC sampling times, or
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through interpolation after the ADC. To this end, the best sampling times {tk} are given as:

tk = kT + τk, (2.9)

where T is the sampling period of a free-running ADC prior to timing recovery. Therefore,

the ADC output from (2.2) becomes:

sk =
∑
`

a`f(kT + τk − `T − τ`) + nk

≈
∑
`

a`f(kT + τ` − `T − τ`) + nk

=
∑
`

a`f(kT − `T ) + nk, (2.10)

where the approximation in the second line, where τk is replaced by τ`, is valid when the

timing offset varies slowly enough that it is approximately constant over the duration for

which the bit response f(t) is significant. Equation (2.10) is a PAM signal, sampled exactly

at bit arrivals. In practice, the perfect realization of (2.10) with timing recovery is impossible

because: 1) the timing offsets are unknown to the read channel and can only be estimated,

and 2) since the bit response f(t) is usually long, the approximation in the second line can

be erroneous. Nevertheless, an estimation of (2.10) using the estimated timing offsets {τ̂k}

does not lead to tangible performance loss either.

A basic timing recovery scheme is shown in Fig. 2.5. Here, the received signal is

low-pass filtered and sampled at times {kT + τ̂k}. Since the actual timing offsets are not

known to the read channel, the loop in Fig. 2.5 is to generate estimated timing offsets {τ̂k}

to correct the ADC sampling times.

• Phase-Locked-Loop

A first-order PLL updates τ̂k, according to [22]:

τ̂k+1 = τ̂k + αε̂k, (2.11)
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Figure 2.5: Basic timing recovery.

where 0 < α < 1 is the PLL stepsize, and ε̂k is an estimate of the actual timing error

defined as:

εk = τk − τ̂k. (2.12)

Since τk is unknown, the actual timing error εk is not known either and can only be

estimated. A timing error detector (TED), which will be discussed shortly, provides

this estimate. The PLL operation can be intuitively explained: Assume that at time

k an accurate estimate of the timing error ε̂k = εk is available to the PLL. Then the

PLL can simply add ε̂k = εk to τ̂k (α = 1), to get τ̂k+1 = τk. If τk is a constant phase

offset, it means that the PLL has converged to the correct timing offset at time k and

therefore all {ε̂`}`≥k are zero. In practice, however, ε̂k is only a noisy estimate of the

actual εk and therefore PLL multiplies ε̂k by α to attenuate the noise. The smaller

the α means a better noise attenuation, but it increases the PLL rise-time and slows

down PLL convergence. Therefore, α is usually adjusted based on the operating SNR

region: At high SNR regions, a larger α is chosen to help PLL converge faster and

also to help PLL track abrupt changes in timing offset if the timing offset is time

varying. To the contrary, at low SNR regions, a smaller α should be chosen to prevent

PLL divergence.

We can also study the PLL behavior when it has reached the steady-state or in-lock

region. In steady-state region, the timing error estimate ε̂k is assumed to be linear, that
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is:

ε̂k = εk + ηk

= τk − τ̂k + ηk (2.13)

where {ηk} are i.i.d noise terms, and independent of {εk}, and where we have used

(2.12) in the second line. Therefore, (2.11) becomes a linear system, according to:

τ̂k+1 = τ̂k + α(τk + ηk − τ̂k). (2.14)

By taking the z-transform of (2.14), the transfer function of the first-order PLL is

given by:
τ̂(z)

τ(z) + η(z)
=

αz

z − 1
. (2.15)

A perfect phase-lock is reached if the steady-state estimated timing error is zero:

ε̂ss = lim
k→+∞

ε̂k

= lim
z→1

(z − 1)ε̂(z), (2.16)

where in the second line we have applied the final value theorem. If the timing offset

is a constant phase offset θ, where τ(z) = θz/(z−1), then a perfect lock with ε̂ss = 0

is achieved. We can examine this by replacing (2.13) into (2.16). However, in face

of a frequency offset where τ(z) = ∆Tz/(z − 1)2, the first-order PLL exhibits a

nonzero steady-state error. To achieve a zero steady-state error, a second-order PLL is

used instead, where the PLL update equation is given by [22]:

τ̂k+1 = τ̂k + αε̂k + β
k−1∑
`=0

ε̂`. (2.17)

Compared to the first-order PLL, we have an accumulator and an additional stepsize
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β. Intuitively, if, for example, the average estimate of the timing error is positive, then

the second-order PLL can correct the positive nonzero steady-state error by adding

the positive third term in (2.17) to the estimated timing offset. Also, similar to the

approach we used for the first-order PLL, we can examine the zero steady-state error

of the second-order PLL using its transfer function, given by:

τ̂(z)

τ(z) + η(z)
=

αz + (β − α)

z2 + (2− α)z + (1− α + β)
. (2.18)

• Timing Error Detector

Consider Fig. 2.5. The TED is the most important component of a PLL. In general, a

TED estimates the timing error εk of (2.13), using the ADC outputs after equalization

{rk}, and the noiseless ideal equalized samples, namely {dk}, respectively given by:

rk =
∑
`

a`h(kT + τ̂k − `T − τ`) + nk, (2.19)

where h(t) is the PR target, and

dk =
∑
`

a`h(kT − `T ). (2.20)

Moreover, the TED operates in two modes: first in the acquisition mode and then in

the decision-directed mode. The acquisition period refers to an initial few hundreds

bits of a sector, known as the preamble, where the bits are known to the read channel.

The preamble period is mainly added to a sector in order to make sure that the PLL

reaches the in-lock phase before it has to track the timings of the unknown information

bits. The decision-directed mode refers to the rest of the sector where the bits are

unknown and should be estimated by the read channel. During the acquisition mode,

the ideal equalized samples can be obtained from (2.20). During the decision-directed

mode, however, the ideal equalized samples can only be estimated using a symbol
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Figure 2.6: A conventional VCO-based timing recovery.

detector, according to:

d̂k =
∑
`

â`h(kT − `T ). (2.21)

The widely-used Mueller and Müller (M&M) TED [23] computes ε̂k according to:

ε̂k = rkd̂k−1 − rk−1d̂k. (2.22)

Different implementations and derivatives of the timing recovery in Fig. 2.5 have

evolved over time. In the followings we overview different generations of timing

recovery implementations.

2.3.2 Conventional VCO-Based Timing Recovery

Initially, conventional synchronization was being performed in the analog domain with

the aid of an analog voltage-controlled oscillator (VCO) in the PLL circuitry. Fig. 2.6

illustrates a conventional VCO-based timing recovery. A VCO produces an output signal

whose instantaneous frequency is the signal input to the VCO. The VCO, in turn, determines

the sampling times of the ADC.

Nevertheless, there were both cost and performance benefits in moving all the analog

parts of Fig. 2.6 to the digital domain. All parts could be fully digitally implemented, except

for the VCO. Therefore, fully-digital timing recovery architectures emerged which excluded

a VCO.
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Figure 2.7: Interpolated timing recovery in 1D magnetic recording. This figure is adapted
from [4] with an added equalizer after the interpolation filter (resampler).

2.3.3 Interpolative Timing Recovery

Currently, interpolative timing recovery (ITR) [4] is widely used since it is fully digital,

therefore easy to implement, and since it allows the ADC to run at a free rate (above Nyquist).

A block diagram of an ITR scheme in 1D magnetic recording is shown in Fig. 2.7 [4]. The

core idea is that as long as the ADC is sampling above Nyquist, the ADC output samples are

sufficient statistics to represent the underlying continuous-time signal. Hence, the correct

samples can be recovered later, after ADC, using interpolation, and, therefore, the ADC can

be left free-running, for example at a fixed sampling period T . As Fig. 2.7 shows, the ITR

scheme is a feedback loop that extracts the synchronous samples which would have arisen

if the ADC was sampling at the correct times, from the asynchronous ADC samples, as

follows: At every time k, the TED [23] estimates the error between the estimated timing and

the correct timing using the estimated symbol and the equalized ADC sample, according to

(2.22). The estimated timing error is fed to a second-order PLL to update the new timing

offset, and the new timing offset is used to recover the correct sample at time k + 1 via

interpolation filter. After a transition time, the loop converges and locks to the correct timing

offsets and will continue thereafter to track the changes in the correct timing offsets. The

recovered samples can then be used by the rest of the read channel for the ultimate detection

of the bits.
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2.3.4 Iterative Timing Recovery

The entire read channel architecture can be formulated as a problem of jointly determining

the maximum-likelihood estimates of the timing offsets and the information bits. Clearly,

though, the direct implementation of such a read channel is prohibitively complex, hence

all practical strategies are only approximates of the ideal read channel. In the classical

timing recovery, explained so far and depicted in Fig. 2.8 (a), the timing offsets and the

bits are estimated separately and sequentially. Since the classical timing recovery performs

timing recovery prior to and separate from the equalization and decoding parts, it ignores

the presence of the code, and assumes that the bits are mutually independent. Therefore, as

expected, the classical timing recovery falls short in approximating the ideal read channel and

can fail in low SNR regions, the same regions where the equalization and decoding succeed

because of the powerful codes used in magnetic recording. In order to take advantage

of the presence of powerful codes, an alternative approach was proposed in [24], where

timing recovery is added to each iteration of a turbo equalizer that performs equalization and

decoding iteratively in a loop, as depicted in Fig. 2.8 (b). The advantage of iterative timing

recovery is twofold: 1) at each global iteration, timing recovery provides a better estimate

of the timing offset using the new estimates of the decoded bits, and 2) since the timing

updates is added to the already-existing loop, the added complexity, compared to a classical

read channel that performs separate timing recovery and turbo equalization, is minimal.

All timing recovery schemes of Fig. 2.6, Fig. 2.7, and Fig. 2.8 use a TED that uses

the estimated symbol and the ADC output at time k to provide an estimate of the timing

error at time k. Nevertheless, the symbol detector which provides one of the inputs to the

TED suffers from an inherent trade-off between the reliability and the delay in the detected

symbols: Consider a Viterbi detector, for example. At every time k, Viterbi provides

estimated bits from time 0 up to time k. Inherently, in the Viterbi algorithm there will be

a merge between different survivor paths from time 0 to time k − D, for example. This

means that the estimated bits from time k − D + 1 to time k are not as reliable as those
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Figure 2.8: (a) Read channel with classical timing recovery, vs. (b) iterative timing recovery.

from time 0 to time k −D. Therefore, a bigger delay in the detected symbols translates to

more reliable symbols that boosts the TED to produce more accurate estimates of the timing

errors which in turn result in more accurate estimates of the timing offsets. On the other

hand, however, a delayed estimated symbol delays the estimated timing offset and therein

prevents the entire timing recovery to be able to track fast changes in the timings of the

received waveform. This trade-off is a draw-back of the timing recovery schemes mentioned

so far. In the following, we explain a novel timing recovery scheme that not only enjoys a

zero decision delay in estimating the timing offsets but also is a closer implementation of

the ideal read channel.

2.3.5 Per-Survivor Processing (PSP) for Timing Recovery

To overcome the reliability-versus-delay drawback inherent in all timing recovery schemes

mentioned above, a reliable decision with zero delay can be extracted by utilizing the already-

given information in the trellis structure of a trellis-based detector. The idea of using the

information available in the trellis to estimate unknown parameters is known as Per-Survivor

Processing (PSP) [25]. The gist of PSP is that each branch in the trellis uniquely corresponds

to a specific decision. Then, at least one branch at every stage corresponds to the correct
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magnetic recording.

decision. Therefore, by utilizing the correct decision in updating the estimated timing

offset, the decision delay will inherently be zero. More importantly, since this scheme

embeds synchronization inside the trellis-based detection, and thereby jointly performs

timing recovery and detection of the bits, theoretically, it is the closest implementation of

the ideal ML read channel that is available by far.

The idea of using PSP for timing recovery in magnetic recording was proposed in

[26] and developed in [27], initially to work within the Viterbi detector in order to detect

uncoded bits. Later, PSP for timing recovery was developed in [28] to also work within

BCJR detector in order to detect coded bits. PSP has been employed in many other

applications, including channel identification and adaptive ML sequence detection in [25],

and phase/carrier recovery in [29].

Fig. 2.9 illustrates the overall read channel where the timing recovery and detection

are performed jointly using a Viterbi or BCJR detector with an embedded PSP algorithm.

Since PSP for timing recovery embedded inside a Viterbi detector is widely used in this

thesis, in the following, we provide an explanation to the algorithm for detecting uncoded

bits. Consider the read channel in Fig. 2.9. The ADC is sampling asynchronously to the

bit rate and with a fixed sampling period T . For clarity of expression we assume that the

equalization to a PR target is perfect. Therefore, the inputs to the detector embedding the

PSP algorithm are the ADC asynchronous samples after the equalization, and can be written

as:

rk =
∑
`

a`h(kT − `T − `∆T ) + nk, (2.23)
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where we have assumed a frequency offset model for τk = k∆T , according to (2.6). To aid

with the explanation, we further assume an example where the target h(t) = g(t)−g(t−2T )

is the PR-IV pulse shape where g(t) = sin(πt/T )/(πt/T ).

A conventional Viterbi algorithm would be an optimal ML detector to detect the bits

if the frequency offset parameter ∆T = 0. With ∆T 6= 0, however, a PSP-based timing

recovery adds additional timing update operations to the standard Viterbi to estimate the

correct samples for the optimal detection. In particular, since each branch in the trellis

structure is associated with a specific bit, each branch gives a different estimate of the timing

offset, where at least one of the branches with its estimate of the timing offset is correct.

The key idea, therefore, is to resample the analog readback waveform using different timing

offsets associated with different branches. As the Viterbi algorithm progress through the

trellis and updates the survivor path for each state, the PSP, in parallel, updates the timing

offset estimate for each survivor pass. This means there is one PLL for every survivor path

in the trellis.

Algorithm 1 describes the pseudocode of the Viterbi detector with PSP-based timing

recovery. The lines marked with an asterisk show the additional steps due to the PSP and

beyond the standard Viterbi algorithm. The input to the Algorithm is the equalized ADC

outputs of (2.23), and the output is the estimated information bits. The algorithm begins by

setting the initial state to state 0 in line 1. In line 2, an empty vector S(p) for each survivor

path for every states p is declared. Line 3 initiates an estimate of the timing offset for every

state p. (We assumed a frequency offset model with zero initial phase offset.) Also, line 4

initiates a variable sum for every state p. This variable will be used later in the algorithm to

accumulate the past estimates of the timing error for each state in the trellis. The loop from

line 5 to line 15 steps into each stage of the trellis.

Consider the algorithm runs on a PR-IV trellis as shown in Fig. 2.10. Let {ak−2ak−1}

denote the state at time k, or stage k, in the trellis. Since the PR-IV response has 2 memory

taps, there is a total of Q = 2µ = 4 states in the trellis. Also, let (p, q) denote the state
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transition from state p to state q. Since the alphabet is binary, there are two incoming

branches to every state q. For example, two transitions (2, 3) and (3, 3) arrive at state 3 at

time k + 1. In order to select the best transition, the algorithm first resamples the readback

waveform using the τ̂k(2) and τ̂k(3), in line 7. Then, in line 8, the two branch metrics γ(2, 3)

and γ(3, 3) are computed using the ideal ADC outputs corresponding to the two transitions.

The transition which leads to the minimum partial path metric πk+1(3) is selected according

to the Viterbi, in line 9 where Φk(p) denotes the partial path metric of state p at time k. Next

in line 10, Φk + 1(3) is updated with the path metric of the selected transition. Also, the

survivor path of state 3 Φk + 1(3) is extended in line 11 to include the selected transition.

From line 12 to line 14, the algorithm updates the timing offsets of state 3 to be used in the

next stage. Line 12 implements the M&M TED [23], according to (2.22), for the ending

state 3 and using the information on the updated survivor path of state 3. Line 13 and

line 14 compute the updated timing offset estimate of state 3 using a second-order PLL

with stepsizes α and β. The same operations are performed for the entire length of the

trellis. Finally, in line 17, the estimated information bits are extracted from the path with the

minimum path metric.

Since PSP-based timing recovery needs to run one PLL for each survivor path in the

trellis, the computational complexity is Q times more than classical timing recoveries in Fig.

2.8 (a), Fig. 2.7, and Fig. 2.6, where timing recovery is performed separately and prior to

the detection.

2.4 Synchronization for TDMR

It is clear from the previous section that synchronization in 1D magnetic recording is well

established. In this section we transition to the problem of timing recovery where significant

degrees of ITI prevents us to consider data tracks in isolation. Specifically, the problem

is to detect data tracks that exhibit different timing offsets, using all available readback

waveforms. Unlike 1D magnetic recording, prior works that address timing recovery specific
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Algorithm 1: Viterbi with PSP
Inputs: equalized ADC outputs {rk}
Output: â

11 Init: Φ0(0) = 0, Φ0(p) =∞ ∀p 6= 0
22 Init: S0(p) = [ ] ∀p
3*3 Init: τ̂0(p) = 0 ∀p
4*4 Init: sum(p) = 0 ∀p
55 for k = 0 to L+ µ− 1 do
6 for q = 0 to Q− 1 do
7*7 rk(p) = r(kT + τ̂k(p)) ∀p→ q

8 γk(p, q) = |r̂k − d̂k(p, q)|2 ∀p→ q

9 πk+1(q) = argmin
p
{Φk(p) + γk(p, q)}

10 Φk+1(q) = Φk(πk+1(q)) + γk(πk+1(q), q)

11 Sk+1(q) = [Sk(πk+1(q))|πk+1(q)]

12*12 ε̂k(q) = rk(Φk+1(q))d̂k−1(Φk(Φk+1(q)),Φk+1(q))

−rk−1(Φk(Φk+1(q)))d̂k(Φk+1(q), q)

13*13 sum(q) = sum(πk+1(q)) + ε̂k−1(πk+1(q))

14*14 τ̂k+1(q) = τ̂k(πk+1(q)) + αε̂k(q) + βsum(q)

15 end
16 end
17 Extract {a} from the survivor path that minimizes ΦL+µ

to the TDMR channel, as we overview them in the following, are rare.

Here, timing recovery architecture, similar to every other part of the read channel, is

heavily influenced by the model chosen for the TDMR channel. Therefore, we overview

timing recovery for TDMR following the bifurcation in TDMR channel modeling of Sect.

2.1.

2.4.1 2D ISI Model

In case a large matrix of observations, for example 1000-by1000 bits, is available for

processing, the 2D ISI model is suitable. In order to perform PLL-based timing recovery

on a 2D setting, a 2D PLL including a 2D TED is required. A 2D extension of the M&M

TED [23] has been proposed in [30]. Their approach considers a separable model for the
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Figure 2.10: Viterbi algorithm with PSP-based timing recovery on PR-IV trellis.

timing offsets, that is the timing offsets in the downtrack and crosstrack dimensions are

independent of one another which is not necessarily the case for TDMR. Because, if the

read head has a position offset (phase offsets in both dimensions), then a frequency offset in

one dimension causes a frequency offset in the other dimension as well.

A 2D PLL for updating a non-separable timing offset for TDMR is recently proposed in

[31]. Here, a 2D TED computes the angle between a vector of asynchronous ADC samples

on a 2D grid and the corresponding vector of ideal samples. Also, the 2D PLL update

equations are the exact, straightforward 2D extensions of the second-order 1D PLL. The 2D

PLL stability criteria, noise performance, and the loop bandwidth, however, are remaining to

be addressed. In a following work [32], a 2D interpolation filter is derived, in order to work

within an ITR scheme including the 2D PLL derived earlier. This 2D interpolation filter is

the 2D extension of the 1D interpolation filter proposed in [33] that was computed through

minimizing the mean-squared error between the ADC samples and the ideal samples.
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2.4.2 MIMO Model

The delay caused to provide a large scanning of the disk is a prohibitive factor the affects the

applicability of the state-of-the-art works in the 2D ISI setting for TDMR application where

we cannot afford to wait for hundreds of revolutions of the disk to accumulate large scans.

Therefore, for this thesis, we were prompted to focus on synchronization and detection

based on the MIMO model for low latency applications. The objective is to recover as many

bits as possible from a single scan of multiple readers.

The problem is to detect one or more tracks, from one or more readback waveforms

including considerable ITI, when the tracks to be detected were written asynchronously,

meaning that neither the bit rates (frequency) nor the bit boundaries (phase) are aligned

between neighboring tracks. An example of a MIMO model with K = 2 asynchronous

track and N = 2 readers with significant overlap are shown in Fig. 2.11. As shown, the bit

rate of track 2 is much smaller than the bit rate of track 1. (This difference is exaggerated for

effect.) The problem is to detect the two tracks using the two readback waveforms. There

are two approaches to this problem:

1) Single-Track Detection: The first approach is to use the two waveforms to recover

the bits from each track, separately. This approach is the approach taken by current

implementations of TDMR read channels in data storage industry [34]. Read channel

designs according to this approach should follow an initial step where the ITI is

mitigated and/or canceled as much as possible prior to the detection of a single track

34



of interest. The immediate advantage is that from some point forward in the read

channel, the problem is reduced to a 1D detection problem which can exploit the

well-established 1D synchronization and detection strategies. All the timing recovery

schemes in 1D magnetic recording of Sect. 2.3 in conjunction with TDMR detection

strategies of Sect. 2.1 form the prior works following this approach.

Therefore, in the first part of this thesis, in chapters 3 and 4, we used multiple readers

to recover the bits from a single track of interest at a time. Here, our goal was to

improve the synchronization and detection strategies employed by current generations

of TDMR read channels. In particular, we have studied:

(a) the problem of mitigating ITI in detecting on a track-by-track basis when all

the contributing tracks are synchronous, i.e. they have the same bit rate and bit

boundaries (chapter 3).

(b) the problem of timing recovery and mitigating ITI for detecting on a track-

by-track basis when all the contributing tracks have different bit rates and bit

boundaries (chapter 4).

(c) And also, the problem of PR equalization and timing recovery for detecting on a

track-by-track basis when all the contributing tracks have different bit rates and

bit boundaries (chapter 4).

2) Multitrack Detection: In the second part of this thesis, we study the problem of

jointly detecting multiple asynchronous tracks. Consider the problem of Fig. 2.11. An

ideal read channel would jointly estimate the timings and the bits on the two tracks.

Theoretically, the ideal read channel performs ML estimation of the timings and the

bits on the two tracks all together. A joint Viterbi detector, for example, is an efficient

implementation of the optimal ML detector for joint detection of only synchronous

tracks. For detecting asynchronous tracks, however, the problem fundamentally

changes: All known implementations of the ML detector, for example the Viterbi
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detector, assume that the two readback waveforms are somehow synchronized to both

of the contributing tracks. A closer look at Fig. 2.11, however, reveals that this is

impossible to achieve. Even when the exact correct timings are known, synchronizing

the two waveforms to the timings of track 1, for example, necessarily desynchronizes

them to the timings of track 2, and vice versa.

To our knowledge, there is no prior published work that addresses the joint detection

of multiple asynchronous tracks. Therefore, to realize the full potential of TDMR

[5], in chapter 5, we propose the ROTAR algorithm for joint detection of multiple

asynchronous tracks. ROTAR algorithm implements a joint Viterbi based on a time-

varying partial response that results when the asynchrony of the tracks are absorbed

into the underlying partial response. ROTAR also uses PSP to estimate the unknown

timings of the tracks being detected.

2.5 Summary

In this chapter, we provided an overview on TDMR detection strategies based on the channel

model chosen. The type of channel model divides all prior works into two distinct categories

of 2D ISI model and MIMO model. Those strategies which assume a 2D ISI model require

a large scan of the disk prior to the processing and thereby introduce a significant delay. In

this thesis we follow the MIMO modeling approach that considers the detection problem of

a few number of tracks from one or more readback waveforms, for low-latency applications.

Next, we provided an overview of the basics of timing recovery in 1D magnetic recording

where efficient strategies have been proposed for decades. For TDMR channel, on the other

hand, all prior synchronization work fall into the same categorization based on channel

modeling. The prior work based on 2D ISI model is extremely rare, while following

the MIMO approach and single-track detection, the well-established synchronization and

detection strategies for 1D magnetic recording can be employed. This is the state-of-the-art

read channel architectures that are currently being implemented in the industry.
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In this thesis, we study the detection and synchronization problem for TDMR channel

within two categories:

1. Synchronization for single-track detection: We study this problem in Chapters 4 and

5. In Chapter 3, we propose a soft ITI cancellation strategy for detecting several

synchronous tracks from several readback waveforms. In the first part of Chapter 4, we

extend this strategy to include synchronization of asynchronous tracks. In the second

part of Chapter 4, we study the PR equalization of one or more read back waveforms

when the contributing tracks have different phase and frequency offsets. Here, we

propose to switch the conventional order in which synchronization is performed prior

to equalization. We propose to significantly reduce the computational complexity by

synchronizing after equalization.

2. Synchronization for multitrack detection: Synchronization for joint detection of

multiple tracks has no prior published solution. In Chapter 5, we propose a ROTAR

algorithm that is based on a time-varying partial response that results when the

asynchrony of the tracks are absorbed into the underlying partial response. ROTAR

estimates the timings of the tracks being detected using PSP for timing recovery.
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CHAPTER 3

SOFT INTERTRACK INTERFERENCE CANCELLATION STRATEGY [35]

In this chapter we explain our initial work in detecting multiple tracks one-by-one, using

multiple readback waveforms from a MIMO channel for TDMR. Here, the main objective is

to cancel and/or mitigate ITI in the presence of prominent media noise. In this chapter only,

there is no synchronization challenge since all contributing tracks are synchronous to one

another and to the ADC’s sampling rate 1/T , which is the same as the bit rate.

3.1 Channel Model

In this chapter, we consider a linear and separable model for the channel, including first-

order jitter noise and electronic noise. Later in Chapter 4, Sect. 4.2, we drop this assumption

and continue as such throughout the thesis. Hence, the readback waveform for the i-th read

head is given by

ri(t) =
∑
j

gi,j

(∑
`

a
(j)
` h(t− `T ) +

(
a

(j)
l − a

(j)
`−1

)

(j)
l q(t− `T )

)
+ ni(t), (3.1)

where gi,j is crosstrack response gain from track j at read head i, a(j)
k ∈ {±1} is the k-th

coded bit of track j, h(t) is the common bit response for all tracks, T is the bit period, (j)k

is the k-th jitter noise component for track j, q(t) is the derivative of the corresponding

transition response, and ni(t) is the additive electronic noise for the i-th read head. We also

assume that the jitter components {(n)
k } are independent identically distributed zero-mean

Gaussian random variables with a variance σ2
 , independent from the track index j. We

assume that the electronic noise ni(t) is white and Gaussian with a power-spectral density

of N0/2 which is the same for all read heads. The waveform in (3.1) is filtered by an
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antialiasing filter and sampled at bit rate yielding

r
(i)
k =

∑
j

gi,j

(
x

(j)
k +m

(j)
k

)
+ n

(i)
k , (3.2)

where {x(j)
k =

∑
` a

(j)
` hk−`} is the “ISI symbol” sequence for track j, hk is the k-th sample

of the filtered bit response, {m(j)
k =

∑
`(a

(j)
` − a

(j)
`−1)

(j)
` qk−`} is the data-dependent “media-

noise” sequence for track j, qk is the k-th sample of the filtered derivative of the transition

response, and n(i)
k is the k-th sample of the filtered electronic noise ni(t), with zero mean

and variance N0/(2T ).

By vectorizing equation (3.2) over N read heads at time k, we arrive at a MIMO model

for the TDMR channel

rk =
∑
j

(
x

(j)
k +m

(j)
k

)
gj + nk, (3.3)

where rk = [r
(1)
k , ..., r

(N)
k ]T , nk = [n

(1)
k , n

(2)
k , ..., n

(N)
k ]T , and gj = [g1,j, g2,j, ..., gN,j]

T . In

this MIMO model, the number of outputs is N , the number of read heads, and the number of

inputs K is the number of relevant tracks that contribute to the output vector rk. The number

K depends on the extent of the crosstrack response {gi,j}. For example, if {gi,j} = 0 for

j > K, then the number of inputs (contributing tracks) is K.

3.2 Two Detection Strategies

We explain two strategies for mitigating ITI: 1) linear combining, and 2) soft intertrack

interference cancellation strategies. The first strategy is a component of the second strategy

and also will be used as a basis of comparison for the second strategy.
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3.2.1 Linear Combining

In detecting every track t, we can suppress ITI by taking a linear memoryless combination

of N readback waveforms according to

y
(t)
k = wT

t rk. (3.4)

where wt is a vector of combining weights to detect track t. The weights wt should

be selected to minimize the ITI and not the ISI or the media noise. Therefore, a good

optimization criteria for computing these weights is the mean-squared error between the

combination output and the noiseless ISI plus media noise symbols, according to

MSE = E

((
y

(t)
k −

(
x

(t)
k +m

(t)
k

))2
)
. (3.5)

We show in Appendix A that the weights minimizing the mean-squared error are

wt =

(∑
j

gjg
T
j +

(
N0

2Eh + TM0

)
I

)−1

gt, (3.6)

where Eh = ExT and Ex = E((x
(t)
k )2), respectively, are the energy of the bit response h(t),

and variance of the ISI symbols, and where M0 = 4σ2
Eq is the equivalent single-sided

rectangular power spectrum of the media noise, expressed in terms of Eq =
∑

k q
2
k. If we

substitute (3.3) into (3.4), we find

y
(t)
k = x

(t)
k wT

t gt +
∑
j 6=t

x
(j)
k wT

t gj +
∑
j

m
(j)
k wT

t gj + wT
t nk, (3.7)

where the first term is the desirable ISI symbol of track t, biased by a factor of wT
t gt. We

remove this bias to arrive at a conventional 1D recording model as follow

z
(t)
k = x

(t)
k + η

(t)
k , (3.8)
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where z(t)
k = y

(t)
k /
(
wT
t gt
)
, and η(t)

k = (
∑

j 6=t x
(j)
k wT

t gj +
∑

jm
(j)
k wT

t gj + wT
t nk)/(w

T
t gt)

is the sum of the residual interference, media, and electronic noise, whose variance is

σ2
η

(i)
=

1

2T
×

(
2Eh

∑
n 6=i
(
wT
i gn

)2
+M0

∑
n

(
wT
i gn

)2
+N0‖wi‖2

)
(wT

i gi)
2 . (3.9)

The model in (3.8) looks like a conventional 1D recording model, with an ISI sequence

from track t corrupted by media and additive noise, and it can be detected using any of a

variety of standard techniques, including the Viterbi detector, the BCJR detector, a pattern-

dependent noise-predictive detector [4], or an iterative detector, such as a turbo equalizer

that iterates between a channel detector and an error-control decoder [36] (Section 3.2.3).

The same linear ITI suppression strategy may be applied separately for each individual

track to detect them one-by-one.

3.2.2 Soft ITI Cancellation

We apply the idea of successive interference cancellation that was originally developed for

CDMA applications [37, 38], to TDMR. We also replace hard decisions by soft decisions

to improve detection performance [39, 40, 41, 42]. In particular, we propose to detect

tracks one by one and cancel ITI from previously detected tracks while accounting for the

reliability of the previous decisions. Here, we detect tracks according to an ordered list Π

of track indices.

The detection order is an important degree of freedom for the proposed detector, since

the order in which tracks are detected will significantly impact performance. We will

represent the detection order by an ordered list Π of track indices, where the first entry

of the list is the index of the track detected first, the second entry is the index of the track

detected second, and so on.

There may be an advantage in detecting a particular track more than once, and thus we

allow for repeated entries in Π. For example, Π = [1, 2, 3, 2, 1] would mean that we first
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detect track 1, then track 2, then track 3, then we redetect track 2, and finally we redetect

track 1. We note that a repeated detection for a given track is an option, not a necessity,

and further that when it does occur it is based on the original set of readback waveforms,

not a new set based on a rescan of the disk. In other words, the entire algorithm operates

on a single set of sampled waveforms from a single pass of the readers over the track(s) of

interest. Although performance can be improved when a second set of waveforms is made

available through a repeated pass of the readers, at the cost of increased delay, this paper

does not consider such extensions.

Suppose we are currently detecting track t and let P denote the set of previously detected

tracks, excluding the current track t. To detect track t, We softly cancel the interference

caused by the set P and linearly suppress any interference that remains. In particular, we

propose to first subtract a soft estimate of the interference from the previously detected

tracks in P before taking a linear combination, according to

y
(t)
k = wT

t

(
rk −

∑
j∈P

x̃
(j)
k gj

)
. (3.10)

This equation captures the essence of our proposed soft ITI cancellation strategy. Here, x̃(j)
k

denotes a soft estimate of the k-th ISI symbol x(j)
k from the previously detected track j,

which is computed by convolving a sequence of soft estimates {ã(j)
k } of the bits with the ISI

response, according to the following lemma:

Lemma 1. Let λ(j)
k = ln(P (a

(j)
k = 1|{ri})/P (a

(j)
k = −1|{ri})) denote the kth a posteriori

log-likelihood ratio (LLR) for track j. Given knowledge of {λ(j)
k : for all k}, the soft estimate

x̃
(j)
k that minimizes the mean-squared error E((x̃

(j)
k − x

(j)
k )2|{λ(j)

k }) is

x̃
(j)
k =

∑
`

ã
(j)
` hk−`, (3.11)

where ã(j)
k = tanh(λ

(j)
k /2).
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Proof. Setting to zero the partial derivative of E((x̃
(j)
k − x

(j)
k )2|{λ(j)

k }) with respect to x̃(j)
k

leads to the result that the estimate that minimizes the mean-squared error is the conditional

mean

x̃
(j)
k = E

(
x

(j)
k |{λ

(j)
k }
)

(3.12)

= E

(∑
`

a
(j)
` hk−`|{λ(j)

k }

)
(3.13)

=
∑
`

E
(
a

(j)
` |{λ

(j)
k }
)
hk−` (3.14)

=
∑
`

ã
(j)
` hk−` (3.15)

where we have introduced the conditional mean ã(j)
k = E(a

(j)
k |{λ

(j)
k }), which is well-known

to reduce to ã(j)
k = tanh(λ

(j)
k /2) [43].

Here, two extreme cases are noteworthy. In the extreme case when a previously detected

track n has an infinite SNR, the resulting soft estimates x̃(n)
k will exactly match the actual

x
(n)
k . In this case, the soft cancellation in (3.10) reduces to hard cancellation, and it will

completely remove the influence of the ISI symbols of track n. At the other extreme, if track

n has a zero SNR, the resulting LLR and soft decisions will also be zero. In this case, the

soft cancellation in (3.10) will subtract zero, which means it will not do any cancellation at

all. In practice, of course, the SNR will be between the two extremes, so that in practice the

cancellation will be only partial—residual ITI will remain even after the soft cancellation

process.

In (3.10), we see that, after the soft cancellation of ITI from previously detected tracks,

the combining weights wi are used to linearly suppress any ITI that remains. This includes

not only ITI from as-yet undetected tracks, but also residual ITI that remains after the soft

cancellation process from previously detected tracks.

In Appendix B, we show that the linear combining weights that minimize the MSE after
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soft cancellation of the previously detected tracks are

(3.16)wt =

(∑
j

(
αj2Eh + TM0

2Eh + TM0

)
gjg

T
j +

(
N0

2Eh + TM0

)
I

)−1

gt

where

αj =

 1, for j /∈ P

E((x
(j)
k − x̃

(j)
k )2)/Ex, for j ∈ P

. (3.17)

For j ∈ P , we can interpret αj as a reliability factor, since it is a number between 0 and 1

that quantifies the reliability of the decisions from track j. Two extreme cases lend insight

as follows:

1. At one extreme, αj = 1 corresponds to the case where the decisions of track j are

completely unreliable; in this case, the weight computation in (3.16) will treat track j

as an undetected track. Observe that for the special case when αj = 1 for all tracks

(which happens when no tracks have been previously detected, so that P is the empty

set), the weights in (3.16) reduce to the linear weights of (3.6).

2. At the other extreme, αj = 0 corresponds to the case where track j produces

completely reliable decisions, in which case the cancellation in (3.10) of the ISI

symbols from track j is perfect; nevertheless, there will always be media noise from

track j that is not canceled by (3.10), and for this reason the contribution from track j

to the weights in (3.16) is small when αj = 0, but not zero.

Note that, when detecting the very first track, there will be no previously detected tracks,

so that P is empty. In this case, (3.10) reduces to the linear detector, and the weights of

3.16 reduce to the linear weights from (3.6). Thus, it follows that, in the proposed soft ITI

cancellation scheme, the first track is detected linearly.

Similar to the linear combining case, substituting (3.3) into (3.10) yields

y
(t)
k = wT

t gtx
(t)
k + wT

t ×

(∑
j 6=t

x
(j)
k gj +

∑
j

m
(j)
k gj + nk −

∑
j∈P

x̃
(j)
k gj

)
, (3.18)
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We remove the bias wT
t gt, to arrive at the conventional 1D recording model as follow:

z
(t)
k = x

(t)
k + η

(t)
k (3.19)

where z(t)
k = y

(t)
k /(w

T
t gt), and η

(t)
k = wT

t

(∑
j 6=t,j /∈P x

(j)
k gj +

∑
j∈P

(
x

(j)
k − x̃

(j)
k

)
gj +∑

jm
(j)
k gj + nk

)/(
wT
t gt
)

is the sum of the residual interference, media, and electronic

noise, whose variance is

σ2
η

(i)
=

1

2T

(
2Eh

∑
n6=i

αn
(
wT
i gn

)2
+M0

∑
n

(
wT
i gn

)2
+N0‖wi‖2

)/(
wT
i gi
)2
. (3.20)

Algorithm 2 provides the pseudocode of the proposed soft ITI cancellation algorithm.

The inputs to the algorithm are the ADC outputs, the ITI response, the ISI response, and

the detection order Π. The output of the algorithm is the set of a posteriori LLRs for each

track in Π. The algorithm begins by initializing αj = 1 for all tracks j. It then proceeds to

the main loop (line 2 – line 11), which steps through each track index in Π. In line 3, the

current track index is identified as t, and the set of previously detected tracks that will be

used for cancellation is identified as P in line 4. Observe that line 4 specifically excludes

the current track t from P , which is necessary if track t were detected earlier, since it would

not make sense to subtract the contributions from track t when the goal is to detect track

t. Observe further from line 4 that the first time through the main loop (n = 1), P

will be the empty set. In line 5, the weights are computed using (3.16), and in line 6, the

ITI cancellation and suppression is performed using (3.10) and z(t)
k = y

(t)
k /(w

T
t gt). After

canceling and suppressing the ITI, the result is applied to a 1D detector in line 8; this might

be Viterbi, BCJR, or an iterative detector that iterates between a channel detector and an

error-control decoder (see Sect. 3.2.3). In line 9, the soft estimates of the ISI symbols are

computed. These estimates will be used in the later passes through the main loop to cancel

ITI. Finally, in line 10, the reliability measure for these decisions is computed, again for
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Algorithm 2: Pseudocode of the Proposed Soft ITI Cancellation Detector
Inputs: ADC outputs {rk}

Crosstrack and downtrack responses {gj}, {hk}
Detection order Π

Output: LLR’s {λ(j)
k } for all detected tracks j ∈ Π

11 Init: αj = 1 for all j
2 for n = 1 to |Π| do
3 t = Π(n)
4 P = {Π(1), ...,Π(n− 1)}\{t}

5 wt =
(
gtg

T
t +

∑
j 6=t (αj2Eh + TM0) gjg

T
j +N0I

)−1

(2Eh + TM0) gt

6 z
(t)
k = wT

t

(
rk −

∑
j∈P x̃

(j)
k gj

)
/
(
wT
t gt
)

for all k

7 Compute σ2
η using (3.20)

8 {λ(t)
k } = Detect ({z(t)

k }, {hk}, σ2
η)

9 {x̃(t)
k } = Convolve ({tanh(λ

(t)
k /2)}, {hk})

10 αt = E((x
(t)
k − x̃

(t)
k )2)/Ex

11 end

using in the later passes through the main loop.

3.2.3 Numerical Example

We evaluate the performance of the proposed detector by simulating the model (3.3) in the

special case where there are N = 5 read heads and L = 9 inputs. We assume that the tracks

are coded independently by a rate-0.9 regular LDPC code of length 36409 and column

weight 3, constructed using the progressive edge growth method [44]. The per-bit SNR for

track t, ignoring the ITI from other tracks and after accounting for the rate-R code, can be

computed from (3.3) as

SNRt =
Eh/R

N0/‖gt‖2+M0

. (3.21)

In the downtrack direction we assume the E2PR2 ISI response h = [h0, ..., h4] = [1, 4, 6, 4, 1].

We further assume that the five read heads are centered over five adjacent tracks, and that

each reader exhibits the same Gaussian crosstrack response, namely, gT5 = [g1,5, ..., g5,5] =

[0.0183, 0.3679, 1, 0.3679, 0.0183] and gT5−j = [g1+j,5, ..., g5+j,5] for |j|≤ 4.
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Figure 3.1: Iterative detector based on turbo equalization [36].

The 1D detector of line 8 is implemented using the iterative detector shown in Fig. 3.1,

in which a BCJR soft-output channel detector iterates with a soft-output LDPC decoder

according to the turbo equalization principle [36]. Note that the BCJR detector does not

exploit the data-dependence of the media noise; we expect improved performance using a

pattern-dependent noise-predictive BCJR [4]. We implement 10 inner iterations (inside the

LDPC decoder) for each outer iteration of the turbo equalizer. We apply the termination

criterion from [45]: the iterative process continues as long as
∑

k|λ
(t)
k | increases, and it stops

as soon as it decreases. We consider first the performance in the absence of media noise

(σ2
j = 0), so that the relative media noise power γ = M0/(N0 + M0) reduces to γ = 0.

The resulting frame error rate (FER) performance is shown in Fig. 3.2 for three different

detectors: 1) the linear detector; 2) a hard ITI cancellation detector; and 3) the soft ITI

cancellation detector.

First, we focus on the case when all tracks are detected using linear ITI suppression,

which are the dashed gray curves in the figure. The two outer tracks1 (i.e., tracks ±2) never

stray from an FER near unity over the range of SNR values shown; to achieve FER < 10−2

for the outer tracks requires SNR0 = 40 dB (not shown). The middle track (track 0) achieves

FER = 10−3 at SNR0 = 13.6 dB, while the other two inner tracks (tracks ±1) require 15.4

1For convenience we renumber the tracks: track 0 is the center track, tracks ±1 are its neighbors, etc.
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dB, a 1.8 dB difference.

Fig. 3.2 also includes the results of the proposed soft cancellation detector, which

are the solid black curves in the figure. These results are based on a detection order of

Π = [0, 1,−1, 0, 1, 2, 1, 0,−1,−2,−1, 0], so that the middle track is detected first and last,

with all remaining tracks detected at least once along the way (among other candidate

detection orders we considered, this performed the best. The problem of optimizing Π to

maximize performance is an open problem). The performance for the middle track is only

0.2 dB better with soft ITI cancellation than with linear suppression: the middle track (track

0) with soft ITI cancellation achieves FER = 10−3 at SNR0 = 13.4 dB. However, soft ITI

cancellation improves performance for the remaining tracks. In particular, the two inner

tracks (tracks±1) perform identically to the middle track (track 0) with soft ITI cancellation.

Thus, for the two inner tracks, the soft ITI cancellation detector outperforms the linear

detector by 2 dB. The improvement from soft cancellation is even more dramatic for the

outer tracks: with soft ITI cancellation, the outer tracks (tracks ±2) achieve FER = 10−3

at SNR0 = 17.6 dB, which is only 4.2 dB worse than the center track, and over 22 dB

better than can be achieved with linear detection alone. These results suggest that, at least

in this one example, the advantage of the soft ITI cancellation strategy is not so much its

performance for the inner tracks, but rather its advantage is its ability to reliably recover

data from more tracks than is otherwise possible.

The solid gray curves in Fig. 3.2 show the performance of a hard ITI cancellation

detector, which mimics the proposed soft ITI cancellation detector except with hard decisions

ã
(j)
k = sign(λ

(j)
k ) used in place of soft decisions ã(j)

k = tanh(λ
(j)
k /2). The hard cancellation

detector performs about 0.2 dB worse than the soft cancellation detector for the three

inner tracks. Although the benefit of using soft decisions for ITI cancellation is modest in

this example, the fact that the benefit comes at essentially no cost in complexity makes it

attractive nonetheless.

Next, we consider the performance when the media noise accounts for 80% of the total
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Figure 3.2: FER performance in the absence of media noise (γ = 0).

noise power, so that γ = M0/(N0 +M0) = 0.8. All other parameters remain the same as

before. The resulting performance is shown in Fig. 3.3.

Consider first the linear detector: Similar to the case with γ = 0, we observe that the two

outer tracks are not recovered reliably for the range of SNR values shown. We also observe

that the middle track (track 0) and the other two inner tracks (tracks ±1) achieve FER

= 10−3 at SNR0 = 13 dB and 15.2 dB, respectively. With soft ITI cancellation, however,

we can recover the two outer tracks with FER = 10−3 at SNR0 = 19.4 dB, the two inner

tracks at SNR0 = 14.2 dB, and the middle track at SNR0 = 12.7 dB. The performance gain

for the soft cancellation detector thus depends on the track: it is a modest 0.3 dB for track 0,

but it grows to 1.0 dB for tracks ±1.

A comparison of Figs. 3.2 and 3.3 reveals insight into how the two detection strategies

react to media noise. In particular, as the media noise ratio increases from γ = 0 to γ = 0.8,

we observe the following:

1. For the linear detector, the penalty for tracks ±1 (relative to track 0) jump from 1.8
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Figure 3.3: FER performance when media noise is dominant (γ = 0.8).

dB to 2.2 dB.

2. For the soft ITI canceller, the penalty for tracks ±1 (relative to track 0) jump from 0

dB to 1.5 dB.

3. For the soft ITI canceller, the penalty for tracks ±2 (relative to track 0) jump from 4.2

dB to 6.7 dB.

The increased penalties in the face of media noise can be explained in part by the absence

of any mechanism in the proposed algorithm for estimating and canceling the interference

caused by media noise from interfering tracks.

3.3 Summary

We considered the problem of how to process the readback waveforms coming from an

array of two or more read heads in a TDMR application. We presented two strategies for

mitigating the ITI, one based on linear suppression and one based on soft cancellation.
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Numerical results demonstrated that the relative advantage of the two detection strategies

depends on the location of the track being detected. For the inner tracks near the center of

the read-head array, the gain of the soft ITI cancellation detector over the linear detector is

modest. For the outer tracks near the edge of the array, in contrast, the gain of the soft ITI

cancellation detector over the linear detector is significant. Therefore, for a given pass of a

read-head array, the soft ITI cancellation strategy has demonstrated its ability to reliably

recover data from more tracks than would otherwise be possible using linear ITI suppression.

Future work should develop adaptive implementations for these algorithms and explore the

optimization problem for the detection order Π.

From the next chapter forward, we add the synchronization challenge to the mix. First

in Chapter 4, we use the proposed detection strategies of this chapter plus other established

detection strategies for single-track detection of asynchronous tracks. We propose to reduce

the computational complexity of the established strategies by moving the synchronization

task after the equalization to a PR channel. Later, in Chapter 5, we will propose ROTAR

algorithm for multitrack detection of asynchronous tracks.
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CHAPTER 4

SYNCHRONIZATION FOR SINGLE-TRACK DETECTION

The objective here is to tackle the synchronization problem for single-track detection. We

assume asynchronous tracks with different phase and frequency offsets, meaning that neither

the bit boundaries (phase) nor the bit rates (frequency) are aligned between neighboring

tracks. We are interested to study the problem of mitigating ITI in detecting a single track

of interest, when the contributing tracks are asynchronous to each other. In particular, we

are interested to know which task comes first, the synchronization or ITI mitigation. If

synchronization precedes the ITI mitigation, it means we need to individually synchronize

each readback waveform to the track of interest before we can suppress ITI and detect

that particular track. In contrast, if synchronization follows the ITI mitigation, it means

we can synchronize only once to the track of interest after suppressing ITI from other

tracks. The answer to this question strongly impacts the computational cost of the overall

detection process: If we can efficiently synchronize for a track of interest after suppressing

the ITI, we will only need one synchronization loop for every track of interest instead of

one synchronization loop for every readback waveform or every ADC.

In a first attempt towards synchronization for TDMR, in Sect. 4.1, we study the

synchronization for the separable channel model of (3.3) with added timing offsets. Later, in

Sect. 4.2, we replace the separable channel with a realistic non-separable channel using the

readback waveforms provided by Ehime University [46]. We first explain synchronization

over the separable channel.

4.1 Synchronization Over Separable Channel

Using the two detection strategies of Chapter 3, we aim at detecting asynchronous tracks.

We consider asynchronous tracks having different frequency and phase offsets. Therefore, if
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1/T denotes the ADC sampling rate, every track j with frequency offset parameter ∆Tj has

a bit rate of 1/(T + ∆Tj), and a phase offset of τj . The underlying continuous readback

waveform of (3.1), therefore, becomes

ri(t) =
∑
j

gi,j

(∑
`

a
(j)
` h (t− `(T + ∆Tj)− τj)

+
(
a

(j)
` − a

(j)
`−1

)

(j)
` q(t− `(T + ∆Tj)− τj)

)
+ ni(t), (4.1)

where h(t) is the bit response whose bandwidth is half the bit rate.1 As before, we apply an

antialiasing filter to (4.1) and sample at the ADC rate yielding:

r
(i)
k =

∑
j

gi,j

(∑
`

a
(j)
`

∑
m

hmf ((k − `−m)T − `∆Tj −m∆Tj − τj)

+
(
a

(j)
` − a

(j)
`−1

)

(n)
` q(t− `(T + ∆Tj)− τj)

)
+ n

(i)
k , (4.2)

where f(t) =
sin(πt/(T+∆Tj)

πt/(T+∆Tj)
. For sufficiently small ∆Tj , this simplifies to:

r
(i)
k ≈

∑
j

gi,j

(∑
m

hmα
(j)
k−m +

∑
m

qmβ
(j)
k−m

)
+ n

(i)
k , (4.3)

where

α
(j)
k =

∑
`

a
(j)
` f (kT − `(T + ∆Tj)− τj) (4.4)

and

β
(j)
k =

∑
`

(a
(j)
` − a

(j)
`−1)

(j)
` f(kT − `(T + ∆Tj)− τj) (4.5)

respectively are the delayed ISI symbol and the delayed media noise symbol of track j at

time k.

Therefore, if we replace the ISI and the media noise symbols in (3.3), respectively, with

1Since different tracks, in general, have different bit rates, therefore the bit responses of different tracks
have different bandwidths. To avoid notation complexity, however, we avoid adding the superscript (j) for the
bit response of every track j.
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Figure 4.1: Asynchronous linear ITI suppression

(4.4) and (4.5), we have incorporated timing offset into our MIMO description of TDMR

channel according to:

rk =
∑
j

(∑
m

hmα
(j)
k−m +

∑
m

qmβ
(j)
k−m

)
gj + nk, (4.6)

In order to detect every track from the set of waveforms above, we applied our two

detectors of Chapter 3: 1) linear combining, and 2) soft ITI cancellation detectors.

4.1.1 Asynchronous Linear ITI Suppression

First, we apply the linear detector. The linear combining weights of (3.6) in Sect. 3.2.1,

where there is no timing offset, depends on the bit period T that is the same as the ADC

sampling period. With frequency offset, here, however, the bit period for every track j is

Tj = T + ∆Tj that is no longer the same as the ADC sampling period T . Therefore, the

linear combining MMSE weight for detecting track t becomes

wt =

(∑
j

gjg
T
j +

(
N0

2Eh + TjM0

)
I

)−1

gt. (4.7)

Nevertheless, in practice, the frequency offset parameters {∆Tj} are quite small. Therefore,

at least theoretically, it seems reasonable to ignore the frequency offset and apply the same

exact weights of (3.6) in order to suppress the ITI in the new asynchronous waveforms of

(4.6). Therein, we choose to asynchronously suppress ITI from the adjacent tracks before

we synchronize and detect every track. An example of asynchronous linear ITI suppression

with N = 3 read heads is shown in Fig. 4.1. Also, as Fig.4.1 shows, the synchronization
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Figure 4.2: Synchronous ITI cancellation

task is embedded inside a 1D Viterbi detector using a PSP for timing recovery.

4.1.2 Synchronous ITI Cancellation

Second, we apply the soft ITI cancellation detector according to Fig. 4.2. Similar to the

linear combining, the ITI suppression weights for detecting track t considering the frequency

offset parameters {∆Tj} becomes

(4.8)wt =

(∑
j

(
αj2Eh + TjM0

2Eh + TjM0

)
gjg

T
j +

(
N0

2Eh + TjM0

)
I

)−1

gt

Also similar to the linear combining detector and considering that {∆Tj} are small,

we choose to ignore the timing offsets in calculating the weights. Fig. 4.2 shows how ITI

cancellation detector is used to detect asynchronous tracks from the waveforms of (4.6).

To detect every track t, here, we first asynchronously suppress ITI by applying the MMSE

weights of (4.8). Next, we detect every track t using a soft-output Viterbi detector with

embedded PSP for timing recovery. In order to compute the interference caused by track

t, we apply the estimated timing offsets provided by the PSP to the sequence of the soft

estimates of the bits on track t and modulated the result with the ISI response. This way we

can synchronously cancel the interference caused by each track on every other track which

is going to be detected afterwards.
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Figure 4.3: BER performance of synchronous ITI cancellation detector (the same as that of
asynchronous ITI suppression) in the presence and absence of timing offsets (for convenience
we renumber the tracks: track 0 is the middle track and tracks ±1 are its neighbors).

4.1.3 Numerical Example

To verify the proposed detectors of asynchronous ITI suppression (Fig. 4.1) and synchronous

ITI cancellation (Fig.4.2), we simulated for a case of N = 3 read heads each centered on

their own track, a downtrack response of h = [1, 0.6, 0.2] and a crosstrack response of

{gi,j}1<i<K=7,1<j<N=3 ∈
[

0.0025 0.223 1 0.223 0.0025 0 0
0 0.0025 0.223 1 0.223 0.0025 0
0 0 0.0025 0.223 1 0.223 0.0025

]
. The frequency offset

parameters and the phase offsets of the K = 7 contributing tracks respectively were

[∆T1,∆T2,∆T3,∆T4,∆T5,∆T6,∆T7]/T = [200, 300, 50, 100, 160, 200, 300]ppm and [τ1,

τ2, τ3, τ4, τ5, τ6, τ7]/T = [0.11, 0.81, 0.73, 0.79, 0.32, 0.51, 0.29]. Also, all simulations were

performed in a dominant media noise environment with γ = 0.8. The set of black curves

in Fig. 4.3 show the BER performance of only the synchronous ITI cancellation detector,

since in this example, the two detectors performed almost the same. Fig. 4.3 also shows

the performance of the two detectors in the absence of timing offsets, shown as red curves

marked with “NO OFFSETS”. In the absence of timing offsets, the two detectors boil down
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to the linear combining and soft ITI cancellation detectors of Chapter 3. We observe that

there is a close match between the cases of detecting asynchronous tracks and synchronous

tracks (with no offsets).

Therefore, we conclude that the proposed detectors were effective in suppressing ITI

asynchronously before synchronizing and detecting every track of interest, without any loss

in performance. This is important because we were able to suppress ITI before applying

one synchronizing loop for every track of interest and therein largely save in computational

complexity.

4.2 Synchronization Over Nonseparable Channel

So far, we have considered a separable channel. A realistic model for TDMR, however, is

highly nonseparable. The nonseparable MIMO model which includes frequency and phase

offsets is similarly derived from (4.1)-(4.6) when both crosstrack and downtrack responses

are absorbed into a single impulse response h(i,j)(t) from track j to reader i, as follows.

We rewrite equation (4.1) for the nonseparable channel:

r(i)(t) =
∑
j

∑
`

a
(n)
` h(i,j)(t− `(T + ∆Tj)− τj) + n(i)(t). (4.9)

We filter the i-th readback waveform by a low-pass antialiasing filter and then sample at

the ADC rate 1/T . Further, we apply the practical assumption of sufficiently small ∆Tj to

arrive at the MIMO model for the nonseparable channel with frequency and phase offsets:

r
(i)
k =

∑
j

∑
m

h(i,j)
m α

(j)
k−m + n

(i)
k , (4.10)

where α’s are defined according to (4.4).

From this section forward, we omit the media noise and mainly focus on the synchro-

nization problem.
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Figure 4.4: Readers positions relative to the data tracks are marked with dashed lines.
The two readers (indicated with their responses) were used to extract the channel impulse
response. The tracks width (pitch) is 22.1nm, and the reader width is 85% of the track pitch.

We were provided with a set of readback waveforms by Ehime University. The wave-

forms were generated from a Voronoi model for TDMR channel [46]. These waveforms,

however, did not include any timing offsets. Therefore, in order to include timing offsets,

we extracted the waveforms’ underlying channel responses {h(i,j)} and generated new

waveforms according to (4.10). The readers positions relative to the data tracks and also

the two readers used to extract the channel impulse responses are shown in Fig. 4.4. These

readers are selected because they mainly cover the track of interest (the middle track) and

they are far from the outer tracks to avoid interference.

The entire read channel including the proposed architecture for detecting the middle

track (track 3) from N = 2 readback waveforms is presented in Fig. 4.5. Fig. 4.5 (a)

is the realization of the MIMO model of (4.10) where α’s are generated according to

(4.4) with frequency offset parameters {∆Tj} and phase offsets τj = 0, ∀j ∈ [2, 3, 4].

Here, the shifted user bits (α’s) are channeled through the estimated vectorized responses

ĥ(i,j) = [ĥ
(i,j)
0 , ..., ĥ

(i,j)
µ ] with memory µ, and ∀j ∈ [2, 3, 4] and ∀i ∈ [1, 2], which include all

the significant taps of ĥ(i,j)(t) sampled at the sampling rate 1/T .

Fig. 4.5 (b) is a MISO equalizer (N = 2 to 1) that shortens the channel in order to

detect the middle track. Here, we use the generalized partial response (GPR) equalization

strategy to derive the two equalizer filters and the target [47], [48]. Following a GPR
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Figure 4.5: The proposed architecture for detecting the middle track: (a) the MIMO model
with frequency offset of a nonseparable channel with N=2 readers and K = 3 tracks, (b)
a MISO equalizer to detect the middle track, and (c) a PSP algorithm embedded inside a
Viterbi detector

strategy presented in Appendix C, we derive the MMSE solution for joint optimization of

N equalizer filters and a target for single-track detection, in the absence of timing offsets.

In the presence of timing offsets, however, of course the solution changes. Nevertheless,

our key finding is that, for practical values of frequency offset parameters {∆Tj}/T that are

sufficiently small, and for any phase offsets, the change in the MMSE solution is negligible.

In fact, the change is so negligible that we can safely conclude that for practical timing

offsets in magnetic recording channel, the MMSE solution for joint optimization of the

equalizer filters and the target does not depend on the timing offsets. In other words, the

resulted equalizer and the target is transparent to timing offsets, as long as the frequency

offset parameter for the track of interest is sufficiently small. Therefore, the timing offsets

can be completely ignored in computing the MMSE solution with no performance loss. This

result is directly generalizable to MIMO equalization as well, which it will be discussed in

the next chapter.

Hence, the MISO equalizer in Fig. 4.5 (b) is the same equalizer that would have been

used if all tracks were written synchronously. The MISO equalizer breaks the problem down

to a conventional 1D synchronization and detection which can be jointly handled by a PSP

algorithm embedded inside a Viterbi detector, as in Fig. 4.5 (c).
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4.2.1 Numerical Results

Simulations of the proposed architecture of Fig. 4.5 were performed on K = 3 data tracks

of length L = 40950 bits. The Ehime waveforms were sampled twice the bit rate, therefore,

we used the first 2000 samples, corresponding to the first 1000 bits, of the waveforms to

compute the equalizer and the target. Since the sampling rate was twice the bit rate, the

equalizer filter coefficients are fractionally-spaced in time, and therefore the equalizer is

called a fractionally-spaced equalizer (FSE). We jointly optimized the FSE equalizer and

the target for every point of the SNR axis according to Appendix C. We then used the entire

length of the sector (81900 samples, or 40950 bits) to obtain the BER performance of Fig.

4.6. Frequency offsets were injected into the test waveforms according to Fig. 4.5. The

frequency offsets parameters were [∆T2,∆T3,∆T4]/T = [4000, 200, 20, 100]ppm.

Fig. 4.6 also shows the performance of the proposed architecture in the absence of timing

offsets where ∆Tj = 0. In the absence of timing offsets, the Viterbi plus PSP block in Fig.

4.5 reduces to a standard Viterbi detector. We observe that the performance of the middle

track in the presence of timing offsets closely matches the performance in the absence of

timing offsets, which clearly certifies that the proposed architecture is capable of detecting

asynchronous tracks. We also simulated for different reader geometries and different number

of readers and relevant tracks to detect a single track of interest. The results were unanimous

in suggesting that architectures similar to Fig. 4.5 where MISO equalization precedes the

synchronization and detection can successfully detect the track of interest.

Finally, based on the results provided on nonseparable and separable channel models,

we were able to equalize ignoring the presence of timing offsets before synchronizing and

detecting the track of interest. As mentioned before, this result implies that we do not need

one synchronization loop for every reader. Rather, one synchronization loop is sufficient for

every track of interest.

Therefore, the contribution of this thesis for the case of detecting one track at a time,

is a notable reduction in complexity which results when synchronization moves after the
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Figure 4.6: BER performance of the proposed architecture of Fig. 4.5 for detecting the
center track.

equalization. This is in contrast to the conventional read channels where synchronization

precedes equalization.

4.3 Summary

In this chapter, we first considered the single-track detection from multiple readback

waveforms when the tracks have different frequency and phase offsets. We applied the

proposed soft ITI cancellation detector of Chapter 3 to asynchronously mitigate ITI before

synchronizing for and detecting a single track of interest. Since the proposed detector breaks

the problem down to several 1D detection problems, a soft-output Viterbi detector plus PSP

for timing recovery was used for synchronization and detection of every track of interest.

Numerical results showed that the proposed architecture is capable in mitigating ITI for the

separable MIMO model considered.

Next, we considered a more realistic nonseparable MIMO model for TDMR channel.

We found that, within working precision, the solution for joint optimization of the equalizer
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filters and the target is independent of timing offsets. This finding has important implication:

As opposed to the conventional TDMR read channels where equalization is done after

synchronization and therefore there is one synchronization block required for every reader

used, we can effectively equalize before synchronizing for and detecting every track of

interest, and therefore we only need one synchronization block for detecting every track of

interest, regardless of the number of readers used.
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CHAPTER 5

SYNCHRONIZATION FOR MULTITRACK DETECTION

Current implementations of TDMR technology use multiple readers for single-track detec-

tion. In the previous chapter, we addressed the synchronization problem for single-track

detection: The synchronization problem in the single-track setting is straightforward, since

off-the-shelf one-dimensional strategies based on a PLL, ITR, or PSP can be applied after

the MISO equalizer front end. In this case the equalizer outputs are synchronized to the

track of interest, regardless of the timing offsets of the interfering tracks [49]. The result is

an instance of modular design, in which the functions of synchronization and detection are

implemented separately.

To achieve the full potential of TDMR system, however, the future implementations

will embrace ITI by jointly detecting multiple adjacent tracks using a joint or muiltitrack

detector [5]. Within multitrack detection, the synchronization problem drastically changes:

We cannot simultaneously synchronize a readback waveform to multiple tracks which have

different timings. Fig. 5.1 illustrates an example of two overlapping readers scanning two

adjacent tracks which have different bit rates (frequency) and bit boundaries (phase). We

can clearly see that each reader can only be synchronized to either one of the tracks and

not to the both tracks at the same time: being synchronous to one necessarily implies being

asynchronous to the other. The implication is that even if the timings of the two tracks are

perfectly known, unlike the previous chapter, synchronization and detection can no longer

be performed separately, but instead must be performed jointly. There has been no published

solution for this problem in the literature so far.

In this chapter, we present the rotating target (ROTAR) algorithm for the joint synchro-

nization and multitrack detection of asynchronous tracks from multiple readback waveforms

[50]. First in this chapter, we explain ROTAR considering a perfectly equalized channel.
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Figure 5.1: An example of two tracks of interest whose timing differ in frequency and phase,
and two readers with significant overlap.

Next in Chapter 6, we will present our equalization strategy to precede the ROTAR algorithm.

5.1 Channel Model and Assumptions

We consider the problem of jointly detecting K tracks from N readback waveforms. We

assume a perfectly equalized partial response channel with independent timing offsets for

each of the K tracks, so that the readback waveform from the i-th of N read heads is:

ri(t) =
K∑
j=1

∑
n

a(j)
n hi,j(t− nT − τ (j)

n ) + ni(t) (5.1)

where a(j)
n ∈ {±1} is the n-th bit of track j ∈ {1, . . . K}, hi,j(t) is the bit response at reader

i from track j, assumed to be bandlimited to half the bit rate, τ (j)
n ≥ 0 is the timing offset

for the n-th bit of track j, defined relative to the ADC sampling period T , and ni(t) is the

additive noise for the i-th read head. We assume independent white and Gaussian noise with

power-spectral density N0/2 for each of the read heads. The assumption that the {τ (j)
n } be

nonnegative is equivalent to an assumption that the ADC sampling rate is large enough to

avoid signal aliasing.

The i-th readback waveform is filtered by a low-pass antialiasing filter and then sampled
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at the ADC rate 1/T , yielding

r
(i)
k =

K∑
j=1

∑
n

a(j)
n hi,j(kT − nT − τ (j)

n ) + n
(i)
k , (5.2)

where n(i)
k is the k-th sample of the filtered noise ni(t), with zero mean and variance

N0/(2T ). Collecting the N samples from each of the N read heads at time k into the vector

rk = [r
(1)
k , ..., r

(N)
k ]T , and using (5.2), we arrive at a MIMO model:

rk =
K∑
j=1

∑
n

a(j)
n hj(kT − nT − τ (j)

n ) + nk, (5.3)

where hj(t) = [h1,j(t), h2,j(t), ..., hN,j(t)]
T is the vector-valued bit response (across all N

readers) for track j, and nk = [n
(1)
k , n

(2)
k , ..., n

(N)
k ]T .

5.2 Detection Algorithms

5.2.1 The Case of A Single Isolated Track

Before attacking the general problem of detecting multiple asynchronous tracks from

multiple readback waveforms, we first examine the simpler case of detecting a single

isolated track (K = 1) from a single readback waveform (N = 1) of the form r(t) =∑
n anh(t− nT − τn) + n(t), where an is the n-th bit of the track, h(t) is the bit response

whose bandwidth is equal to half the bit rate, and τn is the timing offset of the n-th bit. To

be concrete, we will assume a constant frequency offset here, so that τn = n∆T , where ∆T

is the frequency offset parameter. Sampling at the ADC rate 1/T yields:

rk = r(kT ) =
∑
n

anh(kT − nT − τn) + nk. (5.4)

In the following we describe two strategies for implementing the maximum-likelihood

(ML) sequence detector: 1) the conventional modular strategy, and 2) an alternative strategy.
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The latter strategy will eventually be generalized and adopted for the multiple-track scenario.

1) The Conventional Modular Strategy

The usual modular approach is to separately synchronize and detect. This is illustrated in

the lower branch of Fig. 5.2. First, the ADC samples {rk} are passed to an ITR block, which

aims to recover the readback samples that would have arisen were the readback waveform

sampled at the correct sampling times, resulting in:

r̂k = r(kT + τk)

=
∑
n

anh(kT − nT − τn + τk) + n̂k

≈
∑
n

anh(kT − nT − τk + τk) + n̂k (5.5)

=

µ∑
`=0

h`ak−` + n̂k, (5.6)

where the approximation (with τn replaced by τk) is valid when the timing offset varies

slowly enough that it is approximately constant over the duration for which the target

h(t) is significant, where {hk = h(k(T + ∆T ))} is the bit response sampled at the bit rate,

and where the interpolated noise {n̂k} has the same statistics as the original {nk}. For

convenience we assume a causal target h = [h0, h1, . . . , hµ]T with memory µ, so that hk = 0

for both k < 0 and k > µ. After synchronization, the interpolated samples of (5.6) may

then be passed to a 2µ-state Viterbi detector, designed for the target h.

2) An Alternative Strategy

Rather than resampling the ADC outputs via interpolation, however, an alternative

approach would be to feed them directly to a detector that internally accounts for the

asynchrony, as illustrated in the upper branch of Fig. 5.2. (This is the approach taken by the

ROTAR algorithm introduced in Sect. 5.2.2.) This is possible because we can approximate
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Figure 5.2: Conventional modular (lower branch) versus alternative (upper branch) strategy
in synchronization and detection of a single isolated track.

the noiseless ADC output sk = rk − nk from (5.4) as the convolution of the bit sequence

{ak} with a time-varying impulse response, as derived below:

sk =
∑
n

anh(kT − nT − τn)

≈
∑
n

anh(kT − nT − τk) (5.7)

≈
µ+M/2∑
`=−M/2

h(`T − τk)ak−`, (5.8)

where the approximation in the second line is the same as in (5.5). As a sanity check, the

time-varying convolution in (5.8) reduces to the time-invariant convolution in (5.6) for the

special case when τk = 0 for all k, i.e., for the special case when the ADC is synchronized

to the bit rate. In that case, the limits of the last sum in (5.8) range from ` = 0 to µ. In

contrast, in the general case when the ADC is not synchronized, the limits of the sum would

in principle extend from ` = −∞ to∞ for a bandlimited bit response. In practice, however,

there will only be a small number of terms that contribute significantly to the sum. To

account for this, we introduce a new variable M , which we assume to be even, representing

the extra memory used to represent the time-varying impulse response, beyond the memory

µ of the original target. The second approximation in (5.8) is because M is finite, and is

accurate for even moderate choices of M .

An example of a time-varying target is shown in Fig. 5.3, assuming a frequency offset of
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Figure 5.3: An illustration of a moving target for the case of frequency offset with ∆T/T =
2× 10−4, and a sector length L = 104, assuming M = 8: (a) The target h[0] at time k = 0;
(b) the target h[2500] at one quarter of the sector; (c) the target h[7500] at three quarters of
the sector; and (d) the target h[10000] at the end of the sector.

τk = k∆T with ∆T/T = 2× 10−4, and a sector of length L = 104 bits. The extra memory

in this illustration is M = 8. At the beginning of the sector (Fig. 5.3a), the resampled target

is a zero-padded version of the synchronous target h = [h0, h1] = [1, 0.5], with only two

nonzero taps. As we move forward through the sector, the target drifts to the right and the

number of nonzero taps increases. At one quarter of the way through the sector (Fig. 5.3b),

the target is shifted by τk/T = 0.5 bit periods to the right, and clearly has more than two

significant taps. Likewise at three quarters of the way through the sector (Fig. 5.3c), where

the target has shifted by τk/T = 1.5 bit periods, there are more than two significant taps.

By the end of the sector (Fig. 5.3d), the target has shifted by two full bit periods, and again

has only two nonzero taps. With the aid of (5.8), the unsynchronized ADC output may

be viewed as the output of a time-varying finite-state machine with independent noise, so

that the ML detector can be implemented by a 2µ+M -state Viterbi algorithm based on the
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time-varying target

h[k] = [h(−MT/2− τk), . . . , h((µ+M/2)T − τk)]T

with memory µ+M . The time-varying target prevents us from precomputing the expected

outputs for each state transition in the trellis; instead they must be computed anew at each

stage according to the convolution in (5.8).

The example of Fig. 5.3 seems to suggest that the amount of extra memory M required

to accommodate the moving target will depend on not only the severity of the frequency

offset but also the length of the sector. The extra memory is a significant drawback because

it increases the number of states and therefore the complexity of the detector. Fortunately

there is an efficient strategy for significantly reducing the memory requirements, regardless

of the frequency offset parameter and the sector length, as described in Sect. 5.2.2.

3) Numerical Results

We examine the alternative strategy by using the time-varying convolution of (5.8) to

model the readback waveform, according to:

rk =

µ+M/2∑
`=−M/2

h(`T − τk)ak−` + nk, (5.9)

where the time-varying target is the same used in Fig. 5.3, h = [1, 0.5], assuming a frequency

offset of τk = k∆T with ∆T/T = 2 × 10−4, and a sector of length L = 104 bits. We

implement the upper branch of Fig. 5.2 using a Viterbi algorithm where the expected output

for every transition (p, q) is computed anew for time k, according to:

ok(p, q) =

µ+M/2∑
`=−M/2

ak−`(p, q)h(`T − τk),

where {ak(p, q)} are the bits on the survivor path which arrives at the transition from state
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Figure 5.4: BER performance of the alternative strategy with time-varying target based on
h = [1, 0.5], in detecting a single isolated track from a single readback waveform of (5.9).

p at time k to state q at time k + 1. The branch metric for this transition (p, q) at time k is

γk(p, q) = |rk − ok(p, q)|2.

Fig. 5.4 shows the BER performance results of the alternative strategy with different

values of extra memory parameter M . The curve labeled “TIME-VARYING TARGET 8”

shows the performance of a 2µ+M = 21+2-state Viterbi algorithm whose memory parameter

is M = 2. Similarly, the curves labeled “TIME-VARYING TARGET 32” and “TIME-

VARYING TARGET 128” show the performance of 2µ+M = 21+4-state and 2µ+M = 21+6-

state Viterbi algorithm with M = 4 and M = 6, respectively.

Also shown in Fig. 5.4 is the performance of a fictitious system for which the track was

written synchronously with the ADC sampling rate. Therefore a standard Viterbi algorithm

with 2µ = 21 states can detect this synchronous case. The performance is represented by the

dashed line labeled with “NO OFFSET 2”.

We observe that the alternative strategy based on a time-varying target with M = 4 and
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also M = 6 closely match the performance of the synchronous system with no timing offset.

This means that a choice of M = 4 can sufficiently capture the movement of the target

throughout the sector. Nevertheless, the high complexity due to the extra memory added is

the drawback of the alternative strategy that will be addressed in Sect. 5.2.2.

5.2.2 Joint Detection of Multiple Asynchronous Tracks

Here, we turn our focus back to the joint detection of K tracks from N readback waveforms.

Unlike the case of the isolated track of the previous section, we can no longer separately

synchronize and detect in a modular way. Nevertheless, the alternative strategy based on

a time-varying target perfectly suits our purpose. Applying the time-varying convolution

approximation from (5.8) separately to each track’s contribution to reader i, the vector of

readback samples from (5.3) can be written as:

rk ≈
K∑
j=1

µ+Mj/2∑
`=−Mj/2

hj(`T − τ (j)
k )a

(j)
k−` + nk, (5.10)

where Mj is the extra memory parameter assigned to track j. This is a noisy output of a

finite-state machine, so that the K tracks can be jointly detected using the Viterbi algorithm.

The expected outputs for a transition (p, q) at time k are:

ok(p, q) =
K∑
j=1

µ+Mj/2∑
`=−Mj/2

a
(j)
k−`(p, q)hj(`T − τ

(j)
k ), (5.11)

where {a(j)
k (p, q)} are the bits of track j on the survivor path which arrives at the transition

from state p at time k to state q at time k + 1. The branch metric for this transition (p, q) at

time k is γk(p, q) = ||rk − ok(p, q)||2.

1) High Complexity

The complexity of the joint Viterbi algorithm is dominated by the number of states
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∏K
j=1 2(µ+Mj). To illustrate how quickly the complexity can grow, consider the example

of Fig. 5.1, with K = 2 tracks of interest and N = 2 readers. Suppose that the channel

response in the absence of frequency offset (∆T1 = ∆T2 = 0) is:

H(D) =

 1 + 0.5D 0.4 + 0.16D

0.4 + 0.16D 1 + 0.5D

 , (5.12)

where H(i,j)(D) denotes the response at reader i from track j. The responses from both

tracks have memory µ = 1. Hence, if there were no timing offsets, the standard joint

Viterbi algorithm would require 4 states. Suppose instead that ∆T1/T = 2 × 10−5 and

∆T2/T = 2× 10−4, and that the length of the sector is L = 104 bits. Therefore, by the end

of the sector, the responses of tracks 1 and 2 will shift by 0.2 bit periods and 2 bit periods,

respectively. In order to capture these movements and also to include the significant taps of

the moving responses, a reasonable choice for the extra memories would be M1 = 2 and

M2 = 4, which would result in a total of 23×25 = 256 states. Consequently, compared with

the case where both tracks are synchronously written, implementing the Viterbi detector for

this example increases the number of states from 4 to 256. Fortunately, as described below, a

more efficient implementation of the time-varying target can achieve the same performance

with a significant reduction in the amount of extra memory required.

2) Numerical Results

We examine the alternative strategy in detecting K = 2 tracks from N = 2 readback

waveforms of (5.10), where the target and the frequency offset parameters are set according

to the example above. We implement a joint Viterbi algorithm where the expected outputs

for every transition (p, q) is computed anew for every time k, using (5.11).

The BER performance of the alternative strategy is shown in Fig. 5.5. The figure plots

the average BEER for the two tracks being detected, as a function of SNR. (Not shown are

the individual error rates for each track, which are a close match to the average because of
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Figure 5.5: BER performance of the alternative strategy with time-varying target based on
(5.12) in detecting K = 2 tracks from N = 2 readback waveform.

the symmetry in this example.)

The curve labeled with “TIME-VARYING TARGET 64” corresponds to the case where

M1 = M2 = 2, yielding 23 × 23 = 64 states. Since at the end of the sector the response

of track 1 will shift by 2 bits, the choice of M2 = 2 which adds 2 extra memory to each

side of the response, is not big enough to entirely capture this shift. This justifies the poor

performance of the 64-state joint Viterbi.

The curve labeled “TIME-VARYING TARGET 256” corresponds to the case where

M1 = 2 and M2 = 4, yielding 23 × 25 = 256 states. We observe that, as expected, this

choice for the extra memory parameters is sufficient since the performance of the 256-state

joint Viterbi closely matches the performance of a standard Viterbi with 22µ=1
= 4 states

that detects the synchronous system with no timing offsets.

Overall, the only problem seems to be the high complexity due to the extra memory

required to capture the moving responses throughout the sector.
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3) The ROTAR Algorithm

We have seen how frequency offset causes the time-varying impulse response to both

shift and elongate as time progresses. Nevertheless, we can avoid the need for large values

of the extra memory parameters {Mj}, even for extreme cases of large frequency offsets

and large sector lengths, if we modify the detector to dynamically track only the significant

coefficients of the time-varying impulse response. Towards that objective, let us decompose

the k-th timing offset for track j into its integer and fractional parts:

τ
(j)
k = d

(j)
k T + θ

(j)
k , (5.13)

where

d
(j)
k =

⌊
τ

(j)
k /T

⌋
∈ {0, 1, 2, . . . }

is the integer part, and

θ
(j)
k = τ

(j)
k − d

(j)
k T ∈ [0, T )

is the fractional part. With this definition, we can approximate (5.3) as:

rk =
K∑
j=1

∑
n

a(j)
n hj(kT − nT − τ (j)

n ) + nk

≈
K∑
j=1

∑
n

a(j)
n hj(kT − nT − τ (j)

k ) + nk

=
K∑
j=1

∑
n

a(j)
n hj(kT − nT − d(j)

k T − θ(j)
k ) + nk

≈
K∑
j=1

µ+Mj/2∑
`=−Mj/2

a
(j)

k−`−d(j)k
hj(`T − θ(j)

k ) + nk. (5.14)

The two approximations above are exactly the same as the two used in (5.7) and (5.8)

for the isolated track case: The first approximation is valid when the timing offsets are
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approximately constant over the duration of the bit response, and the second approximation

is valid for sufficiently large parameters {Mj}.

The model in (5.14) captures the essence of the proposed ROTAR algorithm. Here, the

timing offset τ (j)
k is distributed among the two sides of the convolution: The integer part

acts as a time-varying delay on the bits, while it is only the fractional part that shifts the

responses. The term rotating target is derived from the behavior of the target in (5.14) over

the duration of a sector: Each time the target approaches a shift of one full bit, the delay dk

increments by one, and the response “rotates” or reverts back to its original unshifted form.

The model in (5.14) is also a noisy version of the output of a time-varying finite-state

machine, and thus the ML detector can be implemented using, for example, the Viterbi

algorithm with expected outputs for a transition (p, q) at time k computed as:

ok(p, q) =
K∑
j=1

µ+Mj/2∑
`=−Mj/2

a
(j)

k−`−d(j)k
(p, q)hj(`T − θ(j)

k ). (5.15)

Because of the time-varying fractional delay, the expected outputs will vary with time and

cannot be precomputed. Furthermore, because of the time-varying integer delay of the bits,

the structure of the trellis will change each time the integer delay increments.

The key advantage of the rotating property is that it enables us to use small values of

the memory parameters {Mj}, and thus small overall complexity, without any performance

loss. In particular, since the fractional delay parameters {θ(j)
k } are limited to the range

[0, T ), the vast majority of the signal energy of the delayed bit responses can be captured

by choosing either Mj = 2 or Mj = 4 for the asynchronous tracks, with Mj = 2 being a

reasonable choice for most applications; the complexity disadvantages of moving to Mj = 4

will likely outweigh the marginal performance advantages. Thus, the rotating target strategy

significantly reduces the extra memory required, independent of both the severity of the

frequency offset and the sector length.

The pseudocode of the proposed ROTAR algorithm is shown in Algorithm 3 and 4.
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Algorithm 3 calls Algorithm 4 to rearrange the states whenever an increment in the integer

offset of any of the input tracks is detected. Algorithm 3 adopts the genie-aided assumption

that the timing offsets of all the input tracks are known. (The case of unknown timing offsets

that must be estimated is handled later, by Algorithm 5.) The inputs to Algorithm 3 are the

ADC outputs, the responses from all K tracks and the original memory µ (assumed to be the

same for all tracks) of the responses, the maximum of extra memories of all tracks Mmax =

max
j
Mj that will extend the trellis, and the genie-aided timing offsets. The output is the set

of detected bits of all K tracks.

Algorithm 3 begins by setting the initial state to state 0, in line 1 where the partial path

metric of state 0 and all other states at time 0, respectively, are set to 0 and∞. Also, the

survivor path for every state p at time 0 (S0(p)) is initialized with an empty vector in line 2.

The algorithm then proceeds to the main loop (line 3 through line 16) which steps through

each stage of the trellis. The integer and the fractional offsets are computed for every track

j in line 4 and line 5, respectively. Line 6 through line 15 step through all state transitions

at stage k. The expected outputs and the transition metrics are computed, respectively in

line 7 and line 8, for the two transitions from those states p which lead to the state q. Line 9

checks if the integer offset of any of the tracks is incremented. In case of an increment, the

trellis should be rearranged and therefore line 10 calls Algorithm 4 to rearrange the partial

path metrics {Φk(p)} and the survivor paths {Sk(p)} for all states p at time k. Thereafter,

the algorithm continues exactly as in the standard Viterbi. The predecessor of state q at time

k + 1 is computed in line 12. The partial path metric of state q at time k + 1 is updated in

line 13. Also in line 14, the survivor path of state q is updated by concatenating (denoted

as operator |) the survivor path of the predecessor of state q with the predecessor of state q.

Finally, the estimated bits of all K tracks are extracted from the survivor path that minimizes

the path metric at the end of the trellis.

The inputs to Algorithm 4 are the partial path metrics, the survivor paths, and the

predecessors of all states p at time k, and also the integer bit delays of all tracks j. The
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Algorithm 3: ROTAR with Known Timing

Inputs: ADC outputs {rk}, responses {hj(t)}, µ, Mmax, τ (j)
k ∀k,∀j

Output: {âj}
11 Init: Φ0(0) = 0, Φ0(p) =∞ ∀p 6= 0
22 Init: S0(p) = [ ] ∀p
3 for k = 0 to L+ µ+Mmax − 1 do

4 d
(j)
k =

⌊
τ

(j)
k /T

⌋
∀j

5 θ
(j)
k = τ

(j)
k − d

(j)
k T ∀j

6 for q = 0 to Q− 1 do
7 Compute ok(p, q) using (5.15) ∀p→ q

8 γk(p, q) = ||rk − ok(p, q)||2 ∀p→ q

9 if d(j)
k 6= d

(j)
k−1 ∀j then

10 ({Φk(p)}, {Sk(p)})
= Rearrange States ({Φk(p)}, {πk(p)}, {Sk(p)}, {d(j)

k })
11 end
12 πk+1(q) = argmin

p
{Φk(p) + γk(p, q)}

13 Φk+1(q) = Φk(πk+1(q)) + γk(πk+1(q), q)

14 Sk+1(q) = [Sk(πk+1(q))|πk+1(q)]

15 end
16 end
17 Extract {âj} from the survivor path that minimizes ΦL+µ+Mmax

outputs are the rearranged partial path metrics, and the rearranged survivor paths of all states

p at time k. The algorithm begins by declaring an empty vector collectnewstates in line 1.

From line 2 through line 15, the algorithm finds a new state for every old state and stores it in

the vector collectnewstates, as follows: First, in line 3, the function de2bin converts the

decimal oldstate to its corresponding binary (over alphabet {−1,+1}) vector denoted as

OLDSTATE, so that OLDSTATE = [OLDSTATE(1), · · · , OLDSTATE(K)], where

OLDSTATE(j) denotes the part of the binary vector OLDSTATE which corresponds to

track j. Likewise in line 4, the predecessor of the oldstate is converted to a binary vector

denoted as Π = [Π(1), · · · ,Π(K)] where Π(j) denotes the part of the predecessor correspond-

ing to track j. An empty vector newstate is declared in line 5. From line 6 through line 13,

the algorithm steps through each track: In line 7, the track with an increment in its integer
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Algorithm 4: Rearrange States

Inputs: {Φk(p)}, {Sk(p)}, {πk(p)}, {d(j)
k }

Output: {Φk(p)}, {Sk(p)}
1 collectnewstates = [ ]
2 for oldstate = 0 to Q− 1 do
3 OLDSTATE = de2bin (oldstate)
4 Π = de2bin (πk(oldstate))
5 newstate = [ ]

6 for j = 1 to K do
7 if d(j)

k 6= d
(j)
k−1 then

8 NEWSTATE(j) = Π(j)

9 else
10 NEWSTATE(j) = OLDSTATE(j)

11 end
12 newstate = [newstate|NEWSTATE(j)]

13 end
14 collectnewstates = [collectnewstates|bin2dec (newstate)]

15 end
16 Φim(p) = Φk(p) ∀p
17 Sim(p) = Sk(p) ∀p
18 for newstate = 0 to Q− 1 do
19 ind = Find (collectnewstates(newstate) = collectnewstates)
20 Φk(newstate) = min(Φim(ind))
21 Sk(newstate) = Sim (argmin

ind∈ind
(Φim(ind)))

22 end
23 Φk(p) =∞ ∀p /∈ collectnewstates

offset is detected. In case of an increment, the part of the predecessor corresponding to track

j should replace the part of the new state corresponding to track j. Hence NEWSTATE(j)

is set to Π(j)(p), in line 8. Otherwise, the part of the new state corresponding to track j

should be the same as the part of the old state corresponding to track j. Hence, in line 10,

NEWSTATE(j) is set to OLDSTATE(j). In line 12, the binary vector newstate collects

every part of the new state corresponding to every track, one by one. In line 14, this vector

is converted to decimal to represent the new state for the oldstate. Here, collectnewstates

collects all new states for all old states from 0 to Q− 1. The old partial path metrics and the

old survivor paths are stored in Φim and Sim, respectively in line 16 and line 17. Line 18
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to line 22 determines the partial path metric and the survivor path for every newstate. We

should note that, the mapping from every old state to its corresponding new state is not

one-to-one. For example, we might find that both states 2 and 6 change to new state 3. In

this case, the new state 3 takes over the old state which has the smaller partial path metric.

Thus, in line 19, the indices of the duplicate mappings for every newstate are found and in

line 20, the smaller partial path metric is selected as the partial path metric of the newstate.

Similarly, in line 21, the survivor path of the state with the smaller partial path metric is

selected as the survivor path of the newstate. Finally in line 23, those new states that do not

appear in the vector collectnewstates are killed by setting their partial path metrics to∞.

To help appreciate the complexity reduction of the ROTAR algorithm let us revisit

the example in Sect. 5.2.2: There we saw that a high-complexity implementation of a

joint Viterbi detector with a non-rotating target required the memory parameter values

of M1 = 2 and M2 = 4, which results in 256 states. Using ROTAR, however, we can

get similar performance using M1 = 2 and M2 = 2, which results in only 23 × 23 = 64

states. Moreover, since the responses from track 2 shift by two bit periods by the end of the

sector, we only need to rearrange the structure of the trellis twice through the entire length

of the trellis. The computational complexity of this rearrangement in Algorithm 4 is no

greater than the computational complexity required to process one stage of the trellis, or

equivalently one bit for each track. The extra complexity of Algorithm 2 is thus negligible

in relation to the dramatic reduction in overall complexity afforded by the ROTAR algorithm.

4) Locking All ADC’s to One Track

The motivation for the ROTAR algorithm stems from the simple observation that it

is impossible to simultaneously synchronize the ADC’s to multiple asynchronous tracks.

Nevertheless, this does not mean that we must resort to using free-running ADC’s with

sampling rates 1/T that are not matched to the bit rate of any of the tracks of interest. Instead,

while it is impossible to synchronize the ADC’s to multiple tracks simultaneously, we can
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always synchronize them to one of the tracks, and there is a significant complexity advantage

in doing so. Synchronizing all of the ADC’s to one track enables us to set the corresponding

Mj parameter to zero, significantly reducing the number of trellis states. Synchronizing to

one of the tracks can be implemented using a single timing-error detector for the track along

with a single PLL that feeds either all of the ADC’s (for a real-time implementation) or a

bank of interpolative filters, one for each ADC (for a digital implementation).

5) ROTAR Algorithm with PSP For the case when the timing offsets are not known, a

timing estimation strategy should be used with ROTAR. We propose to use per-survivor

processing inside ROTAR to estimate the timings [27]. The algorithm runs a separate PLL

for each survivor path, so that every node in the trellis has its own estimate of the timing

offsets.

The pseudocode of the proposed ROTAR algorithm with PSP is presented in Algorithm

5. The changes in Algorithm 5 compared to Algorithm 3 are marked with an asterisk. Line 1

implements line 1 and line 2 from Algorithm 3. In line 2, the estimated timing offsets for all

states are initialized to zero. Also, in line 3 a variable sum(j)(p) is defined and initialized

to zero for every state p and track j. This variable will be used later, in line 15 and line 16,

in the PLL update equation. Line 4–line 17 step through each stage of the trellis. In line 5,

the maximum estimated integer offset among all states p is selected as the integer offset for

all tracks j. This is implemented to help PLL convergence. Line 6 computes the fractional

offset for every track j and every state p. Line 7 through line 13 are similar to Algorithm

3, considering that the timings are estimated and are different for each state p. Line 13

implements line 12 – line 14 from Algorithm 3. In line 14, the estimate of the timing

offset of every track j is calculated by taking a sum over the estimates which every reader

i provides for track j. Here, we have used the Mueller-Muller estimate [23] to compute

the error estimate from every reader i for every track j. We should add that the equation

in line 14 generalizes the Mueller-Muller estimate, that was originally developed for a 1D

80



Algorithm 5: ROTAR with PSP
Inputs: ADC outputs {rk}, responses {hj(t)}, µ, Mmax

Output: âj ∀j
1 Implement line 1–line 2 from Algorithm 3
2*2 Init: τ̂ (j)

0 (p) = 0 ∀j,∀p
3*3 Init: sum(j)(p) = 0 ∀j,∀p
44 for k = 0 to L+ µ+Mmax − 1 do

5*5 d̂
(j)
k = max

p
bτ̂ (j)
k (p)/T c ∀j

6*6 θ̂
(j)
k (p) = τ̂

(j)
k (p)− d̂(j)

k T ∀j,∀p
7 for q = 0 to Q− 1 do
8 Compute ôk(p, q) using (5.15) ∀p→ q

9 γk(p, q) = ||rk − ôk(p, q)||2 ∀p→ q

10 if d̂(j)
k 6= d̂

(j)
k−1 ∀j then

11 ({Φk(p)}, {Sk(p)})
= Rearrange States ({Φk(p)}, {πk(p)}, {Sk(p)}, {d̂(j)

k })
12 end
13 Implement line 12–line 14 from Algorithm 3

14*14 ε̂
(j)
k (q) =

∑N
i=1 r

(i)
k ô

(i,j)
k−1(q)− r(i)

k−1ô
(i,j)
k (q) ∀j

15*15 sum(q) = sum(πk+1(q)) + ε̂k−1(πk+1(q))

16*16 τ̂ k+1(q) = τ̂ k(πk+1(q)) + αε̂k(q) + βsum(q)

17 end
18 end
19 Extract {âj} from the survivor path that minimizes ΦL+µ+Mmax

setting with only one readback signal, to the MIMO setting with multiple readback signals.

Further, line 14 assumes that the N readers significantly cover track j, since otherwise their

signal are not useful to provide an estimate for track j. The expected outputs {ô(i,j)
k (q)} are

the expected outputs from track j to reader i on the survivor path ending at state q. These

outputs are included in the already computed expected outputs of line 8 and are defined

according to

ô
(i,j)
k (q) =

µ+Mj/2∑
`=−Mj/2

a
(j)

k−`−d̂(j)k
(q)hi,j(`T − θ̂(j)

k (πk+1(q))), (5.16)
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where {a(j)
k (q)} are the bits of track j on the survivor path ending at state q at time k + 1.

In line 15, the vector variable sum(q) = [sum(1)(q), ..., sum(K)(q)]T sums over the past

values of the estimated error vector ε̂k = [ε̂
(1)
k , ..., ε̂

(K)
k ]T on the survivor path which ends

at state q at time k + 1. Finally, in line 16, the estimated timing offsets of all K tracks are

updated through a second-order PLL.

5.3 Numerical Results

We present performance results of the ROTAR algorithm for the case ofK = 2 asynchronous

tracks with N = 2 readers, as illustrated in Fig. 5.1, where the channel model is (5.12). The

unknown frequency offset parameters for track 1 and track 2, respectively, are ∆T1/T =

2 × 10−5 and ∆T2/T = 2 × 10−4. The sector length is L = 40 kbits, which results in a

maximum slip of 0.8 and 8 bit periods, respectively, for track 1 and track 2 at the end of the

sector. The second-order PLL parameters are α = 0.001 and β = α2/4.

The bit-error rate performance of the proposed ROTAR algorithm with PSP is shown

and compared with two other detectors in Fig. 5.6. The figure plots the average of the

bit-error probability for the two tracks being detected, as a function of SNR. (Not shown are

the individual error rates for each track, which are a close match to the average because of

the symmetry in this example.)

The curve labeled “ROTAR 16” shows the performance of a 16-state ROTAR algorithm

whose memory parameters are M1 = 0 and M2 = 2. To enable M1 = 0, both ADC’s are

locked to track 1 using standard techniques. In particular, prior to detection a standard ITR

block consisting of a SISO equalizer, a Viterbi symbol detector, a Mueller-Muller timing-

error detector, a second-order PLL, and an interpolation filter plus a secondary interpolation

filter were used to lock both readback waveforms to track 1.

The curve labeled “ROTAR 64” shows the performance of a 64-state ROTAR algorithm

with memory parameters M1 = 2 and M2 = 2, fed directly by the ADC’s, without any

intervening synchronizer that locks to one of the tracks.
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Figure 5.6: BER performance of the ROTAR algorithm with PSP.

The figure shows that the 16-state and 64-state ROTAR detectors have nearly identical

performance. Considering the significant reduction in complexity, the advantage of locking

to one track is clear. Also shown in Fig. 5.6 is the performance of a conventional receiver

that separately detects the two tracks of interest using a pair of independent two-input

single-output (MISO) equalizers followed by a pair of independent one-dimensional, 2-state

Viterbi detectors with PSP. The performance using this conventional approach is represented

by the curve to the right with the triangle markers. We observe that ROTAR outperforms the

conventional approach by 1 dB. This performance gain is due to the fact that, in the presence

of ITI, joint detection is superior to one-dimensional detection.

Lastly, we also show in Fig. 5.6 the performance of a fictitious system for which the two

tracks were written synchronously with each other and also with the ADC sampling rate.

The performance of the 4-state joint Viterbi detector for this synchronous case is represented

by the dashed lines. Both of the ROTAR detectors are seen to closely match the performance
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of the synchronous system, despite the presence of frequency offsets.

5.4 Summary

We proposed the rotating target (ROTAR) algorithm for jointly detecting multiple asyn-

chronous tracks from multiple readback waveforms. ROTAR applies the Viterbi algorithm to

a time-varying rotating target that accounts for the asynchrony of the different tracks being

detected. To keep complexity low, the timing offsets are decomposed into their integer and

fractional parts, and only the fractional parts are used to rotate the target. A further reduction

in complexity is realized by locking the ADC’s to one track. For the case of unknown timing

offsets, ROTAR can use per-survivor processing to embed synchronization inside the joint

Viterbi detector.
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CHAPTER 6

EQUALIZATION TO A TIME-VARYING TARGET

In the previous chapter, we considered the problem of jointly detecting K asynchronous

tracks from N readback waveforms. We proposed the ROTAR algorithm that was based on

a joint Viterbi algorithm and a time-varying target. Since we assumed a perfectly equalized

partial response channel, the time-varying target was essentially the same as the partial

response channel itself. In practice, however, an unknown and potentially very long channel

response, first, needs to be equalized to a short partial response channel before an efficient

detection algorithm can be implemented. In a conventional read channel that does single-

track detection, a GPR equalization follows timing recovery and precedes detection. For

multitrack detection of asynchronous tracks, however, as we explained in the previous

chapter, this modular design does no longer work. Instead, the tasks of synchronization and

detection should be performed together. Consequently, the GPR equalization should be done

first hand, before timing recovery and right after ADC. (This is doable because according to

our findings in chapter 4, Sect. 4.2, the solution to the joint optimization of the equalizer

filter/s and the target pair is independent of the timing offsets.)

Equalizing before timing recovery has two important implications:

1. since equalization precedes timing recovery, the equalized outputs contain a time-

varying target. In this sense, the equalized waveforms can be viewed as the outputs of

an equalizer that equalizes to a time-varying target, and

2. unlike standard GPR equalization (Appendices C and D) where the equalizer and

the target pair are computed using synchronous ADC samples, here, they should be

computed using asynchronous ADC samples.

In this chapter we propose a GPR equalization strategy that works on asynchronous
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ADC outputs and is computed using asynchronous ADC outputs. The proposed equalization

strategy is designed to work with the ROTAR detector. At the end of the chapter, we evaluate

the performance of the proposed complete read channel that consists of the proposed

equalizer and the ROTAR with PSP on a semi realistic data set.

6.1 Channel Model and Assumptions

We consider the same channel model of chapter 5, Sect. 5.1, except that, here, we drop the

assumption of a fully equalized channel and instead we consider a full response channel

with K input tracks and N output readback waveforms, so that the readback waveform at

reader i is:

ri(t) =
K∑
j=1

∑
n

a(j)
n fi,j(t− nT − τ (j)

n ) + ni(t), (6.1)

where all the parameters are the same as defined in chapter 5, Sect. 5.1, except for fi,j(t)

that is the bit response at reader i from track j, assumed to be bandlimited to half the bit

rate.

The i-th readback waveform is filtered by a low-pass antialiasing filter and then sampled

at the ADC rate 1/T , yielding

r
(i)
k =

K∑
j=1

∑
n

a(j)
n fi,j(kT − nT − τ (j)

n ) + n
(i)
k . (6.2)

Collecting the N samples from each of the N read heads at time k into the vector

rk[r
(1)
k , ..., r

(N)
k ]T , and using (5.2), we arrive at a MIMO model:

rk =
K∑
j=1

∑
n

a(j)
n fj(kT − nT − τ (j)

n ) + nk, (6.3)

where fj(t) = [f1,j(t), f2,j(t), ..., fN,j(t)]
T is the vector-valued bit response of track j across

all N readers.
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ADC1

ADC2

Figure 6.1: An example of two tracks of interest whose timing differ in frequency and phase,
and two readers with significant overlap.

6.2 GPR Equalization Strategies to a Time-Varying Target

6.2.1 Prior to Single-Track Detection

Before attacking the problem of equalizing N readback waveforms to a matrix-valued, time-

varying target, we first consider the simpler problem of equalizing N readback waveforms

to a vector-valued, time-varying target, prior to single-track detection. In the following, we

describe three strategies for equalizing the vector of N readback waveforms of (6.3) so that

a following ML detector can detect a single track.

The three equalization strategies are illustrated in Fig. 6.2. Each strategy includes a

lower branch that is only used for computing the unknown equalizer and the target pair

during the preamble of the sector where the user bits are known. The resulted equalizer and

target pair are used during the remaining of the sector for the detection of the unknown bits.

1) The Conventional Strategy

The conventional strategy is to separately synchronize each readback waveform before

equalization. This strategy for the example of Fig. 6.1 is shown in Fig. 6.2a where track 2 is

to be detected.

In general, after synchronizing N waveforms to the timings of track t, the vector of
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Figure 6.2: GPR equalization strategies, for the exampling given in Fig. 6.1 and detecting
track 2: (a) conventional strategy, (b) alternative strategy 1, and (c) alternative strategy 2.

equalized waveforms is given as:

rk =
∑
n

a(t)
n ft(kT − nT − τ (t)

n + τ (t)
n ) +

∑
j 6=t

∑
n

a(t)
n fj(kT − nT − τ (j)

n + τ (t)
n ) + nk,

=
∑
n

a(t)
n ft(kT − nT ) +

∑
j 6=t

∑
n

a(2)
n fj(kT − nT − τ (j)

n + τ (t)
n ) + nk,

=
∑
n

a(t)
n ft(kT − nT ) + ηk, (6.4)

where ηk is the sum of the interference from other tracks j 6= t and the AWGN noise.
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Equation (6.4) is the output of a channel with no timing offsets and therefore, it can be

equalized using a standard GPR equalization technique. The MMSE solution for jointly

computing the N equalizer filters and the fixed target in Fig. 6.2a is given in Appendix C.

After equalization to a fixed target, a standard Viterbi algorithm, for example, detects track t.

The same exact process can then be repeated for each of the remaining tracks.

2) Alternative Strategy 1

Alternatively, according to the result of chapter 4, Sect. 4.2, we can delay synchronization

until after equalization. The immediate advantage is reducing the number of synchronization

blocks from N to only K synchronization blocks. This strategy for the example of detecting

track 2 from N = 2 waveforms is shown in Fig. 6.2b.

Since for practical timing offsets, the equalizer and target pair are transparent to the

timing offsets, the equalizer and target pair in Fig. 6.2b is essentially the same the ones in Fig.

6.2a. Nevertheless, the computation of these variables does no longer follow the standard

technique described in Appendix C, and is different in two aspects: 1) the mean-squared

error should be minimized after the synchronizer block, and 2) the unknown timing offsets

of track j {τ (j)
n } should also be optimized along with the equalizer and the target pair. In the

following, we outline a solution for joint optimization of the equalizer filters, the target, and

the timing offsets {τ (j)
n }, where the final objective is to detect track j.

Fig. 6.3 illustrates a parametric analogy of the equalization strategy of Fig. 6.2b. During

training, the user bits on a track of interest, j, are known, however, the timing offsets are

unknown and should be estimated. Therefore, the problem is to jointly optimize for the

equalizer filters, the target, and the timing offsets. Let r(i)
` denote the `-th sample of the i-th

readback waveform for i ∈ {1, · · · , N} sampled at rate 1/T . Combining the N samples at

time ` into a N × 1 vector yields:

r` =


r

(1)
`

...

r
(N)
`

 (6.5)

89



ADC

R
E

A
D

E
R

 2

ADC

R
E

A
D

E
R

 1 rate FIXED EQUALIZER

FIXED TARGET

Figure 6.3: A parametric illustration of the alternative equalization strategy 1 for the case of
detecting a single track from N = 2 waveforms as shown in Fig. 6.2b.

We define each equalizer filter i with Nc coefficients, according to c(i) = [c
(i)
0 , c

(i)
1 , · · · ,

c
(i)
Nc−1]T . Combining the N coefficients across N filters at time ` into a N × 1 vector also

yields:

c` =


c

(1)
`

...

c
(N)
`

 . (6.6)

The N equalizer filter outputs are added so that the bank of N equalizer filters can be

viewed as an N -input single-output equalizer with coefficients {c0, · · · , cNc−1}, whose k-th

output can be written as yk = cT rk, where

c =


c0

...

cNc−1


NNc×1

and rk =


rk
...

rk−Nc+1


NNc×1

. (6.7)

The equalizer outputs {yk}, then, should be synchronized to the timings of track j, via

interpolation, so that the signals from both branches are synchronous to each other. Since

we consider a frequency offset model where τ (j)
k = k∆Tj , an interpolation filter such as

sk = [s((l − k∆Tj)T ), · · · , s((−l − k∆Tj)T )]T , (6.8)
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where s(t) = sin(πt/T )
(πt/T )

, and l is the delay of the filter, outputs

y′k = sTk yk, (6.9)

where

yk =


yk
...

yk−Ns+1


Ns×1

, (6.10)

and where Ns is the length of the interpolation filter.

We consider the target to be monic and of the form [1,bT ], where b = [b1, · · · , bµ]T

is the target tail and µ is the target memory. Filtering the bits on track j by the target

yields the signal a(j)
k−d + bTa

(j)
k , where d is the delay parameter of the equalizer and the

interpolation filter cascade, and where a
(j)
k = [a

(j)
k−d−1, · · · , a

(j)
k−d−µ]T . With this terminology,

the optimization problem is to jointly choose the equalizer c and the target b to minimize

the mean-squared error MSE = E(e2
k) where

ek = sTk yk − a(j)
k−d − bTa

(j)
k . (6.11)

Since the error includes a time varying interpolation filter sk, a closed form MMSE

solution can not be given. Rather, an adaptive solution with training such as the least mean

squares (LMS) algorithm can be implemented. According to LMS, the equalizer filters and

the target tail are updated as:

c = c− νekrk

b = b + νeka
(j)
k , (6.12)

where ν is the LMS step size. To simultaneously adapt the interpolation filter sk, at each

iteration of the LMS, we only need to update an estimate of τ (j)
k = k∆Tj . Therefore, it is
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convenient to use a second-order PLL for this purpose, so that:

τ̂
(j)
k+1 = τ̂

(j)
k + αε̂k + β

k−1∑
`=1

ε̂`, (6.13)

where ε̂k is the timing error estimate given by the M&M TED equation:

ε̂k = y′kdk−1 − y′k−1dk, (6.14)

where

dk =

µ∑
`=0

h`a
(j)
k−`−d (6.15)

is the ideal, noiseless, equalized ADC output at time k, and h = [h0, · · · , hµ] = [1,bT ] is

the target.

Equations (6.12) and (6.13), respectively, update the equalizer and the target pair, and

the interpolation filter sk = [s((l − τ̂ (j)
k )T ), · · · , s((−l − τ̂ (j)

k )T )]T .

2) Alternative Strategy 2

A second alternative strategy is to further delay the synchronization until inside the

final detection, and jointly synchronize and detect using the ROTAR algorithm. Fig. 6.2c

illustrates the equalization strategy that precedes the ROTAR algorithm. In computing the

equalizer and the target pair, the user bits on the track of interest should be delayed prior

to being filtered by the target, so that the signals from both branches are synchronized. A

parametric representation of Fig. 6.2c is shown in Fig. 6.4. An interpolation filter, here,

should delay the bits, and therefore a sinc interpolation, for example, should be of the form

sk = [s((l + k∆Tj)T ), · · · , s((−l + k∆Tj)T )]T . (6.16)

Thus, the delayed bits on track j are given as:

a′
(j)
k = sTk a

(j)
k , (6.17)
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Figure 6.4: A parametric illustration of the alternative equalization strategy 2 for the case of
detecting a single track from N = 2 waveforms as shown in Fig. 6.2c.

where a
(j)
k = [a

(j)
k−d, · · · , a

(j)
k−d−Ns+1]T and where d+ l is the delay of the equalizer cascade.

With this terminology, the error is written as:

ek = cT rk − a′
(j)
k − bTa′

(j)
k , (6.18)

where a′
(j)
k = [a′

(j)
k−1, · · · , a′

(j)
k−µ]T . Similar to alternative strategy 1, it is convenient to

employ an LMS solution for updating the equalizer and target pair, according to:

c = c− νekrk

b = b + νeka
′(j)
k , (6.19)

along with a second-order PLL for estimating the timing offset τ (j)
k according to (6.13),

where the M&M TED equation follows

ε̂k = ykdk−1 − yk−1dk, (6.20)

and

dk =

µ∑
`=0

h`a
′(j)
k−`. (6.21)

It is interesting to note that the target and the interpolation cascade in Fig. 6.4, together
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can be viewed as a time-varying target, and in turn, the fixed equalizer can be viewed as an

equalizer that equalizes to a time-varying target as a result.

The optimum solution for the equalizer and the target pair in Fig. 6.4 is essentially the

same as in Fig. 6.3 for alternative strategy 1, and also the same as in Fig. 6.2a for the

conventional GPR. In other words, the optimum equalizer and target pair is essentially the

same throughout all three strategies. Nevertheless, it is the computation of the solution that

differs among them.

6.2.2 Prior to Multitrack Detection

Let us turn our focus back to the multitrack detection of K tracks from N readback

waveforms. Unlike the single-track detection of the previous section, here the synchronization

and detection must be performed jointly. Therefore, the conventional GPR strategy where

each waveform is separately synchronized (prior to the equalization and detection) to a

track of interest, can no longer work. Neither does the alternative strategy 1, since in the

alternative strategy 1, similar to the conventional GPR strategy, the equalized waveform can

only be synchronized to the timings of only one track. Nevertheless, the multitrack extension

of the alternative strategy 2 based on a time-varying target perfectly suits our purpose. Fig.

6.5 illustrates the alternative strategy 2 for the example of K = 2 asynchronous tracks and

N = 2 overlapping readers of Fig. 6.1.

In general, there are at least K × N individual equalizer filters, the bank of which

constructs a N -input K-output MIMO equalizer. We define each equalizer filter j, i ∈

{1, · · · , K}, {1, · · · , N} with Nc coefficients, according to cj,i = [c
(j,i)
0 , c

(j,i)
1 , · · · , c(j,i)

Nc−1]T .

The MIMO equalizer can be viewed as the bank of K individual N -input single-output

MISO equalizers. Combining the N coefficients of the j-th MISO equalizer at time ` into a
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Figure 6.5: A parametric illustration of the alternative strategy 2 for the case of jointly
detecting K = 2 tracks from N = 2 waveforms as shown in Fig. 6.1.

N × 1 vector yields:

c
(j)
` =


c

(j,1)
`

...

c
(j,N)
`

 . (6.22)

Thus, the output of the j-th MISO equalizer is y(j)
k = cTj rk, where

cj =


c

(j)
0

...

c
(j)
Nc−1


NNc×1

and rk =


rk
...

rk−Nc+1


NNc×1

. (6.23)

Each MISO equalizer can be paired with a matrix-valued target. We consider each target
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j to have the form

Hj =


1 bTj

qT`1
...

qT`(K−1)


K×(µ+1)

, [`1, · · · , `K−1] = [1, · · · , j − 1, j + 1, · · · , K], (6.24)

where the first row includes bj = [b
(j)
1 , · · · , b(j)

µ ]T , the response tail from track j, and where

the rest of the rows are the responses {q`m} from other K − 1 tracks. Since each output

signal from the target branch should be synchronized to the corresponding output signal

from the equalizer branch, the bits on each track j should be delayed by {τ (j)
k } using an

interpolation filter such as the sinc interpolation filter given in (6.16), according to:

a′
(j)
k = s

(j)T

k a
(j)
k . (6.25)

Filtering the delayed user bits on all K tracks with the j-th target yields:

d
(j)
k = a′

(j)
k + bTj a′

(j)
k +

K−1∑
m=1

qT`m

a′(`m)
k

a′
(`m)
k

 , [`1, · · · , `K−1] = [1, · · · , j − 1, j + 1, · · · , K].

(6.26)

The optimization problem is to jointly choose the K MISO equalizers {cj}, the K

targets parameters {bj} and {qj}, and the timings of the K tracks {τ (j)
k } to minimize the

mean-squared error

MSE = E(
K∑
j=1

e
(j)2

k ), (6.27)

where

e
(j)
k = cTj rk − d

(j)
k . (6.28)

Similar to single-track detection in the previous section, we employ an adaptive algo-
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rithm, such as LMS, to update each MISO equalizer and the corresponding target pair,

according to:

cj = cj − νe
(j)
k rk

bj = bj + νe
(j)
k a′

(j)
k

qj = qj + νe
(j)
k [a′

(j)
k , a′

(j)T

k ]T . (6.29)

Also, a second-order PLL for every track j can update the estimated timings of track j

according to:

τ̂
(j)
k+1 = τ̂

(j)
k + αε̂

(j)
k + β

k−1∑
`=1

ε̂
(j)
` , (6.30)

where the j-th M&M TED output is computed as:

ε̂
(j)
k = y

(j)
k d

(j)
k−1 − y

(j)
k−1d

(j)
k . (6.31)

At each iteration of the LMS algorithm, the equations (6.29), (6.30), and (6.31) should

be updated for all K tracks.

An alternative to LMS is the recursive least squares (RLS) algorithm that unlike LMS

minimizes a weighted sum of squared errors, given by

WMSE =
k∑
`=0

λk−`
K∑
j=1

e
(j)2

k , (6.32)

where 0 < λ ≤ 1 is the forgetting factor which gives exponentially less weight to older

error samples. Compared to LMS, RLS exhibits extremely fast convergence, the benefit

that comes at the cost of higher computational complexity. RLS is similar to the closed-

form MMSE solution described in Appendices C and D, in that it estimates the vector of

unknowns wj = R
(j)−1

vv pj , but recursively, releasing the need to compute matrix inverse.

In the following we derive RLS update equations for the problem of choosing the MIMO
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equalizer filters and the target parameters of the alternative strategy2, in order to minimize

the weighted mean-squared error of (6.32).

Replacing (6.26) into (6.28), the error corresponding to the j-th MISO equalizer (6.28)

can be written as:

e
(j)
k = cTj rk − a′

(j)
k − bTj a′

(j)
k −

K−1∑
m=1

qT`m

a′(`m)
k

a′
(`m)
k

 , [`1, · · · , `K−1] = [1, · · · , j − 1, j + 1, · · · , K]

= wT
j v

(j)
k − a

′(j)
k , (6.33)

where similar to the MMSE approach

wj =



cj

−bj

−q`1
...

−q`K−1


(NNc+Kµ+K−1)×1

and v
(j)
k =



rk

a′
(j)
ka′(`1)
k−d

a′
(`1)
k


...a′(`K−1)

k−d

a′
(`K−1)
k




(NNc+Kµ+K−1)×1

.

(6.34)

In order to minimize (6.32), we choose wj such that the derivative of (6.32) with respect to

wj is zero, according to:

∂WMSE

∂wj

= 2
k∑
`=0

λk−`e
(j)
`

∂e
(j)
`

∂wj

= 2
k∑
`=0

λk−`e
(j)
` v

(j)
` = 0. (6.35)
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By substituting (6.28) into above we get:

k∑
`=0

λk−`(v
(j)T

` wj − a′(j)` )v
(j)
` = 0, (6.36)

that gives
k∑
`=0

λk−`v
(j)
` v

(j)T

` wj =
k∑
`=0

λk−`a′
(j)
` v

(j)
` , (6.37)

and therefore

w
(j)
k = R(j)−1

vvk
p

(j)
k , (6.38)

where the covariance matrix and the cross-covariance vector are respectively given by

R(j)
vvk

=
k∑
`=0

λk−`v
(j)
` v

(j)T

` ,

p
(j)
k =

k∑
`=0

λk−`a′
(j)
` v

(j)
` . (6.39)

Equation (6.38) looks exactly similar to the MMSE solution (D.12) except for the fact

that the expected values in the covariance matrix and cross-covariance vector are replaced

with a weighted sum. In contrast to MMSE, however, RLS computes (6.38) by recursively

computing the covariance matrix and the cross-covariance vector, according to:

R(j)
vvk

= λR(j)
vvk−1

+ v
(j)
k v

(j)T

k ,

p
(j)
k = λp

(j)
k−1 + a′

(j)
k v

(j)
k . (6.40)

The inverse of the covariance matrix is therefore given by:

R(j)−1

vvk
= P

(j)
k = [λR(j)

vvk−1
+ v

(j)
k v

(j)T

k ]−1

= λ−1P
(j)
k−1 − λ

−1P
(j)
k−1v

(j)
k [1 + v

(j)T

k λ−1P
(j)
k−1v

(1)
k ]−1v

(j)T

k λ−1P
(j)
k−1

= λ−1P
(j)
k−1 − g

(j)
k v

(j)T

k λ−1P
(j)
k−1, (6.41)
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where in the second line we used the Woodbury matrix identity (A + UCV )−1 = A−1 −

A−1U(C−1 + V A−1U)−1V A−1, and where the gain vector gk in the third line is:

g
(j)
k = λ−1P

(j)
k−1v

(j)
k [1 + v

(j)T

k λ−1P
(j)
k−1v

(j)
k ]−1. (6.42)

The gain vector can be written as:

g
(j)
k [1 + v

(j)T

k λ−1P
(j)
k−1v

(j)
k ] = λ−1P

(j)
k−1v

(j)
k , (6.43)

that gives:

g
(j)
k = λ−1[Pk−1 − g

(j)
k v

(j)T

k Pk−1]v
(j)
k

= Pkv
(j)
k , (6.44)

where in the third line we have used (6.41).

Finally, we can derive the recursive equation for wj , as follow:

w
(j)
k = P

(j)
k p

(j)
k = λP

(j)
k p

(j)
k−1 + a′

(j)
k P

(j)
k v

(j)
k

= λ[λ−1P
(j)
k−1 − g

(j)
k v

(j)T

k λ−1P
(j)
k−1]p

(j)
k−1 + a′

(j)
k g

(j)
k

= P
(j)
k−1p

(j)
k−1 + g

(j)
k [a′

(j)
k − v

(j)T

k P
(j)
k−1p

(j)
k−1]

= w
(j)
k−1 − g

(j)
k υ

(j)
k , (6.45)

where in the second line we have used (6.41) and (6.44), and in the last line we have used

(6.38), and where υ(j)
k is the a priori error, the error before updating the vector wj , and is

defined as:

υ
(j)
k = v

(j)T

k w
(j)
k−1 − a

′(j)
k . (6.46)
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Algorithm 6: Alternative strategy 2 with RLS, second-order PLL, and M&M TED

Inputs: ADC outputs {rk}, user bits {a(j)
k } ∀j, equalizer size Nc, target memory µ,

forgetting factor λ, regularization factor δ, and PLL parameters α and β
Output: wj ∀j

11 Init: τ̂ (j)
0 = 0 ∀j

22 Init: w
(j)
0 = 0 ∀j

33 Init: P
(j)
0 = δ−1INNC+Kµ+K−1 ∀j

4 for k = 1 to L do
5 for j = 1 to K do

6 Compute a′(j)k using (6.25) and (6.16)
7 Compute a priori error υ(j)

k using (6.46)

8 Compute the gain vector g
(j)
k using (6.42)

9 Compute the inverse covariance matrix P
(j)
k using (6.41)

10 Update the weight vector w
(j)
k using (6.45)

11 Update τ̂ (j)
k = τ̂

(j)
k−1 + αε̂

(i)
k−1 + β

∑k−2
`=0 ε̂

(i)
` using (6.13)

12 end
13 end

Compare this with the a posteriori error that results after updating wj:

e
(j)
k = v

(j)T

k w
(j)
k − a

′(j)
k . (6.47)

We can now outline the RLS algorithm combined with a second-order PLL for updating

each of the K MISO equalizers and their corresponding targets following the alternative

strategy 2 for GPR equalization. The pseudocode is presented in Fig. 6. The inputs to the

algorithm are the asynchronous ADC outputs, the user bits on all K tracks, the forgetting

factor, and the regularization factor for initiating the inverse covariance matrix. The outputs

are the weight vectors of all MISO equalizers and their corresponding targets. During the

preamble of length L, the user bits are known and the algorithm can jointly update the

delayed bits, using the timing estimates of a second-order PLL, and the optimum weight

vectors {wj}.
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Figure 6.6: The description of DSI data set. 25 different reader positions separated by TP/8
are marked with dashed lines. The resulted 25 readback waveforms mainly cover the three
middle tracks. The data is generated from the grain-flipping probability model. A write
timing frequency offset of ∆T2 = 2× 10−4 is injected into tracks 2 while all other tracks
are written synchronously to each other. As shown, we used two reader positions in the
simulations to detect tracks 1 and 2.

6.3 Numerical Results

In this section we assess the performance of the proposed alternative strategy 2 of GPR

equalization for the case of K = 2 asynchronous tracks with N = 2 readback waveforms

as illustrated in Fig. 6.1. We also provide ultimate BER performance of our proposed

read channel that includes the alternative strategy 2 of GPR equalization and the ROTAR

algorithm of the previous chapter for joint detection of the two tracks. The simulations

are performed on a data set provided by data storage institute (DSI). The waveforms are

generated from the grain-flipping probability model in building the magnetized medium

[51]. This model generates realistic 2D waveforms with media noise. A description

of the waveforms is provided in Fig. 6.6 where 25 different reader positions separated

by 1/8 of the track width (track pitch (TP)) provide 25 different readback waveforms

mainly from the 3 middle tracks. Also, the ADC’s sample at two times the bit rate, (2/T ),

that means there are two ADC samples for every user bit. Consequently, the equalizers

described in this chapter become fractionally spaced equalizers (FSE). The only change to

the equations described earlier is with the vector of readback samples in (6.23) that changes
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Figure 6.7: The alternative strategy 2 for equalizing N = 2 readback waveforms shown in
Fig. 6.6 covering track 1 with ∆T1 = 0 and track 2 with ∆T2/T = 2× 10−4.

to rk = [r2k, · · · , r2k−Nc+1]T .

There were two sets of waveforms provided. In the first set of waveforms, a write

frequency offset with parameter ∆T2/T = 2× 10−4 is injected only to the bits of track 2

while the rest of the tracks have the same bit positions. As illustrated in Fig. 6.6, track 2

exhibits wider bit period, T2 = T + ∆T2, than the rest of the tracks with T0 = T1 = T3 =

T4 = T , where T is twice the sampling period of the ADC’s. Since the ADC’s sample

slightly faster than twice the bit rate of track 2, the last ADC sample at the end of the sector

of length L = 41206 bits, is L∆T2 = 8.24 bits ahead of the actual position of the last bit on

track 2.

The second set of 25 waveforms are also generated according to Fig. 6.6 without

injecting any timing offset to the bits of track 2. Therefore all tracks have the same bit

periods, T0 = T1 = T2 = T3 = T4 = T . We refer to the first and second sets of waveforms,

as the asynchronous and synchronous waveforms, respectively. Also, the bit-aspect ratio
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Figure 6.8: The PLL performance in estimating the timing offset of track 2.

defined as the ratio of the track pitch to the bit length (BL) is 3.

We consider first the alternative strategy 2 with the LMS algorithm, according to (6.29),

(6.13), and (6.31). Fig. 6.7 illustrates this strategy for the case where ∆T1/T = 0 and

∆T2/T = 2× 10−4. Since ∆T1/T = 0, as Fig. 6.7 shows, the corresponding interpolation

filter reduces to a simple delay element of d′ that is the delay of the equalizer cascade.

Fig. 6.8 plots an example of the second-order PLL performance in realization of Fig.

6.7, when the user bits were known and when the two readers at positions #7 and #9 were

selected. The number of FSE coefficients was Nc = 17, the target memory µ = 1, the delay

elements were d′ = 4 and d = −46, and the length of the interpolation filter was Ns = 101.

The PLL parameters were α = 0.01 and β = α2/4. Also the LMS step size ν = 0.001. We

observe that the PLL can effectively track the actual timing of track 2.

Nevertheless, a critically important performance criteria is the convergence rate of the

adaptive algorithm that computes the equalizer and the target pair, since in practice, only a

short preamble of a few hundred bits are available for computing the equalizer and the target

pair. Fig. 6.9 compares the convergence of the LMS versus the RLS algorithm during the
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Figure 6.9: Convergence of the LMS versus RLS algorithms when used in the alternative
strategy 2 of Fig. 6.7. MSE is averaged over the past 100 samples.

first 1000 bits of the sector in realization of Fig. 6.7. The figure plots the moving average

over the past 100 samples of the MSE measure in (6.27) for the LMS algorithm and the

WMSE measure in (6.32) for the RLS algorithm. The simulation environment is set similar

to Fig. 6.8 with additional parameters λ = 1 and δ = 1.5 for the RLS algorithm. As

expected, we observe that the RLS algorithm is extremely faster than the LMS algorithm.

The RLS converges almost at the 200-th bit while the LMS algorithm still continues to

converge beyond 1000-th bit.

Based on this observation, we next consider only the RLS algorithm for computing the

equalizer and the target pair during a preamble of the first 250 bits of the sector. We use

the remaining length of the sector for testing the performance of our proposed equalization

strategy followed by the ROTAR algorithm.

Fig. 6.10 shows the proposed equalizer performance over a period in the middle of the

sector. The solid signal is the equalizer output y(2)
k and the dashed signal is the corresponding

signal d(2)
k from the target branch in Fig. 6.7. The good match between these two signals
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Figure 6.10: The MIMO equalizer output y(2)
k versus the corresponding signal d(2)

k from the
target branch in Fig. 6.7.

verifies the effectiveness of the proposed equalization strategy.

Nonetheless, the ultimate performance measure of an equalization strategy is the final

BER performance after the following detector. To this end, we combine the proposed

equalization strategy in Algorithm 6 with the ROTAR algorithm as illustrated in Fig. 6.11.

The BER performance of the ultimate proposed read channel is shown and compared

with three other read channels in Fig. 6.12. The figure plots the average BER performance

for the two tracks being detected for different readers selected. For example, TP/8 is

the distance between the two readers selected at positions #7 and #9, TP/4 refers to the

readers at positions #6 and #10, and so on. Note that the larger the distance between the

two readers, the less ITI exists in the readback waveforms.

The curve labeled “OFFSET, MIMO+ROTAR” shows the performance of the proposed

read channel where the equalization of Fig. 6.7 is followed by a 16-state ROTAR with

memory parameters M1 = 0 and M2 = 2, and PSP for timing estimation. Here, all

simulation parameters are set as before in Fig. 6.10.

The curve labeled “OFFSET, 2 MISO+VITERBI” shows the performance of a con-

ventional read channel that separately detects the two tracks using a pair of two MISO
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Figure 6.12: The BER performance of the proposed read channel.

equalizers followed by two independent Viterbi detectors. In particular, to detect track 1

with ∆T1 = 0, a conventional GPR equalization strategy is used where the equalizer and the

target pair are computed using a RLS algorithm. This strategy uses Algorithm 6 where line 1

and line 11 are excluded, and where the interpolation filter in line 6 is simply replaced by a

delay element of d′ = 4. The equalization is followed by a 2-state Viterbi detector. Also,

to detect track 2 with ∆T2 6= 0, Algorithm 6 is used exactly and is followed by a 2-state

Viterbi detector with PSP.

The figure shows that at least at this particular example, the proposed read channel

outperforms the conventional read channel over the different readers’ spacing selected.
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Therefore, the figure verifies the validity of the proposed equalization strategy.

We also show in Fig. 6.12, the performance over the second set of synchronous wave-

forms, represented with dashed curves. The curve labeled “NO OFFSET, MIMO+JOINT

VITERBI” shows the performance of a MIMO equalizer followed by a joint Viterbi detector

for jointly detecting the two tracks of interest. In particular, a conventional GPR strategy

is used where a RLS algorithm computes the equalizer and the target pair, according to

Algorithm 6 where line 1 and line 11 are excluded, and where the both interpolation filters

in line 6 are replaced by a delay element of d′ = 4.

Lastly, the curve labeled “NO OFFSET, 2 MISO+2 VITERBI” shows the performance of

the conventional read channel that separately detects the two tracks. In particular, since both

tracks are synchronous to ADC’s sampling times, for detecting each track, the equalizers are

computed using Algorithm 6 excluding line 1 and line 11, and with the interpolation filter in

line 6 replaced by a delay element of d′ = 4. After both MISO equalizers, two independent

Viterbi detectors separately detected the two tracks.

We observe that the proposed read channel labeled “OFFSET, MIMO+ROTAR” tested

on asynchronous waveforms is performing very close to the two read channels tested on

synchronous waveforms. Here, we avoid a more exact comparison because we believe that

the set of asynchronous waveforms include more media noise than the set of synchronous

waveforms. Albeit, this close performance validates the proposed equalization strategy to be

followed by the ROTAR algorithm.

6.4 Summary

We completed a proposed read channel for future generation of TDMR by proposing an

equalization strategy to precede the ROTAR detector of chapter 5. The proposed equalization

strategy equalizes asynchronous ADC outputs to a time-varying target using a GPR approach

where an adaptive algorithm updates the equalizer filters and the target while a second-order

PLL adapts the timing offsets.
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We verified the proposed MIMO equalizer using a semi-realistic data set that exhibits

nonlinear channel response and dominant media noise. We also verified and compared the

performance of the complete proposed read channel with three other read channels.
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CHAPTER 7

CONCLUSION

This thesis proposes synchronization and detection algorithms for current and future gen-

erations of read channels for TDMR. Synchronization is a critical component of every

read channel since knowing where the bits are is a perquisite to detect what the bits are.

Throughout the magnetic recording literature, synchronization is a moderately studied

problem for current generations of TDMR read channel that detects a single track of interest

at a time. In this context, this thesis proposes to change a conventional read channel

architecture by switching the order in which synchronization is done before equalization,

and instead synchronize after equalization, in order to significantly reduce implementation

cost.

To the contrary, in a multitrack detection setting, there is no synchronization solution

proposed when a few tracks are to be jointly detected from a few readback waveforms. This

thesis provides a solution for synchronization in multitrack scenario for future generations

of TDMR read channels. In this chapter, we summarize the main contributions of this thesis

followed by suggestions for future works than can extend our work.

7.1 Contributions

1. In Chapter 3, we presented two strategies for mitigating ITI, one based on linear

suppression and one based on soft cancellation. Numerical results demonstrated that

regardless of the media noise, the relative advantage of the two detection strategies

depends on the location of the track being detected. For the inner tracks near the

center of the read-head array, the gain of the soft ITI cancellation detector over the

linear detector is modest. For the outer tracks near the edge of the array, in contrast,

the gain of the soft ITI cancellation detector over the linear detector is significant.
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Therefore, for a given pass of a read-head array, the soft ITI cancellation strategy

has demonstrated its ability to reliably recover data from more tracks than would

otherwise be possible using linear ITI suppression.

2. In Chapter 4, we considered the problem of single-track detection, from multiple

readback waveforms when the tracks have different frequency and phase offsets. First,

in Sect. 4.1, we applied the proposed soft ITI cancellation detector of Chapter 3 to

asynchrnously mitigate ITI before synchronizing for and detecting every track of

interest. Since the proposed detector breaks the problem down to several 1D detection

problems, a soft-output Viterbi detector plus PSP for timing recovery was used for

synchronization and detection of every track of interest. Numerical results showed

that the proposed architecture is capable in mitigating ITI for the separable MIMO

model considered.

Next in Sect. 4.2, we considered a realistic nonseparable MIMO model for TDMR

channel. We discovered that, within working precision, the solution for joint op-

timization of the equalizer filters and the target is independent of timing offsets.

This finding has important implication: As opposed to the conventional TDMR read

channels where equalization is done after synchronization and therefore there is one

synchronization block required for every reader used, we can effectively equalize

before synchronizing to a track of interest and detect, and therefore we only need one

synchronization block for detecting every track of interest, regardless of the number

of readers used. Therefore, the contribution here was a significant decrease in the

computational complexity of the read channel.

3. In Chapter 5, we proposed the ROTAR algorithm for multitrack detection of asyn-

chronous tracks using multiple readback waveforms. ROTAR applies the Viterbi

algorithm to a time-varying rotating target that absorbs the asynchrony of the multiple

tracks being detected. Since a time-varying target can increase the number of trellis
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states, to keep complexity low, ROTAR decomposes the timing offsets into their

integer and fractional parts, and only uses the fractional parts to shift the target. As a

result the target rotates around it’s original format. A further reduction in complexity

is achieved by locking the ADC’s to one track. ROTAR can employ per-survivor

processing to estimate the unknown timings inside the joint Viterbi detector.

4. In Chapter 6, we proposed an equalization strategy to precede the ROTAR detector

and completed the read channel. The proposed equalizer equalizes asynchronous

ADC outputs to a time-varying target using a GPR approach where the equalizer

filters and the target are computed using an RLS algorithm, while a second-order PLL

adapts the unknown timing offsets.

We verified the proposed MIMO equalizer on a semi-realistic data set that exhibits

nonlinear channel response and dominant media noise. We also verified and compared

the performance of the complete proposed read channel with three other read channels.

7.2 Future Directions

7.2.1 Multi-Track Timing Error Detector

Throughout this thesis we have used M&M TED equation [23] wherever a PLL was used

for timing recovery. M&M TED is originally derived for the simple case of synchronizing a

single waveform to unknown timings and therein it fits within a 1D detection problem. In

the single-track detection setting, the read channel breaks the problem down into one or

several 1D problems where the well established synchronization strategies with 1D TED

can be exploited. Therefore, M&M TED was suitable in Chapters 3 and 4.

Nevertheless, for joint detection of multiple tracks with different timings, a multitrack

extension of M&M or any other TED is required. Although a two-dimensional extension

of M&M TED is already proposed in [30], we should distinguish between a 2D TED and

a multitrack TED. A 2D TED applies within a 2D channel model where also a 2D model
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for timing offset is considered. As discussed in Chapter 2, a 2D channel model requires a

large scan of the disk as opposed to our MIMO model where only a few number of readback

waveforms are used for detecting multiple tracks. Also a 2D TED operates on a 2D model

for timing offset, that is the 2D image includes timing uncertainty in both downtrack and

crosstrack dimensions. To the contrary, in our MIMO model, we only consider timing offsets

in the downtrack dimension. In this sense, a multitrack TED is an extension of 1D TED that

includes the cross-talk or the ITI in estimating the timing error of each of the tracks.

In ROTAR algorithm of Chapter 5, Algorithm 5, line 14, we used a multitrack extension

of original 1D M&M TED, according to:

ε̂
(j)
k (q) =

N∑
i=1

r
(i)
k ô

(i,j)
k−1(q)− r(i)

k−1ô
(i,j)
k (q), (7.1)

where ε̂(j)k (q) is the estimated timing error of track j at ending state q and time k, r(i)
k is the

readback i sample at time k, and ô(i,j)
k (q) is the expected output from track j to reader i on

the survivor path ending at state q.

The above equation implements an idea that the estimated error of every track should

be the summation of the estimate that each readback waveform provides for that track.

Even though, the above equation has performed well in our simulations, incurring no loss

in the final BER performance, it is only an empirical equation. Therefore, a derivation

of multitrack extension of M&M TED, for example, for use in multitrack settings is very

relevant.

7.2.2 Media Noise Mitigation for ROTAR

As stated in Chapter 2, the data dependent media noise forms 80%− 90% of the total noise

in magnetic recording channel. Pattern-dependent noise-predictive strategies [4] use the

colored feature of the media noise to predict and subtract it from the input signal to the

detector. Here, the media noise is modeled as an auto-regressive Gaussian process where
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each noise sample is modeled as a weighted sum of its previous samples plus AWGN.

Therefore, an adaptive algorithm, for example LMS, can compute the coefficients of the

noise model. On the other hand, since these coefficients are data-dependent, each transition

in a trellis detector specifies a noise sample of its own. Therefore, the trellis should be set

up in such a way that the detector can determine the input bit as well as the predicted noise

sample. The implication is that if the ISI memory is µ and the length of the noise predictor

is ∆, then the number of trellis states will at least be 2µ+∆, that is a notable increase in the

detector complexity.

On the other hand, as explained in Chapter 5, the ROTAR algorithm also increases the

number of trellis states by a factor of
∏K

j=1 2Mj , where K is the number of tracks to be

detected, and Mj is the extra memory parameter for every track j. Consequently, before

applying PDNP to the ROTAR detector, a strategy to reduce the overall complexity is

needed.
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APPENDIX A

DERIVATION OF (3.6) FOR LINEAR CASE

For the case of linear ITI suppression of (3.4), the mean-squared error of (3.5) can be written

as

MSE = E

((
wT
i rk −

(
x

(i)
k +m

(i)
k

))2
)

= wT
i E
(
rkr

T
k

)
wi + Ex + 2σ2

jEq

− 2wT
i E
((
x

(i)
k +m

(i)
k

)
rk

)
= wT

i Rwi + Ex + 2σ2
jEq − 2wT

i p (A.1)

=
(
wi −R−1p

)T
R
(
wi −R−1p

)
+ Ex

+ 2σ2
jEq − pTR−1p (A.2)

where we have introduced the correlation matrix R = E(rkr
T
k ) and correlation vector

p = E((x
(i)
k + m

(i)
k )rk), and where the last equality follows from completing the square.

From (3.3) we can compute R and p as

R =
(
Ex + 2σ2

jEq
)∑

n gng
T
n +

(
N0

2T

)
I, and

p =
(
Ex + 2σ2

jEq
)
gi.

(A.3)

Since R is symmetric, the quadratic form for the first term in (A.2) implies that it cannot be

negative. We can thus minimize MSE by forcing the first term to zero, which is achieved

when wi = R−1p, which reduces to (3.6) when using the results of (A.3), along with the

identity M0 = 4σ2
jEq.
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APPENDIX B

DERIVATION OF (3.16) FOR SOFT ITI CANCELLATION

The defining equation of (11) for the soft ITI cancellation scheme can be rewritten as

y
(i)
k = wT

i r̃k (B.1)

where we have introduced r̃k the residual observation vector after soft cancellation, namely

r̃k = rk −
∑
n∈P

x̃(n)
n gn (B.2)

Therefore, following the same procedure as in Appendix A, we can write the MSE after soft

ITI cancellation as

(B.3)MSE =
(
wi − R̃−1p

)T
R̃
(
wi − R̃−1p

)
+ Ex + 2σ2

jEq − pT R̃−1p,

where from (5.3) and (B.2) we have

p = E
((
x

(i)
k +m

(i)
k

)
r̃k

)
= E

((
x

(i)
k +m

(i)
k

)
rk

)
=
(
Ex + 2σ2

jEq
)

gi (B.4)
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and

R̃ = E
(
r̃kr̃

T
k

)
= Ex
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n/∈P

gng
T
n +

∑
n∈P

E

((
x

(n)
k − x̃

(n)
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∑
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αngng
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jEq
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T
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N0

2T
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I, (B.5)

where we have introduced

αn =

 1, for n /∈ P

E((x
(n)
k − x̃

(n)
k )2)/Ex, for n ∈ P

. (B.6)

We can thus minimize MSE by forcing the first term in (B.3) to zero, which is achieved

when wi = R̃−1p. This reduces to (3.16) when using (B.4) and (B.5).
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APPENDIX C

JOINT OPTIMIZATION OF TARGET AND FSE, IN SINGLE-TRACK

DETECTION

In the following, we derive the MMSE solution for jointly optimizing N equalizer filters for

N readback waveforms, and a vector-valued target, to be used in single-track detection.

Fig. C.1 shows an example ofN = 3 equalizer filters and a vector˙valued target. Here we

consider the case when the ADC’s are sampling at twice the bit rate, therefore, each equalizer

filter has two coefficients per bit period, i.e. each equalizer filter is a fractionally-spaced

equalizer (FSE).

Let r(i)
` denote the `-th sample of the i-th readback waveform for i ∈ {1, · · · , N}

sampled at rate 2/T or twice the bit rate. Combining the N samples at time ` into a N × 1

vector yields:

r` =


r

(1)
`

...

r
(N)
`

 . (C.1)

We define each equalizer filter i with Nc coefficients, according to c(i) = [c
(i)
0 , c

(i)
1 , · · · ,

ADC

ADC

ADC

rate 

Figure C.1: Joint optimization of target and equalizer for the case of N = 3 readers and
K = 1 track of interest.
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c
(i)
Nc−1]T . Combining the N coefficients across N filters at time ` into a N × 1 vector yields:

c` =


c

(1)
`

...

c
(N)
`

 . (C.2)

The N equalizer filter outputs are added and downsampled, so that the bank of N filters can

be viewed as an N -input single-output FSE with coefficients {c0, · · · , cNc−1}, whose k-th

output can be written as yk = cT rk, where

c =


c0

...

cNc−1


NNc×1

and rk =


r2k

...

r2k−Nc+1


NNc×1

. (C.3)

We consider target to be monic and of the form [1,bT ], where b = [b1, · · · , bµ]T is

the target tail and µ is the target memory. Filtering the user bits by the target yields the

signal ak−d + bTak, where d is the delay parameter of the equalizer cascade, and where

ak = [ak−d−1, · · · , ak−d−µ]T . With this terminology, the optimization problem is to jointly

choose the equalizer c and the target b to minimize the mean-squared error MSE = E(e2
k)

where

ek = cT rk − ak−d − bTak. (C.4)

The error can be simplified by cascading the FSE coefficients and the target into a single

vector w, and also cascading the inputs to the FSE filters and the user bits into a single

vector vk, so that ek becomes:

ek = wTvk − ak−d, (C.5)

where

w =

 c

−b


(NNc+µ)×1

and vk =

rk

ak


NNc×1

. (C.6)
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Therefore, the MSE is:

MSE = E((wTvk − ak−d)2)

= wTRvvw + 1− 2wTp

= (wT −R−1
vv p)TRvv(w

T −R−1
vv ) + 1− pTR−1

vv p, (C.7)

where the covariance matrix Rvv and the cross-covariance vector p respectively are:

Rvv = E(vkv
T
k ) and p = E(vkak−d). (C.8)

w only appears in the first term of equation (C.7). This term has quadratic form, and

since Rvv is symmetric, the term cannot be negative, and can only be minimized by setting

it to zero. Therefore, the w that minimizes the MSE in equation (C.7) is:

w = R−1
vv p. (C.9)

121



APPENDIX D

JOINT OPTIMIZATION OF TARGET AND FSE, IN MULTITRACK

DETECTION

In the following, we derive the MMSE solution for jointly optimizing K × N equalizer

filters for N readback waveforms, and K matrix-valued targets, prior to multitrack detection

of the K tracks of interest.

Fig. D.1 shows an example of K ×N = 2× 2 = 4 equalizer filters prior to a multitrack

detection of the two tracks. Here we consider the case when the ADC’s are sampling twice

the bit rate, therefore, each equalizer filter has two coefficients per bit period, i.e. each

equalizer filter is a fractionally-spaced equalizer (FSE).

Let r(i)
` denote the `-th sample of the i-th readback waveform sampled at rate 2/T or

twice the bit rate. Combining the N samples at time ` into a N × 1 vector yields:

r` =


r

(1)
`

...

r
(N)
`

 . (D.1)

We define each equalizer filter j, i ∈ {1, · · · , K}, {1, · · · , N} with Nc coefficients, accord-

ing to cj,i = [c
(j,i)
0 , c

(j,i)
1 , · · · , c(j,i)

Nc−1]T . Combining the N coefficients of the j-th bank of N

filters at time ` into a N × 1 vector yields:

c
(j)
` =


c

(j,1)
`

...

c
(j,N)
`

 . (D.2)

The N equalizer filter outputs of the j-th bank are added and downsampled, so that the
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ADC

ADC

rate 

Figure D.1: Joint optimization of target and equalizer for the case of N = 2 readers and
K = 2 tracks of interest.

j-th bank of N filters can be viewed as an N -input single-output FSE with coefficients

{c(j)
0 , · · · , c(j)

Nc−1}, whose k-th output can be written as y(1)
k = cTj rk, where

cj =


c

(j)
0

...

c
(j)
Nc−1


NNc×1

and rk =


r2k

...

r2k−Nc+1


NNc×1

. (D.3)

Since there are K tracks, we have K matrix-valued targets. We consider each target j to

have the form


1 bTj

qT`1
...

qT`(K−1)


K×(µ+1)

, [`1, · · · , `K−1] = [1, · · · , j − 1, j + 1, · · · , K], (D.4)

where the first row includes bj = [b
(j)
1 , · · · , b(j)

µ ]T , the response tail from track j, and µ is
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the response memory, and where the rest of the rows are the responses {q`m} from other

K − 1 tracks. Filtering the user bits on all K tracks with their corresponding targets yields

K signals, each of the form

s
(j)
k = a

(j)
k−d + bTj a

(j)
k +

K−1∑
m=1

qT`m

a(`m)
k−d

a
(`m)
k

 , [`1, · · · , `K−1] = [1, · · · , j − 1, j + 1, · · · , K],

(D.5)

where a
(j)
k = [a

(j)
k−d−1, · · · , a

(j)
k−d−µ]T , and where d is the delay parameter of the equalizer

cascade. With this terminology, the optimization problem is to jointly choose the MIMO

equalizer {cj} and the targets parameters {bj} and {qj}, to minimize the mean-squared

error

MSE = E(
K∑
j=1

e
(j)2

k ), (D.6)

where

e
(j)
k = cTj rk − s

(j)
k . (D.7)

Each error can be simplified by cascading the corresponding FSE coefficients and the

target into a single vector wj , and also cascading the corresponding inputs to the j-th FSE

filters and the user bits into a single vector v
(j)
k , so that e(j)

k becomes:

e
(j)
k = wT

j v
(j)
k − a

(j)
k−d, (D.8)
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where

wj =



cj

−bj

−q`1
...

−q`K−1


(NNc+Kµ+K−1)×1

and v
(j)
k =



rk

a
(j)
ka(`1)
k−d

a
(`1)
k


...a(`K−1)

k−d

a
(`K−1)
k




(NNc+Kµ+K−1)×1

, (D.9)

where [`1, · · · , `K−1] = [1, · · · , j − 1, j + 1, · · · , K]. Therefore, the MSE is:

MSE = E(
K∑
j=1

(wT
j v

(j)
k − a

(j)
k−d)

2)

=
K∑
j=1

wT
j R(j)

vv wj + 1− 2wT
j pj

=
K∑
j=1

(wT
j −R(j)−1

vv pj)
TR(j)−1

vv (wT
j −R(j)−1

vv ) + 1− pTj R(j)−1

vv pj, (D.10)

where the covariance matrix R
(j)
vv and the cross-covariance vector pj , respectively are:

R(j)
vv = E(v

(j)
k v

(j)T

k ) and pj = E(v
(j)
k a

(j)
k−d). (D.11)

wj only appears in the first term in the sum of equations (D.10). This term has quadratic

form, and since R
(j)
vv is symmetric, the term cannot be negative, and can only be minimized

by setting it to zero. Therefore, the wj that minimizes the MSE in equation (D.10) is:

wj = R(j)−1

vv pj,∀j ∈ {1, · · · , K}. (D.12)
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[4] B. Vasić and E. Kurtas, Coding and signal processing for magnetic recording systems.
New York: CRC Press, 2004.

[5] S. Dahandeh, M. F. Erden, and R. Wood, “Areal-density gains and technology
roadmap for two-dimensional magnetic recording,” in TMRC, 2015, Aug. 2015,
Paper F1.

[6] R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of magnetic record-
ing at 10 terabits per square inch on conventional media,” IEEE Transactions on
Magnetics, vol. 45, no. 2, pp. 917–923, Feb. 2009.

[7] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2,
pp. 260–269, Apr. 1967.

[8] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Transactions on Information Theory, vol. 20,
no. 2, pp. 284–287, Mar. 1974.

[9] E. Ordentlich and R. Roth, “On the computational complexity of 2D maximum-
likelihood sequence detection,” Hewlett-Packard Labs, Palo Alto, CA, Tech. Rep.
HPL-2006-69, 2006.

[10] J. K. Nelson, A. C. Singer, and U. Madhow, “Multi-directional decision feedback for
2D equalization,” in 2004 IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 4, May 2004, pp. IV–921–924.

[11] M. Marrow and J. K. Wolf, “Iterative detection of 2-dimensional ISI channels,” in
Proceedings 2003 IEEE Information Theory Workshop, Paris, Mar. 2003, pp. 131–
134.

126

https://flashdba.com/category/storage-for-dbas/storage-myths/
https://flashdba.com/category/storage-for-dbas/storage-myths/
https://en.wikipedia.org/wiki/Perpendicular_recording
https://en.wikipedia.org/wiki/Perpendicular_recording
http://idema.org/?page_id=5868


[12] Y. Wu, J. A. O’Sullivan, N. Singla, and R. S. Indeck, “Iterative detection and decoding
for separable two-dimensional intersymbol interference,” IEEE Transactions on
Magnetics, vol. 39, no. 4, pp. 2115–2210, 2003.
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