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SUMMARY

Technological progress in the field of wireless communications over the past few years 

has only been matched by the increasing demand for sophisticated services at lower costs. 

A significant breakthrough was achieved in the design of efficient wireless 

communication systems with the advent of the diversity concept [1]-[3]. A 

communication system is said to have diversity if there are multiple paths, in time, 

frequency or space, between the transmitter and receiver. Diversity enables the system to 

mitigate the effects of multipath fading on signals transmitted through the wireless 

medium.

Spatial diversity exploits the availability of multiple spatial paths between the 

transmitter and receiver by placing antenna arrays at either end [3], [4]. In addition to 

improving the reliability of communication by creating redundant copies of the 

transmitted information at the receiver, wireless transceivers with multiple antennas 

exploit the spatial degrees of freedom to multiplex multiple streams of data and achieve 

significant gains in spectral efficiencies [1]-[4]. Spatial diversity is crucial to reliable 

communication over slow-fading wireless channels, where it is hard to achieve low error 

probabilities due to the lack of time diversity [4]. 

In this thesis, we design spatial diversity techniques for slow-fading wireless channels. 

There are two parts to this thesis: In Part I we propose spatial diversity techniques for 

point-to-point single-user wireless systems, while in Part II we propose multiuser 

cooperative diversity techniques for multiuser wireless communication systems.
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In the first part, we propose a set of new wireless communication techniques for 

multiple-input, multiple-output (MIMO) channels over Rayleigh slow-fading wireless 

channels. In the last decade, several techniques have been proposed to achieve the 

multiplexing and diversity benefits and low error rates over MIMO systems [5]-[10]. 

However, achieving these objectives at an affordable computational complexity remains a 

challenging problem. We introduce MIMO transceivers that achieve high data rates and 

low error rates using a class of MIMO systems known as layered space-time (ST)

architectures, which use low complexity, suboptimal decoders such as successive 

cancellation (SC) decoders. 

We propose a set of improved layered space-time architectures and show that it is 

possible to achieve near-optimal error performance over MIMO channels while requiring 

just SC decoding at the receiver [28][56][58]. We show that these architectures achieve 

high rate and diversity gains while maintaining simple decoders with affordable 

computational complexity. We also show that some of the proposed layered space-time 

architectures could find applications in multiple-access communications as low-

complexity solutions for achieving near-optimum performance [57].

In the second part of this thesis, we propose novel techniques for cooperative 

communication between terminals in multiuser wireless communication systems. 

Cooperative communication over wireless networks is a concept where neighboring 

terminals share their antennas and signal processing resources to create a “virtual transmit 

array” [61]-[65], [73]. In addition to transmitting their own information to the destination, 

users in a cooperative communication system listen to transmission from other users and 

relay this information to the destination, thus creating multiple paths between transmitter 
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and receiver. Cooperation amongst users creates a new form of diversity, known as 

cooperative diversity, which helps improve the reliability of all the users in a network 

collectively, compared to each user communicating independently with the destination.

Current cooperation protocols show that it is possible to improve the diversity gains 

significantly over multiple access channels, improving the outage performance at high 

SNR [63]-[68], [72]. The concept of cooperation necessitates that a user spend time, 

bandwidth, energy and signal processing resources to help the communication of other 

users in the network. This raises a fundamental question on the tradeoff between spending 

resources for one’s own communication and helping other users [88]. Several state-of-the-

art cooperation schemes, while effectively harnessing the diversity benefits of 

cooperation, incur a high penalty in transmission rate, thus affecting the outage 

performance. Specifically, the transmission rates of these protocols do not scale well as 

the number of users in the network increases [63][68][69][72][74].

We start with a simple three node multiple-access system where two users are 

communicating with a common destination [71]. We propose new high-rate cooperation 

strategies which achieve the full diversity gain offered by the cooperative channel for this 

simple system [89]. We propose a new framework to address the tradeoff between 

cooperation and independent transmission over a multiple access channel and determine 

the conditions under which each idea is better than the other. Finally, we propose a high 

rate cooperation protocol which achieves the maximum diversity over a multiple access 

system with an arbitrary number of users and achieves high rates which scale favorably as 

the number of users increases.
xvi.   



 CHAPTER 1

PROBLEM INTRODUCTION AND BACKGROUND

Today’s wireless devices have evolved into much more than just wireless telephones, 

with applications ranging from wireless internet, multimedia messaging and even high-

definition television gaining entry into pocket-sized wireless devices. On the other hand, 

wireless local area networks (WLAN) are fast replacing wireline networks due to their 

flexibility and mobility. In order to meet the demands of these applications, wireless 

technologies must improve spectral efficiencies and reliability while maintaining 

affordable costs.

Signals transmitted over wireless channels are subjected to time-varying attenuation 

and phase-shifts — a phenomenon called fading — due to the constantly changing nature 

of the wireless medium. Multipath fading is often a major impediment to reliable 

communications over wireless channels. Specifically, the channel reliability is severely 

affected when the signals experience heavy attenuation — a phenomenon known as deep 

fading. 

Recently, rapid progress have been made in wireless technology and much of this 

progress can be attributed to the concept of diversity communications [1][2]. Diversity 

refers to the availability of multiple independent channels between the transmitter and 

receiver. The idea of diversity communications is to mitigate multipath fading by 

exploiting these multiple paths to improve the reliability of communication, since the 

probability of several independent channels being in a deep fade simultaneously is small.
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Diversity in fading channels can be in time, frequency or spatial domains [1][2]. Time 

diversity can be obtained by coding or interleaving information across different coherence 

intervals, so that different parts of the same codeword experiences independent fades and 

hence the performance is averaged over the “good” and “bad” fading realizations. 

Analogously, if the channel response is frequency selective over the bandwidth of the 

coded signal, then different parts of the same codeword experience independent fades in 

the frequency domain, creating frequency diversity. A third form of diversity, namely 

spatial diversity, can be created by placing multiple transmit and receive antennas to 

create multiple spatial paths between the transmitter and receiver [3][4]. If the antennas 

are spaced sufficiently far apart, then the channel between different antenna pairs fade 

independently.

Fading, in time, can be of two kinds: slow or fast fading [35]. Slow fading is the 

scenario where the coherence time of the channel is larger than the duration of the 

transmitted codeword, and fast fading is the scenario where the coherence time is shorter 

than the codeword. Achieving low error probabilities over fast fading channels is easier 

than in slow fading channels due to the time diversity created by time varying fading, 

provided the receiver has a proper estimate of the channel. The main challenge facing 

system design for fast fading channels is channel estimation, whereas in slow fading 

channels achieving low error probabilities is the key challenge, due to the lack of time 

diversity [35][36]. Most widespread practical applications such as cellular telephony and 

indoor wireless networks are narrowband communications systems, meaning they occupy 
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a small frequency band and hence sufficient frequency diversity may not always be 

available [2]. In such cases, spatial diversity becomes a crucial component in achieving 

reliable communication over wireless channels.

1.1 Multiple-Input, Multiple-Output (MIMO) Systems

Recently, communication systems with multiple transmit and receive antennas, also 

known as multiple-input, multiple-output (MIMO) systems have between effective in 

exploiting spatial diversity to achieve dramatic improvements in the reliability of 

communication over wireless channels [1]-[4]. In addition to spatial diversity, another 

important benefit of using MIMO systems is the multiplexing, which refers to the ability 

of MIMO systems to support more than one independent stream of data simultaneously 

[4][11][12]. While diversity improves reliability, multiplexing enables higher transmission 

rates.

An important practical obstacle in employing MIMO systems is the enormous 

decoding complexity incurred by the use of multiple antennas [33][34]. The complexity of 

the optimal joint maximum-likelihood (ML) decoder grows exponentially in the spectral 

efficiency and length of the codeword. Though several techniques have been proposed to 

achieve the full multiplexing [5] and diversity [7]-[10] benefits of MIMO systems, 

achieving these objectives at an affordable computational complexity still remains a 

challenging problem.

The problem of achieving a desirable tradeoff between performance and complexity in 

MIMO communication systems has been approached in two ways in literature: (1) 

consider systems with near-optimum error performance and find lower complexity 
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algorithms without affecting the performance significantly [50][51], or (2) consider 

suboptimal systems with low computational complexity and improve transmission and 

reception strategies to approach near-optimal performance while maintaining the virtue of 

low complexity [13]-[23], [55].

The former approach often translates into a receiver design problem, where the goal is 

to design lower complexity algorithms to approximate the optimal decoder. The latter 

often turns out to be transmitter optimization problem, where the goal is to design 

transmitters to suit low-complexity decoders. We take the latter approach to MIMO 

transceiver design, with the goal of designing transmission strategies, specifically layered 

ST architectures tailored to work well with suboptimal decoders.

We now describe the MIMO channel model and the basic system assumptions to be 

used in Part I of this work in Section 1.2. In Section 1.3, we outline the organization of the 

remainder of Part I.

1.2 Channel Model and System Assumptions

Over the last decade, there has been a significant body of work on the design of MIMO 

communication systems, with techniques ranging from space-time codes [7]-[10], [15]

layered space-time architectures [14][16][17], beamforming and antenna selection 

strategies [13], [18]-[21] on the transmitter side to sphere decoding [50][51], decision 

feedback decoding [5][6] and lattice-reduction aided decoding at the receiver side 

[52][53]. The design of a good communication strategy is closely tied to the channel 

conditions, such as slow or fast fading, and system-level assumptions, such as the 
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presence or absence of feedback or presence or absence of an outer error correction code. 

In this section, we will describe the channel model used in this work and discuss some of 

these assumptions in detail.

In part I of this thesis, we consider a wireless communication system with t antennas 

at the transmitter and r antennas at the receiver, as shown in Fig. 1. The r× 1 received 

vector at the kth signaling interval is

yk = Hxk + nk. (1)

where H is the r× t channel matrix, xk is the t× 1 vector of input symbols transmitted at 

the kth signaling interval and nk is the r× 1 vector of additive noise elements.

The elements of the r × 1 noise vector nk are independent, circularly symmetric 

Gaussian random variables with zero mean and variance N0, so E[nknl
*] = δk − lN0Ir, 

where A* denotes conjugate transpose of A. The channel matrix H is a random Rayleigh 

fading matrix, its entries being independent, circularly symmetric complex Gaussian 

random variables with zero mean and unit variance. Thus, E[hkhl
*] = δk − lIr, where, hk

denotes the kth column of H. The average transmitted energy per symbol period E[|xk|
2] = 

 Fig. 1.  Illustration of the MIMO channel.
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E. Under these assumptions, the average signal-to-noise ratio (SNR) per receive antenna 

is S = E / N0. The decoders considered in Part I of this thesis require that there be at least 

as many receive antennas as transmit. Hence, we work with the assumption that r ≥ t.

We now state the assumptions on the channel model, performance metric and other 

system parameters to be used in this work.

• Flat Fading: We consider narrowband MIMO systems, where the frequency 

response of the channel is flat over the bandwidth of operation. Since this property 

is as much a function of the signal bandwidth as it is of the channel conditions, nar-

rowband systems often experience flat fading [35][36]. Techniques designed for 

narrowband MIMO systems can be easily extended to broadband systems by using 

the transceiver in conjunction with the orthogonal frequency division multiplexing 

(OFDM) technique [33].

• Quasistatic Fading: The channel matrix H is assumed to be quasistatic meaning 

that the channel response is assumed to be a constant over a frame of T symbol 

periods. The channel is assumed to take statistically independent values from one 

frame to another. This model is widely agreed to be a good representation of slow-

fading channels, especially in systems which use frequency hopping from frame to 

frame [1]-[4], [11][12][33][34].

• Open Loop System: We assume that the receiver knows the channel H perfectly. 

This is a valid assumption in most systems since channel estimation through pilot 

sequences is an integral part of most communication systems [33]. Moreover, we 

consider a scenario where there is no feedback path from the receiver to the trans-
6



mitter. This condition makes the system strictly ‘open-loop’ and precludes us from 

using techniques which depend on any kind of receiver feedback such as waterfill-

ing, eigenbeamforming or antenna selection [19]-[21].

• Outer Error Correcting Code: The design of MIMO transceivers is strongly 

influenced by the presence or absence of outer error correcting codes [33]. In the 

former case, the MIMO transceiver works in conjunction with the outer code to 

harvest the diversity advantage of the MIMO channel [5][6], [13]-[23]. Stand-

alone MIMO transceivers, on the other hand, cannot depend on the error correction 

capability of an outer code. For this reason, stand-alone MIMO transceivers such 

as space-time codes [7]-[10] are typically designed with the objective of maximiz-

ing diversity gain, so that the overall system achieves the desired reliability. In this 

work, we design MIMO transceivers in the presence of outer codes.

• Performance Metric − Outage Probability: The capacity of a quasistatic, Ray-

leigh fading channel is an unbounded nonnegative random variable, with a non-

zero probability of being less than ε for any ε > 0 [33]. Consequently, the Shannon 

capacity of a quasistatic fading channel is zero [4], since we cannot guarantee an 

arbitrarily small error probability for any nonzero data rate. Therefore, an impor-

tant performance metric of communication systems operating over for quasistatic 

fading channels is the outage probability [4][11].

The event of outage is declared when the instantaneous capacity of the wireless 

channel is less than the transmitted data rate and outage probability is the probability of 

occurrence of this event [4].
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While the data rate of a communication system is measured in bits per second, we are 

interested in the spectral efficiency, which is the data rate normalized with respect to the 

signal bandwidth. Throughout this thesis, we will use the term ‘data rate’ to denote the 

spectral efficiency, measured in b/s/Hz, since we consider systems operating over the 

same bandwidth. Consider a wireless communication system operating over a MIMO 

channel H, with an average SNR of S and a target data rate of R b/s/Hz. Let the 

instantaneous capacity of this MIMO channel be C(H, S). Now, we define the following.

Definition 1.  The outage probability, Pout, of a wireless communication 

channel is the probability that the instantaneous channel capacity is less than 

the transmitted data rate [3][4].

. (2)

If an outage occurs during a frame, the error probability of that frame is bounded away 

from zero, while otherwise it is possible to decode the frame with arbitrarily small error 

probability, provided the outer error correcting code is sufficiently long. Therefore, the 

outage probability is a lower bound on the achievable frame error rate of the system [11]. 

The bound can be approached by using a powerful error control code such as an LDPC 

code [44], [45] or a turbo code [46] as the outer code. Another important indicator of 

system performance over a wireless channel is the diversity order, which is defined as 

follows.

Definition 2.  The diversity order, d, of a wireless communication channel is 

defined by the asymptotic slope of the outage probability on a logarithmic 

scale with respect to logS [3]:

Pout S R,( ) Pr C H S,( ) R<( )=
8



. (3)

Diversity order is a good indicator of system performance at high SNR. Higher the 

diversity order, the steeper is the fall of the error rate curve as a function of SNR.

1.3 Organization of Part I of This Work

The remainder of Part I is organized as follows.

• In chapter , we present a survey of the state of the art in layered space-time archi-

tectures including V-BLAST, optimized versions of V-BLAST, and D-BLAST. We 

also review the linear and successive cancellation decoders, the staple of decoders 

used with layered space-time architectures.

• In chapter , we propose a joint transmit-receive optimization strategy to enhance 

the performance of V-BLAST. A combination of rate-normalized ordering algo-

rithm with the partially uniform rate and energy allocation improves the perfor-

mance of V-BLAST at no extra cost.

• In chapter , we introduce the STAR family of layered space-time architectures. 

STAR is a new family of architectures designed specifically to suit linear and suc-

cessive cancellation decoders. We propose three versions of STAR, namely V-

STAR, G-STAR and D-STAR with vertical, group and diagonal coding, respec-

tively. We show that each version of STAR outperforms existing layered space-

time architectures with the corresponding layering scheme, while exploiting the 

layered transmitter structure to maintain low decoding complexity. We also show 

d
Pout S R,( )log–

Slog---------------------------------------
S ∞→
lim=
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that each variant of STAR achieves near-optimum outage performance with no 

feedback from the receiver to the transmitter.

• In chapter , we discuss the diversity-multiplexing tradeoff of V-STAR and G-

STAR. We show that V-STAR achieves full diversity for vertically coded systems 

over a certain range of MIMO channel dimensions, while still maintaining a high 

rate and low computational complexity. G-STAR also shows near optimal diver-

sity gains with a high rate.

• In chapter , we explore the applications of the STAR transmission strategy to mul-

tiple-access communications, based on its similarity to vertically layered space-

time architectures. We present numerical results to compare STAR against conven-

tional multiple-access strategies and show that STAR achieves significant perfor-

mance improvement at low complexity, while requiring no feedback from the 

receiver to the transmitting users.
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PART I

LAYERED SPACE-TIME ARCHITECTURES FOR MULTIPLE-

INPUT, MULTIPLE-OUTPUT RAYLEIGH-FADING CHANNELS

In Part I of this work, we design MIMO transceivers that achieve high data rates and 

low error rates while maintaining a low decoding complexity. We use a class of MIMO 

systems known as layered space-time architectures [5][6] to achieve the stated objectives. 

Layered space-time architectures are a class of MIMO transceivers where the transmitter 

encodes information into independent layers using scalar channel codes and transmits the 

layers through multiple transmit antennas, while the receiver employs low complexity 

decoders which exploit the layered structure of the transmitter to keep the decoding 

complexity to a minimum [5].

Traditionally, layered space-time architectures have suffered from poor error 

performance due to the suboptimality of the decoders, leaving substantial room for 

improvement [14]-[18]. We design layered space-time architectures, specifically the 

transmitter, to suit low complexity decoders so that near-optimum error probabilities could 

be achieved while retaining the other merits of layered space-time architectures. We 

propose a set of new architectures and show that it is possible to achieve outage 

probabilities within a 1-2 dB of the optimal value while requiring just SC decoding at the 

receiver.



 CHAPTER 2

A SURVEY OF LAYERED SPACE-TIME ARCHITECTURES

It has been more than a decade since Foschini and Gans [3] and Telatar [4] in their 

seminal papers showed the advantages of using multiple transmit and receive antennas to 

improve the capacity and reliability of wireless communications. Since then, several 

transmitter and receiver design approaches have been proposed to achieve the promised 

diversity and multiplexing benefits of MIMO channels [5]-[23].

In this thesis, we propose a set of new MIMO transceivers, specifically a class of 

MIMO communication systems called layered space-time architectures to harvest the 

benefits offered by multiple antennas. A layered space-time architecture is composed of a 

transmission strategy and a reception strategy. At the transmitter, a layered space-time 

architecture encodes information into layers using scalar channel codes and transmits the 

layers through the multiple transmit antennas. The receiver employs decoders which 

exploit the special layered structure of the transmitter to keep the decoding complexity to 

a minimum [5][6][59].

Layered space-time architectures can be classified into two categories: a) vertical and 

b) diagonal. Vertically layered architectures are those in which each layer is constrained to 

span only one antenna [5][6]. Since each codeword is transmitted independently through 

one antenna, this type of layering is also known as independent coding. In literature, 

vertical architectures are also referred to as spatial multiplexing systems [14], [19]-[21], 

since these structures resemble parallel independent layers multiplexed through the 
12



transmit antennas. Diagonally layered ST architectures are those in which each layer 

spans multiple transmit antennas [39][54][55][59]. Since each codeword is allowed to 

jointly code across multiple antennas, this type of layering is also known as joint coding.

By not coding across transmit antennas, vertical architectures sacrifice the possibility 

of transmit diversity gain. Hence, the full diversity for vertical layered ST architectures is 

equal to the receive diversity, r [14]. The V-BLAST architecture is an example of a 

vertical architecture. By coding across transmit antennas, diagonal architectures provide 

transmit diversity as well as receive diversity. The D-BLAST architecture is an example of 

a diagonal architecture [59]. Despite its diversity advantages, D-BLAST has other 

disadvantages as we will discuss later in Section 2.7. 

In this chapter, we will overview some of the currently available layered space-time 

architectures. This chapter is organized as follows: In Section 2.1, we introduce the 

simplest layered space-time transmitter, the vertically layered naive spatial multiplexer. In 

Section 2.2, we discuss the linear detector in conjunction with the naive spatial 

multiplexer and define its outage probability. In Section 2.3, we introduce two variants of 

the successive cancellation decoder, one of which is used along with the naive spatial 

multiplexer to form the V-BLAST architecture. In Section 2.4, we review another 

architecture which uses spatial multiplexing with rate allocation. In Section 2.5, we 

establish the best outage performance achievable by any vertically layered architecture as 

a benchmark. In Section 2.6, we present some numerical results for these layered space-

time architectures. In Section 2.7, we review the diagonally layered D-BLAST 

architecture. In Section 2.8, we summarize the results of this chapter.
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2.1 The Simplest Layered Space-Time Transmitter

The V-BLAST (vertical Bell Labs layered space-time) architecture was proposed by 

Wolniansky et al. of Bell Labs in 1997 [5] as a simple way of achieving high data rates 

over wireless channels, combining a simple transmitter with a low complexity decoder at 

the receiver.

The V-BLAST architecture uses a simple MIMO transmitter. This transmitter, which 

we will refer to as the naive spatial multiplexer, multiplexes t parallel independent data 

streams, each encoded using a scalar channel code, through the t transmit antennas, as 

shown in Fig. 2. Each of these t streams is known as a layer. Clearly, this is an example of 

a vertically layered architecture and hence the name vertical-BLAST. The ith data stream 

carries an information rate of Ri b/s/Hz with an average energy of Ei. The total data rate is 

R = Ri, and the average transmit energy is E = Ei.

The layered structure of this transmitter enables sequential decoding of the layers, 

thereby allowing low complexity decoding. In the following we describe two candidate 

decoding algorithms, namely the linear detector and the successive cancellation decoder 

[5], before describing a specially optimized variant of the successive cancellation decoder 

used by V-BLAST.

Layer 2

Layer 1

Layer 3

T

OUTER FEC 
CODE 

OUTER FEC 
CODE 

OUTER FEC 
CODE 

 Fig. 2.  A 3-transmit antenna naive spatial multiplexer: Transmitter structure 
of V-BLAST.
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t
∑ i 1=

t
∑
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Since the channel is linear, flat-fading and quasistatic, the received vector at the k-th 

signaling interval is:

yk = Hxk + nk. (4)

2.2 Linear detector

The linear detector is the simplest MIMO detector for layered space-time architectures 

[33]. The linear detector converts the problem of joint decoding of the layers into one of 

individual decoding of the layers, by applying a feed-forward filter on the received 

vector.The feed-forward filter could either be a zero-forcing (ZF) filter or an minimum 

mean-square error (MMSE) filter. The ZF filter decorrelates the layers, completely 

nulling out the interference between them, while the MMSE filter minimizes the squared 

error between the vector of transmitted symbols and its estimate [33].

A ZF linear detector multiplies the received vector with a feed-forward filter W to get

H

AWGN
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…

…

…

w1
lin

Nulling
Vector

yk

Nulling
Vector

Nulling
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w
t
linw2
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Decoder
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 Fig. 3.  Linear decoding for a t-transmit antenna naive spatial multiplexing system.
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zk = Wyk = xk + Wnk, (5)

where W = (H∗H )−1H∗ is the Moore-Penrose pseudo inverse of H. Note that the 

components of effective noise Wnk are no longer independent. Hence, the optimal way to 

decode the layers is to do so jointly. However, a linear decoder decodes the layers 

independently anyway to reduce complexity. The linear detector obtains the ith decision 

stream, zk(i) = w
lin
i yk, where wlini  is the ith row of W. Thus the channel model reduces to

zk
(i) =  + wlini nk. (6)

The equivalent channel (6) is an AWGN channel with noise variance N0||wlini ||2. The 

estimates { } of the ith layer are obtained from {zk(i)}. The SNR of a layer for a given 

channel realization at the output of the linear detector is a function of γlini = 1/||wlini ||2.

Recall that the ith data stream has an average energy Ei, hence the instantaneous SNR 

of the effective channel is Eiγ
lin
i /N0, and the instantaneous capacity is log2(1 + Eiγ

lin
i /

N0). Hence, an outage occurs if and only if

Ci(H) ≡ log2(1 + Eiγ
lin
i /N0) < Ri. (7)

As shown in Fig. 3, the overall linear detector is a bank of parallel scalar decoders, one 

for each stream. If all data streams are outage-free, then the system is outage-free. 

However, if any of the streams is in outage, then the system is in outage. Thus, the outage 

probability of the coded system is

. (8)

xk
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2.3 Successive Cancellation Decoder

The successive cancellation (SC) decoder is a nonlinear decoder that can significantly 

outperform the linear detector [5][33]. SC decoders decode one layer at a time, subtracting 

out the estimated contribution of previously decoded layers from the received vector, 

before applying a feed-forward filter to detect a new layer.

In order to decode all the symbols { } in the ith layer, the SC decoder cancels off 

the estimated contribution from the previously detected data streams to obtain

yk
(i) = yk − , (9)

If previous decisions are correct, then {yk(i)} contains contributions only from the stream 

of interest i, and interference from the undecoded streams. To null out the interference, the 

zero-forcing SC decoder uses the nulling vector wSCi , defined as the first row of the 

Moore-Penrose inverse of the matrix [hi , hi +1 , …, ht] [5]. Using the nulling vector, the 

x̂k
i( )

+
–

+
–
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w
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 Fig. 4.  Successive cancellation decoding algorithm for a t-transmit antenna naive spatial 
multiplexer.
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SC decoder obtains the ith decision stream, zk(i) = w
SC
i yk

(i). Assuming perfect decision 

feedback, the channel model reduces to

zk
(i) =  + wSCi nk. (10)

The equivalent channel (10) is an AWGN channel with noise variance N0||wSCi ||2 . The 

estimates { } of the ith layer are obtained from {zk(i)}. The SNR of a layer for a given 

channel realization at the output of the SC decoder is a function of γi =  1/||wSCi ||2. The 

quantity Eiγi/N0 is known as the post-detection SNR of the ith layer and γi is known as 

the SNR scaling factor. We now quantify the outage probability of the SC decoder, as a 

function of {Ri}, {Ei } and {γi}. The ith layer has a post-detection SNR of Eiγi/N0, and 

hence the instantaneous capacity is log2(1 + Ei γi/N0). If each data stream is coded using 

a capacity-achieving scalar error correcting code, a stream is incorrectly decoded if and 

only if an outage occurs, i.e., if and only if

Ci(H) ≡ log2(1 + Eiγi/N0) < Ri. (11)

As shown in Fig. 4, the overall SC decoder is a bank of parallel scalar decoders, one 

for each stream. If all data streams are outage-free, the SC decoder is also outage-free. 

However, if any of the streams is in outage, the SC decoder is in outage, and hence has a 

nonzero probability of frame error. Consequently, the frame-error rate of the coded system 

is upper-bounded by the outage probability

. (12)

xk
i( )

x̂k
i( )

PSC S R,( ) Pr Ci H( ) Ri<{ }
i 1=

t

∪
 
 
 
 

=

18



The performance of the SC decoder can be improved by changing the order of 

detection of the layers. The optimal order is channel dependent. The order can be 

described by the permutation π(1, 2, …, t), where πk is the index of the kth detected layer. 

Let Π be the matrix whose kth column is the πk
th column of the identity matrix. Once the 

decoder computes the optimal order based on H, it performs fixed ordered SC decoding 

on HΠ instead of H. Also, for convenience, we define the inverse ordering vector π−1 =

[π1
−1 , π2

−1 , …, πt
−1 ] such that q =  for q = 1, 2, …, t.

For a given channel realization H, the capacity of the kth layer detected is given by

, (13)

where , and  denotes the projection of hi on the subspace 

spanned by hl for all l ∈ Ω, where we used the fact that [33]

. (14)

Alternatively, the SNR scaling factor can also be expressed in terms of the quadratic-

residue (QR) decomposition of H [22]. If the QR decomposition of H is given by H = 

QR, the SNR scaling factor of the ith layer is equal to the squared diagonal entries of R,

. (15)

In the following section, we will discuss two popular ordering algorithms for successive 

cancellation decoding of the naive spatial multiplexing transmitter.

ππq
1–

Ci H( ) log2 1
Ei
N0
------- hi ĥi Ω( )– 2+
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2.3.1  Fixed ordered SC decoder

The simplest ordering algorithm is fixed ordering, where the streams are decoded 

simply in their natural order, i.e., π = [1, 2, …, t], irrespective of H. In this case, it is well 

known [26] that the SNR scaling factors of the different layers {γi} are mutually 

independent random variables. Thus, the outage probability reduces to

Pfixed(S, R) = Pr{   [γι  < ]}. (16)

Further, from [26], γi has a χ2-distribution with 2(r − t + i) degrees of freedom, hence 

Pr[ γi < x] = 1 − exp . (17)

Substituting (17) in (16) gives a closed form expression for the outage probability with 

fixed ordered SC decoding. Also, (16) can be bounded using the union bound as:

Pfixed(S, R) ≤   Pr{γi  < }. (18)

It was shown in [11] that Pr[ γi < ε] can be approximated as Pr[ γi < ε] → εn for ε → 0, 

since γi is χ2-distributed with 2n degrees of freedom. For any layer with Ei ≠ 0, we can 

write  = λiS for some 0 < λi ≤ 1. Therefore,  → 0 as S → ∞, and 

consequently [22]

Pr{γi  < } → (19)
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as S → ∞. From this result, we can infer that (18) is a summation of t probabilities each of 

which decays as different polynomial orders in S. The decay rate of the ith layer outage 

probability is r − t + i, and consequently the diversity order of the ith layer is (r − t + i)

[22]. Clearly, as S increases, the outage probability is limited by the probability with the 

slowest decay, which is the first layer. Hence, the diversity order, dfixed, of fixed ordered 

SC decoding of the naive spatial multiplexer is [22]

dfixed = r − t + 1. (20)

Compare this with the optimal diversity order of spatial multiplexing systems, dSM = r

[11]. The diversity order clearly indicates that fixed ordered SC decoding yields 

suboptimal outage performance.

2.3.2  BLAST ordered SC decoder

Another variant of the SC decoder uses a specially ordered SC decoder, known as the 

BLAST ordering algorithm [5]. The naive spatial multiplexer along with this decoder 

constitutes the popular V-BLAST architecture. This ordering algorithm can be 

summarized as follows.

Given H, the first stream to be decoded, π1, is chosen as the one with the nulling 

vector of least magnitude, i.e., the maximum SNR scaling factor. The next stream, π2, is 

chosen to maximize γ2, among the remaining t − 1 choices, and so on. It was shown in [5]

that this greedy ordering algorithm is also globally optimum, as stated below.

Remark 1.  For stages j = 1, 2, …, t, the BLAST ordering algorithm chooses 

πj so as to achieve the maximum value of γj among the t − j + 1 possibilities. 
21



In the process, it also maximizes the minimum of the SNR scaling factors, 

namely min(γ1, γ2, …, γt) [5]. The optimal order is chosen as

, (21)

where  is the projection of hi on the subspace spanned by {hπk+1
, hπk+2

, …, hπt
}. 

The V-BLAST architecture is a combination of the naive spatial multiplexing transmitter 

with the BLAST-ordered SC decoder.

The SNR scaling factors {γ1, γ2, …, γt} produced by BLAST ordering are not 

mutually independent and obtaining a closed form expression for the density function of 

{γi} is still an open problem. For convenience, we define the SNR scaling vector Γ = [γ1, 

γ2, …, γt]. The BLAST ordering algorithm can be viewed as a function Ψ(H) of the 

channel matrix H, which outputs the pair (π, Γ). The following properties hold for the 

ordering vector π and the SNR scaling vector Γ produced by the BLAST ordering 

algorithm.

Lemma 1.  For a given channel matrix H, suppose Ψ(H) = (π, Γ). Then, for all 

column permutation matrices P,

Ψ(HP) = (PΤπ, Γ). (22)

Proof: Suppose the symbol xq corresponding to π(1) = q was decoded in the 1st stage 

with channel H, the same symbol, re-labelled as π′(1) = q′, where π′ = PTπ will be 

decoded in the 1st stage with the permuted channel PΠ. Clearly, the value of the 

maximum post detection SNR remains unchanged for that stage, since it corresponds 

πk
maxarg

i π1 … πk 1–, ,{ }∉
hi ĥi Ω( )– 2=

ĥi Ω( )
22



to the same symbol. Similarly, proceeding through the stages k  = {2, 3, …, t}, the 

post detection SNRs remain invariant to permutation, and that multiplying H by P

amounts to re-labelling the index of the symbols, as determined by P.

It is well known that permuting the columns of Rayleigh fading matrices does not change 

their distribution. More precisely, the following result holds.

Lemma 2.  Suppose H is a Rayleigh fading matrix. Then, for all column permuta-

tion matrices P, the random matrix H′ =  HP  is identical in distribution to H. 

From Lemma 2, HP is identical in distribution to H. Using Lemma 1, we arrive at the 

following corollary.

Corollary 1.  Ψ(HP ) = (PΤπ, Γ) is identical in distribution to Ψ(H) = (π, Γ).

Theorem 1. For a Rayleigh fading channel, the ordering vector π and the SNR 

scaling vector Γ produced by the BLAST ordering algorithm are independent. 

Further, π is uniformly distributed over the set of all permutations of [1, 2, …, t]T.

Proof: From Corollary 1, since PΤπ is identical in distribution to π, we conclude that 

π is uniformly distributed over all permutations of [1, 2, …, t]T. Further, from Corol-

lary 1, note that joint density function of (π, Γ) satisfies p(π, Γ) = p(PΤπ, Γ). Now, 

using Bayes’ rule and the fact π is uniformly distributed over  possibilities, we 

obtain the following expression for the joint density function, p(π, Γ) = p(Γ | π). In 

particular, p(π, Γ) = p(PΤπ, Γ) ⇔ p(Γ | π) = p(Γ |PΤπ) for all P, implying that Γ and π

are independent. This proves the second claim of Theorem 1.

t!

1
t!----
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2.4 Spatial Multiplexing with Rate Allocation

In this section, we review another layered space-time system which is obtained as a 

transmitter optimized version of spatial multiplexing proposed in [14], for successive 

cancellation decoders. Specifically, this scheme is obtained by allocating the available 

energy and data rate among the transmit antennas based on the statistical properties of the 

channel and the SC decoder.

The transmitter optimization problem can be stated as follows: Choose the {Ri} and 

{Ei} to minimize the outage probability of the spatial multiplexing system with fixed 

ordered SC decoding at a given SNR, under the constraints that Ri = R and Ei

= E.

The problem of optimum rate and energy allocations for a naive spatial multiplexing 

transmitter was solved in [14][22] by Prasad and Varanasi using constrained numerical 

optimization. Here, we provide a numerical example to illustrate this optimization 

procedure for a 4-input, 4-output MIMO system operating at a data rate of R = 8 b/s/Hz. 

At an SNR of S = 15 dB, numerical optimization yields the optimum data rate allocation 

to be {Ri } = {0, 1.31, 2.99, 3.70} and the corresponding energy allocation to be {Ei } = 

{0, 0.25, 0.36, 0.39}E. At S = 20 dB with a fixed ordering, the optimal rates and energies 

are {0, 0, 3.63, 4.37}, and {0, 0, 0.49, 0.51}E, respectively, which leads to an outage 

probability of 0.002422. In comparison, a uniform rate allocation with fixed ordering 

gives an outage probability of 0.1201, about fifty times larger. Note that the streams 

detected later carry a higher data rate than streams detected early. This result is intuitively 

satisfying because a higher fraction of the bits are loaded into streams with higher 

diversity orders.

i 1=

t
∑ i 1=

t
∑
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2.5 Optimum Outage Probability of Vertical Architectures

Thus far, we have discussed some suboptimal decoders which use the structure of 

layered architectures to enable low complexity decoding. We now define the optimum 

outage probability of any vertically layered architecture to serve as a benchmark for the 

performance of all vertical architectures.

The constraint of vertical layering makes a layered space-time architecture identical to 

a multiple-access system with t independent single-antenna transmitters and a receiver 

with r antennas. Hence, the minimum achievable outage probability of a vertically layered 

system is identical to that of a multiple access system and is given as [4][14]

, (23)

where, N is the set of all 2 t − 1 nonempty subsets of {1, 2, …, t}, with ν denoting each 

element of N. In (23), Hν  denotes the decimated channel matrix consisting of only those 

columns of H specified by ν. For example, if ν = [2, 3, 4], Hν = H[2, 3, 4] = [h2, h3, h4], 

where hi denotes the ith column of the channel matrix H. The diversity order 

corresponding to this outage probability is dSM = r. 

The optimum outage probability is achievable by using a joint ML decoder at the 

receiver with the transmitter being a naive spatial multiplexer [33]. However the joint ML 

decoder is exponentially complex in the product of the number of transmit antennas and 

the length of the codeword. Although the naive spatial multiplexer is optimal in 

combination with the joint ML decoder, we will see in the next section that the same 

transmitter yields very poor outage performance with suboptimal decoders. 
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2.6 Numerical Results for Vertically Layered Architectures

In this section, we present numerical results for the outage probability of layered 

space-time architectures considered thus far. We consider a 4-transmit, 4-receive MIMO 

channel with a target data rate of R = 8 b/s/Hz. 

Fig. 5 shows the outage probabilities of naive spatial multiplexing with linear 

decoding, fixed-ordered SC decoding, BLAST-ordered SC decoding, and spatial 

multiplexing with rate allocation with SC decoding, as a function of the average SNR per 

receive antenna. Also shown in the figure is the optimum outage probability of vertically 

layered architectures. From Fig. 5 we see that naive spatial multiplexing with linear 

decoding, fixed and ordered successive cancellation decoding suffer from lack of 

diversity, resulting in poor outage performance at high SNR. Transmitter optimized spatial 

 Fig. 5.  Naive spatial multiplexing vs. transmitter optimized 
spatial multiplexing with t = 4, r = 4.
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multiplexing significantly improves the outage performances over naive spatial 

multiplexing with SC decoding. At an outage probability of 10−3, transmitter optimization 

with fixed ordering outperforms V-BLAST by 13.5 dB.

Fig. 6 summarizes the currently available spatial multiplexing techniques in terms of 

the tradeoff between outage performance and computational complexity. The x-axis 

represents an approximate estimate of the decoding complexity required by the scheme, 

while the y-axis represents the SNR required by the scheme to achieve an outage 

probability of 10-3. We would like the ideal scheme to be placed as close to the bottom-left 

corner as possible. Naive spatial multiplexing with BLAST ordering is around 18.7 dB 

away from optimal. Transmitter optimization with fixed ordered SC decoding cuts the gap 

all the way down to 5.2 dB, but we see that there is scope for further improvement. As we 

discuss various new schemes, we will keep updating this tradeoff chart.
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 Fig. 6.  Performance-complexity tradeoff of spatial multiplexing 
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27



2.7 Overview of the D-BLAST Architecture

In this section, we briefly overview the diagonal Bell Labs layered space-time 

architecture (D-BLAST) proposed by Foschini in [59]. The D-BLAST architecture uses 

diagonal layering, where each layer spans multiple transmit antennas as opposed to just 

one in, say, V-BLAST.

The D-BLAST transmitter structure is shown in the Fig. 7. The transmitter encodes the 

information to be transmitted (message bits) into independent layers using powerful error 

correcting codes. The layers are then transmitted in a diagonal fashion as shown in Fig. 7. 

Each layer spans all the transmit antennas. At the transmitter, D-BLAST divides the static 

fading frame is divided into BD blocks each of length T/BD symbol periods, as 

represented by squares shaded with different patterns in Fig. 7. Each layer is tT/BD

symbol periods long and can be viewed as a concatenation of t segments containing T/BD

symbols each. The transmitter sends the ith segment of the first layer through the ith

transmit antenna, during the ith block. In general, the transmitter sends the ith segment of 

the jth layer through the ith transmit antenna during the (j − 1 + i)th block. Hence, the first 

layer requires that there be minimum of t blocks, with each subsequent layer requiring one 

OFF

 Fig. 7.  The D-BLAST architecture, with t = 3.
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additional block. Therefore, if the number of layers is ND, then the corresponding number 

of blocks is BD = ND + (t − 1). Each layer is transmitted with an energy of E/ND with 

each block having an average energy E/tND, so that the total average SNR for the D-

BLAST transmitter is S = E/N0.

The receiver uses fixed ordered successive cancellation decoding to decode the layers, 

starting with the first layer. The decoding of the first layer proceeds as follows. Note that 

the first segment of the first layer has no interference from another layer, the second 

segment has one interfering layer, and so on. The decoder uses either ZF or MMSE nulling 

to obtain estimates of all t segments that compose the layer, and then decodes all t

segments jointly. Subsequently, the contribution of this layer is cancelled out from the 

received symbols and the second layer is decoded in identical fashion. This sequential 

decoding process continues till all the layers are decoded. For this decoding procedure to 

work, D-BLAST requires the presence of inactive blocks at the beginning and end of a 

frame, as indicated by ‘OFF’ in Fig. 7.

Let the post-detection SNR of the jth segment of the ith layer be . Then, the 

instantaneous capacity of the ith layer in D-BLAST is [33]

. (24)

Note that  and consequently  for any two layers i and k, 

since the all the layers are symmetric. Therefore, we substitute  and

. The outage probability, which is defined as the probability that any of 

the layers is in outage, is given by

Si
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Ci H( ) 1
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, (25)

where, ND is the total number of layers and R is the total target data rate. Further, 

substituting for BD, (25) can be simplified as

. (26)

It was shown in [59] that for D-BLAST with MMSE-SC decoding,

. (27)

Now, (26) and (27) can be combined to get

. (28)

In the above equation, the term  on the right hand side represents a rate 

penalty because of the presence of the inactive blocks at the beginning and the end of a D-

BLAST frame. Otherwise (28) is identical to the outage probability of a MIMO channel 

[4]. As the number of layers increases, i. e., as ND → ∞,

, (29)

and this equation is identical to the outage probability of the MIMO channel. 

Consequently, it is claimed in [59] that D-BLAST approaches the MIMO capacity as the 
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number of layers increases, since the length of the OFF blocks keep getting shorter as the 

number of layers increase, and the corresponding penalty becomes progressively less 

significant. However, there is a problem with this argument.

As the number of layers is increased, the length of each layer is shortened and hence 

the length of the code used by a layer is shortened, eventually preventing the code from 

approaching layer capacity [33][39][54]. It is well known from Shannon’s channel coding 

theorem that long codewords are required to approach capacity [25]. On the other hand, if 

longer codes are used, then ND is not high anymore. Hence, there is a fundamental 

tradeoff between the codelength and the number of layers and consequently a tradeoff 

between the codelength and rate penalty incurred in a D-BLAST system [33].

We now evaluate the tradeoff between codelength and rate penalty in D-BLAST with 

the following simple computations. Each layer in D-BLAST occupies t segments, and the 

addition of one layer to the D-BLAST architecture occupies one more segment. Thus, the 

relationship between the number of layers and the length of each layer is

ND + (t − 1) = Tt / LD. (30)

The maximum possible code length for a static fading frame of length T symbol periods is 

T. We define the fractional code length as the ratio of the actual code length to the 

maximum possible code length, T. This quantity is given by

LD/T = t/(ND + t − 1). (31)

For example, when t = 4 and the number of layers is ND = 17, then LD/T = 1/5. This 

corresponds to a low rate penalty of  = 1.176. However, this also corresponds 

to a codelength L only 20% of T. As the number of layers is increased further, the 

1
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codelength shrinks even further. In fact, the actual codelength in a D-BLAST transmitter 

is equal to the maximum possible codelength only if ND = 1, i.e., with just one layer. 

However, the long codelength comes at a high rate penalty of  = t. In order to 

approach the MIMO capacity, D-BLAST would require small rate penalties which 

corresponds to short codelengths [33][39]. On the other hand, long codes are required for 

practical codes to achieve capacity. Moreover, if the shortened codes fail to achieve 

capacity, error propagation effects can significantly harm system performance [33].

In Fig. 8, we present a simple plot to further illustrate the tradeoff between the 

codelength and number of layers and, consequently, the rate penalty. We consider the 

outage probability of a D-BLAST system given by (28) for a 4 × 4 MIMO channel with a 

target data rate of R = 8 b/s/Hz. Starting with ND = 1, we evaluate the outage probability 

of D-BLAST as given by (28) for varying number of layers used in D-BLAST. For each 

case, we compute the SNR gap of the D-BLAST system to the optimum MIMO channel 
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outage probability, given by (29), at an outage probability of 10-3. For each of these cases, 

we also compute the corresponding fractional codelength, given by (31). Fig. 8 shows this 

SNR gap of D-BLAST to the MIMO channel outage probability as a function of the 

codelength, with the corresponding number of layers shown in brackets.

We observe that for long codelengths, D-BLAST suffers a high rate penalty and hence 

has a large gap to the MIMO channel outage probability. For example, for ND = 1, D-

BLAST is about 17 dB away from the optimum scheme. On the other hand, for ND = 9, 

the gap is close as 1 dB. However, this allows for a codelength of only 20% of the 

maximum possible codelength, which may not approach the layer capacity, as discussed 

earlier.

As for the question of what code length is sufficient to ensure that each layer is 

decoded with sufficient reliability, it is a function of the actual channel code used along 

with the decoding scheme. A detailed characterization of this tradeoff is still an open 

problem. A promising approached would be to use the sphere packing bound and error 

exponents to quantify the performance of error control codes as a function of codelengths 

[4][60].

2.8 Summary

In this chapter, the concept of layered space-time architectures was briefly introduced 

along with the typical decoding schemes for these architectures. The state of the art in 

vertical and diagonal layered space-time architectures was reviewed, and their relative 

advantages and drawbacks were discussed. Currently, layered space-time architectures are 

viewed as high rate multiple-antenna transmission schemes which permit low decoding 
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complexity at the receiver due to their special structures. However, it was also observed 

that layered space-time architectures suffer from poor error performance due to a 

combination of suboptimal decoding and naive transmission schemes. From the observed 

results, the motivation to design better layered space-time architectures is clear. Ideally, 

we would like to have layered space-time architectures which improve the error 

performance compared to the state of the art, while not losing out on the previous 

advantages of high rate and low complexity.
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 CHAPTER 3

JOINT TRANSMITTER-RECEIVER OPTIMIZATION OF V-BLAST

In this chapter, we introduce a new vertically layered architecture obtained by 

optimizing the V-BLAST architecture. We propose two methods to reduce the outage 

probability when the receiver uses successive cancellation decoding, namely, the 

optimization of the receiver ordering algorithm, and the optimal allocation of rate and 

energy at the transmitter.

On the receiver side, we propose the rate-normalized ordering algorithm for SC 

decoding, which is shown to minimize the outage probability among all possible ordering 

algorithms for any given transmitter loading strategy. On the transmitter side, the rate and 

energy allocation is optimized numerically for the ordered SC decoder, as opposed to just 

fixed ordering. The combination of transmitter allocation with rate-normalized ordering is 

shown to jointly minimize the outage probability. Our main conclusion is that, for a wide 

range of data rates and SNR, the outage probability is minimized by a partially uniform 

rate and energy (PURE) allocation strategy, which distributes the available rate and 

energy uniformly over a fraction of the available transmit antennas. 

This chapter is divided into four sections. In Section 3.1, we discuss our approach to 

receiver optimization using the rate-normalized ordering algorithm, which we show to be 

optimal in the sense of minimizing outage probability. In Section 3.2, we discuss the 
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problem of transmitter optimization for BLAST ordering and RN-BLAST ordering. In 

Section 3.3, we present simulation results comparing RN-BLAST to the current layered 

ST architectures. We summarize the contents of the chapter in Section 3.4.

3.1 Receiver Optimization: Rate-Normalized Ordering

In chapter , we defined the outage probability of the V-BLAST architecture with SC 

decoding. The instantaneous capacity of the ith layer is log2(1 + Eiγi/N0). If each data 

stream has a capacity-achieving code, it is incorrectly decoded if and only if an outage 

occurs, i.e., if and only if

Ci(H) ≡ log2(1 + Eiγi/N0) < Ri, (32)

or equivalently if and only if γi is less than 1/ ,  where  is the rate-

normalized SNR of the ith data stream, as defined by Forney [24]:

. (33)

The rate-normalized SNR characterizes the error performance of the system better than 

just the SNR, since it captures the effect of the data rate and energy allocated to the layer 

as well. If all data streams are outage-free, the SC decoder is also error-free. However, if 

any of the streams is in outage, the SC decoder is in outage, and hence has a nonzero 

probability of frame error. Consequently, the frame-error rate of the coded system is 

upper-bounded by the outage probability

Si
norm

Si
norm

Si
norm
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-----------------=
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Pout(S, R) = Pr . (34)

The expression for outage probability given by (34) can be re-written as

Pout(S, R) = (35)

= . (36)

Thus, to minimize the outage probability the order of detection must be chosen to 

maximize the minimum among layer capacities. We propose the rate-normalized (RN)

ordering algorithm which minimizes the outage probability for any given transmitter rate 

allocation. Note from (36) that an outage occurs if and only if min{ } across all 

the decoding stages is less than unity. From this observation, we state the following 

lemma.

Lemma 3.  To minimize the outage probability (36), the ordering vector π should be 

chosen to ensure that min{ } is maximized. For a given channel realization 

H, the kth layer detected is chosen according to

, (37)
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where  is the projection of hi on the subspace spanned by {hπ
k+1

, hπ
k+2

, …,hπ
t
}. 

Theorem 2. At the ith stage of decoding, the rate-normalized ordering algorithm 

chooses πi so as to achieve the maximum value of  among the t + i − 1

possibilities. In the process, it maximizes the minimum of { , , 

…, }.

Proof: Define a scaled channel matrix by H′ = HD, where D is a t × t diagonal 

matrix, whose ith diagonal entry is Dii = . If the QR decomposition of H is 

given by H = QR, then the scaled channel matrix can be written as H′ = QRD = 

QR′. The post detection SNRs resulting from SC decoding of H are equal to the 

squared diagonal entries of R. Therefore, the ith post detection SNR for the scaled 

channel H′ is γi′ = Rii
2Dii

2 = . Hence, the minimum of γi′ is maximized by 

applying the conventional BLAST ordering algorithm of [5] on H′ instead of H.

Combining Lemma 3 and Theorem 2, we conclude that the rate-normalized ordering 

algorithm minimizes the outage probability among all possible ordering algorithms.

3.2 Transmitter Optimization

In this section, we discuss the transmitter optimization problem, namely to choose the 

{Ri} and {Ei} to minimize the outage probability at a given SNR under the constraints 

that Ri = R and Ei = E. The following remark about the optimum energy 

allocation holds for all ordering algorithms.

Remark 2.  Suppose {Ri*} and {Ei*} are rate and energy allocations that min-

imize the outage probability for any of the layered space-time architectures 

ĥi Ω( )
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considered so far with SC decoding, the optimum energy and rate of the ith

data stream are related by

Ei
*/E = . (38)

This is easily proved using Lagrange multipliers. The implication of Remark 2 is that 

the transmitter optimization is simplified to one of choosing only the data rates {Ri}, with 

the optimum energies Ei determined by (38). Thus, the number of variables to be 

optimized is reduced from 2t to t.

3.2.1  Transmitter Optimization with BLAST Ordering

As stated in Section 2.3, the SNR scaling factors produced by the BLAST ordering 

algorithm are statistically dependent, and no closed-form expression is known for their 

distribution. Consequently, the outage probability (34) cannot be evaluated. Instead, we 

suggest the union bound to get a tractable expression that can be used for transmitter 

optimization. From (34), it is clear that the outage probability is bounded by

PUB({ }, π−1) = . (39)

Each term in the summation can be further split into an average over the stage πi−1 in 

which the ith stream is decoded, giving
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 = Pr(πi
−1 = k)

= Pr[γk < | πi
−1 = k]. (40)

From Lemma 1, πi−1 is uniformly distributed over {1, 2, …, t}, and hence Pr(πi−1 = k) 

= 1/t. Moreover from Lemma 1, γk is independent of the stage πi−1 in which layer i is 

decoded. Thus conditioning on πi
−1 = k does not change the distribution of γk. 

Substituting these facts in (40), we get

 = Fk , (41)

where Fk(x) = Pr[γk < x] is the cdf for γk. Let F(x) = Fk  denote the average of 

these distribution functions over the t symbols. From (41), Pr[  < 1/ ] = F(x). 

Substituting in (39), we get the union bound on the outage probability of the BLAST 

ordering algorithm

PrUB({ }, π−1) = F . (42)

The average distribution function F(x) is not known in closed form, so even the 

simplified union bound (42) cannot be evaluated as is. However, we estimate the function 

F(x) numerically as follows. We generate a large number of Rayleigh fading matrices, run 
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the BLAST algorithm for each one, and roundoff the resulting {γi} to pre-selected bins. 

This gives a discrete approximation to the actual continuous distribution function for each 

γi. Averaging, we get a discrete approximation to F(x).

The discrete approximation to F(x) is used as the metric to optimize transmitter rate 

and power allocations at different SNR and data rates. Note that (42) is just the sum of the 

same function evaluated for each of the terms {1/ }. Intuitively, this implies that 

unlike fixed ordering, BLAST ordering treats all the data streams identically. More 

precisely, if the data rates and energies of two streams i and i′ are equal, then the two 

streams make the same contribution F(1/ ) to the union bound (42). From this 

observation, it is tempting to conclude that the optimum solution is to allocate identical 

data rates and energies, R/t and E/t respectively to all the streams. However, this 

conclusion is not valid because the function F(x) is not convex in general.

For example, consider a 4-input, 4-output MIMO system operating at 8 b/s/Hz at an 

SNR of 20 dB. For this system, we numerically estimated F(x) and performed a random 

search for the optimum data rate allocation. The uniform allocation yielded a union bound 

(42) equal to 3.4334 × 10−2. However, the optimum allocation was the partially uniform 

allocation {4, 4, 0, 0}, which distributes the rates and energies uniformly over only two of 

the four available transmit antennas. This partially uniform allocation yielded a union 

bound of 1.1110 × 10−3, which is significantly lower than that of the uniform allocation. 

Based on numerical optimization experiments, we state the following conjecture.

 Conjecture 1. The union bound for the BLAST ordered SC decoder is minimized 

by a partially uniform rate allocation, with µ streams carrying a data rate of R/µ and 

Si
norm

Si
norm
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energy of E/µ, and the remaining t − µ data streams carrying zero data rate and zero 

energy.

Based on the above conjecture, numerical optimization reduces to finding the optimal 

number of active streams µ ∈ {1, 2, …, t}. The optimum number of active inputs, µ, is 

typically less than t at high SNR and it decreases with increasing SNR.

3.2.2  Rate-Normalized Ordering

Now, we consider transmitter optimization for RN ordering. In Section 3.1, we derived 

the RN ordering algorithm which modifies BLAST ordering to account for different rates 

and energies on different data streams. For any given rate and energy allocation, the RN 

ordering algorithm minimizes the outage probability. We now attempt to find the optimum 

rate and energy allocation at the transmitter when the receiver employs RN ordering. 

Clearly, this combination would achieve the lowest possible outage probability among all 

SC decoders with a naive spatial multiplexing transmitter.

The actual expression for outage probability with RN ordering is intractable. Even the 

union bound on outage probability is intractable, because the distributions of Γ and j for 

the RN ordering algorithm depend on the rate allocations. Unlike the case of conventional 

BLAST, each term in the union bound expression (39) cannot be simplified further, 

rendering intractable the problem of optimizing rate and energy allocation for RN 

ordering.

However, based on heuristic observations, we state the following conjecture regarding 

the optimum data rate allocation.
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 Conjecture 2. The optimum data rate allocation for the rate-normalized ordering 

algorithm is either

• the optimum allocation for the case of fixed ordering, which is found by numerical 

optimization, or

• a partially uniform allocation, where µ inputs carry a data rate of R/µ each, and 

the rest carry zero data rate.

We state this conjecture based on the following key observations. When the 

transmitter uses a partially uniform allocation, then RN ordering simplifies to V-BLAST 

ordering, for which we concluded in Section 3.2.1 that the partially uniform allocation is 

optimum. Moreover, when the transmitter uses the optimum rate allocation corresponding 

to fixed ordering, then RN ordering achieves a strictly lower outage probability than fixed 

ordering according to Theorem 2. Though these observations do not guarantee that the 

outage probability is minimized by the above rate allocation schemes, our numerical 

experiment results for RN-BLAST support the results in Conjecture 2. An extensive 

random search in the space of valid data rate and energy allocations yields the lowest 

outage probability only with one of the two candidates proposed in Conjecture 2. 

Based on Conjecture 2, one can restrict the search for the optimum data rate allocation 

to t + 1 possibilities. The first possibility is the optimum data rate allocation for fixed 

ordering. The other t are the partially uniform allocations with µ = 1, 2, …, t inputs. 

Given the data rate and SNR, one can simulate RN ordering for each of the t + 1

allocations with the energy allocations for each case chosen according to (38), and choose 

the allocation which has minimum outage probability. 
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Of particular interest in Conjecture 2 is the fact that a partially uniform allocation is 

often the optimum allocation for RN ordering. This claim can be explained by noting that 

with a partially uniform allocation, RN ordering amounts exactly to BLAST ordering, 

applied to the restricted set of µ active inputs. From Conjecture 1, a partially uniform 

allocation is optimum for BLAST ordering. Since RN ordering reduces to BLAST 

ordering with partially uniform allocation, the same allocation is expected to be a good 

solution for RN ordering.

When the allocation of rate and energy is partially uniform, the transmitter is identical 

to statistical antenna selection methods proposed in [17][18]. Hence, our work extends the 

antenna selection methods in two ways. First, it proves that the rate-normalized ordering 

algorithm is optimum. Secondly, Theorem 1 and the resultant union bound (42) give a 

justification for distributing the data rate uniformly over a partial set of channel inputs.

3.3 Numerical Results

In this section, we present numerical simulation results for SC decoding with fixed 

ordering, BLAST ordering and RN ordering with a naive spatial multiplexing transmitter 

operating over a 4 × 4 MIMO system operating at R = 8 b/s/Hz and S = 20 dB. 

In Fig. 9 we compare the outage performance of the fixed ordering, conventional 

BLAST and rate-normalized ordering for a a given rate and energy allocation scheme. The 

results are based on a rate allocation of {Ri} = {0.0 1.31 2.99 3.70}, which minimizes the 

outage probability of the fixed ordered decoder at 15 dB. It is seen from Fig. 9 that the 

rate-normalized ordering outperforms optimized fixed ordered system by 1.5 dB and 

BLAST ordering by 2 dB at an outage probability of 10-3.
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Fig. 10 shows the optimum error performance achievable by fixed and optimal 

ordering, with transmitter optimization in comparison with the conventional BLAST 
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system. The jointly optimal system outperforms conventional BLAST by 15 dB at an 

outage probability of 10-3. For the rate-normalized decoder, with t = 4 and r = 4, for a data 

rate of 8 b/s/Hz, transmitter optimization yields the following results. At S = 15 dB, the 

optimum solution is the partially uniform allocation {Ri} = {0, 2.67, 2.67, 2.67}. For S =

20 dB and 25 dB, the minimum outage probability is achieved by the partially uniform 

allocation with K = 2. From Fig. 10, we see that transmitter-optimized rate-normalized 

ordering outperforms transmitter-optimized fixed ordered receiver by 1.5 dB at an outage 

probability of 10-3.

Finally, we summarize the updated performance complexity tradeoff picture in Fig. 11

with the inclusion of RN-BLAST. From Fig. 11, we observe that RN-BLAST significantly 

reduces the SNR required to achieve the target outage probability, while maintaining the 
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low complexity of SC decoding. Specifically, RN-BLAST improves performance over 

transmitter optimized fixed ordering by 1.5 dB, while still falling 4.1 dB short of the 

optimum outage probability achievable by any vertically layered architecture.

3.4 Summary

We studied two ways of optimizing the V-BLAST system with the objective of 

minimizing the outage probability. We proposed the rate-normalized ordered detector and 

proved that it minimizes the outage probability among all possible ordering schemes. We 

investigated the optimal rate and power allocations to minimize the outage probability for 

the optimized successive cancellation decoder. We showed that the partially-uniform

allocation is the minimizing solution for V-BLAST ordered detection over an i.i.d. 

Rayleigh fading channel. For the rate-normalized ordered decoder, we propose a rule for 

rate and power allocation to minimize the outage probability based on partial analytical 

results. Simulation results show that jointly optimizing the transmitter and receiver of the 

SC decoder improves the outage probability while incurring no extra cost in complexity.
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CHAPTER 4

SPACE-TIME ACTIVE ROTATION (STAR) ARCHITECTURE 

In the previous chapter, we proposed the RN-BLAST architecture and concluded that 

RN-BLAST is the best optimized version of the basic V-BLAST architecture [28]. 

However, we also observed that the performance of RN-BLAST still falls short of the 

optimal outage probability achievable using an unconstrained decoder. This indicates the 

need for developing new and improved layered space-time architectures, instead of merely 

optimizing V-BLAST, in order to bridge the gap to the optimal outage probability. 

We answer this problem with a new family of layered space-time architectures for 

open-loop MIMO systems over quasistatic fading channels, called space-time active 

rotation (STAR). The basic idea of STAR is that the encoded layers of data are transmitted 

through a rotating set of active antennas.

In a STAR transmitter, the duration over which the channel response is constant is 

divided into t blocks. The first antenna is inactive during the first block, the second 

antenna is inactive during the second block, and so on. Thus, the set of active antennas 

rotates. The idea is that, in the absence of channel knowledge, active rotation isolates 

weaker and stronger antenna subsets and layered channel coding averages the system 

performance over these subsets, instead of being limited by the weakest antenna, as is the 

case in V-BLAST. We show that the combination of active rotation of antenna subsets 

with layered coding yields high diversity gain with just SC decoding.
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We propose three layering schemes for the STAR architecture to obtain the following 

three variants.

• The vertically layered V-STAR, with independent outer codes for each antenna 

significantly outperforms V-BLAST, achieving near-optimal outage probability 

using a simple SC decoder.

• G-STAR is a vertically layered architecture operating over a group of antennas, 

instead of just one, that enables a flexible performance-complexity tradeoff with 

varying group sizes.

• The diagonally layered D-STAR employs coding across antennas, and hence 

improving the diversity gain, and is shown to alleviate practical issues relating to 

error propagation and length of the scalar channel codes.

This chapter is organized as follows. In Section 4.1, we describe the basic setup of the 

STAR architecture. In Section 4.2, we introduce the vertically layered V-STAR 

architecture, derive the decoding algorithm for V-STAR, compute its outage probability 

and show that it clearly outperforms V-BLAST and all its enhanced versions using 

numerical simulations. In Section 4.3, we present the G-STAR architecture, discuss the 

performance-complexity tradeoff that it enables and present numerical simulations to 

show that it achieves near-optimum outage probability with just successive cancellation 

decoding. In Section 4.4, we discuss the D-STAR architecture and compare it with D-

BLAST. In Section 4.5, we summarize the STAR family of architectures and make some 

concluding remarks with directions to future work on this new architecture.
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4.1 Basic Structure of the STAR Architecture

We now describe the basic transmit antenna set-up of the STAR architecture.The 

STAR transmitter has two primary components, the antenna setup and the coding rule. 

First, we describe the basic antenna setup of STAR. The static fading frame is divided 

into t blocks. During the j th block in the static fading frame, the j th antenna is inactive. 

Thus, the effective channel matrix, H(j), in the j th block, is formed by removing the j th

column from the channel matrix H. For t = 4, the frame is divided into four blocks as 

illustrated in Fig. 12.

The other component of the transmitter is the coding rule. A layer is defined as one 

codeword of the outer scalar error correcting code. The coding rule is the fashion in which 

the layers are transmitted through the transmit antennas. We propose three variants of the 

STAR architecture with three different coding schemes, namely independent coding, 

group coding and joint coding respectively. 

The vertically layered V-STAR is restricted to employ independent coding, where each 

layer is encoded using an independent scalar channel code and transmitted through only 

one antenna. V-STAR is shown to achieve a high diversity order and outperform V-

BLAST significantly while maintaining the simplicity of SC decoding.
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 Fig. 12.  The STAR transmitter with t = 4 transmit antennas.

OFF

OFF

OFF

OFF
50



G-STAR is the variant of STAR with group coding, where the t transmit antennas are 

divided into t/q groups of q antennas each, and a layer is constrained to span only one 

group. G-STAR enables a flexible performance-complexity trade-off with varying group 

sizes; larger the group size, lower the error rates, but higher the complexity.

The diagonally layered D-STAR employs joint coding where each layer spans across 

multiple transmit antennas. We show that D-STAR compares favorably with D-BLAST, 

its jointly coded counterpart, in several aspects. D-BLAST is known to be affected by a 

fundamental tradeoff between code length and the transmission rate as explained in 

Section 2.7. We show how D-STAR avoids this problem by allowing for sufficiently long 

code lengths, essential for practical codes to approach the system capacity.

Each variant of STAR employs SC decoding at the receiver, which maintains the low 

complexity of layer processing. We now describe each one of these architectures in detail.

4.2 V-STAR: STAR with Vertical Layering

In this section, we introduce the STAR architecture with independent coding. This 

system will hence be referred to as V-STAR (vertical STAR).

T

 Fig. 13.  The vertical space-time active rotation (V-STAR) transmitter 
with t = 4 transmit antennas.
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4.2.1  Transmitter

In V-STAR, t independent streams of data are coded using t scalar SISO codes. The 

total number of layers is equal to t, the number of transmit antennas. In Fig. 13, the 

different layers are shaded by different patterns to show that they are encoded using 

independent error correcting codes. Contrast the V-STAR transmitter with that of V-

BLAST, where all the antennas active at all times and parallel data streams are 

independently coded.

4.2.2  Receiver

As with V-BLAST, the layered nature of the V-STAR transmitter yields itself to 

simplified decoding using a successive cancellation (SC) decoder. SC decoders [5] decode 

one layer at a time, subtracting out the estimated contribution of previously decoded 

layers, and nulling out interference from undecoded layers. However, unlike V-BLAST, it 

will be seen that V-STAR with SC decoding achieves near-optimum outage probability of 

spatial multiplexing systems.

TIME-VARYING
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DECODER 1
AND REMOD

TIME-VARYING
NULLING 2

DECODER 2
AND REMOD

{rk}

… …

 Fig. 14.  The V-STAR successive cancellation decoder.
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Define the ith layer as the scalar coded data stream transmitted through the ith antenna. 

The ith layer is a concatenation of t blocks, with the ith block being inactive. The SC 

decoding process outlined in Fig. 14 is a t-stage process, where each stage represents the 

detection and decoding of one layer. In the ith stage, the SC decoder detects each active 

block {j = 1, 2, …, t, j ≠ i} in the i th layer using the nulling procedure. The detected 

blocks are concatenated and decoded using the outer scalar decoder. Subsequently, the 

decoded layer is used to cancel out the interference before decoding the next layer.

To detect the j th block in the ith layer, the zero-forcing SC decoder nulls out the 

undecoded streams using the nulling vector wi (j), defined as the first row of Moore-

Penrose inverse of matrix [hi , hi + 1 , … , hj−1 , hj+1 , … , ht]. Since the nulling vector wi (j)

is different for different blocks within a layer, we refer to this procedure as time-varying 

nulling in Fig. 14. The 1 × T/t decision vector in the jth block of the ith layer is obtained 

as yi (j) = wi
(j)r (j), where r (j) is the r × T/t received vector during the jth block. Thus, the 

channel model reduces to

yi
(j) = xi

(j)  + wi
(j)n (j). (43)

The equivalent channel (43) is an AWGN channel with noise variance N0||wi(j)||2. The 

output of the SC detector forms the input to the outer scalar decoder. Also, since a layer is 

active for a fraction (t − 1)/t of the frame, each layer transmits at energy E/(t − 1) when 

active to satisfy the average energy constraint of E per symbol period. Thus, instantaneous 

signal to noise ratio of this block is ρi(j) = E/((t − 1)N0||wi(j)||2) = S/((t − 1)||wi(j)||2). 

The nulling process described thus far is called zero-forcing nulling. An alternative 

nulling method is minimum mean-squared error (MMSE) nulling, whose nulling vector 
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for the jth block in the ith layer is defined as the first row of (Hi(j)Hi
(j)* + N0(t − 1)I/

Et)−1Hi
(j)*, where Hi

(j) is the matrix [hi , hi + 1 , … , hj−1 , hj+1 , … , ht]. The performance 

of the SC decoder can be improved by changing the order of detection of the layers. The 

optimal order is channel dependent. The order can be described by the permutation π(1, 2,

…, t), where πk is the kth detected layer. Let Π be the matrix whose kth column is the 

πk
th column of I. Once the optimal order is computed based on H, the receiver uses fixed 

ordered SC decoding on HΠ instead of H.

4.2.3  Outage Probability and Diversity Order

We now compute the instantaneous capacity and the outage probability of V-STAR 

with SC decoding. Note that capacity here refers to the information carrying capacity of 

the equivalent channel formed by the MIMO channel in conjunction with the soft output 

SC decoder. The capacity of the ith layer, in bits/s/Hz, is:

 = , (44)

where, Xi = {Xi
(1), Xi(2), …, Xi(t)} is the concatenation of transmitted blocks in the ith

layer and Yi = {Yi
(1), Yi(2), …, Yi(t)} is the corresponding output of the soft output SC 

decoder. In (44), p(x1, x2, …, xt) denotes the joint probability density function of the 

transmitted symbols across all t layers. Since the noise is independent across time, the 

capacity of the ith layer is

 = . (45)

Ci H( ) max
p x1 x2 … xt, , ,( )

1
T
--- I Xi Yi H,( )

Ci H( ) max
p x1 x2 … xt, , ,( )

1
T
--- I Xi

j( )
Yi
j( )
H,( )

j 1=

t

∑
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Each active block is of length T / t. After detection, each block is effectively an 

AWGN channel with instantaneous SNR equal to ρi( j) . Hence, the mutual information is 

maximized by a Gaussian input which satisfies the power constraint that E(||X||2)/T ≤ E

with equality, where XT = {X1
T, X2

T, …, XtT}. The capacity of the jth block of the ith

layer is log2(1 + ρi
(j)). The inactive blocks have zero capacity. Therefore, the capacity of 

the ith layer is

 . (46)

Thus, the layer capacity is the arithmetic mean of the capacities of the blocks. Since each 

data stream is assumed to have a capacity-achieving code, it is incorrectly decoded if and 

only if an outage occurs, i.e., if Ci(H) < R/t. Note that, in V-STAR, the capacity of the ith

layer is averaged over t blocks in a static fading frame, as opposed to V-BLAST. The 

performance of V-BLAST might be degraded by one ‘bad’ antenna, whereas V-STAR 

guards against such an occurrence.

As defined in the previous chapters, if all data streams are outage-free, the SC decoder 

is also outage-free. However, if any of the streams is in outage, the SC decoder is in 

outage. Consequently, the outage probability is

 = Pr[ ]. (47)

The outage probability is a lower bound on the achievable frame error rate of the system. 

The bound can be approached by using a powerful error control code such as an LDPC or 

a turbo code as the outer code.

Ci H( ) 1
t
--- 1 ρi

j( )+( )2log
j i≠
∑=

PV S– TAR S R,( ) Ci H( ) R
t
----<

 
 
 

i 1=

t

∪
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The diversity order, d, of V-STAR is defined by the asymptotic slope of the outage 

probability

, (48)

and the diversity order, di, of the ith layer in V-STAR is defined as

. (49)

We now prove the following results about the diversity order of the V-STAR system.

Lemma 4.  The diversity order d of V-STAR with SC decoding is d = min{d1, d2, 

…, dt}, where di is the diversity order of the ith layer.

Proof: The outage probability can be bounded as

 <  < . (50)

The lower bound in the above inequality is true for any i, whereas the upper bound is 

obtained using the union bound. We choose i such that di = min {d1, d2, …, dt} so 

that the diversity order of the lower bound is mini{di}. As S → , the upper bound 

is dominated by the term with the lowest diversity order. Since the lower and upper 

bounds have the same diversity order, d = mini {di}.

Theorem 3. The diversity order d of V-STAR with SC decoding is bounded as

d
PV S– TAR S R,( )log–

Slog----------------------------------------------------
S ∞→
lim=

di

Pr Ci H( ) R
t
----<

 
 
 

 
 
 

log–

Slog--------------------------------------------------------
S ∞→
lim=

Pr Ci H( ) R
t
----<

 
 
 

PV S– TAR S R,( ) Pr Ck H( ) R
t
----<

 
 
 

k 1=

t

∑

∞
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mini{maxj{di ( j)}} ≤ d ≤ r, (51)

where di ( j) is the diversity order of the jth block in the ith layer.

Proof: The capacity of the ith layer can be upper bounded for any block j in layer i

as

. (52)

Choose block j* in the ith layer such that di ( j
∗) = maxj{di

( j) }. Then, using (52) the 

following holds true,

       , (53)

for some constant α. Combining (53) with Lemma 4, we get d ≥ mini{maxj{di
( j) }}. 

The second part can be proved using the fact that PV-STAR(S, R) ≥ PSM(S, R). It is 

well known [12] that the diversity order of PSM(S, R) is r.

The above result is useful in determining the diversity order of V-STAR with SC 

decoding when the diversity order of any one of the blocks is known, as we will see in 

chapter .

4.2.4  Receiver Design: Ordering Algorithm

The performance of the SC decoder depends on the order in which the layers are 

detected. For every instance of H, the receiver determines the optimal order of detection, 

π, which minimizes the outage probability. The expression for outage probability given by 

(34) can be rewritten as

Ci H( ) 1
t
--- 1 ρi

j( )+( )2log>

Pr Ci H( ) R
t
----< 

  α S
maxj di

j( )( )–
⋅<
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. (54)

Thus, the order of detection must be chosen to maximize the minimum among layer 

capacities, to minimize the outage probability. We propose a simple, greedy ordering 

algorithm along the lines of [5] and we prove that it minimizes the outage probability.

We propose the following ordering algorithm which greedily maximizes the layer 

capacity at every stage of detection. For a given channel realization H, πk, the kth layer 

detected is chosen as

, (55)

where

 and (56)

and  is the projection of hi on the subspace spanned by the r-dimensional column 

vectors  for all . Contrast this to the ordering rule in V-BLAST

, (57)

where .

We now prove that the proposed ordering algorithm is optimal in terms of minimizing 

the outage probability.

Pr Ci H( ) R
t
----<
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i 1=
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∪
 
 
 
 

Pr mini Ci H( ){ } R
t
----< 
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πk
maxarg

i π1 … πk 1–, ,{ }∉
1
t
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S
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2

log
j i≠
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Theorem 4. The minimum among all layer capacities is maximized, if, at each stage 

of decoding i = {1, 2, …, t}, the layer detected is chosen such that it has the 

maximum capacity among the t − i + 1 undetected layers at that stage.

Proof: We prove this result along the same lines as the proof of optimal ordering in 

[5]. The capacity of the ith layer given by

. (58)

Given an order of detection π, define the constraint set of πi as the set of undetected 

layers given by {πi+1, πi+2, …, πt}, with the constraint set being the null set if i = t. 

For the given ordering, let the capacity of the ith detected layer be Cπi. In order to 

prove this result, we revisit the following results from [5].

Lemma 5.  For two given orderings A and B, if Ai = Bi and the constraint sets of Ai 

and Bi are identical, irrespective of their order, then CAi= CBi.

Lemma 6.  For two given orderings A and B, if Ai = Bi and the constraint set of Ai 

is a subset of the constraint set of Bi, then CAi ≥ CBi.

Consider another ordering, apart from π, say ξ = {ξ1, …, ξ t}. Without loss of 

generality, let {π1, …, πx−1} = {ξ1, …, ξx−1} for some x. Let ξy = πx, where y > x. 

Now, consider a modified order ξ*  = {ξ1, …, ξx−1, ξy , ξx+1, …, ξt}, with ξy

displaced from its original position. Comparing the layer capacities of ξ and ξ*, we 

get Cξ1= Cξ1
∗ , …, Cξx−1 = Cξ∗x−1 using Lemma 5. From Lemma 6, we get Cξ∗x+1 ≥ 

Ci
1
t
--- log2 1

S
t 1–----------- hi ĥi Ω( )–

2
+ 

 
j i≠
∑=
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Cξx+1, …, Cξt ≥ Cξt
* . Since we use a local maximization procedure, it is also clear 

that Cξ∗x ≥ Cξx . (Note that Cξ∗x = Cξy = Cπx). Thus,

miniCξ∗i ≥ miniCξi. (59)

Hence, ξ* is a better ordering compared to ξ. An inductive extension of this 

perturbation procedure leads us to the conclusion that

miniCπi ≥ miniCξi, (60)

for any ξ. Hence, π is the globally optimum order which maximizes the minimum 

capacity among all layers.

4.2.5  Simulation Results

In this section, we present simulation results for V-STAR with ZF-SC and MMSE-SC 

decoding. We consider a 4 × 4 MIMO system operating at a data rate R = 8 b/s/Hz, 

distributed equally among the transmit antennas.

In Fig. 15, we compare the outage probabilities of the vertically layered architectures 

thus far. As discussed in Section 2.6, V-BLAST suffers from poor outage performance at 

high SNR, due to low diversity gain. Fig. 15 shows that spatial multiplexing and RN-

BLAST improve the diversity gain by transmitter and receiver optimization of the naive 

spatial multiplexing transmitter as discussed in chapter  and chapter . From Fig. 15, we see 

that the V-STAR architecture with SC decoding achieves the best outage probability 

among all currently known vertical architectures. Also shown in the figure is the optimum 
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outage probability achievable by any vertically layered architecture. Recall that this 

performance is achieved using a significantly more complex maximum likelihood 

decoder.

Fig. 15 shows that the outage probability of V-STAR with ZF-SC is 1.7 dB away from 

the minimum possible outage probability of the 4 × 4 spatial multiplexing systems. 

Numerical results also shown that V-STAR outperforms the unoptimized V-BLAST 

system by 17.4 dB. V-STAR outperforms the transmitter optimization methods for V-

BLAST namely optimal rate and energy allocation in [14] by 3.9 dB and RN-BLAST [28]

by 2.4 dB at an outage probability of 10−3.
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Fig. 16 shows the performance of V-STAR with ZF-SC decoding in comparison to the 

optimum outage probability for t = 3, 4 and 8 transmit antennas, with a data rate of 2 b/s/

Hz per transmit antenna. At an outage probability of 10−3, the gap to optimum for the 

 Fig. 16.  V-STAR with ZF-SC decoding vs. optimum outage 
probability for spatial multiplexing systems over 3 × 3, 4 
× 4 and 8 × 8 MIMO channels at 2 b/s/Hz per transmit 
antenna.
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three systems are 2.0 dB, 1.7 dB, and 3.2 dB respectively. In Fig. 17 we make a similar 

comparison for V-STAR with MMSE-SC decoding. At an outage probability of 10−3, the 

gap to optimum for t = 3, 4 and 8 transmit antennas are 2.0 dB, 1.4 dB, and 0.6 dB 

respectively at a data rate of 2 b/s/Hz per transmit antenna.

Fig. 18 summarizes the performance-complexity tradeoff of the following spatial 

multiplexing techniques: naive spatial multiplexing with linear decoding, fixed ordered as 

well as BLAST ordered SC decoding and optimal decoding; V-STAR with linear 

decoding, optimally ordered SC decoding and optimal decoding; and finally spatial 

multiplexing with rate and energy allocation with SC decoding. We see that the V-STAR 

lies in the ideal region on the bottom-left corner. Another critical observation here is that 

V-STAR with SC decoding and V-STAR with unconstrained decoding achieve almost the 

same outage probability. This observation shows that using a suboptimal SC decoder with 
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V-STAR does not cost much in performance compared to the optimal decoder. This 

property further validates our approach of designing layered space-time architectures 

tailored to suboptimal decoding algorithms.

So far, we have analyzed the performance of V-STAR with SC decoding with outage 

probability as the performance metric. Now, we evaluate the performance of V-STAR in 

combination with a practical error correction code. We consider a flat, Rayleigh fading 

channel for this simulation study. We assume that the channel is quasi-static, and remains 

constant for the length of one codeword, before changing to an independent value. The 

symbols transmitted from each antenna are drawn from a 16−QAM alphabet with Gray 

mapping.

In this study, we assume that V-STAR uses MMSE-SC decoding to obtain the 

equivalent scalar channel for each layer. Then, the LLR of each bit in a layer is computed 

using the maximum aposteriori probability of that bit. Subsequently, the bits are decoded 

using a message passing decoder, which is set to have a maximum of 50 iterations. The 

decoded layer is then remodulated, multiplied by the corresponding channel and cancelled 

out of the received symbols, before moving on to the next layer. The decoding is complete 

when the last layer is decoded, with no turbo processing between the MIMO detector and 

LDPC decoder.

In Fig. 19, we compare the frame error rates for V-STAR over 3 × 3 and 4 × 4 MIMO 

channels against the corresponding outage probabilities. For V-STAR over a 4 × 4 MIMO 

channel, the information bits are encoded using a rate−2/3 irregular LDPC code of length 

3000 bits. This amounts to a data rate of 8 b/s/Hz. We observe that the frame error rates 

approach to within 4.2 dB of the outage probability for a 4 × 4 MIMO channel. 
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For a 3 × 3 MIMO channel, we use a rate−3/4 irregular LDPC code of length 2000

bits, which amounts to a data rate of R = 6 b/s/Hz. In this case, we see that the frame error 

rate performs to within 4 dB of the outage probability. This result shows the significant 

improvement in diversity that V-STAR achieves even with a codes of length less than 

3000 bits. With more powerful error correcting codes, the frame error rates of V-STAR is 

expected to approach the outage probability even more closely.

4.3 G-STAR: STAR with Group Encoding and Decoding

Thus far, we have considered V-STAR, the variant of STAR with independent coding, 

where each codeword spans just one antenna. We now propose the G-STAR scheme, 

which combines the STAR architecture with group encoding. Group encoding is a scheme 

where the t antennas are divided into t/q groups of q antennas each. The q antennas in 

each group are coded jointly with one channel code [14]. The receiver employs group 

 Fig. 19.  Frame error rate performance of V-STAR with 16 QAM 
constellation and irregular LDPC codes.

10 14 20 24
10-4

10-3

10-2

10-1

1

SNR (dB)

4 × 4 FRAME ERROR RATE
ER

R
O

R
 P

R
O

B
A

B
IL

IT
IE

S

3 × 3 FRAME ERROR RATE

4 × 4 OUTAGE PROBABILITY

3 × 3 OUTAGE PROBABILITY
65



detection, a popular MIMO detection technique [14][32], where joint ML decoding is 

performed on each group followed by interference cancellation to facilitate the decoding 

of the next group. Group decoding has been previously used in conjunction with V-

BLAST, where each layer would consist of q antennas, as opposed to just one in V-

BLAST. We will refer to this coding scheme as naive group encoding.

In G-STAR, the static fading frame is divided into t/q blocks and one group of 

antennas is turned off over each block. For example, if t = 8 and q = 2, we have four groups 

of 2 antennas each, say {g1, g2, g3, g4} = {(1, 2), (3, 4), (5, 6), (7, 8)}. As illustrated in 

Fig. 20, the frame is divided into four blocks and the group {gl} with l = q is turned off 

during the qth block. Thus, in the first block, g1 is inactive; during the next block, g2 is 

inactive and so on. The channel faced by the lth group is denoted by Hl = [hq(l−1)+1, …,

hql]. Hence, the t/q antenna groups are encoded using t/q independent SISO channel 

codes. Hence, the rate of the G-STAR transmitter is t − q.

4.3.1  Group Decoding

In G-STAR, the ith group is a concatenation of t/q blocks, with the ith block being 

inactive. The SC decoding process is a t/q-stage process. In the ith stage, the SC decoder 

detects each active block {j = 1, 2, …, t/q, j ≠ i} in the ith group, by nulling out the 

 Fig. 20.  G-STAR transmitter with t = 8 antennas divided into 4 
groups of q = 2 antennas each.
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undetected groups. Subsequently, the bits in the ith group are decoded using a joint ML 

decoder. The decoded group is used to cancel out the interference before decoding the next 

group. 

To decode the jth block in the ith group, the zero forcing SC decoder nulls out the 

undecoded groups using the nulling matrix Wi
(j), defined as the first q rows of the Moore-

Penrose inverse of the matrix [Hi , Hi + 1 , …, Hj−1, Hj+1, …, Ht/q]. The estimate of the 

jth block in the ith group is obtained as yi(j)(1, 2, …, q) = Wi
(j)r(j). Thus, the channel 

model reduces to

yi
(j)(1, 2, …, q) = xi

(j)(1, 2, …, q) + Wi
(j)ni

(j). (61)

The equivalent channel (61) is a set of qdependent AWGN channels with the q × q

noise covariance matrix . In order to decode this group, the log-likelihood 

ratios (LLR) of the corresponding bits are obtained using a joint MAP detector and input 

to the outer code decoder. Now, we compute the instantaneous capacity of the equivalent 

channel formed by the MIMO channel and the group SC decoder. Since the noise 

covariance matrix of the equivalent AWGN channels is , the capacity of 

the ith group is

 . (62)

The ith group is in outage if Ci(H) < Rq/t. If any of the streams is in outage, the decoder 

is in outage. Hence, the outage probability is
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 = Pr[ ]. (63)

The performance of the group decoder depends on the order of detection of the groups. 

The order can be described by the permutation π(1, 2, …, t), where πk is the kth detected 

group. We extend the ordering algorithm used in V-STAR to this case. The following 

ordering algorithm greedily maximizes the group capacity at every stage of detection. For 

a given channel realization H, πk, the kth layer detected is chosen as

, (64)

where, 

, (65)

, (66)

and Wi
( j)  is the matrix formed by the first q rows of , as given by

, (67)

and

. (68)

This ordering algorithm can be proved to be optimal in terms of minimizing the outage 

probability, along the lines of Theorem 4.
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4.3.2  Simulation results for G-STAR

We now present the simulation results for G-STAR. We consider an 8 × 8 MIMO 

system where the transmitter is divided into 4 groups of two antennas each. The total data 

rate of R = 16 b/s/Hz is distributed equally among the 4 transmit groups. Fig. 21 compares 

the outage probability of G-STAR to the naive group encoding strategy, both with 

unconstrained decoding and SC decoding. Note that the transmitter of naive group 

encoding is identical to the group-constrained channel itself and hence, with 

unconstrained decoding, naive group encoding achieves the outage probability of the 

group-constrained channel. Thus, the left-most curve was calculated using (5) of [14]. 

Fig. 21 shows that the outage probability of G-STAR with SC decoding is only 1.6 dB 

short of the outage probability of the group-constrained channel. Moreover, when 

restricted to SC decoding, G-STAR outperforms naive group encoding by 8.2 dB. G-
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 Fig. 21.  G-STAR vs naive group encoding with SC and 
unconstrained decoding, t = 8, r = 8 and q = 2.
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STAR with SC decoding is only 0.2 dB away from G-STAR with unconstrained decoding. 

However, the naive group encoding strategy with SC decoding loses 9.8 dB to the 

corresponding unconstrained decoder at an outage probability of 10-3. Thus, we see that 

G-STAR is much better suited to SC decoding than is the naive group encoding strategy.

4.3.3  Performance-complexity tradeoff in G-STAR

The structure of G-STAR allows for flexible performance-complexity tradeoff as the 

group size is varied. The minimum group size is 1 and this set-up is identical to V-STAR, 

whereas the maximum group size is t, which yields a MIMO system coded jointly over t

antennas. The minimum group size corresponds to the case where the complexity is 

minimum, whereas the outage probability is also the highest. The complexity of decoding 

is exponential in the group size, but only polynomial (o(n3)) in the number of groups. 

Clearly, the exponential part dominates the total decoding complexity. For a MIMO 

system with 8 transmit antennas, the possible group sizes are q = 1, 2, 4 and 8. The 

decoding complexity is proportional to qM where M is the size of the constellation used 

for transmission. Depending on the available computational resources, one can choose the 

appropriate version of G-STAR.

4.4 D-STAR: STAR With Diagonal Layering

In this section, we introduce the STAR architecture with diagonal coding, D-STAR. 
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4.4.1  The D-STAR Transmitter

In D-STAR, t − 1 independent streams of data are each coded using scalar SISO codes, 

constituting t − 1 layers, and each layer is transmitted such that it spans multiple transmit 

antennas. In Fig. 22 we show two possible diagonal coding schemes for a simple 3-

transmit antenna system to obtain two variants of the D-STAR architecture, D-STAR 1

and D-STAR 2.

In both layering schemes, t − 1 independent streams of data are coded using scalar 

SISO codes to produce t − 1 layers. The general coding rule for these two schemes, which 

can be extended to an arbitrary number of antennas, is defined as follows:

D-STAR 1: The t − 1 layers are transmitted such that the ith layer is transmitted 

through the ith active antenna. Contrast this with the ith antenna in V-STAR. For example, 

from Fig. 22, the active antennas during the first block are {2, 3}. Hence, the first active 

antenna is 2 and the second active antenna is 3. Hence, in the first block, the first layer is 

transmitted from the 2nd antenna and the second layer is transmitted from the 3rd antenna.

OFF

OFF

OFF

OFF

OFF

OFF

D-STAR 1

D-STAR 2

 Fig. 22.  Two possible configurations of D-STAR 
with t = 3.
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We define a segment of a layer as that part of layer which is transmitted during one 

block. Clearly, a segment is T/t symbol periods long.

D-STAR 2: The t − 1 layers are transmitted such that

• No two segments of any layer are transmitted from the same antenna.

• No two segments of any layer are transmitted during the same block.

For example, in Fig. 22, we see that the 1st layer is transmitted through the 2nd antenna 

in the first block, 3nd antenna in the second block and 1st antenna in the third block. 

Similarly, the 2nd layer is transmitted through the 3rd antenna in the first block, 1st antenna 

in the second block and 2nd antenna in the third block. Note that as opposed to D-BLAST, 

the length of each layer in D-STAR is equal to the maximum possible code length T. This 

will enable the frame error rates of D-STAR to approach the outage probability closely, 

since the codewords are sufficiently long.

4.4.2  Decoding of D-STAR

The optimal way to decode D-STAR is to jointly decode all the layers using an ML 

decoder. However, this is too complex. Hence, we use ordered SC decoding to decode the 

layers of D-STAR. The decoding proceeds in the same fashion as V-STAR and D-STAR, 

namely all blocks in one layer are decoded and their contribution is cancelled out before 

the next layer is decoded. The order of decoding is chosen so as to maximize the minimum 

among layer capacity. This is done using the same greedy algorithm as in V-STAR.
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4.4.3  Performance Results

In this section, we present numerical results for the outage probability of D-STAR 

over a 4 × 4 MIMO channel with R = 8 b/s/Hz. Fig. 23 compares the outage probabilities 

of D-STAR with D-BLAST with the outage probability of the MIMO channel.

Firstly, we note that the performance of D-STAR 1 and D-STAR 2 are almost 

identical. Hence, for the rest of our discussions, we will use D-STAR 1 as the 

representative of the outage performance of the D-STAR architecture. At an outage 

probability of 10-3, D-STAR is about 3.5 dB away from the channel outage probability, 

while just requiring SC decoding. Compare this to the joint encoding and joint ML 

decoding required to achieve the channel outage probability. The outage probability of D-

BLAST, as discussed before, depends on the code length versus rate tradeoff. 
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 Fig. 23.  Outage probability of D-STAR vs. D-BLAST with 
different code lengths with t = 4, r = 4 and R = 8 b/s/Hz.
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Fig. 23 shows two curves corresponding to D-BLAST with code lengths of 50% and 

57.1% of the full code length, which corresponds to ND = 5 and ND = 4 respectively. At 

an outage probability of 10-3, D-STAR lies between these two curves. The inference from 

this plot is that, if each layer of D-BLAST were to achieve capacity with code lengths 

shorter than 50% of T, then D-BLAST is better than D-STAR. On the other hand, if D-

BLAST requires codelengths longer than or equal to 57.1%, D-STAR outperforms D-

BLAST.

The question of what codelength is sufficient for D-BLAST is an open research 

problem. Answering this question numerically for a specific family of error control codes 

might not be easy, however a tool which characterizes the performance of error control 

codes as a function of code lengths [60], such as the error exponent [27] of the equivalent 

channel created by D-BLAST, may be a promising way to approach the problem.

4.5 Summary

We introduced the space-time active rotation (STAR) family of layered space-time 

architectures. We consider STAR with vertical, group and diagonal layering at the 

transmitter with successive cancellation decoding at the receiver. We considered the 

vertically layered V-STAR architecture decoding and show that it achieves near optimum 

outage performance, for example, to within 1.4 dB of the optimum outage probability over 

a 4 × 4 spatial multiplexing system, with just an SC decoder. Then, we introduced the G-

STAR architecture, which uses group processing to enable a flexible performance-

complexity tradeoff. We showed that G-STAR achieves an outage probability within 1.6

dB of the optimum outage probability of group-encoded systems over an 8 × 8 MIMO 
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system with a group size of 2. Finally, we introduced the diagonally layered D-STAR 

architecture and showed that it gets to within 3.5 dB of the outage probability of a 4 × 4 

MIMO channel with an SC decoder. We also show D-STAR overcomes the drawback of 

code-length vs. rate tradeoff that is inherent to D-BLAST. In summary, we have proposed 

the STAR family of layered space-time architectures that achieve near-optimum outage 

performance just SC decoding at the receiver, while requiring no form of receiver 

feedback.
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CHAPTER 5

DIVERSITY-MULTIPLEXING TRADEOFF IN LAYERED ST 

ARCHITECTURES

The tradeoff between multiplexing and diversity benefits offered by MIMO systems 

has been a topic of significant interest. For long, questions on the existence and the nature 

of a tradeoff between diversity, rate and multiplexing generated a lot of interest in the 

research community [29][30]. The seminal work of Zheng and Tse [11][12] on diversity-

multiplexing tradeoff (DMT) answered several questions on this topic.

Since then, DMT has been a valuable tool in evaluating any scheme proposed for any 

wireless communication system over quasistatic fading channels. In this chapter, we 

evaluate the STAR architecture using the DMT framework. The key to understanding and 

quantifying the tradeoff between the rate, multiplexing and diversity benefits of a MIMO 

system is a set of appropriate definitions of each of these quantities. Therefore, we define 

a few terms before proceeding further.

This chapter is organized as follows: In Section 5.1, we define the problem and 

provide some background on the framework being considered. In Section 5.2, we discuss 

the rate-diversity tradeoff in V-STAR and propose the generalized V-STAR structure. In 

Section 5.3, we analyze the V-STAR protocol under the DMT framework. In Section 5.4, 

we analyze the G-STAR framework under the DMT framework and summarize our 

conclusions in Section 5.5.
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5.1 Background and Definitions

Conventionally, the rate of a transmission scheme is defined as the number of 

independent symbols transmitted by the system per channel use. Contrast the symbol rate 

with the data rate, R, of a system which is measured in b/s/Hz. The maximum rate for a 

transmitter with t antennas is t.

However, there are instances when a linear combination of symbols is transmitted as a 

new symbol, for example, two independent symbols z1 and z2 could be combined linearly 

to get z = a1z1 + a2z2 and be transmitted through one antenna. In such cases, we would 

like the definition of the rate to regard z as simply one symbol from a bigger constellation 

and not two independent symbols z1 and z2, since the latter could lead to a case where, 

technically, the rate of a system could be infinite. In order to avoid this quandary, we 

present the following formulation.

We consider linear space-time codes operating over t transmit antennas and NST

symbols periods. In one block of encoding, the space-time code takes a vector 

 of complex input symbols and produces  such that each 

element of Z is a linear combination of the input symbols. Specifically, the encoder 

applies a linear transformation  on u to obtain a vector z = Lu, where 

. The vector z with  elements is rearranged into a space-time 

codeword . For any space-time code which can be expressed in this form, 

we define the symbol rate as follows.

Definition 3.  The symbol rate, µ, of the linear space-time transmission 

scheme above is equal to rank (L) / NST.

u C
Nu 1×

∈ Z C
t NST×

∈

L C
tNST Nu×

∈

z C
tNST 1×

∈ tNST

Z C
t NST×

∈

77



We now summarize the diversity multiplexing tradeoff framework, which was 

formulated by Zheng and Tse [11][12]. Here, we recall some of the definitions used in this 

framework.

Definition 4.  In the diversity-multiplexing tradeoff framework, a coding 

scheme for any transceiver is defined as a family of codes {Ω(S)}, one for 

each SNR S. The DMT framework allows the data rate R to scale with the 

SNR as quantified by the multiplexing gain, which is defined as

. (69)

Remark 3.  For a fixed data rate system, the limit of the ratio of data rate to 

logS is zero, and hence the multiplexing gain is zero.

Definition 5.  The outage probability of the transceiver decays as S−  d(ρ) for 

large S, where d(ρ ) is the diversity order, defined as:

d(ρ ) = . (70)

Zheng and Tse showed in [11] that there is the following fundamental tradeoff between 

d(ρ) and ρ for an unconstrained transmission scheme over a MIMO Rayleigh fading 

channel.

. (71)

Remark 4.  The maximum achievable diversity order is tr, and the maximum 

achievable multiplexing gain is min(t, r).

ρ R
Slog-----------

S ∞→
lim=

Pout S R,( )log–
Slog--------------------------------------

S ∞→
lim

d ρ( ) t ρ–( ) r ρ–( )     ρ, 0 1 … min t r,( ), , ,= =
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Remark 5.  The result in (71) implies that any constant (that does not scale 

with S) data rate Rcorresponds to a multiplexing gain of 0. Hence, one can 

achieve the full diversity tr for any fixed data rate. Thus, full rate (µ = t) and 

full diversity (d = tr) are simultaneously achievable. However, the full multi-

plexing gain min(t, r) and full diversity (tr) are not simultaneously achievable.

Hence, while there is a fundamental tradeoff between diversity and multiplexing gain

over MIMO channels, there is no fundamental rate-diversity tradeoff over Rayleigh fading 

MIMO channels. The above statement is true only when there are no constraints on the 

system. The tradeoff characteristic can change when a constraint of any kind is imposed 

on the system. For instance, when a system is restricted to SC decoding, the full diversity 

and full rate may not be simultaneously achievable. Therefore, when a constraint such as a 

complexity constraint is imposed on the system, there could be a nontrivial rate-diversity 

 Fig. 24.  Diversity-multiplexing tradeoff for a vertically layered 
system over a 4 × 4 MIMO channel.
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tradeoff and hence the need to determine the optimal rate-diversity tradeoff which yields 

the minimum outage probability (error rate). In such cases, rate and diversity are tools 

which help us design good transceivers.

As an example, when the constraint of vertical layering is placed on a system, the best 

diversity-multiplexing tradeoff achievable is given by [12]

. (72)

5.2 Rate-Diversity Tradeoff in V-STAR

The V-STAR architecture, in comparison to V-BLAST, can be viewed as a technique 

which sacrifices rate to gain in diversity. So far, we have considered V-STAR with antenna 

subsets of size t − 1, so that the rate of the system is t − 1. In this section, we generalize V-

STAR to enable all possible rates, µ = 1, 2, …, t.

In the generalized V-STAR system, if the rate is chosen to be µ, the static fading frame 

would be divided into  blocks, with one distinct antenna subset of size µ being 

active over one block. Thus, active rotation is implemented using antenna subsets of any 

generic size µ instead of t − 1. For example, with µ = t, V-STAR is identical to V-BLAST. 

The outage probability of this generalized V-STAR system is a function of the triplet {S, 

R, µ}. For a given SNR S and data rate R, the objective of system design is to choose µ so 

as to minimize the outage probability:

d∗
SM

ρ( )
1

ρ
t
---– 

  r
ρ
t
---– 

  ρ t min 1
r
t 1+-----------, 

 ≤,

t ρ–( ) r ρ–( ) ρ t min 1
r
t 1+-----------, 

 ≥,








=

N
t
µ 

 =
80



L∗ = . (73)

Given S and R, the outage probability can be evaluated numerically using Monte-

Carlo simulations for all possible values of L, since closed form expressions for the exact 

outage probability are not mathematically tractable. The value of L that yields the 

minimum outage probability is chosen for the given data rate and SNR. This optimization, 

though exhaustive, needs to be done just once and is independent of the channel 

realization. When restricted to an SC decoder, the diversity order of V-STAR is a function 

of the transmitter rate. We now analyze V-STAR under the condition that the optimal rate 

is chosen by design. Let dV-STAR(L) denote the diversity order of V-STAR with rate L. 

We prove that dV-STAR(L∗) = r.

Theorem 5. V-STAR, with optimum rate selection and SC decoding, achieves the 

full diversity, r, of independently coded MIMO systems.

Proof: For the given SNR S and data rate R, the multiplexing rate is chosen to min-

imize the outage probability. One of the possible solutions is L = 1. The corre-

sponding outage probability is given by

(74)

= . (75)

Using the above equations, the outage probability can be approximated as

minarg
L
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. (76)

The diversity order of at least one of the possible choices of rate, L = 1, is r. The 

outage probability corresponding to L∗ must be less than or equal to that of L = 1, by 

design:

. (77)

The upper bound implies that dV-STAR(L∗) ≥ r and the lower bound requires that dV-

STAR(L∗) ≤ r. Thus, dV-STAR(L∗) = r, which is the full diversity of vertically layered 

systems.

However, our objective is to choose the rate which minimizes the outage probability, 

rather than just maximizing diversity. Though L = 1 ensures full diversity, it may not be 

the optimal rate in terms of minimizing the outage probability at a given SNR. Clearly, it 

is undesirable to have a high rate and low diversity (V-BLAST) or to have a low rate and 

high diversity (SIMO). 

So far, the diversity order of V-STAR is accurately known for the two extreme values 

of rate namely, L = 1 and L = t as dV-STAR(1) = r and dV-STAR(t) = 1. Now, we obtain a 

lower bound on the diversity order of V-STAR for any channel dimension. In order to 

derive this bound, we consider a MIMO system with antenna selection which, for any 

given H, is allowed to choose a subset of L antennas to be active, with the other antennas 

being switched off. Assume that this choice could be made with feedback from the 
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receiver, such that the outage probability of the resulting system with ordered SC decoding 

is minimized, while keeping the data rate unchanged. We will refer to this technique as Lth

order antenna selection and the set of active antennas as UL*.

Lemma 7.  The diversity order dAS of an L−th order antenna selection system with 

linear or SC decoding is lower bounded as [43] dAS (L) ≥ (t − L + 1)(r − L + 1).

We now use the above lemma to derive a bound on the diversity order of V-STAR.

Theorem 6. The diversity order of V-STAR with SC decoding is bounded as 

min{(t − L + 1)(r − L + 1), r} ≤ dV-STAR (L) ≤ r. (78)

Specifically, V-STAR with SC decoding achieves the full diversity, r, of 

independently coded systems for t = 3 and t = 4.

Proof: The generalized V-STAR system has  blocks with a distinct set of 

L antennas being active over each. Hence, there is exactly one block over which the 

active antennas are identical to the set UL*. Consider an SC decoder that first 

decodes the layers specified by UL*. Using Lemma 7, the diversity order of outage 

probability of these L layers is (t − L + 1)(r − L + 1) and hence the diversity order of 

the ith layer, di ≥ (t − L + 1)(r − L + 1) for all i ∈ UL*. Given that these L layers 

have been decoded and canceled out, each of the remaining t − L layers has exactly 

L unique blocks over which there is no interference from another layer. Hence, the 

diversity order of the last layer (t − L) layers is at least r. From these observations, 

N
t
L 
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we have di ≥ r for all i and specifically, dt = r. For the special cases of t = 3 and t = 

4, dV-STAR(t − 1) = r for any r ≥ t.

We use this bound on the diversity order to determine the conditions under which V-

STAR can be guaranteed to achieve the full diversity, r, of spatial multiplexing systems. 

Clearly, V-STAR can be guaranteed to achieve a diversity r when the upper and lower 

bounds in (78) are equal, which requires that 

(t − L + 1)(r − L + 1) ≥ r, (79)

L2 − L(r + t + 2) + (rt + t + 1) ≥ 0. (80)

Solving for L with the constraint that L needs to be an integer, the value of L* which 

guarantees that V-STAR will achieve full diversity is

. (81)

For square MIMO channels, i.e., r = t, we get

. (82)

Fig. 25 shows the value of L* for square MIMO channels as the MIMO channel 

dimension increases. We see that V-STAR enables very high rate with increasing channel 

dimensions while guaranteeing full diversity. The implication here is that the rate of 

generalized V-STAR needs to be no less than L* if the goal of system design is to achieve 

L r t 2 r t–( )2 4r+–+ +
2

-------------------------------------------------------------=

L 1 r r–+=
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full diversity. Note that min{(t − L + 1)(r − L + 1), r} is only a lower bound on the 

diversity order of V-STAR and hence the symbol rate for which generalized V-STAR 

achieves full diversity is at least L* (or possibly higher).

5.3 Diversity-Multiplexing Tradeoff in V-STAR

In this section, we analyze V-STAR under the diversity-multiplexing tradeoff (DMT)

framework [11]. The rate-diversity tradeoff discussed in the previous section is different 

from the DMT characterization in [11].

The optimal DMT for an independently coded r × t MIMO system is identical to that 

of a multiple access system with t independent users with one antenna each and r antennas 

at the receiver, since the two setups are identical. The tradeoff is given by [12]
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 Fig. 25.  Lower bound on diversity order of V-STAR over 
square MIMO channels.
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. (83)

This tradeoff is achievable with equality using a naive spatial multiplexer with 

unconstrained decoding. However, it is of interest to explore how close one can get to the 

optimal DMT with suboptimal, low complexity decoders. We focus on decoders based on 

SC decoding. It was shown in [12] that the DMT for naive spatial multiplexing with SC 

decoding is given by

. (84)

We now characterize the DMT for the V-STAR system with SC decoding, 

, for different values of L. We divide the problem into three cases, 

namely, L = 1, L = t and L = {2, 3, …, t − 1}. When L = t, the V-STAR system is identical 

to V-BLAST, hence the tradeoff is given by

. (85)

When L = 1, the outage probability of V-STAR for S → , from (71) is given by

. (86)

If the data rate scales as R = ρlogS, then
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. (87)

Thus, the DMT of V-STAR with L = 1 is given by

. (88)

Now, we derive an upper bound on the DMT for other values of L using a lower bound 

on outage probability. The outage probability of V-STAR with SC decoding is at least as 

much as that with unconstrained decoding, i.e., , 

where  is the outage probability of STAR with joint maximum-

likelihood decoding. This probability can be bounded as

(89)

for any layer q, where Cq is the capacity of the qth layer. Using 

, and the fact that hi are independent of each other, we get

(90)

and

. (91)

As S → , the outage probability can be approximated as

. (92)
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Thus, the diversity order is bounded by

. (93)

Specifically, we focus on rate L = t − 1, since it was observed to minimize the outage 

probability for all dimensions of the channel and SNRs considered.

. (94)

5.4 Diversity-Multiplexing tradeoff in G-STAR

In this section, we analyze G-STAR under the diversity-multiplexing framework [11]. 

The optimal diversity-multiplexing tradeoff curve for a group-encoded r × t MIMO 

system with a group size of q is identical to that of a multiple access system with t/q

independent users with q antenna each and r antennas at the receiver, since the two setups 

are identical. The optimal diversity-multiplexing tradeoff of this system is given by

. (95)

From (95), we see that the maximum diversity, which is achievable at any fixed data rate, 

d
∗
G−SM (0)  = rt/q. The maximum multiplexing rate is min(t/q, r). This tradeoff curve is 

achievable by using an unconstrained decoder with a naive group encoder. It was shown in 

[12] that the diversity-multiplexing tradeoff for naive group encoding with SC decoding is 

given by
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. (96)

The diversity-multiplexing tradeoff of G-STAR can be upper-bounded as follows

, (97)

for q = 1, 2, …, t − 1, where q is a factor of t and

(98)

for q = t. This result can be proved along the same lines as V-STAR.

5.5 Summary

In this chapter, we derived the diversity-multiplexing tradeoff of V-STAR and G-

STAR. We also defined the idea of rate-diversity tradeoff in V-STAR, and distinguished 

between this and the DMT framework. We introduced the generalized V-STAR system 

and showed how V-STAR trades off symbol rate in order to gain in diversity. We derived 

lower and upper bounds on the diversity order of this system, using which we showed that 

the original V-STAR system (as introduced in chapter ) achieves full receive diversity for t

= 4 and t = 3. We also obtained a set of conditions on the t, r and L for generalized V-

STAR to achieve full diversity. We derived upper bounds on the DMT of V-STAR and G-

STAR in this chapter.
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CHAPTER 6

APPLICATIONS OF STAR IN MULTIPLE-ACCESS 

COMMUNICATIONS

In chapters 2 - 5, we have discussed several layered space-time architectures with 

different coding schemes. Among the coding schemes, it is easy to see that the special case 

of independent coding resembles a multiple-access system, where the transmit antennas 

are equivalent to multiple access users synchronized in time [14]. In this chapter, we 

explore this connection and find applications for the proposed vertically layered 

architectures in multiple-access communications.

The concept of space-division multiple-access (SDMA) exploits all the available 

degrees of freedom over a multiple-access channel, by having all the users transmit 

simultaneously. In theory, the best outage performance over a multiple-access channel is 

achieved when users transmit simultaneously and continuously, a strategy we refer to as 

naive SDMA [4][14]. In practice, however, the receiver has limited computational 

resources that prevent it from implementing the optimum unconstrained maximum-

likelihood decoder that jointly detects and decodes. Clearly, this scenario is analogous to 

V-BLAST in a single user communication system.

When the receiver is constrained to use a suboptimal receiver based on successive 

cancellation (SC) detection, the outage performance of the system is severely degraded. 

Transmitter optimization algorithms such as rate allocation can be used to improve 
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performance with SC decoding [14], but the resulting outage performance is far from 

optimal. Furthermore, this approach leads to unfair solutions whereby some users have 

less data rate than others. 

This chapter is divided into five sections: In Section 6.1 we describe the channel 

model of the multiple-access channel. In Section 6.2, we introduce the STAR transmission 

strategy and successive cancellation decoding at the receiver. In Section 6.3, we derive the 

outage probability of STAR with SC decoding, and the diversity-multiplexing tradeoff 

follows in Section 6.4. We present some numerical simulation results in Section 6.5, with 

a summary of the scheme presented in Section 6.6.

6.1 Channel Model

We consider a multiple-access system with K users, each equipped with t transmit 

antennas. The receiver has r antennas, with the assumption that r ≥ Kt. We assume that the 

channel is flat-fading and static over a frame of T signaling intervals, but fades 

independently from one frame to the next. The r × T received matrix is given by

R = HX + N , (99)

where the elements of the r × T noise matrix N are independent, circularly symmetric 

Gaussian random variables with zero mean and variance N0. The overall channel matrix 

H between all the users and the receiver is of dimension r × Kt and is assumed to be a 

random Rayleigh fading matrix, its elements being independent, circularly symmetric 

Gaussian random variables with zero mean and unit variance. X is the Kt × T matrix 

containing the transmitted symbols from all users over T signaling intervals. We assume 

that the transmitters have no knowledge of the channel H, while the receiver has perfect 
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knowledge of H. The transmitters are assumed to be synchronized in time. We consider 

the fair scenario where each user transmits a data rate R at an average transmit energy of E 

per signaling interval. Under these assumptions, the average SNR per user per receive 

antenna is S = E/N0.

6.2 The STAR Architecture

The STAR architecture has two components: a transmission strategy at the time-

synchronized transmitters, and a low-complexity decoding algorithm at the receiver.

6.2.1  Transmitters

Roughly speaking, the STAR strategy is the complement of the TDMA strategy: the 

different users take turns being inactive, rather than being active. In particular, the STAR 

transmitters work as follows. Each user encodes its message into a codeword of length 

T(1 – 1/K) signaling periods, where T is the duration over which the channel is constant 

and K is the number of users. The static fading frame is divided into K blocks. The first 

user is inactive (transmits nothing) during the first block, then transmits its codeword 

 Fig. 26.  The timing of transmissions in a space-time active 
rotation (STAR) system with K = 4 users equipped 
with t = 2 antennas each.
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during the remaining blocks. The other users behave similarly: the jth user is inactive 

during the jth block only, while the remaining K – 1 users transmit simultaneously. 

Implicit in this arrangement is an assumption that the transmitters are synchronized.

The timing of the STAR transmissions is illustrated in Fig. 26. This transmission 

strategy is independent of the instantaneous channel realization. 

6.2.2  Receiver

The optimum decoder for a STAR-based multiple-access system is the joint ML 

decoder. However, its computational complexity is high. In this section we describe a low-

complexity decoder for the STAR strategy that is based on SC decoding. Surprisingly, we 

will see that this decoder can perform nearly as well as the joint ML decoder.

The data from the ith user is a concatenation of K blocks, with the ith block being 

inactive. Before decoding the ith user, the SC decoder first detects all but the ith block of 

the ith user by nulling out the undetected users in that block. After detection, the symbols 

of the ith user are decoded using optimal joint detection and decoding. Subsequently, the 

contribution of the decoded user is cancelled out from the received matrix before decoding 

the next user.

The nulling matrix Wi
(j), used to detect the jth block of the ith user, is the first t rows 

of the Moore-Penrose inverse of the matrix [Hi, Hi+1, … Hj−1, Hj+1, …, HK], where Hi

is the channel between the ith user and the receiver. The estimate of the jth block of the ith

user is obtained as Yi(j) = Wi
(j)R(j), where R(j) is the received matrix during the j-th 

block. Thus, the channel model reduces to
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Yi
(j) = Xi

(j) + Wi
(j)N(j), (100)

where, Xi(j) is the data transmitted from the ith user during the jth block and N(j) is the 

noise in the jth block. The equivalent channel (100) has t inputs and t outputs, with the 

t × t noise covariance matrix given by N0Wi
(j)Wi

(j)∗, where A∗ denotes the conjugate 

transpose of A.

6.3 Outage Probability

In this section, we compute the outage probability of a STAR system with SC 

decoding. The event of outage is defined on the equivalent channel formed by the 

multiple-access channel in conjunction with the SC decoder. For a given H, the capacity 

of the ith user in a STAR system is

Ci(H) = . (101)

Thus, the capacity of each user with SC decoding is the arithmetic average of the 

capacities of the K blocks. Since STAR ensures that users of various instantaneous signal 

strengths, including the weakest user, are turned off over one block, this averaging helps 

improve the performance significantly compared to naive SDMA with SC decoding. 

The ith user is in outage if Ci(H) < R. The overall system is said to be in outage if any

of the users is in outage. Hence, the outage probability is

PSTAR(S, R) = Pr  = Pr[mini{Ci(H)} < R]. (102)
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The performance of the SC decoder depends on the order in which the users are 

detected. From (102), we see that the outage probability is limited by the weakest link — 

the minimum among the user capacities. Extending the greedy ordering algorithm of [5], 

we arrive at an ordering strategy that minimizes the outage probability of STAR.

Theorem 7. The outage probability of STAR with SC decoding is minimized if, for 

a given H, the kth user detected, πk, is chosen as

. (103)

Proof: A straightforward application of Theorem 4.

6.4 Diversity-Multiplexing Tradeoff

In this section, we analyze STAR under the diversity-multiplexing framework [12]. 

We consider the symmetric scenario where all the users transmit equal data rates R, and 

hence have equal multiplexing gains ρ. The diversity-multiplexing tradeoff of a symmetric 

multiple-access system was derived in [12] as

. (104)

The above tradeoff is achievable by naive SDMA with joint ML decoding. It was shown 

in [12] that the diversity-multiplexing tradeoff for naive SDMA with SC decoding is

dSC(ρ) = (t − ρ)(t − (K − 1)t − ρ). (105)
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Obtaining the exact tradeoff for STAR with SC decoding seems mathematically 

intractable. We obtain a lower bound on the outage probability and hence an upper bound 

on the diversity-multiplexing tradeoff of a STAR system. 

From the result obtained in (98), the diversity-multiplexing tradeoff of a STAR system 

with SC decoding is bounded as

. (106)

We see that the upper bound achieves the full-diversity value of tr when ρ = 0. Also, 

when the number of users K is large, the upper bound in (97) approaches the optimal 

tradeoff in (106) whenever ρ < min(t, r/(K + 1)). Using the results obtained in Theorem 

6 we know that for the special case of t = 1 and K = 2, K = 3 and K = 4, the bound in 

(106) is achieved with equality.

6.5 Simulation Results

In this section, we present simulation results for a 4-user multiple-access system 2

transmit antennas per user and 8 receiver antennas. The data rate of each user is R = 4

bps/Hz. Fig. 27 compares the outage probability of the STAR strategy to the naive SDMA 

strategy, both with unconstrained decoding and SC decoding. Note that naive SDMA is 

identical to the multiple-access channel itself and hence, with unconstrained decoding, 

naive SDMA achieves the outage probability of the underlying multiple-access channel. 

Thus, the left-most curve was calculated using (5) of [14].

dSTAR ρ( ) t
ρK
K 1–--------------– 

  r ρK
K 1–--------------– 

 ≤
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Fig. 27 shows that the outage probability of STAR with SC decoding is only 1.6 dB 

short of the outage probability of the multiple-access channel. Moreover, when restricted 

to SC decoding, STAR outperforms naive SDMA by 8.2 dB. STAR with SC decoding is 

only 0.2 dB away from STAR with unconstrained decoding. However, the naive SDMA 

strategy with SC decoding loses 9.8 dB to the corresponding unconstrained decoder at an 

outage probability of 10-3. Clearly, the STAR transmission strategy is much better suited 

to SC decoding than is the naive SDMA strategy.

6.6 Summary

We proposed the space-time active rotation (STAR) transmission strategy for multiple-

access systems. STAR is an enhanced space-division multiple-access (SDMA) strategy 

that enables a successive-cancellation (SC) decoder to approach the outage performance 

of an unconstrained decoder. On the Rayleigh-fading multiple-access channel, the STAR 
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 Fig. 27.  Performance of the STAR strategy with SC and 
unconstrained decoding over a multiple-access channel 
with K = 4 users, t = 2, r = 8 and R = 4 bps/Hz per 
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strategy enables near-optimal outage performance with a low-complexity successive-

cancellation decoder. We derived the outage probability and proposed an ordering 

algorithm for SC decoding that minimizes the outage probability of STAR. We derived an 

upper bound on the diversity-multiplexing tradeoff of the proposed architecture. We 

showed that the proposed system outperforms naive SDMA with SC decoding by 8.2 dB 

for a 4-user multiple-access system with 2 transmit antennas each and 8 receive antennas. 

We also show that STAR with SC decoding gets to within 1.6 dB of the optimum outage 

probability for this case. Thus, the STAR transmission strategy with SC decoding is an 

effective solution to achieve near-optimum outage probability of multiple-access systems 

at low computational complexity.
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PART II

COOPERATIVE COMMUNICATIONS OVER FADING MULTIPLE-

ACCESS CHANNELS

In the second part of this thesis, we explore the idea of creating and exploiting spatial 

diversity using a collection of distributed antennas belonging to multiple terminals in a 

wireless network, each with its own information to transmit. This concept is known as 

cooperative communication, where the terminals help each other during transmission by 

sharing their antennas and signal processing resources to create a “virtual transmit array” 

[61]-[67].

In a cooperative communication system, each user in addition to transmitting its own 

information to the destination listens to the transmission from other users within radio 

range and relays the received information to the destination. This creates multiple paths 

over the network between the transmitter and receiver, and hence a new form of diversity 

known as cooperative diversity. Typical examples where cooperative communication can 

be potentially useful include sensor networks, where the sensor nodes are often not 

sophisticated enough to have multiple antennas, and ad-hoc networks [61][63]. Moreover, 

cooperation can also be viewed as an additional source of diversity for wireless systems 

which already benefit from time, frequency and/or spatial diversity.

Cooperative communication systems can be of two broad categories, cooperative relay 

networks [67][70][73]-[75] and cooperative multiple-access networks [63]-[68]. In relay 

networks, there is one transmitter communicating with one receiver, with a set of relays 
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assisting this communication, and the relays themselves do not have any information to 

transmit. In cooperative multiple-access systems, a set of users want to communicate with 

a common destination, with each user helping the another’s transmission by acting as a 

relay during some part of the protocol.

In this work, we address the problem of designing cooperation protocols over 

cooperative multiple-access systems only. We consider the design of cooperation schemes 

for multiple-access channels with the goal of achieving high data rates and maximum 

diversity gain. We aim to answer questions such as: how much cooperation is necessary? 

and what is the best cooperation strategy? We find some answers to these questions for the 

basic three-node network, with two users trying to access a common receiver. Following 

this, we investigate how the gains in a three-node network translate to a larger networks. 

We propose a new high rate cooperation scheme for an arbitrary number of users and show 

that our scheme achieves much higher rates than currently existing schemes, especially as 

the number of users increases, while still achieving full diversity.
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CHAPTER 7

PROBLEM INTRODUCTION AND BACKGROUND

We consider the cooperative multiple-access channel, where two or more users wish to 

send independent messages to a common destination, and where these users cooperate by 

occasionally acting as relays for each other. By sharing their antennas and signal 

processing resources, the users together create a “virtual transmit array” [61]-[68] that 

provides each user with an additional diversity against fading, thereby increasing the 

reliability of communication.

A conventional non-cooperative multiple-access strategy like SDMA achieves a high 

rate but with low diversity. In contrast, because user cooperation necessitates that the users 

spend some fraction of time listening to other users and acting as relays, a cooperative 

strategy will have a lower rate and a higher diversity [63]. Hence, there is a fundamental 

tradeoff in cooperative systems between rate and diversity. Our objective of system design 

is to maximize the diversity gain, while keeping the rate loss to a minimum.

Cooperative multiple-access protocols can be classified as either orthogonal or non-

orthogonal. Orthogonal protocols, such as the LTW protocol [63], are those in which users 

are constrained to transmit in non-overlapping time or frequency sub-channels, thereby 

avoiding interference. These protocols have the advantage of simple decoding, but suffer 

from low rates due to the orthogonality constraint, and consequently result in high outage 

probabilities. Non-orthogonal protocols, such as the CMA-NAF protocol [67], allow 

simultaneous transmission among users and hence enable higher rates.
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The remainder of this thesis is organized as follows.

• In this chapter, we present the simple three-node multiple-access system [71], 

where two users communicate with a common receiver. We state the system 

assumptions and describe the channel model to be used in the rest of this thesis. 

We overview the conventional non-cooperative transmission strategies as well as 

some of the recently proposed cooperative multiple-access schemes.

• In chapter , we introduce space-division relay, a high-rate cooperation protocol 

with full diversity for the simple three-node network, which is shown to achieve 

the best outage performance among all available schemes. 

• In chapter , we investigate the question of how much cooperation is necessary in 

multiple access channels. To answer this question, we develop the partial coopera-

tion framework to measure the optimum level of cooperation needed to achieve the 

lowest outage probability.

• Finally in chapter , we propose a new cooperation protocol for multiple-access net-

works with any number of users, and show that our protocol achieves very high 

rates, asymptotically approaching that of SDMA, while achieving full diversity.

We begin with the basic three-node multiple-access system, with two users sending 

independent information to a common destination. The remainder of the chapter is 

organized as follows. In Section 7.1, we describe the channel model to be used and list 

down the system assumptions. In Section 7.2, we provide a brief overview of non-

cooperative multiple-access schemes such as TDMA and SDMA. In Section 7.3, we 
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review some relay techniques that can be used in a cooperative communication system. In 

Section 7.4, we review the state-of-the-art cooperative transmission schemes namely the 

orthogonal LTW protocol and the non-orthogonal CMA-NAF protocol.

7.1 Channel Model

We consider a Rayleigh-fading multiple-access channel with two users communicating 

with a common destination. Each of the three nodes is equipped with a single antenna. We 

impose the constraint that a node can either transmit or receive at a given time, and cannot 

do both simultaneously, a restriction otherwise known as the half-duplex constraint [65]. 

We also assume that each node uses the same frequency band for both transmission and 

reception. In other words, we consider systems employing time-division duplexing as 

opposed to frequency division duplexing.

Fig. 28 outlines the possible communication links in a two-user cooperative multiple-

access system, whereby each node could either be transmitting its own information or 

relaying the information received from the other user. The inter-user communication link 

is used to share and exchange information between the two users prior to the relay 

operation.

U1 D

 Fig. 28.  A two-user cooperative multiple-access system: 
Possible communication links.

U2

TRANSMIT / RELAY

LISTEN

LISTEN

TRANSM
IT

 / R
ELAY

h1

h2
h12
103



Let hi denote the channel gain between the i-th user and the destination. Since the 

nodes transmit and receive over the same frequency band, channel gain of the 

communication link between the two users is identical, let h12 denote this gain. The 

channels are assumed to be linear and flat fading over the signal bandwidth. Also, the 

channels are assumed to be quasistatic, so that the channel response is constant over a 

frame consisting of T symbol periods, and it changes to an independent value from one 

frame to the next. 

The additive noise at each receiving terminal is independent circularly symmetric 

Gaussian random variable with zero mean and variance N0. We assume that the users are 

frame-synchronized. We further assume that the destination knows all of the channel 

coefficients {h1,  h2,  h12}, whereas the users know only h12.

7.1.1  Cooperation and Network Topology

The wireless channel between any two terminals in a wireless network is the 

cumulative effect of impediments such as path loss, shadowing and fading experienced by 

the transmitted signal. The fading component is well approximated by Rayleigh fading 

model and is statistically identical for all links in the network. However, in general, users 

experience different path losses and shadowing owing to asymmetric distances and 

location with respect to the destination. For example, if U1 is closer to the destination 

compared to U2, then the average power of the signals from U1 as received by the 

destination, would likely be higher than that of U2, due to lower path loss experienced by 

the signals from U1. Therefore, it is clear that network topology affects the average 

statistical properties of communication links between terminals in a wireless network.
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Cooperative communication requires a user to listen to the transmission from other 

users and relay this information to the destination. In other words, the users are required to 

be within the radio range of each other, so that mutual transmissions can be received with 

reasonable signal strength, at least on an average. Therefore, network topology becomes a 

key factor in choosing when and how users must cooperate. In Fig. 29, we show two 

simple scenarios to explain the effect of topology on cooperation.

In scenario A, users U1 and U2 are within relatively close proximity and hence can 

listen and relay the information from each other to the destination with reasonable signal 

strength. However, in scenario B, although U1 and U2 are at similar distances to D, they 

are very far away from each other and hence are likely to receive the transmission from 

each other with feeble strength. A basic advantage of cooperation is that multiple signal 

paths can be created between each user and the destination by simply listening into the 

other’s transmission and relaying this information. However, when the users are as far 

apart as is in scenario B, the listening and relaying operations amount to inefficient 

utilization of resources, since the associate signal strengths are expected to be very weak. 

Therefore, intuitively, cooperation seems to be counter-productive in scenario B.

U

 Fig. 29.  Two simple network topologies with two multiple-access users 
communicating with a common destination.
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In Fig. 29, we studied two scenarios where the h1 and h2 were similar but the 

discrepancy in h12 made one scenario more conducive to cooperation than the other. Now, 

in Fig. 30, we consider another pair of scenarios where the h12 is similar but h1 and h2 are 

drastically different. In scenario C, which is similar to scenario A, the users are within the 

radio range of each other and also at similar distances away from the destination. Hence, it 

can be expected that cooperation helps both users improve their reliability.

However, in scenario D, although the inter-user channel is similar to that in scenario C, 

we see that U2 is extremely close to D. Consequently, one might expect that U2 does not 

need any cooperative help from U1 to boost its signal strength and although U1 can 

potentially benefit from cooperation with U2, mutually symmetric cooperation would 

mean that U1 will have to spend some of its resources relaying U2’s information, which is 

clearly unnecessary. Moreover, U1 would be required to sacrifice some of its time on a 

very good channel in helping out U2, for which it is unlikely to gain any significant 

returns. Therefore, it may not be beneficial for U1 and U2 to cooperate, even though they 

have the capability to do so.

U

 Fig. 30.  Two more simple network topologies with two multiple-access users 
communicating with a common destination.
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Of the numerous possible topological scenarios, the above four scenarios are just 

specific examples, and one could conceivably present several such examples where 

cooperation is a desirable idea or otherwise. But the key conclusion from this study is that 

it is important to choose the set of cooperating users carefully to have a topology where 

cooperation is mutually beneficial and the overall reliability and throughput of a group of 

users are improved as a consequence.

7.1.2  Symmetric Network Assumption

Although we have seen that users in a wireless network can experience drastically 

different average channel behavior between each other and to the destination, it can be 

very useful to start with a simple scenario to understand cooperation protocols in depth, 

before extending the breadth of their applicability. We will review some existing 

cooperation protocols and propose several new protocols of our own for a simple topology 

and analyze their properties in detail, laying the foundation for extension to specific 

topological scenarios.

Instead of allowing the network topology to be a ‘free variable’, we make the following 

simplifying assumptions on the average behavior of the system: We consider a completely 

symmetric scenario where: (1) the channels from each user to the destination and the 

channel between the users are statistically identical, meaning {h1,  h2,  h12} are i.i.d. and 

unit variance and that the average received SNR for each user is identical; (2) both have an 

identical average energy of E per signalling interval; and (3) both users have an identical 

target data rate of R bps/Hz. Under these assumptions, the average SNR of each user at 

each receiving node is S = E/N0.
107



The symmetric network assumption has been used in several previous works such as 

[63]-[65][69][72][81][82] and a variant of this assumption, where the inter-user channel is 

assumed to be 3 dB stronger on an average was used in [66]-[68][77]. The use of the 

symmetric network assumption has the following significant advantages: i) it simplifies 

the analysis by eliminating the topology as a free variable, and provides a common 

platform to evaluate all cooperation protocols and study their properties in detail, and ii) it 

represents a scenario where all users will likely benefit from cooperation, with no 

statistical compromise made on the fairness and the overall performance of the network. 

However, there are also the following disadvantages to considering a symmetric 

network, namely i) it fails to capture the effect of the topological differences on the 

relative performance of cooperative and non-cooperative multiple-access schemes, for e.g. 

a specific topology could favor a specific cooperation scheme or even a non-cooperative 

transmission over another cooperation scheme, and ii) the symmetric network assumption 

is not very realistic in practice, since it is very much restrictive and requires all the inter-

terminal links to be statistically symmetric. However it is possible that practical scenarios 

could have ‘almost’ symmetric statistical characteristics.

Moreover, cooperation protocols proposed for a symmetric network can be modified 

for asymmetric users by taking into account the asymmetry of the network. For example, 

looking back at scenario A in Fig. 29, the users could control the degree of cooperation, in 

terms of time and energy spent, to grow inversely in the distance between the two users. 

This would reduce the amount of cooperation as the inter-user distance increases. In 

general, the time, energy and signal processing resources spent by users acting as relay 

nodes can be adaptively varied based on the knowledge of instantaneous topology.
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The goal of this work is to solve the following specific problem: given a set of 

statistically symmetric users in a multiple-access system, what is the best cooperation 

scheme that can be employed to minimize the outage probability of the overall network? 

In a network with asymmetric users, it is an interesting optimization problem to choose the 

set of cooperating users optimally, but it is beyond the scope of this work to consider this 

problem. In the following section, we will review the traditional, non-cooperative 

multiple-access schemes.

7.2 Non-Cooperative Multiple-Access Schemes

Conventionally, non-cooperative multiple-access strategies can be of two kinds, non-

orthogonal or orthogonal, depending upon whether or not users transmit simultaneously 

over overlapping time / frequency channels. 

Orthogonal multiple-access schemes include time division multiple-access (TDMA) 

and frequency division multiple-access (FDMA), where users are allocated non-

overlapping channels in order to avoid interference from one another. Information 
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 Fig. 31.  i). TDMA with N = 2 users. ii) SDMA with N = 2 users.
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theoretically, TDMA and FDMA are identical given an average power constraint, except 

that they separate users in different domains [33]. We consider TDMA as an example of 

orthogonal multiple-access schemes. Orthogonal schemes, while maintaining simplicity of 

receiver processing, are often suboptimal in terms of achievable information rate. The 

optimal non-cooperative transmission scheme is space-division multiple access (SDMA) 

[4][27], which is a non-orthogonal scheme where all users transmit simultaneously over 

the same channel. Fig. 31 illustrates the TDMA and SDMA multiple-access strategies 

over a 2-user multiple-access channel.

A TDMA system can be summarized as follows. During each block, the received 

samples at D for l∈ {1, 2, …, T/2} are

y1(l) = h1x1(l) + n1(l),

y2(l) = h2x2(l) + n2(l), (107)

where, yi(l) is the lth symbol received during the ith block, xi(l) is the lth symbol 

transmitted by Ui, ni(l) contains independent complex Gaussian noise of variance N0 and 

E [|xi(l)|
] = Et is chosen to satisfy the average power constraint. Specifically, given that 

each user actively transmits for T/2 symbols periods, Et = 2E to maintain an average 

transmit energy of E and an average SNR of E/N0 per user at the receiver. The capacity 

of each user is given by

Ci = log2 . (108)

The outage probability of the system is defined as the probability of any of the two users 

being in error and is given by

1
2
--- 1 2S hi

2+( )
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PTDMA = . (109)

Similarly, an SDMA system can be summarized as follows. The received samples for 

l∈ {1, 2, …, T} are

y(l) = h1x1(l) + h2x2(l) + n(l), (110)

where n(l) is independent complex Gaussian noise of variance N0 and E[|xi(l)|
] = E so 

that average SNR is E/N0 per user. By grouping together the transmitted and received 

symbols for l∈ {1, 2, …, T}, we obtain Y = [y(1) y(2)… y(T)], and the input blocks X1

and X2 as Xk = [xk(1) xk(2)… xk(T)] and the block of noise elements as N = [n(1)

n(2)… n(T/4)], so that the input-output relationship is given as

Y = h1X1 + h2X2 + N. (111)

The outage probability is specified by the union of 

O1:  C1|2 = I (X1 ; Y | X2) = log2  < R,

O2:  C2|1 = I (X2 ; Y | X1) = log2  < R

O12:  C12 = I (X1 , X2 ; Y  ) = log2  < R, (112)

where, it can be shown that p(x ), the joint probability density function of X1 and X2, 

needs to be jointly Gaussian to maximize the mutual information. The outage probability 

of SDMA is thus:

PSDMA = Pr[O1 ∪ O2 ∪ O12] = Pr[min {C1|2, C2 |1, C12} < R]. (113)
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7.3 Relay Techniques in a Cooperative Wireless Network

The previous section outlined some of the conventional non-cooperative multiple-

access schemes. Now, we move on to the idea of user cooperation in wireless networks. 

Before describing the cooperation strategies over a network, specifically over a multiple-

access system which is of interest in this work, we describe the basic relay operations 

considered here. These relay operations act as the building blocks in constructing 

cooperation protocols amongst users in a network.

Relay nodes in a cooperative wireless system could potentially use one of several 

strategies to forward another user’s information to the destination. We consider three 

popular relay strategies, namely amplify-and-forward (AF), amplify/decode-and-forward 

(ADF) and selection-decode and-forward (SDF).

7.3.1  Amplify-and-forward (AF)

In the amplify-and-forward (AF) technique proposed in [65], the relay nodes simply 

scale the received samples to meet the average transmit power constraint and before 

forwarding to the destination. The key advantages of the AF technique is that relay nodes 

do not have to decode the information, reducing the burden on these nodes which would 

typically be low power mobile devices. However, the disadvantage is that the information 

symbols, corrupted by inter-user channel distortion, are forwarded along with the receiver 

noise at the relay node. For example, if user U2 receives

y = h12x + n1, (114)
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from U1, then during the relay phase, U2 forwards αy to the destination, where α is the 

amplification factor, given by

α = , (115)

where E[|x( l )|] = Et, and the destination receives

z = h2αy2 + n2 = αh2h12x + αh2n1 + n2. (116)

7.3.2  Amplify/decode-and-forward (ADF)

Instead of AF, the nodes could also use the amplify/decode-and-forward (ADF) relay 

technique [69]. An ADF relay will use its knowledge of the channel coefficients to make a 

decision to either act as an AF relay or a decode-and-forward relay. Specifically, if the 

inter-user channel is not in outage, i.e., if the data rate R < log(1 + | h12 |
Et), then each 

user can perfectly decode the other’s information assuming that the transmitted 

information is a encoded using a capacity approaching error control code, and hence 

forward a clean version to the destination. The ADF relay will decode the received 

information and forward the decoded symbols to the destination. On the other hand, in the 

case of an outage, it would be counter-productive to forward erroneously decoded 

information, so the ADF relay simply amplifies and forwards the packet. This hybrid relay 

strategy was shown to be better than both AF and DF [69].

Et

Et h12
2

1+
------------------------------
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7.3.3  Selection-decode-and-forward (SDF)

In this technique, the relay node determines whether it should relay any information or 

not at all using its knowledge of the relay channel coefficients [63]. If the relay is capable 

of decoding the transmitted symbols, specifically, if the inter-user channel is not in outage, 

i.e., if R < log(1 + | h12 |
Et), then each user decodes the other’s information and 

forwards a clean version to the destination, otherwise, the relay nodes transmit nothing.

7.4 State of the Art in Cooperation Protocols

In this section, we discuss the popular cooperation protocols for multiple-access 

channels available in literature. We consider one example each for orthogonal and non-

orthogonal protocols. Among orthogonal protocols, we consider the Laneman-Tse-

Wornell (LTW) protocol [63], which could be viewed as an extension of TDMA to 

cooperative communications. The best available system among non-orthogonal protocols 

is the non-orthogonal amplify and forward (NAF) protocol [67], which achieves a higher 

rate by relaxing the orthogonality constraint, hence achieving a superior outage 

performance, albeit at the cost of increased complexity of receiver processing as a direct 

consequence of the non-orthogonal structure.

7.4.1  Laneman-Tse-Wornell (LTW) Protocol

The LTW protocol works as shown in Fig. 32. The static fading frame is divided into 

four equal-sized blocks. During the first block, the first user (U1) transmits its 

information, while the second user (U2) and the destination (D) each listen to the 

transmission. During the second block, U2 relays the information it receives from U1 to 
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the destination D. During the third and fourth blocks, users U1 and U2 reverse roles. The 

relay operation could be of different kinds. Some of the popular relay operations are 

amplify-and-forward (AF) [63], selection-decode-and-forward (SDF) [63] and amplify/

decode-and-forward (ADF) [69].

The basic idea of the LTW protocol is to ensure that the information from each user is 

transmitted through the other’s antenna, creating two independent paths from the 

information source to the destination, although the relayed information is affected by 

distortions in the inter-user fading channel. If the relay operation is chosen judiciously, it 

was shown in [63] that this protocol yields a diversity order of 2.

Due to the half-duplex constraint, the rate of any cooperative multiple access protocol 

will decrease compared to the corresponding direct transmission scheme, since each user 

has to spend a fraction of its time listening to another user’s transmission, and also acting 

as a relay.
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 Fig. 32.  Illustration of the Laneman-Tse- Wornell (LTW) cooperation protocol.
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By imposing the orthogonality constraint, the LTW protocol loses even more 

information rate, with each user spending only 1/4 of the time transmitting its own 

information. The advantage of ensuring orthogonality is that the decoding complexity of 

the system is low. However, the outage probability of the system suffers from the rate 

penalty incurred. Further, in the extension of the LTW protocol for N users, each user has 

a rate of 1/N2 [64], indicating that the LTW protocol sacrifices a significant amount of 

rate as the number of users grows.

The LTW with AF relays can be summarized as follows. During the first block, the 

received samples at D and U2 are given by

y1(l) = h1x1(l) + n1(l),

y12(l) = h12x1(l) + n5(l), (117)

where l ∈ {1, 2, …, T/4} and x1( l) is the ith transmitted symbol from U1, with E[|x1(l)|
]

= Et chosen to satisfy the average power constraint. Specifically, given that each user 

actively transmits for T/2 symbols periods, Et = 2E to maintain an average transmit 

energy of E and an average SNR of E/N0 per user. 

During the second block, the samples received by D from U2 are given by 

y2(l) = αh2y12(l) + n2(l), (118)

where l   ∈ {1, 2, …, T/4} and α is the amplification factor, given by

α = . (119)
Et
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During the third block and fourth blocks, U1 and U2 reverse roles. In the third block, 

the received samples at D and U1 are given by

y3(l) = h2x2( l) + n3(l),

y21(l) = h12x2(l) + n6(l), (120)

where, again l ∈ {1, 2, …, T/4} and x2( l) is the lth transmitted symbol from U2. During 

the fourth block, the samples received by D from U1 are given by 

y4(l) = αh1y21(l) + n4(l), (121)

with l   ∈ {1, 2, …, T/4}. By constructing the received blocks Y1, Y2, Y3 and Y4 as Yk = 

[yk(1) yk(2)… yk(T/4)], the input blocks X1 and X2 as Xk = [xk(1) xk(2)… xk(T/4)]

and the blocks of noise elements as Nk = [nk(1) nk(2)… nk(T/4)], we obtain the 

equivalent discrete, memoryless multiple-access channel for U1 created by the LTW 

protocol as:

Y1 = h1X1 + N1,

Y2 = αh2h12X1 + αh2N5 + N2. (122)

Similarly, the equivalent channel for U2 is

Y3 = h2X2 + N3,

Y4 = αh1h12X2 + αh1N6 + N4. (123)

In order to obtain an expression for the outage probability of each user in the LTW 

protocol, we need to compute the capacity of the equivalent channel created between each 

user and the destination. The discrete, memoryless multiple-access channel created by the 

LTW protocol for U1 and U2 with D are given by
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, (124)

, (125)

respectively. Hence, the outage event for the two users in this multiple access system is:

O1:  C1 = I (X 1; Y1, Y2) < R,

O2:  C2 = I (X2 ; Y3, Y4) < R, (126)

where pi(x ) is the probability density function of Xi. We The outage probability of the 

multiple-access system, which we define as the probability of any of the users being in 

outage, is given by

Po = Pr[O1 ∪O2] = Pr[min {C1, C2} < R]. (127)

For a given channel matrix, this formulation is identical to the Gaussian multiple-access 

channel [27]. For this case the mutual informations are maximized when the input 

alphabet at each source follows an independent Gaussian distribution. Upon 

maximization, we get

C1 = log2 . (128)
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Substituting for α, we get

C1 = log2 . (129)

Similarly for U2

C2 = log2 . (130)

In [63], the authors prove that the diversity order of this protocol is 2, which is the 

maximum diversity achievable over a 2-user cooperative multiple access channel with a 

single antenna at each terminal.

7.4.2  NAF protocol

In this section, we review the cooperative multiple-access - non-orthogonal amplify 

and forward (NAF) protocol proposed in [67]. As the name suggests, the NAF protocol is 

a non-orthogonal protocol which enables users transmit at a high rate by creating an 

artificial ISI channel through cooperation.

A cooperation frame in the NAF protocol consists of two consecutive symbol periods. 

Each user transmits once during a cooperation frame. Each user transmits a linear 

combination of its current symbol and the noisy signal received from its partner during the 

previous time slot. The NAF protocol can be summarized as follows. The transmitted 

signals at the start of the communication are:
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t1,0  = ax1,0

t2,0  = ax2,0 + b(h12t1,0 + n2,0)

t1,1  = ax1,1 + b(h12t2,0 + n1,0)

t2,1  = ax2,1 + b(h12t1,1 + n2,1). (131)

where ti,j is the symbol transmitted by the ith user during the jth cooperation frame, 

whereas xi,j is the information symbol of the ith user during the jth cooperation frame, and 

ni,j is the corresponding additive white Gaussian noise at the receive antenna. THe 

coefficients a and b, called broadcast and repetition gains respectively, determine the 

fraction of transmitted power allocated to the relayed symbols. The corresponding 

received signals at the destination are

y1,0  = h1t1,0 + v1,0

y2,0  = h2t2,0 + v2,0

y1,1  = h1t1,1 + v1,1

y1,0  = h2t1,0 + v2,1. (132)

where yi,j is the received symbol corresponding to the transmission from the ith user 

during the jth cooperation frame. The NAF protocol continues transmission by linearly 

combining its current symbols with the received symbol during the previous instant. Thus, 

the NAF protocol can be viewed as an encoder with a memory that creates an artificial ISI 

channel. The optimum values of the cooperation and broadcast gains are determined 

numerically. We refer the reader to [66] for a detailed derivation of the outage probability 

of this scheme, where the authors show that NAF achieves the full diversity of 2.
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The NAF protocol has each user transmitting new information symbols once every two 

slots (cooperation frame), and hence the rate of each user in this protocol is 1/2. However, 

the NAF protocol suffers an SNR penalty since each user is forced to share its available 

transmit energy between its current symbol and past symbols of itself and the other user.

7.5 Numerical Results

In this section, we compare the outage probabilities of TDMA, SDMA, the LTW 

protocol with AF relays, and the NAF protocol over a 2-user cooperative multiple-access 

channel with a target data rate of R = 1 b/s/Hz for each user.

In Fig. 33, we present the numerical results on the outage probabilities of the multiple-

access strategies discussed in this chapter as a function of the average SNR per user. We 

see that the outage probability curves for TDMA, SDMA exhibit a lower diversity gain 
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 Fig. 33.  Outage probabilities of various multiple access schemes for 
a 2-user system, with R = 1 bps/Hz.

NAF
121



compared to the cooperative transmission schemes, LTW and NAF. Also seen in Fig. 33 is 

the outage probability of a 2 × 1 MISO system, which serves as a lower bound for any 

CMA system.

One of the results which stand out in Fig. 33 is that TDMA and SDMA outperform 

LTW up to an SNR of 17 dB, in spite of the fact that LTW has a superior diversity order. 

This is due to the fact that LTW has a much lower symbol rate of 1/4 compared to SDMA 

which has a rate 1, and at low SNR the key determinant of system performance is the 

symbol rate and not diversity. The converse is true at high SNR.

We also observe that the NAF protocol outperforms the LTW protocol by 3.3 dB 

owing to its higher rate, even though they achieve the same diversity order. The NAF 

protocol gets to within 3.3 dB of the MISO bound. In practice, the MISO bound itself may 

not achievable since this would require the inter-user channel to be noiseless and have 

zero delay. A practical scheme will suffer a penalty due to the non-ideal nature of the inter-

user channel, however, quantifying this penalty remains an open research problem.

7.6 Summary

In this chapter, we reviewed conventional non-cooperative multiple-access schemes 

TDMA and SDMA, and cooperative transmission schemes namely the LTW and NAF 

protocols. We reviewed the possible relay techniques that could be used over a multiple 

access channel − namely AF, ADF and SDF relays. We discussed the outage performance 

of TDMA and SDMA along with that of LTW protocol and NAF protocols with AF 

relays. We observe that cooperative multiple-access schemes outperform non-cooperative 

schemes at high SNR due to the diversity advantage. However, we also observe that 
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cooperation protocols typically sacrifice symbol rate in order to gain diversity, and 

consequently are outperformed by non-cooperative schemes in the low SNR regime. 

Hence, we conclude that it is crucial to design high rate cooperation protocols in order to 

achieve the goal of minimizing outage probability. In the next few chapters, we propose 

our solutions that minimize outage probability by maximizing diversity, while 

simultaneously achieving high rates.
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CHAPTER 8

SPACE-DIVISION RELAY: A HIGH RATE NON-ORTHOGONAL 

COOPERATION PROTOCOL

In this chapter, we introduce an improved non-orthogonal cooperation protocol called 

the space-division relay (SDR) protocol for a simple two user cooperative multiple-access 

channel. Space-division relay is a non-orthogonal cooperation protocol which modifies 

the LTW protocol [63] by using space-division multiplexing instead of time-division 

multiplexing for the relays. The SDR protocol is studied in combination with three relay 

schemes namely AF, ADF and SDF. We show that this combination of full diversity, high 

rate and appropriate relaying schemes achieves the best outage performance among all 

previously reported orthogonal and non-orthogonal cooperation protocols.

This chapter is organized as follows. In Section 8.1, we outline the space-division relay 

protocol, following which in Section 8.2, we analyze the outage probability of the SDR 

protocol with AF relays. Subsequently, we support out analysis with numerical 

simulations results in Section 8.3, comparing the outage probability of other orthogonal 

and non-orthogonal candidate multiple-access schemes. Finally, we summarize the results 

in Section 8.4.

8.1 The Space-Division Relay Protocol

An illustration of the proposed SDR protocol is shown in Fig. 34. The static fading 

frame is divided into three equal-sized blocks. During the first block, the first user (U1)

transmits its information, while the second user (U2) and the destination (D) each listen to 
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the transmission. During the second block, U2 transmits its own independent information, 

while U1 and D listen to the transmission. This completes the direct transmission part of 

the cooperation protocol for one frame. During the third block, both users relay the 

received packets from the other user simultaneously, in a space-division multiple access 

fashion, with the destination receiving a linear combination of these two transmissions. 

Initially, we analyze the space-division relay protocol with amplify-and-forward (AF)

relays [63]. Later on, we consider two other relaying techniques, namely amplify/decode-

and-forward (ADF) and selection-decode-and-forward (SDF) [63]. 

The basic idea of the SDR protocol is to increase the rate compared to the LTW 

protocol by relaxing the orthogonality constraint, while still achieving full cooperative 

diversity. By using spatial multiplexing during the relay phase, SDR clearly sacrifices 

orthogonality, in exchange for an increase in rate. Specifically, the rate of each user in the 

SDR protocol is 1/3. The cooperation scheme can be summarized as follows. During the 

first block, the received samples at D and U2 are given by
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 Fig. 34.  Illustration of the space-division relay cooperation protocol.
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y1(l) = h1x1( l) + n1(l),

y12(l) = h12x1(l) + n4(l), (133)

where l  ∈  {1, 2, …, T/3} and x1( l) is the l-th transmitted symbol from U1, with 

E[|x1( l)|
] is chosen to satisfy the average power constraint. During the second block, the 

samples received by D and U1 are given by

y2(l) = h2x2(l) + n2(l),

y21(l) = h12x2(l) + n5(l), (134)

where l   ∈ {1, 2, …, T/3}. During the third block, also known as the relay phase, both 

users simultaneously relay each other’s information using space-division multiplexing.

In SDR with AF, both users amplify the received symbols from the other user and 

relay the amplified symbols simultaneously during the relay phase, so that the destination 

receives

y3( l) = h1αy2( l) + h2αy12( l) + n3( l), (135)

where α is the amplification factor, given by

α = . (136)

Since each node is silent 1/3 of the time, the average power constraint is satisfied by 

choosing E[|x1( l)|
 = Et = 3E/2.
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8.2 Outage Analysis

In this section, we derive the outage probability of the SDR cooperation protocol with 

AF relays. In the SDR protocol, the observations at the destination consist of three 

received blocks Y1, Y2 and Y3, where Yk = [yk(1) yk(2)… yk(T/3)], corresponding to the 

two blocks X1 and X2 transmitted by the two users, where Xk = [xk(1) xk(2)… xk(T/3)]. 

The discrete, memoryless multiple-access channel created by the SDR protocol is then

Y =  = H  + AN, (137)

where the (i, j)th element of the noise matrix N is ni( j ), and where the matrices H and A

are given by

H = , A = . (138)

Let H1 and H2 denote the first and second columns of H. The outage event for this 

multiple access system is the union of the following three events [27]:

O1:  C1|2 = I (X 1; Y | X2) < R

O2:  C2|1 = I (X2 ; Y | X1) < R

O12:  C12 = I (X1 , X2 ; Y  ) < R , (139)
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where p(x ) is the joint probability density function of X1 and X2. The outage probability 

is thus

Po = Pr[O1 ∪ O2 ∪ O12] = Pr[min {C1|2, C2|1, C12} < R]. (140)

For a given channel matrix, this formulation is identical to the Gaussian multiple-access 

channel [27]. For this case the mutual informations are maximized when the input 

alphabet at each source follows an independent Gaussian distribution. Upon 

maximization, we get

C 1|2 = log2det( I + SH1
*(AA*)−1H1)

C2|1 = log2det(I + SH2
*(AA*)−1H2)

C12 = log2det( I + SH*(AA*)−1H). (141)

Intuitively, the factor 1/3 represents the fact that the sources transmit new information 

only 1/3 of the total time. Substituting for A and H1, the expression for C1|2 further 

simplifies to:

C1|2 = log2 . (142)

Substituting for α and simplifying, we get

C1|2 = log2 . (143)
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The expression for C2|1 can be obtained by exchanging h1 and h2 in the above expression. 

We now briefly discuss the rate and diversity aspects of the SDR scheme.

Definition 6.  The rate µ of a cooperative multiple-access protocol is the average 

number of information symbols transmitted by each user per signalling interval.

Contrast this with the data rate of a node, which is the number of bps/Hz. For a two-

user CMA system, TDMA has rate 1/2, while SDMA has rate 1. The LTW protocol has 

rate 1/4, whereas the SDR protocol achieves a rate of 1/3.

Definition 7.  The diversity order d of a cooperative system is defined as

d = , (144)

where Po(S, R) is the outage probability of the cooperation scheme. For a two-user CMA 

system with one antenna at each node, TDMA and SDMA achieve a diversity order of just 

one, whereas the LTW protocol achieves the full diversity (d = 2). 

We now show that the SDR protocol with AF achieves full diversity. The diversity 

order of the SDR protocol can be computed as follows. Let P1 = Pr[O1], P2 = Pr[O2],

and P12 = Pr[O12], and let the corresponding diversity orders be d1, d2 and d12

respectively. Note that the assumption that h1 and h2 are statistically identical implies that 

d1 = d2. The outage probability can be bounded using the union bound as

Pδ ≤ Po ≤ P1 + P2 + P12 , (145)

where Pδ is either of P1, P2 or P12. We state the following theorem on the diversity order 

of SDR.

Po S R,( )log–
Slog----------------------------------
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Theorem 8. The SDR protocol for a two-user cooperative multiple-access channel with 

one antenna at each node achieves the full diversity order of d = 2.

Proof: Using the bound in (145), it is easy to show that dSDR = min{d1, d2, d12}. Using 

the inequality I(X1, X2; Y ) ≥ I(X1; Y |X2), we see that 2C12 ≥ C1|2, implying that d12

≥ d1. The probability P1 can be written as

P1= 

Pr Pr +Pr Pr , (146)

where, . If , then  and hence the second term in (146)

is zero. Therefore

P1 = Pr Pr . (147)

Using the fact that  in (143), we get

P1 < Pr Pr . (148)

Substituting ,

P1 < Pr Pr . (149)

With |h12|
 and |h2|

 being exponential random variables, we obtain the following 

relationship from [63] for and ε → 0 or equivalently for S → ∞
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Pr  = k, (150)

for some constant k. Since |h1|
 is exponentially distributed, Pr  for δ → 

0. Therefore,

Pr Pr  = (kδ)δ, (151)

P1 < k , (152)

and hence d1 ≥ 2. As discussed earlier, d2 = d1 and d12 ≥ d1. The outage probability of 

a 2 × 1 MISO channel is a lower bound on Po and has a diversity order of 2, implying 

that d1 ≤ 2. Therefore d1 = 2 and we have shown that Po decays as S – 2 as S → ∞.

It can be shown that the outage probability of SDR with ADF is strictly less than SDR 

with AF. Consequently, SDR with ADF also achieves full diversity.

8.3 Numerical Results

In this section, we present numerical results for a Rayleigh-fading cooperative 

multiple-access system with two users and a single destination, each equipped with one 

antenna. Each user has a target data rate of R = 1 b/s/Hz, and each has the same average 
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SNR. To achieve this target data rate, the LTW protocol needs a user to transmit 

information at 4 b/s/Hz during its active transmissions, while SDR and NAF require the 

user to transmit at 3 b/s/Hz and 2 b/s/Hz respectively when active.

In Fig. 35, we compare several candidate schemes by plotting the outage probability 

versus SNR. Traditional multiple access schemes such as TDMA and SDMA suffer from a 

lack of diversity at high SNR, while at low SNR, they perform better than the 

corresponding cooperation scheme. At an outage probability of 10–3, SDR with AF 

outperforms LTW with AF by 1.9 dB. A similar trend is observed with ADF relay as well. 

Also shown in the figure (labeled co-located bound) is the outage probability of a 2 × 1

MISO channel, which serves as a lower bound on the outage probability of any CMA 

scheme, although it may not be achievable. We see from Fig. 35 that SDR with AF falls 

4.7 dB short of the MISO bound.
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 Fig. 35.  Comparison of outage probabilities of various multiple 
access schemes for a 2-user system, with R = 1 bps/Hz.
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In Fig. 36, we compare the performance of some non-orthogonal cooperation 

protocols, namely SDR with AF, SDR with ADF and the NAF protocol. We see that SDR 

with AF is 1.4 dB worse than NAF. However, SDR with ADF outperforms NAF by 1 dB. 

SDR with ADF achieves the best outage performance among all previously reported 

cooperation protocols, falling only 2.3 dB short of the MISO bound. For R = 2 b/s/Hz, 

SDR with ADF outperforms NAF by 1.2 dB and LTW with ADF by 4.5 dB at an outage 

probability of 10−3. 

Both SDR and NAF achieve full diversity and the rate of NAF (1/2) is higher than that 

of SDR (1/3). However, the NAF protocol suffers an SNR penalty since each user is 

forced to share its available transmit energy between current and past symbols of itself and 

the other user. Moreover, the NAF protocol has not been considered with ADF strategy in 

 Fig. 36.  Comparison of outage probabilities of non-orthogonal 
cooperation schemes for a 2-user system, with R = 1 bps/Hz.
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literature so far, since the sequential nature of NAF mandates the use of AF. Error-free 

decoding requires a sufficiently long block length, whereas in NAF, symbols are relayed at 

every instant. Due to these reasons SDR-ADF outperforms NAF.

The relative performance of multiple access schemes depends on the target data rate 

and SNR. We study this problem by comparing the SNR required by different multiple-

access schemes to achieve an outage probability of 10-3 as a function of the target data 

rate. In Fig. 37, we present numerical results for this comparison for data rates ranging 

from R = 0.5 to 6 b/s/Hz in steps of 0.5. From Fig. 37, we see that the SNR improvement 

of SDR over LTW increases as the target data rate increases, since SDR has a higher rate 

compared to LTW. Based on the same reasoning, one would expect NAF to outperform 

SDR at higher data rates, which it does for R > 3.5 b/s/Hz. However, for R > 3.5 b/s/

 Fig. 37.  Comparison of the SNR required for multiple-access 
schemes to achieve an outage probability of 10-3 as a 
function of the target data rate.
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Hz, it turns out that SDMA requires the lowest SNR to achieve the target outage 

probability amongst all multiple access schemes. Overall, the best outage performance 

could be achieved by switching between SDR and SDMA as the data rate and SNR vary.

8.4 Summary

We proposed a new cooperative multiple-access strategy called space-division relay 

(SDR). Space-division relay is a simple non-orthogonal cooperation protocol that achieves 

the full cooperative diversity. SDR employs the space-division multiplexing concept for 

its relay phase to achieve a higher transmission rate. We investigated SDR with both 

amplify-and-forward and amplify/decode-and-forward relays. We show that the high rate 

of SDR-AF enables it to outperform the LTW-AF protocol by 1.9 dB at an outage 

probability of 10 –  at a target data rate of 1 bps/Hz. We also show that SDR-ADF 

outperforms NAF by 1 dB. We also observed that SDR-ADF achieves the best outage 

performance among all previously reported protocols, falling only 2.3 dB short of the 

ideal cooperation bound.
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CHAPTER 9

HOW MUCH COOPERATION IS NECESSARY IN COOPERATIVE 

MULTIPLE ACCESS CHANNELS?

In chapter  and chapter , we studied the diversity benefits of cooperation in multiple-

access systems. Although we see that well designed cooperation protocols effectively tap 

the diversity gain offered by the channel, the common theme among these protocols is the 

nonzero rate penalty incurred in this process [63][66][81][82][89]. The fundamental 

problem of computing capacity of a cooperative multiple-access channel still remains an 

open research problem, though some results are known for cooperative relay channels 

[73][83]-[87]. Currently, the approach to this problem has been to propose new and better 

cooperation schemes, so that the outage probability of the best scheme serves as a lower 

bound on the achievable outage probability over the cooperative multiple-access channel, 

with the MISO bound serving as the upper bound [65][66][71][72][76][89].

It is well documented that diversity order is primarily a high SNR phenomenon and 

does not necessarily guarantee superior error performance at all SNRs [15][40]. A closer 

look at Fig. 35 tells us that conventional non-cooperative multiple-access techniques such 

as TDMA and SDMA actually outperform the cooperation protocols at low SNR due to 

their high rate. Of course, the opposite is true at high SNR, when diversity order is the key 

determinant of system performance, as opposed to the symbol rate.

This observation suggests that one could conceivably design flexible, adaptive 

cooperation schemes which give priority to rate or diversity depending on the operating 

conditions [88]. In order to design such schemes, we start with a basic question: how 
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much cooperation is necessary in cooperative multiple access channels? A more specific 

question would be: In the process of enhancing diversity, how much rate loss should be 

tolerated to achieve the goal of minimizing outage probability? We propose the framework 

of partial cooperation to answer these questions. We propose the partial cooperation 

framework for the two user cooperative multiple-access channel and analyze the level of 

cooperation necessary as the operating SNR and target data rate vary. We propose this 

framework as a tool to measure the degree of importance of cooperation, which could 

possibly be a generic extension for any given cooperation protocol, orthogonal or non-

orthogonal.

In this chapter, we organize out discussion of partial cooperation as follows. In 

Section 9.1, we present the generic framework of partial cooperation, which could be 

applied to any cooperation protocol to optimize it further. In Section 9.2, we consider the 

specific example of the LTW protocol to show the benefits of partial cooperation with 

orthogonal protocols along with analysis and numerical results. In Section 9.3, we provide 

a similar illustration for partial cooperation with the SDR protocol. We summarize the 

observation in Section 9.4.

9.1 Partial Cooperation Framework

As in our previous discussions, we consider a Rayleigh-fading multiple-access channel 

with two users communicating with a common destination over a quasistatic fading 

channel. We assume that the users are frame-synchronized and that the destination knows 

all of channel coefficients {h1, h2, h12}, whereas the users know only h12. The partial 

cooperation framework works as follows.
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The static fading frame is divided into two windows, the direct transmission window

and the cooperation window. During the direct transmission window of length βT

symbols, where 0 ≤ β < 1, users employ full rate non-cooperative schemes such as TDMA 

or SDMA for orthogonal and non-orthogonal systems respectively, and during the 

cooperation window of length (1 − β)T symbol periods, the users employ a cooperation 

scheme of choice. Based on the target data rate, average SNR and the instantaneous 

channel information, (if available), the relative proportion of the window lengths is varied 

by tuning the parameter β. As the parameter β increases from 0 towards 1, the degree of 

cooperation increases.

9.2 Example of an Orthogonal Protocol with Partial Cooperation

In this section, we propose the partial cooperation framework for orthogonal 

cooperation protocols, using the example of the LTW protocol with amplify-and forward 

relays to illustrate this. In Section 7.2, we observed that TDMA suffers from poor 

diversity gain and hence high outage probabilities at high SNR. In Section 7.4, we 

observed that the LTW protocol, an orthogonal cooperative multiple-access scheme, 

achieves higher diversity by cooperation, but sacrifices 1/2 the transmission rate in this 

process. In this section, we propose the partial cooperation framework which combines 

TDMA with LTW in order to achieve a flexible tradeoff between rate and diversity.

Let β be the fraction of the time over which TDMA is used, with each user transmitting 

information over half of the direct transmission window. During the cooperation window, 

each user transmits over a duration of (1 − β)T/2 symbol periods, out of which only (1 − 
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β)T/4 are used to transmit its own information symbols, with the remaining being used for 

forwarding the other user’s information. Hence, each user has βT/2 + (1 − β)T/4 symbol 

periods to transmit its own information in one frame.

To start with, the information to be transmitted is encoded into βT/2 + (1 − β)T/4

symbols by each user. The first βT/2 symbols constitute Xi(D) and are sent using the 

direct transmission scheme, which is TDMA for the orthogonal case. The remaining 

symbols form Xi(C) and are sent using the LTW cooperation protocol, as shown in Fig. 38. 

At the destination, the symbols received during each block can be grouped together as in 

Section 7.4.1. For example, the direct transmission window which uses TDMA has two 

blocks, during which users U1 and U2 transmit respectively, whereas the cooperation 

frame consists of four blocks of equal length. Symbols corresponding to U1’s transmission 

are received during the first, third and the fourth blocks, and can be grouped into blocks as

 Fig. 38.  Partial cooperation with the LTW protocol for N = 2.
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Y1 = h1X1
(D) + N1

Y3 = h1X1
(C) + N2

Y4 = αh2h12X1
(C) + αh2N7 + N4, (153)

where, Ni’s consist of independent, circularly symmetric complex Gaussian noise 

elements, whereas Yi is the block of received symbols during the ith block. Similarly, for 

U2 the received blocks can be written as

Y2 = h2X2
(D) + N3

Y5 = h2X2
(C) + N5.

Y6 = αh1h12X2
(C) + αh1N8 + N6. (154)

In order to ensure that the power constraint is satisfied regardless of β, the average energy 

per symbol over each window is forced to be E. Specifically, E[||Xi
(D)||2]/βT = Et(D) =

2E and E[||Xi
(C)||2] / (1 − β)T = Et(C) = 2E. In this case, we see that Et(D) = Et(C) since 

the users transmit over equal fractions in both windows. However, this is not always true.

9.2.1  Outage Analysis:

We now analyze the outage event for this transmission scheme. The outage event for 

the two users in this multiple access system is given by:

O1:  C1 = I (X1
(C), X1

(D); Y1, Y3, Y4) < R

O2:  C2 = I (X2
(C), X2

(D); Y2, Y5, Y6) < R, (155)

max  1
T
---

p
1
(x)

max  1
T
---

p
2
(x)
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where pi(x ) is the probability density function of Xi. Using the fact that noise is 

independent across time, (155) can be simplified as

C1 = (I (X1
(C); Y1) + I (X1

(D); Y3, Y4))

C2 = (I (X2
(C); Y2) + I (X2

(D); Y5, Y6)) < R. (156)

The outage probability of the multiple-access system, which is the probability of any of 

the users being in outage, is given by:

Po = Pr[O1 ∪ O2] = Pr[min {C1, C2} < R]. (157)

The mutual informations in are maximized when the input alphabet at each source follows 

an independent Gaussian distribution [27]. Maximizing and substituting for α, we get

C1 = log2  + log2 . (158)

Similarly for U2

C2 = log2  + log2 . (159)

We now discuss the diversity order of partial cooperation using the LTW protocol. Let 

P1 = Pr[O1], P2 = Pr[O2] and let the corresponding diversity orders be d1 and d2. The 

outage probability in (157) can be bounded as

Pδ ≤ Po ≤ P1 + P2, (160)

max  1
T
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p
1
(x)

max  1
T
---

p
2
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where Pδ is either of P1 or P2. Since h1 and h2 are i.i.d, d1 = d2. 

Theorem 9. The LTW protocol with partial cooperation achieves the full diversity 

order of d = 2 over a two-user cooperative multiple-access channel with one 

antenna at each node, for any β in the range 0 ≤ β < 1.

Proof: The capacity of user 1, C1, can be bounded as 

log2  ≤ C1 ≤ log2 .(161)

The lower bound is obtained by dropping a term in (158) and the upper bound is true 

since C1 cannot exceed the capacity of a 2 × 1 MISO channel. Using (158), we get

Pr( log2  < R) < k , (162)

as  for some constant k. Combining (161) and (162), 

Pr( log2  < R) < 

k , (163)

for β ≠ 1. Of course, the upper bound evaluates to 1 for β = 1. For 0 ≤ β < 1, the 

probability of error decays at least as 1 / S2 for large S, hence d1 ≥ 2. The capacity of 
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a 2 × 1 MISO channel is an upper bound on C1 and has a diversity order of 2, 

implying that d1 ≤ 2, which can be true only iff d1 = 2. Since d2 = d1, we have shown 

that Po decays as S–2 as S → ∞.

The above result states that as long as the cooperation window occupies a nonzero 

fraction of every frame, the system achieves full diversity.

Corollary 2.  The LTW protocol with partial cooperation achieves the full diversity 

order of d = 2 and a rate R = 1/2 − (1 − β)/4 per user for 0 ≤ β < 1.

The implication of this result is that, in theory, the LTW protocol with partial 

cooperation simultaneously achieves a diversity gain of 2, and a rate arbitrarily close but 

not equal to 1/2. However, in practice, if we choose a value of β arbitrarily close but not 

equal to 1, the capacity of each user will be numerically very close to that over a TDMA 

system. Of course, the theoretical assertion of full diversity from Theorem 9 still holds, 

only that the effect of full diversity on the outage probability curve is seen at extremely 

high SNRs beyond the realm of practical interest.

As stated earlier, our goal is not to maximize the diversity gain or the rate but to use 

these as design tools to minimize outage probability. In the following section, we show 

how the partial cooperation framework can be used to optimize the outage probability. 

Specifically, for a given data rate R and SNR S, we determine the optimal value of β using 

an exhaustive numerical search. Simulation results are presented in the next section to 

illustrate how this optimization improves the outage performance.
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9.2.2  Numerical Results

In this section, numerical results are presented for partial cooperation using the LTW 

protocol over a 2-user cooperative multiple-access channel with a target data rate of R = 1

b/s/Hz per user. 

In Fig. 39, we compare the outage probabilities of TDMA, SDMA and LTW-AF 

against LTW-AF with partial cooperation. For the latter scheme, we compute the outage 

probability curve as follows: For each value of S from 0, 2.5, …, 30 dB, we compute the 

outage probability as a function of β, and choose the value of β which yields the minimum 

outage probability for the given S to be the optimum one. The effective outage curve is 

obtained by connecting together the optimized points. Also shown in Fig. 39 is the outage 

probability for the MISO bound. From Fig. 39, we see that LTW-AF with partial 

cooperation combines the merits of TDMA and SDR-AF. At low SNR, the performance is 

 Fig. 39.  Outage performance of LTW with partial cooperation over a 
2-user cooperative multiple access system, R = 1 b/s/Hz.
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at least as good as TDMA and at high SNR, the partial cooperation framework performs at 

least as well as SDR-AF. The optimum values of β are [1 1 0.9996 0.2191 0.1216 0.0523 

0.0132] for S = [0 5 10 15 20 25 30] dB. As expected, the optimal fraction of direct 

transmission decreases as the SNR increases, since cooperation is more important in the 

high SNR regime, whereas a high symbol rate is crucial at low SNR. For SNR < 12.5 dB, 

it is optimal to use TDMA for the entire frame, whereas for SNR > 40 dB, using 

cooperation for the entire frame minimizes outage probability. 

Fig. 40 shows the comparison of outage probabilities for R = 2 b/s/Hz per user. The 

optimal widths of direct transmission window for this case are [1.00 1.00 1.00 1.00 1.00 

0.9427 0.3502 0.1660 0.0376]T for S = [0 5 10 15 20 25 30 35 40] dB. We observe that 

higher the data rate and / or lower the SNR of operation, greater the importance of symbol 

rate over diversity, and hence larger must be the window of direct transmission.

 Fig. 40.  Outage performance of LTW with partial cooperation over a 2-
user cooperative multiple access system, R = 2 b/s/Hz.
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9.3 Example of a Non-Orthogonal System with Partial Cooperation

This section presents the partial cooperation framework for non-orthogonal 

cooperation protocols with amplify-and-forward relays. In the absence of the 

orthogonality constraint, it is well known that SDMA helps each user achieve the 

maximum possible rate over a multiple-access channel by allowing simultaneous 

transmissions.

The partial cooperation framework combines SDMA, where each user has a rate 1 and 

diversity 1, with the SDR protocol, where each user achieves the full diversity of 2, but 

only a rate of 1/3. The basic idea, as discussed before, is to determine the relative 

importance of rate and diversity for the given operating conditions, in order to achieve the 

ultimate goal of achieving the lowest possible outage probability. Each user encodes the 

information to be transmitted into βT + (1 − β)T/3 symbols. The first βT symbols 

constitute Xi(D) and are sent SDMA in the direct transmission window. The remaining 

 Fig. 41.  Partial cooperation with the SDR protocol for N = 2.
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symbols form Xi(C) and are sent using the SDR cooperation protocol, as shown in Fig. 41. 

Overall, the received symbols at the destination can be grouped into 4 blocks, one in the 

direct transmission window and 3 during the cooperation window.

Y1 = h1X1
(D) + h2X2

(D) + N1

Y2 = h1X1
(C) + N2

Y3 = h2X2
(C) + N3

Y4 = αh2h12X1
(C) + αh1h12X2

(C) + αh1N5 + αh2N6 +N4, (164)

where, Ni’s consist of independent, circularly symmetric complex Gaussian noise 

elements, whereas Yi is the block of received symbols during the ith block. The received 

blocks during the cooperation window can be written is matrix form as

Y = = H  + A , (165)

where the (i, j)th element of the noise matrix N is ni( j ), the matrices H and A given by

H = ,  A = , (166)

where, α, the amplification factor is as defined in (136). 
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To ensure that the power constraint is satisfied regardless of the value of β, the average 

energy per symbol over each window is forced to be E. Specifically, E[||Xi
(D)||

2
/βT =

Et
(D) = E and E[||Xi

(C)||
2
/(1−β)T = Et(C) = 3E/2.

9.3.1  Outage Analysis

The outage event for this multiple access system is the union of the following three 

events [27]:

O1:  C1|2 = I (X1
(D) , X1

(C) ; Y1, Y2, Y4 | X2
(C) ) < R

O2:  C2|1 = I (X2
(C) , X2

(D) ; Y1, Y3, Y4| X1
(C) ) < R

O12 :  C12 = I (X1
(C) , X1

(D) , X2
(C) , X2

(D) ; Y1 , Y2 , Y3 , Y4) < R , (167)

where p(x ) is the joint probability density function of X1  and X2 . The outage probability 

of thus:

Po = Pr[O1  ∪ O2  ∪ O12] = Pr[min {C1|2, C2|1, C12} < R]. (168)

The mutual informations are maximized when the input alphabet at each source follows an 

independent Gaussian distribution [27]. Maximizing and substituting for α, we get

max  1
T
---

p(x )

max  1
T
---

p(x )

max  1
2T
------

p(x )
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C1|2 = log2  + log2 ,

C2|1 = log2  + log2 ,

C12 = log2  + log2det( I + SH*(AA*)−1H), (169)

where, H and A are as defined in (166).

We now discuss the diversity order of partial cooperation using the SDR cooperation 

protocol. Similar to the definitions in Section 8.2, let P1 = Pr[O1], P2 = Pr[O2], and P12

= Pr[O12] and let the corresponding diversity orders be d1, d2 and d12 respectively. the 

outage probability in (168) can be bounded using the union bound as

Pδ ≤ Po ≤ P1 + P2 + P12 , (170)

where Pδ is either of P1, P2 or P12. Since h1 and h2 are statistically identical, d1 = d2. We 

state the following theorem on the diversity order of SDR.

Theorem 10. The SDR protocol with partial cooperation and AF relays achieves the 

full diversity order of d = 2 over a two-user cooperative multiple-access channel with 

one antenna at each node, for any value of β in the range 0 ≤ β < 1. In other words, full 

diversity of SDR is preserved by partial cooperation provided β ≠ 1.
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Proof: Using the bound in (170), it is easy to show that dSDR = min{d1, d2, d12}. 

Further, using the inequality I(X1, X2; Y ) ≥ I(X1; Y |X2), we get 2C12 ≥ C1|2,

implying that d12 ≥ d1. Thus, it suffices to prove that d1 = 2. Using (152) we get

 Pr( log2  < R) < 

k . (171)

Further, C1|2 can be bounded as

log2  ≤ C| ≤ 

log2 . (172)

The lower bound is obtained by simply dropping a term in (169) and the upper 

bound is true since C1|2 clearly cannot exceed the capacity of a fictitious MISO 

channel created jointly by U1, U2 with D. Combining (171) and (172), 

Pr( log2  < R) < 

k , (173)
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for β ≠ 1. Of course, for β = 1 the above probability is 1. For any other value of β, 

the outage probability decays at least as fast as 1 / S2 for large S, hence d1 ≥ 2. The 

capacity of a 2 × 1 MISO channel is an upper bound on C1|2 and has a diversity order 

of 2, implying that d1 ≤ 2, thus making d1 = 2. As discussed earlier, d2 = d1 and d12

≥ d1. Hence, we have shown that Po decays as S – 2 as S → ∞.

Corollary 3.  The SDR protocol with partial cooperation achieves the full diversity 

order of d = 2 and a rate R = 1 − 2(1 − β)/3 for 0 ≤ β < 1, i.e., full diversity and 

any constant rate < 1 is achievable over a two-user cooperative multiple access 

channel with a single antenna at each node.

In theory, the implication of the above result is that partial cooperation with SDMA 

and SDR guarantees full diversity as long as the cooperation window occupies a nonzero 

fraction of every frame. This might seem surprising to the reader, especially in a scenario 

where β is arbitrarily close but not equal to 1, say 0.999, since the numerical values of the 

mutual information for this case will be very close to that of SDMA. Here, we recall the 

definition of diversity order as an asymptotic quantity. Larger the value of β, smaller the 

effect of cooperation on the capacity and larger the SNR at which the it is high enough for 

the diversity phenomenon to manifest itself as the slope of the outage curve. Of course, the 

theoretical assertion of full diversity from Theorem 10 still holds, only that the effect of 

full diversity on the outage probability curve is seen at extremely high SNRs. 

Although partial cooperation guarantees full diversity for a wide range of values of β, 

achieving the lowest possible outage probability is another matter. In the following 

section, we show how the partial cooperation framework can be used to optimize the 

outage probability of the SDR protocol. For a given data rate R and SNR S, we determine 
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the optimal value of β using an exhaustive numerical search experiment. We present 

simulation results in the next section to illustrate how this optimization improves the 

outage performance.

9.3.2  Numerical Results

We now present numerical results for partial cooperation SDR over a Rayleigh-fading 

cooperative multiple-access channel with N = 2 users and a single destination. Each user 

has a target data rate of R = 1 b/s/Hz, and each has the same average SNR S. 

In Fig. 42, we compare the outage probabilities of SDR-AF with and without partial 

cooperation against the outage probability of TDMA and SDMA. Also shown in Fig. 42 is 

the outage probability of a 2 × 1 MISO channel, labelled as the ‘MISO bound’. Previously, 

we observed that cooperative schemes outperform non-cooperative schemes at high SNR, 

 Fig. 42.  Outage performance of SDR with partial cooperation over a 
2-user cooperative multiple access system, R = 1 b/s/Hz.
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but that the converse is true at low SNR. From Fig. 42, we see that partial cooperation 

fixes this problem. SDR-AF with partial cooperation performs at least as well as SDMA at 

low SNR and at least as well as the original SDR-AF at high SNR. SDR-AF with partial 

cooperation is strictly better than SDR-AF and SDMA and falls within 4.5 dB of the 

MISO bound at an outage probability of 10-3.

The optimum value of β was determined to be [1.00 1.00 0.9726 0.1706 0.1012 

0.0317 0.0061] for S = [0 5 10 15 20 25 30] dB. The optimal width of direct transmission 

decreases as the SNR increases, which is in agreement with the intuition that diversity 

gain, and hence cooperation is more important at high SNR, whereas symbol rate is more 

important at low SNR. For SNR < 10 dB, it is optimal to use SDMA for the entire frame, 

whereas for SNR > 25 dB, using SDR-AF for the entire frame minimizes outage 

probability.

 Fig. 43.  Outage performance of SDR with partial cooperation over a 
2-user cooperative multiple access system, R = 2 b/s/Hz.
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To study the effect of a higher target data rates, we present numerical results for SDR-

AF with partial cooperation at a data rate of R = 2 b/s/Hz for N = 2 users in Fig. 43. The 

optimal fractions of direct transmission are [1.00 1.00 1.00 1.00 0.9793 0.3311 0.1660 

0.0346]T for S = [0 5 10 15 20 25 30 35] dB. As expected, it is observed that for a given 

SNR, the optimal width of direct transmission window with SDR-AF is larger for R = 2 b/

s/Hz as opposed to R = 1 b/s/Hz. Partial cooperation significantly improves outage 

performance in the R = 2 b/s/Hz case, for example, at an outage probability 10-3, partial 

cooperation improves the performance by 1.1 dB over SDR-AF with R = 2 b/s/Hz as 

opposed to an improvement of just 0.2 dB at R = 1 b/s/Hz.

9.4 Summary

In this chapter, we studied the partial cooperation framework along with known 

orthogonal and non-orthogonal cooperation protocols. This study shows the importance of 

using the optimal amount of cooperation in a multiple-access network depending on the 

target data rate and SNR of operation.

At the extremities of very high and very low SNR, partial cooperation essentially takes 

the form of pure cooperation and pure non-cooperative transmission respectively. But in 

the intermediate range of SNR, numerical results show that partial cooperation provides 

new operating points with SNR improvements in the order of 1 − 2 dB by gaining an 

optimal amounts of cooperation gain while not losing out on the transmission rate, to 

achieve the goal of minimizing the outage probability.
154



CHAPTER 10

SCALABLE HIGH RATE COOPERATION PROTOCOLS FOR 

MULTIPLE-ACCESS CHANNELS

In the previous chapters, we considered protocol design for user cooperation over a 

simple two-user multiple-access channel. Although this problem gave us good insight into 

designing cooperation protocols, it is important to design cooperation protocols which will 

extend these performance benefits to a larger wireless network, in terms of maximizing 

diversity and transmission rate.

Currently, there are few solutions to this problem: the cooperation protocols that have 

been proposed are very low rate. For example, over a Nuser multiple-access system the 

multiuser extension of the LTW protocol has a rate of 1 / N2 per user [64], with the rate 

loss incurred mainly due to the orthogonality constraint which affects the transmission as 

well as the relay phases. The best available non-orthogonal protocols is the NAF protocol, 

which improves the rate to 1 / N [66] by the use of an artificial ISI channel-like structure. 

However, the rate per user still decreases as the number of users increase. In fact, over 

large multiple-access systems, it might be more important to maintain a high rate than to 

achieve full diversity!

In this chapter, we propose an extension of the space-division relay (SDR) protocol for 

a cooperative multiple-access channel with an arbitrary number of users N. We show that 

the SDR protocol achieves a rate of (N – 1)/(N + 1). We discuss the SDR protocol with 

amplify-and-forward as well as selection decode-and-forward relays. We show that SDR 

with selection decode-and-forward achieves the full diversity of N over the CMA channel.
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We start, in Section 10.1, with a description of the channel model of the N - user CMA 

system. In Section 10.2, we propose an extension of the SDR protocol for N users. We 

discuss SDR with AF relays and derive the outage probability of this combination in 

Section 10.3. Following this, we discuss SDR with SDF relays and present a detailed 

analysis of this combination in Section 10.4. In Section 10.5, we present simulation results 

for the above cases and compare the outage performance with other candidate schemes. 

We summarize the results in Section 10.6.

10.1 Channel Model

We consider a Rayleigh-fading multiple-access channel with N users communicating 

with a common destination. Each node is equipped with a single antenna and can either 

transmit or receive over the same time and frequency band, i.e., a node cannot transmit 

and receive simultaneously over the same channel. In Fig. 44, we illustrate the possible 

communication links in a N-user cooperative multiple-access system, where each node 

could either be transmitting its own information or relaying the information received from 

the other user to the destination. 

U

 Fig. 44.   Example of an N-user cooperative multiple-access system with N = 4
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To simplify our presentation we consider a completely symmetric scenario: (1) All 

users have an identical target data rate of R bps/Hz; (2) All users have an identical 

average energy of E per signalling interval; and (3) the average received SNR for each 

user is identical. Asymmetry in any of these variables is easily incorporated into the 

system design without affecting the design principle.

Let hi denote the channel gain between the ith user and the destination, and let hij

denote the channel gain between the ith user and the jth user, with i ≠ j. The channels are 

assumed to be linear and flat fading over the signal bandwidth. Also, the channels are 

assumed to be quasistatic, so that the channel response is constant over a frame consisting 

of T symbol periods, and it changes to an independent value from one frame to the next. 

During a given static fading frame the communication between any two users is over the 

same frequency band, and channel gain is symmetric between any two users, in other 

words, hij = hji. Therefore, we simplify the notation by referring to hij as hji, if i > j.

The channel coefficients {hi,  hij} with i, j = 1, 2, …, N and i ≠ j are i.i.d. circularly 

symmetric complex Gaussian random variables with zero mean and unit variance. The 

additive noise at each receiving terminal is independent circularly symmetric Gaussian 

random variable with zero mean and variance N0. Under these assumptions, the average 

SNR of each user at the receiving node is S = E/N0. We assume that the users are frame-

synchronized. We further assume that the destination knows all of channel coefficients 

{hi,  hij} whereas the ith user knows only {hij} for j = 1, 2, …, N. 
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As discussed earlier, the LTW and NAF protocols have been extended to the N user 

case [64][68]. However, they achieve very low rates in an attempt to maximize diversity 

gain. We extend the SDR protocol and show that significantly higher rate could be 

achieved without compromising on full diversity.

10.2 Space-Division Relay (SDR) for N-users

SDR can be extended to a multiple-access system with N users by employing space-

division multiplexing over the transmission phase as well as the relay phase. In Fig. 45 we 

illustrate how the SDR protocol applies to the case of N = 3 users.

In general, the static fading frame is divided into N + 1 blocks. For i = 1, 2, …, N, 

during the ith block all but the ith user transmit, while the ith user receives a linear 

combination of the transmissions of users 1, 2, …, i − 1, i + 1, …, N, as does the 

destination. After N blocks, each of the N users would have each received one block of 

linearly combined information from all the other users. During the relay phase, these 

packets are forwarded using some relay operation to the destination in a spatially 

multiplexed fashion, i.e., the relay packets are transmitted simultaneously by all N users 

during the (N + 1)th block. The exact relay operations will be specified in the next 

section.

 Fig. 45.  Extension of the SDR protocol to N = 3 users.
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With this set-up, we see that each user transmits new information during (N − 1)

blocks, listens during one block and relays the information from other users during one 

block. In the N = 3 case, we see that the rate of each user is 1/2, since each user transmits 

new information for 2 out of the 4 blocks. In general, the rate of the SDR protocol for an 

N-user system is (N – 1)/(N + 1). Interestingly, the rate of the SDR protocol per user 

grows with N. In stark contrast, the rate for LTW is 1/N 2, while the rate for NAF is 1/N. 

Despite the high rate, we will show that the SDR protocol is sufficient to ensure good 

diversity performance, and specifically that SDR protocol achieves full diversity over a 

N-user system with selection-decode-and-forward relays.

During the ith block, the ith user and the destination act as receivers while all the other 

users transmit information. The received symbols at the ith user and the destination are 

given by

yi(l)  = hijxj( l) + nii(l),

y(l)  = hjxj( l) + ni(l), (174)

respectively for l = (i − 1)T/(N + 1) + 1, …, iT/(N + 1) and i = 1, 2, …, N. The 

transmission during the (i + 1)-th block by each user is determined by the specific relay 

method chosen. In general, the received symbol at the destination can be written as

y(l)  = hjf( yj( l)) + n
N+1

(l), (175)
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for l = NT/(N + 1) + 1, …, T and i = 1, 2, …, N. As in the previous examples, the 

received symbols can be grouped together, with the received block at the i-th user during 

the i-th block is obtained as Yii = [yi(1) yi(2)… yi(T/(N + 1))] for i = 1, 2, …, N. The 

received blocks at destination are defined as Yi = [y((i − 1)T/(N + 1) + 1), …, y(iT/

(N + 1))] for i = 1, 2, …, N + 1. The block of information transmitted by the j-th user in 

the i-th block is given by Xj
(i)

 for i, j = 1, 2, …, N and with Xi
(i)

= 0, since the user is 

assigned the task of listening to other users during that block. Finally, the transmitted word 

corresponding to the j-th user is Xj = [Xj
(1)

, Xj
(2)

, …, Xj
(N)

], the set of blocks 

transmitted by active users in the i-th block is X
(i)

 = [X1
(i)

, X2
(i)

, …, XN
(i)

] and the 

received information at the destination is Y = [Y1, Y2, …, YN+1].

In the previous chapters, we considered popular relay strategies such as AF, ADF and 

SDF. Now, we describe how AF and SDF work with SDR, while ADF can be obtained as 

a simple combination of these ideas.

10.3 Amplify-and-forward (AF)

In SDR with AF relays, the nodes simply scale the received samples to meet the 

average transmit power constraint and forward them to the destination. The difference in 

this technique for N users, as opposed to two, is that the received sample in itself is a 

linear combination of symbols from several users.

As before, the key advantage of the AF relaying is that users do not have to decode the 

information, thus keeping the burden on relay nodes to a minimum. However, in the case 

of multiple users, the disadvantage is that information symbols from several interfering 
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users, each corrupted by channel distortion, are forwarded along with additive noise. In 

addition, the transmit power of each relay is split amongst symbols of several users as 

well. For example, if user Ui receives

yi(l) = hijxj( l) + nii(l), (176)

then during the relay phase, Ui forwards αy to the destination, where α is the 

amplification factor chosen to meet the power constraint, given by

αi = , (177)

where E[|xj( l )|
] = Et, and the destination receives

y(l) = αihiyi( l) + nN+1(l). (178)

The equivalent matrix channel created by the cooperation protocol using AF relays is

, (179)
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, (180)

and

. (181)

10.3.1  Outage Analysis

We now analyze the outage probability of SDR with AF relays. The Gaussian discrete 

memoryless multiple access channel created by the cooperation protocol has N + 1 output 

blocks, with each of the N users transmitting N − 1 blocks of information, each of length 

T/(N + 1) symbol periods. The probability of error is defined as the probability that

Pr(E) = Pr( ), (182)

where, Γ is the set of all 2N−1 nonempty subsets of {1, 2, …, N}, with γ denoting each 

element of Γ i.e., Γ = [{1}, {2}, … {N}, {1, 2}, {1, 3}, {2, 3}, …, {N−1, N}, …, {1, 2,

…, N}] and Eγ is the event corresponding to the elements in γ being in error jointly, 
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regardless of the other sets being in error. Let X(γ) = {Xk: k ∈ γ}, then, for a codeword of 

length n and any given set γ, the error probability can be upper-bounded as

Pr(Eγ) ≤ 2{−n [I(X(γ ); Y | X( γΧ)) − Rγ − ∈γ ]), (183)

for some ∈γ > 0, where Rγ is the sum of data rates transmitted by the users in γ. Since we 

assume a symmetric scenario with all users transmitting equal data rates, Rγ = R . The 

probability of any of the users being in error can be upper bounded as

Pr(E) ≤ . (184)

Each term in the above expression will be arbitrarily close to zero iff I(X(γ); Y | X(γC)) > 

R , i. e., if the joint channel created by the users in γ with the destination is outage-free. 

The outage event for the set of users γ is

Oγ: = I(X(γ); Y | X(γΧ)) < R , (185)

where p(x ) is the probability density function of X. Hence, the outage probability of the 

system is:

PSDR-AF = Pr[ Oγ], (186)

where, Γj = {γ: j ∈ γ}. For a given channel realization, the above probability of error is 

arbitrarily close to zero if each of the conditional mutual informations is greater than the 

corresponding data rate. However, if any of the following outage events is true,

γ

Pr Eγ( )
γ Γ∈
∑

γ

max  1
T
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p(x)
γ

 
γ Γj∈
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Oj≡ I(Xj; Y | X1, …, XN\ Xj) < R

Oij  ≡ I(Xi, Xj; Y | X1, …, XN \ Xi, Xj) < 2R

O12…j…N ≡ I(X1, X2, …, XN; Y) < NR, (187)

then, the probability of error is bounded away from zero. Since the multiple access 

channel is Gaussian, the mutual informations are maximized by choosing a independent 

Gaussian input distributions at each user. For a generic set of users γ, the outage event is 

defined as

Cγ: = I(X(γ); Y |  X(γΧ)) < Rγ. (188)

Given X(γC), we define Y(γ) as the reduced received block, after cancelling out the 

contributions of X(γC). Since the encoding function at the relays is linear, Y(γ) can be 

written as Y(γ) = AγX(γ) + BγNγ for some Aγ and Bγ, for which the mutual information 

can be computed easily. As an example, we evaluate

Cj: = I(Xj; Y | X1, …, XN  \  Xj) < R. (189)

The first step is to establish the relationship between the reduced received block is Y({j})

and the input N − 1 information blocks Xj 
(1)

, …, Xj 
(j−1)

, Xj 
(j+1)

, …, Xj
(N)

 that 

constitute Uj’s transmitted word, after cancelling out the contributions of X1, …, Xj − 1,

Xj + 1, …, XN from Y. This relationship is given by

max  1
T
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p(x)

max  1
T
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p(x)

…

max  1
T
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max  1
T
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, (190)

where, , v = [α1h1jh1, …, αj-1h(j-1)jhj-1, αj+1h(j+1)jhj+1, … αNhjNhN],

and , with w = [α1h1, …, αj-1hj-1, αj+1hj+1, … αNhN], where I is an 

identity matrix of size (N − 1) × (N − 1).

The above equation represents an (N − 1)-input, N-output Gaussian channel with a 

channel transfer function of Aγ and a noise covariance matrix Bγ. The mutual information 

between the input and output for this channel is maximized when the input distribution is 

Gaussian. The corresponding maximum value of Cj  can be computed as

Cj  = logdet( I + (Bγ
∗Bγ)

−1Aγ
∗Aγ). (191)

For the given matrices Aγ and Bγ, the argument of the determinant can be computed as

 I + (Bγ
∗Bγ)

−1Aγ
∗Aγ = . (192)

Substituting in (191), Cj  can be evaluated as follows
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Cj  = log . (193)

Similarly, each of the 2N−1 outage events can be evaluated and the outage probability can 

be computed accurately for the cooperative multiple-access system.

10.4 Selection-Decode-and-Forward (SDF)

In the previous chapter, SDR with SDF relaying for a two user cooperative multiple-

access channel was defined based on the inter-user channel strength. However, when the 

protocol is extended to multiple users, each relay receives a linear combination of 

information packets from multiple users as given by (176), thus creating a multiple-access 

channel during each block with the i-th user acting as the receiver in the i-th block. The 

SDF algorithm is explained in two parts: A) Selection and B) Forwarding.

10.4.1  Selection

In this part, we explain how each relay node selects which users to decode and forward 

to the destination during the relay phase. We now analyze this multiple-access channel 

with N − 1 transmitters and 1 receiver. Specifically we look into the event where the relay 

is capable of decoding the information from a set of users, but not others, depending on 

the instantaneous channel strengths. The multiple-access channel created with the i-th user 

as the receiver is given by

1
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. (194)

For a Gaussian multiple-access channel with N − 1 transmitters and 1 receiver, the 

probability of any user being in error can be written as [27]

Pr(E) = Pr( ), (195)

where, Γ is the set of all 2N−1−1 nonempty subsets of {1, 2, …, i − 1, i + 1, …N}, γ

denotes each element of Γ and Eγ is the event where the elements in γ are in error. 

Therefore, the events which correspond to user j being in error are {Ej, Ej1, …, EjN, …,

E12…j…N}. Let X
(i)
(γ) = {Xk

(i): k ∈ γ}, then, for a codeword of length n and a set γ, the 

error probability can be upper-bounded as

Pr(Eγ) ≤ 2{−n [I(X
(i)(γ ); Y | X

(i)
( γΧ)) − Rγ − ∈γ]), (196)

for some ∈γ > 0, where Rγ is the sum of data rates transmitted by the users in γ [27]. Since 

the rate of the cooperation protocol is (N − 1)/(N + 1), each user when active transmits at 

a rate R’ = (N + 1)R/(N − 1) Since we assume a symmetric scenario with all users 

transmitting equal data rates, Rγ = R’ . Clearly, this probability of error will be 

arbitrarily close to zero iff I(X
(i)
(γ); Y | X

(i)
(γC)) > R’ , i. e., if the joint channel created 

Yii h1i h2i … h i 1–( )i h i 1+( )i … hNi

X1
i( )

.

Xi 1–
i( )

Xi 1+
i( )

.

XN
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Nii+=

Eγ
γ Γ∈
∪

γ

γ
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by the users in γ with the receiver is outage-free. Hence, the outage event for the set of 

users γ is

Oγ ≡ I(X
(i)
(γ); Y | X

(i)
(γΧ)) < R’ . (197)

where p(x ) is the probability density function of X. The probability of user j being in 

error is the probability of the union of events {Ej, Ej1, …, EjN, …, E12…j…N}. The outage 

probability is:

Pr(Uj is decoded erroneously by Ui) = Pij = Pr[ Eγ], (198)

where, Γj = {γ: j ∈ γ}. Further, the probability of user j being decoded erroneously can be 

upper bounded using the union bound as

Pij ≤ Pr(Ej) + Pr(Ej1)+ … + Pr(EjN) + … + Pr(E12…j…N) . (199)

For a given channel realization, the above probability of error is arbitrarily close to zero if 

each of the conditional mutual informations is greater than the corresponding data rate. 

We now compute the outage probability for this system.

Since the multiple access channel is Gaussian, the mutual informations are maximized 

by choosing a independent Gaussian input distributions at each user. This choice is 

compatible with the choice of input distribution of the entire transmitted word in order to 

maximize the capacity of the cooperative multiple-access channel as a whole.

This is ensured if all of the following outage events are false, in other words, if any of 

the following events is true, the error probability is bounded away from zero. By choosing 

independent Gaussian distributions for the input symbols, we get

max  1
T
---

p(x)
γ

γ Γj∈
∪
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Oj
(i)

:   log(1 + | hji |
2Et/N0) < R’

Oj1
(i)

:   log(1 + (| h1i |
2+ | hji |

2)Et/N0) < 2R’

OjN
(i)

:   log(1 + (| hji |
2+ | hNi |

2)Et /N0) < 2R’

O
(i)
12…j…N :   log(1 + | hki |

2Et /N0) < (N - 1)R’. (200)

Let us define Oj(i)* as the union of all the above events. In order to implement SDF relays, 

the receiver (user i in the ith block) computes the conditional mutual information I(X(γ);

Y | X(γC))  for every set γ in (200) using its knowledge of the channel information. If the 

node determines that any of the above outage events is true, then the probability of error 

cannot be guaranteed to be arbitrarily small and hence the relay node does not decode user 

j. However, if all of the above outage events are false for the given channel realization, 

then the relay node can decode Uj’s information with arbitrarily small error probability.

10.4.2  Forwarding

Each relay node creates a set of decodable users for every channel realization based on 

the instantaneous channel state information and subsequently forwards the information 

from the decoded users during the user (N + 1)th block, as will be explained in this 

section.

…
…

k 1=
k i≠

N

∑
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We define the decode indicator matrix, D, which is computed for every channel 

realization, in other words, every static fading frame. The element, Dij , of the matrix is 1

if the ith user is able to decode the jth user’s transmissions. The SDF algorithm determines 

this using the outage criterion determined in the previous section. Each user computes Di, 

the ith row of the matrix D, which indicates the set of users that user i can decode with a 1, 

and others with a 0. We call this the relay set of user i. The decoding set D(i) of user i is 

defined as the set of users which can decode user i, and are indicated by a 1 in the ith

column of the matrix D.

Each user would potentially have to relay information from multiple users jointly to 

the destination during the relay phase. Hence, the relays must re-encode the information 

from various sources before forwarding it to the destination. We impose the following 

constraints on the encoding function:

1) The relay node should only use linear functions to encode the information from 

various sources jointly.

2) Further, the encoding function should be symmetric, ensuring that the available 

transmit power is split equally among all users in the decoded set.

Let us define this encoding function as gi(X
(i)

)  =  for {r: Di(r) = 1}. In 

order to ensure equal power split among the relayed information packets, it is easy to show 

that . However in this case, letting αr = 1 does not change the system from an 

information theoretic perspective, hence we assume the same in the remainder of this 

discussion. Therefore, the encoding function can be simplified as g
i
(X

(i)
)  =  for 

{r: Di(r) = 1}. Note that αr being an arbitrary complex rotation might be of great interest 

αrXr
i( )

r
∑

αr
2

1=

Xr
i( )

r
∑
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in a practical implementation of this system, enabling the designer to choose appropriate 

lattices to transmit symbols from. Before transmission, the jointly encoded stream is 

scaled by a constant λ
i
 to enforce the average power constraint. For an average transmit 

energy per symbol of Et, it is easy to show that λ
i
 = , and hence the ith user 

transmits  during the relay phase. 

The observations at the destination and relay nodes during the first N blocks are 

identical in this case to that in SDR with AF relays. During the relay phase, the nodes use 

the linear mapping function as discussed above, the information transmitted from the ith

user during the relay phase is given by

 for {r: Di(r) = 1},

= 0, if , (201)

and the block received at the destination during the relay phase is

. (202)

Et
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------------

Et
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10.4.3  Outage Analysis

We now analyze the outage probability of the SDR protocol with SDF relays. The 

cooperation protocol creates an equivalent discrete memoryless Gaussian multiple access 

channel between the N users and the destination. As discussed in the previous section, the 

outage probability of the cooperative multiple-access system is defined as [12][68]

PSDR-SDF = Pr(O) = Pr( ), (203)

where, Γ is the set of all 2N−1 nonempty subsets of {1, 2, …,N}, with γ denoting each 

element of Γ. Oγ is the event corresponding to the elements in γ being in outage jointly, 

given by

Oγ: = I(X(γ); Y | X(γC)) < R , (204)

where p(x ) is the probability density function of X. Since the multiple access channel is 

Gaussian, the mutual informations are maximized by choosing a independent Gaussian 

input distributions for each user. For a set of users γ, the outage event is defined as follows

Cγ: = I(X(γ); Y |  X(γC)) < R. (205)

Similar to the case of SDR with AF relays, we define Y(γ) as the reduced received block 

as a function of X(γ), after cancelling out the contributions of X(γC). Since the equivalent 

multiple-access channel created by the cooperation protocol is linear, Y(γ) = AγX(γ) + 

BγNγ for some Aγ and Bγ. 

For example, we now evaluate Cj i. e., Cγ with γ = {j} as follows 

Oγ
γ Γ∈
∪

max  1
T
---

p(x)
γ

1
γ
----- max  1

T
---

p(x)
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Cj: = I(Xj; Y | X1, …, Xj − 1, Xj + 1, …, XN) < R. (206)

The relationship between the reduced received block is Y({j}) and the input N − 1

information blocks Xj 
(1)

, …, Xj 
(j−1)

, Xj 
(j+1)

, …, Xj
(N)

 after cancelling out the 

contributions of X1, …, Xj − 1, Xj + 1, …, XN from Y is

, (207)

where, , and 

 = [ D1jh1, …, Dj-1hj-1, Dj+1hj+1, …, 

DNhN]. (208)

Similar to the case of SDR with AF relays, this equation represents an (N − 1)-input, 

N-output Gaussian channel with a channel transfer function of Aγ and a noise covariance 

matrix Bγ. The mutual information between the input and output for this channel is 

maximized when the input distribution is Gaussian, with the corresponding value of Cj

given as

max  1
T
---

p(x )
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Cj  = log2det( I + (Bγ
∗Bγ)

−1Aγ
∗Aγ). (209)

For the given matrices Aγ and Bγ, the argument of the determinant can be computed as 

 I + (Bγ
∗Bγ)

−1Aγ
∗Aγ = . (210)

Substituting (210) in (209), and using S = EtN/(N0(N + 1)) we get

Cj  = log . (211)

Each of the 2N−1 outage events can be evaluated in a similar fashion to compute the 

outage probability of the cooperative multiple-access system accurately. We now state the 

following theorem about the diversity order of the SDR protocol with SDF relays.

Theorem 11. The space-division relay cooperation protocol with selection-decode 

and forward relays achieves the full diversity, N, over a multiple-access channel 

with N users with one antenna at each user and the destination.

dSDR-SDF =  = N. (212)

Proof: From (203), PSDR−SDF = Pr( ), where each outage event is defined as 

Oγ: = I(X(γ); Y | X(γC)) < R  for the set γ, of users. For any two sets of 

users γ1 and γ2, such γ2 ⊆ γ1 the inequality I(X(γ1); Y | X(γ1
C))  ≥ I(X(γ2); Y |
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X(γ2
C)) is true. Therefore, it follows that Cγ1 ≥ Cγ2. Let us define dγ as the 

diversity order corresponding to Pr( ). Using the above inequality, it is clear that 

dγ1≥ dγ2 if γ2 ⊆ γ1. We also know that di = dj for all i, j = 1, 2, …, N. Combining 

these two observations, we get  = di for any i = 1, 2, …, N. Using the union 

bound, we get the following equations:

PSDR-SDF ≤ , (213)

dSDR-SDF =  = dj for any j = 1, 2, …, N. (214)

Using (211),  is computed as

 = Pr . (215)

 can be written as

 =  + 

 , (216)

where, .

If  , it is clear that Cj ≥ R, and hence  and

 =  . (217)
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Clearly,  depends on the decoding set D(j) of user j, defined as 

the set of users which can decode user j. Therefore, 

 =  . (218)

Now,  can be upper bounded as

 ≤ Pr . (219)

where,

 = [ D1jh1, …, D(j-1)jhj-1, D(j+1)jhj+1, …, 

DNjhN], (220)

with Dij = 1 in iff i ∈ D(j). Consider :

 ≤ . (221)

Given the decoding set D(j), , where 

 when . The probability in (221) can be bounded as

 ≤ , (222)

 ≤ . (223)
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where, . The next component in (218) is . 

 is the probability that users in the set  can decode user j and others 

cannot, and it is given by

. (224)

To evaluate this, we define the event Rji: log(1 + | hji |
Et/N0) > (N - 1)R’ (= 

(N + 1)R). A careful examination of (200) tells us that if Rji is true then all the 

events in (200) are false and user j is decodable by user i. Thus, it is clear that 

 and also from (200) that and . Hence,

, (225)

where,

,

. (226)

Since  is an exponential random variable,   for small θ1

[11] and equivalently large S. Similarly, since all  and  are exponential 

random variables, it is easy to show that  and 

for small θ3 and θ4 or equivalently large S as evident from the fact that
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 and . (227)

In (225), there are  terms such that  and N −  − 1 terms such 

that , with all events being independent of each other. Therefore,

, (228)

for small values of θ3 and θ4. Now, from (223), we get

 ≤ . (229)

Here,  follows a χ2(2|D(j)|) distribution. For a random variable Z with 

χ2(2n) distribution, it is well known that  for small values of . 

Therefore, 

 ≤ . (230)

Combining (218), (223), (228) and (230), 

 ≤   as S → ∞, (231)

for some constant λ. Hence, we have shown that dSDR-SDF ≥ N. The upper bound on 

the diversity order is easy to show, since  ≥  

where,  is the outage probability of a MISO channel with N

transmit antennas and one receive antenna, with a total power constraint of E at the 
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transmitter. It is well known that dMISO =  = N. 

Therefore, dSDR-SDF ≤ N as well. The only way both inequalities on dSDR-SDF can 

be true is dSDR-SDF = N. Hence, it is proved that SDR with SDF achieves full 

diversity N over the cooperative multiple-access channel considered.

Hence, the conclusion is that the SDR protocol with SDF relays achieves the full 

diversity of the cooperation multiple-access channel considered. In the next section, 

simulation results are presented to study the actual performance improvement of the 

cooperation schemes proposed over non-cooperative schemes as well as the proximity to 

the ideal genie-aided cooperative system.

10.5 Numerical results

In this section, we discuss numerical results for several transmission schemes over a 

Rayleigh-fading cooperative multiple-access channel with N (= 3 and 4) cooperating 

users and a single destination, each equipped with one antenna. Each user has a target data 

rate of R = 1 bps/Hz, and each has the same average SNR S. To achieve a data rate of R

= 1 bps/Hz, the LTW protocol needs a user to transmit information at N2 bps/Hz during 

its active transmissions, while SDR requires the user to transmit at (N + 1)/(N − 1) b/s/

Hz when active. The outage probability is compared against that of conventional non-

cooperative multiple-access schemes such as TDMA and SDMA.

In Fig. 46, the outage probability of several candidate multiple access schemes for a 3-

user CMA system are compared. Non-cooperative schemes such as TDMA and SDMA 

outperform LTW at low SNRs, due to their higher rate, suffer from a lack of diversity at 

PMISO NS R N, ,( )log–
Slog---------------------------------------------------------

S ∞→
lim
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high SNR. However, SDR significantly minimizes this drawback due to its high 

transmission rate. For outage probabilities less than 10–1, SDR comfortably outperforms 

non-cooperative schemes due to its full diversity and minimal rate loss.

Among the available schemes, SDR-SDF achieves the lowest outage probability at 

high SNR. At an outage probability of 10–3, SDR-SDF outperforms SDR-AF by 0.7 dB, 

LTW-AF by 7.5 dB and LTW-SDF by 9 dB. Fig. 46 also shows the MISO bound which is 

the outage probability of a 3 × 1 MISO channel and serves as a lower bound on the outage 

probability of any 3-user CMA scheme, and it may or may not be achievable. The SDR-

SDF protocol falls 5.3 dB short of the MISO bound.

A similar comparison is made in Fig. 47 for a 4-user CMA system, with the same set of 

assumptions. It is again seen that SDR-SDF emerges as the protocol with the best 

performance for outage probabilities lower than 10–3. This scheme outperforms SDR-AF 
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 Fig. 46.  Comparison of outage probabilities of SDR and LTW 
protocols with AF and SDF relays for N = 3 with R = 1 b/s/
Hz per user.
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by 0.7 dB, LTW-AF by 23.5 dB and LTW-SDF by 24.4 dB, while getting to within 5.8 dB 

of the MISO bound. Numerical results for the other non-orthogonal transmission scheme, 

the NAF protocol, are not available for N > 2 cooperating users in the original work, but 

given that SDR has a rate of (N − 1)/(N + 1) compared to a rate of NAF with 1/N per 

user, SDR-SDF is clearly expected to outperform NAF, given that both protocols achieve 

full diversity.

10.6 Summary

In this chapter, we presented an extension of the space-division relay (SDR) protocol 

for a cooperative multiple-access channel with an arbitrary number of users N. Our goal 

was to design cooperation protocols with full diversity and high rate, especially as the 
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 Fig. 47.  Comparison of outage probabilities of SDR and LTW protocols 
with AF and SDF relays for N = 4 with R = 1 b/s/Hz per user.
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number of users increase. We showed that the SDR protocol achieves this goal with a rate 

of (N – 1)/(N + 1). We showed that SDR with SDF relays achieves the full diversity of 

N over the cooperative multiple-access channel.

Though it remains an open problem to prove the diversity order for SDR with AF 

relays, numerical results indicate that AF relays perform almost as well as SDF relays 

falling short only by 0.7 dB. From numerical results, we concluded that SDR-SDF 

achieves the lowest outage probability among all known multiple access schemes at high 

SNR for 3 and 4 user systems. For N = 3 and N = 4, SDR-SDF is seen to outperform 

LTW-AF by 7.5 dB and 23.5 dB respectively at an outage probability of 10–3. Also, we 

see that SDR-SDF decays at a similar rate as the MISO bound, an observation which is 

consistent with the theoretical proof that SDR-SDF achieves full diversity. 

These results show the importance of designing high rate cooperation protocols, rather 

than just focussing on full diversity. With a rate of (N – 1)/(N + 1) which approaches 

the full rate 1 as N grows, and full diversity N, SDR-SDF seems to be a very promising 

candidate for cooperative multiple-access systems of any dimension.
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CHAPTER 11

11 CONCLUSION

In this thesis, we addressed the problem of designing spatial diversity techniques for 

single-user and multiuser wireless communications systems over slow fading channels. 

This thesis contains two parts: In the first part, we dealt with the design layered space-time 

architectures for single user wireless communication systems. The second part of this 

thesis dealt with the design of cooperation schemes for multiple-access channels.

11.1 Main Contributions

PART I: Layered Space-Time Architectures

• We proposed rate-normalized BLAST architecture [28]: An enhanced version of 

the conventional V-BLAST architecture obtained by joint transmit-receive optimi-

zation. We proposed a) the rate-normalized ordering algorithm which minimizes 

outage probability and b) the partially uniform rate and energy allocation, which in 

combination with RN ordering improves the performance of V-BLAST at no extra 

cost.

• We introduced the STAR family of layered space-time architectures [56][58]. 

STAR is a new family of architectures designed specifically to suit linear and suc-

cessive cancellation decoders. We proposed three versions of STAR, namely V-

STAR, G-STAR and D-STAR with vertical, group and diagonal coding respec-

tively. 
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• We showed that V-STAR achieves near-optimal outage performance while requir-

ing just a low complexity SC decoder, while performing better than every other 

vertically layered space-time architecture. We proved that V-STAR achieves full 

diversity for a range of MIMO channel dimensions.

• We showed that G-STAR significantly outperforms other group coded architec-

tures. Finally, we showed that D-STAR while achieving comparable outage perfor-

mance as D-BLAST, comfortably overcomes practical issues faced by the latter 

such as short code lengths and error propagation.

• We showed an application of the STAR transmission strategy to multiple-access 

communications, based on its similarity to vertically layered ST architectures [57].

PART II: Cooperative Multiple-Access Systems

• We developed space-division relay, a high-rate cooperation protocol for a simple 

2-user multiple access channel. Space-division relay was shown to achieve full 

diversity and the best outage performance among all available schemes [89].

• We developed the partial cooperation framework to measure the optimum level of 

cooperation needed to achieve the lowest outage probability. The results from this 

framework answers questions such as how much cooperation is necessary in multi-

ple access channels, and how much rate loss can be tolerated to gain diversity.

• Finally, we proposed an extension of the space division relay protocol to arbitrarily 

large multiple-access networks. We showed that this extension preserves high rate 

and full diversity as the number of users increase. In fact, space-division relay 

achieves a rate of o(1) while still achieving full diversity.
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11.2 Future Work

PART I: Layered Space-Time Architectures

• The problem of building practical codes which approach the outage probability of 

the schemes discussed here is of great importance. It would be interesting to study 

the ability of finite length codes to approach layer capacities, and the gap of the 

FER of a practical system to the outage probability.

• In the special case of D-BLAST, characterization of the codelength vs rate tradeoff 

needs further study. This analysis requires characterization of the performance of 

error control codes as a function of codelength. Application of tools such as the 

error exponent and the sphere-packing bound to an analogous problem can be 

found in [27][60].

PART II: Cooperative Multiple-Access Systems

• There are several unanswered problems in this fairly recent research topic. Funda-

mentally, the achievable performance limits of cooperation protocols over fading 

multiple-access channels are still unknown.

• Allowing limited feedback from the destination to the users would open the doors 

to several new ideas and better cooperation protocols. Though this topic is being 

actively researched, it still warrants further work [61][62][70][71][76][83].

• Thus far, the decoding complexity of CMA schemes has not been discussed at 

length. In the future, designing cooperation protocols with affordable computa-

tional complexity at the relay nodes as well as the destination is a desirable goal.
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