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SUMMARY

Multiuser detection is the process of mitigating interference among users in a mul-
tiuser communications system. This dissertation addresses the problem of blind multiuser
detection, where the transmitters do not provide training sequences or other assistance to
the receiver. We propose new low-complexity, adaptive, linear blind detection algorithms
for square and tall channels by extending two well-established single-user algorithms, the
constant-modulus algorithm (CMA) and the phase-locked loop (PLL), to multiuser

channel framework.

We propose a multidimensional phase-locked loop (MPLL) for blindly resolving a
unitary ambiguity. The MPLL, a multidimensional generalization of the PLL, is a deci-
sion-directed algorithm that exploits the discrete nature of digital communication signals.
We investigate the convergence behavior of a first-order and second-order MPLL. Using
computer simulations, we show that the MPLL offers fast convergence, low complexity,

and excellent steady-state performance.

For memoryless channels, we propose the vector constant-modulus algorithm, which
is a unique generalization of the CMA to vector-valued signals. In the absence of noise,
we show that the vector CMA detector is a whitener for all non-CM input alphabets. As a
result, this detector is compatible with shaped-input alphabets. In the presence of noise,
this detector displays near MMSE-like performance. We also propose another whitener,

the vector CMA with Gram-Schmidt constraint detector, that can be used for all input
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alphabets. Using numerical examples, we compare that the performance and complexity

of these two detectors with other blind detectors.

We also extend both the vector CMA and vector CMA with GSC detectors to channels
with memory. In the absence of noise, we show that the vector CMA detector converges to
both unitary and non-unitary matrices and that the vector CMA with GSC detector is a
whitener for a sub-Gaussian input alphabet. In the presence of noise, the performance of
optimal vector with GSC detector is similar to that of the optimal MMSE detector. Finally,
through simulations, we demonstrate that the vector CMA with GSC detector compares

favorably with other blind detectors.



CHAPTER 1

INTRODUCTION

With the advent of cellular technology, more and more people are using digital mobile
phones for personal as well as business needs, which places greater demands on service
providers to ensure reliable voice and data transmissions over a wireless communications
channel. Improvements in integrated chip technology, which have led to cheaper phones,
and substantial reductions in the cost of providing services, have resulted in an over-
whelming popularity of the digital mobile phones, which in turn has led to an exponential
growth in the transmission of digital information. Unfortunately, the available spectrum
for transmission of data from mobile phones is finite. So it is inevitable that multiple users
share the same transmission medium and frequencies; in other words, they transmit data

over a multiple-access or multiuser communications channel [1-3].

A consequence of having multiple users transmit asynchronously and from different
geographic locations over a common channel is that these users interfere with one another.
Traditionally, transmission protocols, such as FDMA, TDMA, and CDMA, are used at the
transmitter to prevent multiuser interference at the receiver [4]. Each of these techniques
seeks to eliminate multiuser interference by orthogonalizing the transmit signals. Unfortu-

nately, in practice, these techniques can only reduce, and not eliminate the multiuser inter-



ference. For example, in systems that employ either FDMA or TDMA, multiuser
interference arises from nearby cells re-using the same carrier frequency and from imper-
fections in either bandpass filters or system timing [5]. In systems that employ CDMA, the
combination of asynchronous transmissions and multipath propagation can destroy
orthogonality of the spreading sequences at the receiver and lead to significant multiuser

interference [6].

The digital wireless cellular network is only one example of a communications system
where multiuser interference is present. Other examples include satellite communications,
local-area networks, multi-track magnetic recording systems [7, 8], fixed wireless local
loops, digital radio, interactive television, twisted-pair bundles [9,10], and dually-polar-
ized radio [11]. Since the multiuser interference has considerable structure, large gains in
performance can be achieved by using suitable signal processing techniques to exploit this
structure at the receiver. Although the gains in performance come at the expense of com-
plexity at the receiver, this trade-off is often acceptable in many applications [1,2,12,13].
The design and analysis of detectors in the presence of multiuser interference are of much
importance, and research in this area has led to the developmemildiser detection

theory

Even though digital communication systems were viewed in terms of a multiuser
channel as early as the 1960s, it was not until the mid 1980s that the first algorithms were
designed to exploit the structure of the multiuser channel [12]. The discrete-time multiuser

channel model is described below:

rg = Hoxk + H1Xk—1 + ...+ HMXk—M + Ny, (1-1)



wherex, is ann x 1 channel input vector whose components are the discrete symbols
transmitted by ther independent user$i(z) =Hy + Hyz 2 + ... + Hyz M is them x n
channel transfer function matrixy is anm x 1 noise vector, ana, is anm x 1 vector
sequence comprised of the receiver observations. The dimension of the observations, or
equivalently, the number of virtual sensoms, is related to the number of samples per

baudf and the number of actual sensors at the recg@ivagcording tan = 3p.

Since the mid 1980s, several different detection strategies, such as maximum-likeli-
hood sequence detectors [14,15], linear detectors [9,16,17,18-20], and decision-feedback
detectors [19-24] have been developed for the case when the multiuser channel response is
known or when a training sequence is available. In certain applications, such as broadcast
digital television, interactive cable television, and certain non-cooperative environments,
the channel response is either unknown or the receiver does not have access to a training
sequence. In these situations, the receiver must adapt according to a blind detection algo-
rithm [25]. The blind multiuser detection problem requires the determination of the trans-
mitted sequence, using only the observationg and the information about the properties
of the transmitted sequence, such as the modulation scheme for each user. An inherent
drawback of blind multiuser detection is its inability to distinguish between the different
users. Therefore, it is impossible to recover information from a particular user. Hence, we
propose to design algorithms that recover the entire transmit vegtand to use some

higher-level processing to differentiate between the individual users.

This research considers the design of a blind multiuser detector in the presence of both
the multiuser and the intersymbol interference and noise. Our primary objective is to

develop low-complexity, adaptive, linear blind detection algorithms for square ()



and tall fn > n) channels. In our work, we consider only linear detectors, as opposed to
nonlinear detectors, because they are more amenable to blind implementation. The basic
strategy that we have followed is to extend well-established single-user algorithms to the
multiuser channel framework. The new blind multiuser detectors are fashioned after two
time-tested single-user blind algorithms: the constant-modulus algorithm (CMA) [26] and
the decision-directed phase-locked loop (PLL) [1-3,27-32]. These two algorithms are
adaptive, well understood, purported to be more robust in the presence of noise, and have
lower computational complexity than many batch-oriented and signal subspace algo-

rithms.

It is often convenient to decompose the blind multiuser detection process into two
steps, as illustrated in Fig. 1-@hitenand thenrotate[33-54]. The first step eliminates the
channel memory and whitens the output by usingyaam whitening filterw(z). The cas-
cade of the whitening filtew/(z) and the channel matrikd(z) leaves a unitary ambiguity.
The second step in the process resolves this ambiguity by askng rotating filteru. In
the following chapters, we develop algorithms that perform both the whitening and

rotating tasks.

Nk
nx1 l mx 1 nx1 nx1
g Wy
X« ——»{ H(2) MO— W) —H U —> Y
Channel Whitener Rotator
mXn nxm nxn

Fig. 1-1. A block of the general whiten-rotate structure.



The remainder of this dissertation is organized as follows. In Chapter 2, we review
some of the key concepts from multiuser linear system theory. We also determine the con-
ditions required for the existence of a linear detector for both a continuous-time channel
and a discrete-time channel. We then present a survey of prior work in multiuser detection
theory. We begin Chapter 3 by reviewing a first-order and second-order phase-locked
loop. We then present convergence analyses for these PLLs. Using an alternative model
for the PLL, we extend the algorithm to multiple dimensions. This algorithm, which is
referred to as the multidimensional PLL (MPLL), is a rotator that can blindly estimate a
unitary ambiguity. Finally in this chapter, we present convergence analyses for first-order
and second-order MPLLs. In Chapter 4, we present a novel and unique generalization of
the constant-modulus algorithm to multiple dimensions. We show that this algorithm and a
modification of this algorithm can whiten a memoryless channel for all discrete input
alphabets. In Chapter 5, we generalize the whitening detectors presented in Chapter 4 to
channels with memory. Finally in Chapter 6, we summarize the key contributions of this

research and present ideas for future work.



CHAPTER 2

BACKGROUND

While most communication channels are inherently continuous time, the growing
trend in designing receivers is towards digital processing of the received signal. Thus, an
equivalent discrete-time model of the continuous-time channel is required. The question
naturally arises: given a discrete-time channel, how can we recover the transmitted infor-
mation? The answer to this question is the focus of this research, with particular emphasis
on the design of blind linear detection strategies. In this chapter, we review key concepts

that will be used throughout the remainder of the dissertation.

In Section 2.1, we begin by converting the continuous-time channel into an equivalent
discrete-time using a canonical receiver front end. We also state the conditions for exist-
ence of a zero-forcing linear detector. We then review the notion of minimum phase for
discrete-time multiuser channels. In the later part of this chapter, we present a survey of
prior work in multiuser detection theory. In Section 2.2, we review the different detection
strategies for non-blind detectors, where knowledge of the channel or a training sequence
is assumed. Finally in Section 2.3, we review blind equalization methods for a single-user
channel, a decision-directed phase-locked loop, and the literature concerning the general

problem of blind multiuser detection.



2.1 MULTIUSER CHANNEL MODEL

With the advent of integrated circuit technology, a great deal of the receiver processing
is now being performed in discrete time. Indeed, in the following chapters, it is assumed
that we have a discrete-time channel for the systems described therein. However, in most
communication systems, the underlying physical channel is continuous-time in nature. It
is important, therefore, to review the relationship between the underlying continuous-time
channel and its equivalent discrete-time model, because sometimes a discrete-time model
may obscure interesting and exploitable properties of the continuous-time channel. For
example, a baud-rate discrete-time channel hides the inherent cyclostationarity of the

underlying continuous-time channel model.

2.1.1 Conversion from Continuous-Time to Discrete-Time

Consider the following baseband additive-white Gaussian noise (AWGN) continuous-
time multiuser channel depicted in Fig. 2-1, in which fheontinuous-time complex-

valued received signals are grouped infoxal vectorr(t):

(o]

r(t) = Z H(t —jT)xj + Nn(t), (2-1)
j=-0
AWGN
nxi é px1
Xk —»{ H(f) + > r(t)
Channel
pxn

Fig. 2-1. A block diagram of a complex baseband p X n continuous-time channel
model.



wherex, is ann x 1 vector composed of the discrete symbol sequences transmitted by the
n usersn(t) is ap x 1 zero-mean white complex Gaussian noise vector with power spec-
tral density (PSD)B,(f) = me[n(t)n(t-T)*]e‘jzde = Nol, andT is the symbol period

for all users. Thei( j)-th element of thep x n matrix H(t), referred to as theontinuous

time impulse responseés the response of thieth output element when an impulse is
applied to thg-th input element. The x n matrix H(f), which is referred to as theontin-

uoustime channel transfer functions the corresponding Fourier transformta{t). We

assume thati(f) includes the pulse shaping for each user, which is usually bandlimited.

The authors of [53,54] have shown that the continuous-time signal can be discretized
by using the receiver front-end illustrated in Fig. 2-2. We assume that each component of
the channeH(f) is bandlimited to]f] < W. This front end consists of 3 components: a
bank of ideal anti-aliasing lowpass filters (LPFs), each with a cut-off frequency of
[W2T ]/2T, an ideal sampler with a rate ¢W2T |/T, and a serial-to-parallel ¢&),
which concatenates thHev2T| samples intonarx 1 vectorry, wherem = [W2T p.

This sampling rate was chosen for two reasons: it avoids aliasing, and it ensures that there
will be an integral number of samples per baud. As shown in [53,54], the resulting dis-
crete-time received vectot, can be modeled as the output of an equivalent discrete-time

channel:

g = Z Hj Xk—j + Ny, (2-2)

=



wheren, is anm x 1 zero-mean white Gaussian noise vector with power spectral density
0?1, with a® = Ng[W2T/T. Them x n discrete-time channéli(z) can be expressed in

terms of the continuous-time channel transfer funatiéf) as:

0 T
. kAT e 1 T
S -j2nd - =gy —12“5 DT L, (2-3)
Lo p - Ip

wherel = [W2T].

AWGN I=[W2T]
WCUt = I/T
nxt rO ] | Lpr
te=1/T
Channel pXxp rate
pXxXn
(@
AWGN
nx1 l mx1
Xk —»{ H(2) >(+) > Tk
Channel
mXxn

(b)

Fig. 2-2. (a) A p x n continuous-time channel followed by an oversampling receiver
front end; (b) an equivalent m x n baud-rate discrete-time channel model.
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We are now in a position to discuss some of the properties of the discrete-time channel
transfer function matrixd(z). From (2-2), itis clear that the channel is causadjf= 0 for
all j <0 and the channel is anti-causaHf = 0 for all j > 0. The channel described by (2-
2) has an infinite-impulse response (lIR). If the support of the channel is finite, then the
channel transfer function matrix is said to have a finite-impulse response (FIR). In many
real-world applications, an IR channel can be approximated by an FIR channel with a
large number of taps. This channel is stable if and onk(f) converges uniformly on the

unit circle [55],i.e.,

[0e]

> IRy <. (2-4)

k = —c0

Finally, this channel has full rank if and only H(zy) has full rank for allzy on the unit

circle (1zg] = 1) [56].

2.1.2 Conditions for the Existence of a Zero-Forcing Linear Detector

Linear detection of alh users is possible if and only if the intersymbol interference
and the multiuser interference can be completely removed using only linear filtering, or in
other words, if there exists am x m stable linear time-invariant filte€(z) satisfying
C(2)H(z) = 1. Then x m filter that satisfiesC(z)H(z) = 1 is called azercforcing linear
detectorbecause it forces both the intersymbol and the multiuser interference to zero. As
shown in [53,54], the condition for the existence of a zero-forcing linear detector is

directly related to the rank of the discrete-time channel matrix on the unit circle.
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Theorem 2-1. For anm x n multiuser discrete-time channkgl(z), a zero-
forcing linear detecto€(z) exists if and only ifH(z) has full rank on the unit

circle.

Hence, the transmitted sequengecan be recovered using only a linear detector if and
only if H(z) has full rank on the unit circle. Since the rank of a channel is inherently
related to the determinant of the channel, we can also express the result of the previous

theorem as follows [57]:

Corollary 2-1. For anm x n multiuser discrete-time channel(z), a zero-
forcing linear detecto€(z) exists if and only ifdet(H"(1/z")H(z)) # 0 for all

z on the unit circle [z] =1).

2.1.3 Minimum-Phase Channels

Minimum-phase channels are an important class of channels in single-user communi-
cation theory. These are stable channels characterized by the fact that all of their poles and
zeros lie inside the unit circle.e., the channels are stable and causal. As a result, a min-
imum-phase channel has many special properties. For example, its inverse is minimum
phase and its spectrum completely describes the channel. Delfosse has extended the con-

cept of minimum phase to multiuser channels [33].

Definition 2-1. An m x n casual stable discrete-time chanh#k) is said to
beminimum phaséd and only if there exists a causal stable zero-forcing linear

detector.
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This definition reduces to the familiar definition for a single-user minimum-phase channel
whenm = n =1 [55]. Using this definition, we can determine the conditions for which a

square FIR multiuser channel is minimum phase.

Theorem 2-2. A squaren x n FIR causal channel of the formi(z) = Hy +
H,zt + ... + Hyz ™, whereM is the channel memory, is minimum phase if

and only ifdet(H(z)) is minimum phase.

Proof: The channeH(z) is minimum phase if and only there exists a causal

stable inverse. A left-inverse, for this channel, is given by:

C2) = HO™ = gy “IH). (2:5)

whereadj([)l represents the adjoint of a matrix. Sindéz) is causal and FIR,
adj(H(z)) will also be causal and FIR. Becauadj(H(z)) is FIR, it is also

stable. ThereforeZ(z) will be a casual stable left-inverse Bi(z) if and only if

1
det(H(2))

1 L . 1
Zeros ofm lie inside the unit circle. F S (H(2) to be causal and

is causal and stable. Sindet(H(z)) is an FIR polynomial ire, the

stable, the poles of this function must also lie inside the unit circle. In other

1
det(H(2))

det(H(z)) lie inside the unit circle. This last condition implies trdet(H(z))

words, is causal and stable if and only if the poles and zeros of

must be minimum phasg.

Hence, a square FIR causal chandét) is minimum phase if and only if the channel has

full rank and the determinant is minimum phase.
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We can now determine the conditions for a tall FIR multiuser channel to be minimum

phase.

Theorem 2-3. [54,34-35] A tallm x n FIR causal channel of the forrat(z) =
Ho + Hizt + ... + Hyz ™M, whereM is the channel memory, is minimum

phase if and only ifank(H),) = rank(H(z)) = n for all z including .

Proof: First, we prove the “if” portion of the proof. As shown in [54], if
rank(Hy,) = rank(H(z)) = n for all values ofz including, then the following
moving average (MA) channet; = z:v': OHixk_i, where the input sequence
Xy is white: E[x,x,_;] = 18;, can also be expressed in terms of an autoregres-
sive (AR) channelr, = ZINZ 1Airk_i + Hxy, where the feedback filtex(z) =

ziN: 1Aiz‘i is square ifh x m) and strictly causal. By equating the transfer
functions of the MA and AR channels, we find thafz) = [I — A(z)]*H,, or
equivalently, | — A(z)]H(z) = Hy. We observe thatl[- A(z)] is causal and
FIR. It follows thatC(z) = Ho'[I — A(2)], whereHy' = (Ho"Hg) tH,", is a
causal FIR left-inverse dfi(z). SinceC(z) is FIR, it is also stable. Hence€(z)

is a causal stable left-inverse ii{(z) and thereforelH(z) is a minimum-phase

channel.

Next, we prove the “only if” portion of the proof. IH(z) is minimum phase,
then there exists a causal stable fil@&{z) that satisfiesC(z)H(z) = 1. This

constraint can also be expressed in block-matrix notation:

[CoCy...CNIH=[10...0], (2-6)
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whereC(z) = Cy + C;z 1 + ... + Cyz ™V andH is the N+1)m x (M+N+1)n

block-Toeplitz matrix:

Ho Hl "'HM O

H: 0 HO Hl "'HM 0 (2_7)

Since C(z) exists, the block-Toeplitz matrixd must have full-row rank.
Forney showed in [58] thatH has full-row rank only if rank(Hy,) =

rank(H(z)) = n for all z includingeo. O

Thus, every tall FIR causal channel(z) that satisfies the condition thaank(Hy,) =

rank(H(z)) =n for all z includinge is minimum phase.

2.2 NON-BLIND DETECTION

In the first part of this chapter, we derived the discrete-time multiuser channel and
determined the conditions for the existence of a zero-forcing linear detector. The question
still remains: how can we recover the transmitted data? The answer to this question
depends on how much information is available. We can classify the detection strategies
into two groups: non-blind detection, where we either know the channel or have access to
a training sequence; and blind detection, where we only have knowledge of the statistics of
the transmitted symbols. We begin this section by examining non-blind detection strate-
gies. In the next section, we review both single-user and multiuser blind detection strate-

gies.
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2.2.1 Optimal Detection

Consider then x n multiuser channel model described by (1-1), where the received

vector is given by:

rg = Hoxk + Hlxk_l + ...+ HMXk—I\/I + Ny. (2-8)

If n, is a zero-mean white Gaussian noise vector, then the optimal detector for this mul-

tiuser channel is thenaximurikelihood sequence detect@ILSD), which was derived

by Van Etten [14,15] following the single-user approach suggested by Forney [59]. The

MLSD generates an estimate of the input sequence by minimizing the Euclidean distance

between the received sequence and a noiseless received sequence:

M

= > HiXii
i=0

(o]

min 2

3

=1

(2-9)

It can be efficiently implemented via a Viterbi decoder wifH" states, where is the size

of the input alphabet; is the number of users, am is the channel memory. The Viterbi
algorithm [60] is quite efficient, but it can be computationally complex even for moderate
values ofL, n, andM, thus making the MLSD impractical for most real-world applica-
tions. Therefore, much research effort has been recently directed towards developing

reduced-complexity techniques having near-optimal performance.
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2.2.2 Suboptimal Detection

As we mentioned previously, the zero-forcing linear detector forces both the
intersymbol and the multiuser interference to zero in the absence of noise. The transfer
function for the detector is given by,£(z) = H(z)" = [H (1/2")H(2)| *H"(1/2"). As in a
single-user channel, the zero-forcing linear detector can suffer from severe noise enhance-
ment. The output of the zero-forcing detector is giverypy x, + vy, wherev, is a col-
ored noise vector with PSI]&IOH(z)T. In theory, the mean-squared error (MSE) of the
zero-forcing linear detector will be nearly infinitedét(H(z)) has a zero close to the unit

circle.

In contrast, the minimum mean-squared error (MMSE) linear detector seeks to mini-
mize the MSE between the detector outgtand the channel input vectey; in other
words, it attempts to minimize the total MSEE|ly, — x,/|°]. Let MSE; = E[ly, - x, V]3]
denote the MSE for theth user. Since the total MSE is the sum of the MSEs for each

n

user,i.e., E[lyx —xl?] = > Ellvi?) - x D[], the MMSE linear detector minimizes the

i=i
MSE for each individual user. This detector is desirable because it provides a reasonable
balance between the suppression of interference and the enhancement of noise. The
transfer function of the MMSE linear detector can be expressed in two equivalent ways

[61]:

Cumse(@) = H'(W/2)[H@H (1/27) + 6?1, 72, (2-10)

= [H'(1/2)H(z2) + 0?1t H"(1/2). (2-11)
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We should emphasize that both (2-10) and (2-11) produce the same result, except when
the noise is zeroo? = 0), and when the channel is tath(> n), in which case (2-10) is not

valid. We observe that wheo? = 0, (2-11) reduces to a zero-forcing linear detector. We
also observe that the MMSE linear detector would exist even wb#ri(z)) has zeros on

the unit circle.

2.2.3 Adaptive Detection

So far we have focused on unconstrained receivers with full knowledge of the channel
and of the signal and noise characteristics. However, in practice these parameters will be
unknown and possibly time-varying, and so adaptive detection techniques are required. In
this section, we present the vector least-mean squared (LMS) algorithm [19,20], which is a

straightforward extension of the single-user LMS algorithm.

Consider the adaptive multiuser linear detector shown in Fig. 2-3. We assume that the
linear detector has a transfer function@) = Co + C;z7* + ... + Cpyz ™, whereN is the

memory of the detector. The detector output can be expressed as follows:

Yk = CRy, (2-12)
Ny
nx1 l re nx1l
Xk —» H(2) >(+) > C(2) > Yk
Channel Linear Detector
mXn nxm

Fig. 2-3. A block diagram of an M X N channel with followed by an N X M linear
detector with memory.
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whereC = [Cy Cq ... Cy] is ann x (N+1)m matrix composed of the multiuser detector

coefficients andR, " = [r, " r;1" ... r_n']is an N+1)m x 1 stacked-observation vector.

The goal of the vector LMS algorithm is to minimize the MSE cost function, defined

by:
3= Elyx —xl ], (2-13)

wherex, is the channel input or the desired input signal. In the classical steepest-descent
algorithm, the detector tap weights are adjusted according to the following update equa-

tion:
Cier1 = Ci— 5 0cd) (2-14)

where ¢ is the complex gradiehtof the cost function with respect to the detector tap
weights andu is the step size. The complex gradient of (2-13) with respect to the linear

detectorC is given by:
Ocd = 4E[eg Ry 1, (2-15)

wheree, =y, —x IS the error signal between the detector output and the channel input.

Substituting4e,R, as a stochastic approximation for the gradient in the steepest-

descent algorithm, we arrive at the following update equation for the linear detector:

1. The complex gradient af, with respect taC is defined as followst1-J, = s J, +jUe Jy,
whereCr = Re(C) andC, = Im(C) [1]. : !
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Cis1 = Ci— HexRy . (2-16)

We refer to this algorithm as the vector LMS algorithm. Observe that this algorithm
reduces to the familiar single-user LMS algorithm whes 1. We should point out that

the vector LMS isnot equivalent ton independent single-user LMS algorithms operating

in parallel. For example, when the input signals are highly cross-correlated, as in the case
of multiuser interference, the vector LMS will outperform a bank afidependent single-

user LMS algorithms. Finally, it is important to emphasize that the steady-state perfor-
mance of the vector LMS algorithm approaches that of the MMSE linear detector, if the

step size of the algorithm is appropriately chosen.

2.3 BLIND DETECTION

In certain applications, the channel response is unknown and the receiver does not
have access to training sequence. In these situations, the receiver must adapt according to
a blind detection algorithm [25]. In this section, we review both the single-user and mul-

tiuser blind detection strategies.

2.3.1 Blind Single-User Detection

Over the last quarter century, many different blind equalization algorithms have been
developed. These algorithms can be classified into three distinct groups: nonlinear algo-
rithms, algorithms that are based on higher-order statistics (HOS), and those that are based
on steepest-descent techniques. Nonlinear blind equalization algorithms include max-
imum-likelihood estimation techniques [62,63], decision-feedback equalizers [64,65], and

neural networks [66,67]. These algorithms are typically used when the channel distortion
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is too severe for linear equalizers [68]. The maximum-likelihood approach, neural net-
work, and decision feedback methods are not very popular in practical applications

because they are either too complex or have convergence problems.

The second class of algorithms, those based on higher-order statistics, include
polyspectra algorithms [69-71] and algorithms that explicitly use fourth-order cumulants
[72-74]. These algorithms generate higher-order cumulants by applying a nonlinear trans-
formation to the equalizer inputs; they generally have faster convergence rates and are
guaranteed to converge globally. However, their improved performance comes at the

expense of higher computational complexity.

The last class of algorithms are those that are based on steepest-descent techniques.
They are the most popular blind algorithms to date and hence, we will describe them in
somewhat greater detail. These algorithms are typically implemented using the least-
mean-square (LMS) adaptation [75,76], where the “desired response” at each iteration is
generated by applying a memoryless nonlineagityl to the output of linear filter. The
basic difference between these algorithms lies in the choice of the memoryless nonlin-
earity. Although the algorithms are different in this respect, they can all be classified as

Bussgang algorithms [78,79].

The most well-known Bussgang algorithm is the decision-directed equalizer. This
equalizer is not suited for blind equalization because, in general, the initial decisions are
unreliable and therefore convergence can never be guaranteed. In 1975, Sato introduced

the first blind equalization algorithm for the recovery of pulse-amplitude modulated

2. Since the equalizer outpyt satisfiesE[y,g(yw) 1 = E[ywyi ] in equilibrium, it is referred to as a
Bussgang process [77].
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(PAM) signals [80]. He proposed to the generation of the error signal for LMS by using
the nonlinearityy(y,) = y sgng,), where the gaity = E[x,’] / E[|x«]] is a function of the
channel inputx,. Sato later extended this algorithm to two-dimensional PAM signals
(quadrature-amplitude modulated signals) [81]. Both of these algorithms, unfortunately,
have slow convergence because the error signalg(y,) — yk is very noisy around the
desired solution. In an attempt to speed up convergence, Benveniste and Goursat proposed
using a combination of the Sato and decision-directed errors [82,83]. Their algorithm
relies on the more dependable Sato errors before the eye diagram opens and the more
dependable decision-directed errors thereafter. Similarly, Picchi and Prati [84] proposed a
technique that updates only when the error is deemed reliablewhen the Sato and
decision-directed errors have the same sign. Since this algorithm may not update weights

at each iteration, it was referred to as the “Stop-and-Go” algorithm.

Realizing that equalizing a channel up to a phase offset is equivalent to forcing the
magnitude of the ISI to zero, Godard suggested a cost function that characterizes the ISI
present at the equalizer output, independent of the carrier phase [85]. This cost function is

given by:

J(p. 9) = E[(1ykl® - Ix1P)1], (2-17)

wherep andq are positive integers. Since, in practice, the input sequgpeunknown,

Godard suggested using a dispersion function instead of (2-17):

D(p, 0) = E[(1ykI® - Rp)?], (2-18)
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whereRr, = E[ 1 12P17E[ I x| P] for some positive integgs. Treichler and Agee indepen-
dently proposed the constant-modulus algorithm (CMA) cost function, which is a special
case of Godard’s cost function fpr= q = 2 [26]. The CMA was originally designed to
restore the constant-modulus property of phase-shift keyed (PSK) constellation at the
equalizer output. Godard showed that for= q = 2 and input alphabets that satisfy
E[1x1%] < 2E[I1x1?], the global minima of (2-18) corresponds to the case of zero ISI
[85]. For infinite-length equalizers, Foschini showed that (2-18) has many unstable saddle

points but only one global minimum [86].

Example 2-1. The constant-modulus algorithm cost function is defined as

follows:

J = E[(Iykl? - M)?], (2-19)

where the modulust = E[|x, 1] / E[1x]17].

Shalvi and Weinstein [87] introduced a blind equalization scheme based on matching
the kurtosis of the channel input and the equalizer output. The kurtosis of a complex input

sequence is defined as:

K(x) = E[Ix1*] - 2E2[Ix]1?] — |E[x?] ]2 (2-20)

These authors showed tha&if | x,12] = E[1yk12], then |K(y,) | € IK(x) | with equality

only when perfect equalization has been achieved. Thus, they suggested an algorithm that
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maximizes|K(y,)| subject to the constrairi[ |x1%] = E[1yx]%]- We should point out

that a special case of the Shalvi-Weinstein algorithm is the original Godard algorithm.

Many of the Bussgang algorithms are based on minimizing a non-convex cost function
and so, global convergence cannot always be guaranteed [88-91]. Even the algorithms that
are guaranteed to converge for infinite-length equalizers suffer from ill-convergence for
finite-length equalizers [89,90]. To deal with ill-convergence, Godard [85] suggested a
tap-initialization procedure, while Foschini [86] suggested an algorithm to track and
center the primary tap. Moreover, the convergence for the Bussgang algorithms is often
slow because the convergence rate of the underlying adaptation scheme (LMS algorithm)
is dependent on the eigenvalue spread of the channel. To speed up convergence, Nikias
and colleagues [92,93] proposed the CRIMNO (criterion with memory non-linearity)
algorithm, which uses additional nonlinearity to exploit the correlation between symbols.
Another drawback of Bussgang algorithms is that they are invariant to an arbitrary rota-
tion. Typically, an estimate of this rotation can be generated by using a decision-directed

phase-locked loop (PLL). In the next section, we describe the basic structure of a PLL.

2.3.2 Phase-Locked Loop

The basic structure of a decision-directed (DD) phase-locked loop consists of three
major components [1-3,27]: phase detectora loop filter, and acomplex voltage&on-
trolled oscillator (VCO), as illustrated in Fig. 2-4. The phase detector compares the phase
of the received signat, with the phase of the decisioR,. The output of the phase
detector is a measure of the phase error between the two input signals. The estimate of the

phase error is then filtered by a loop filter to create a control signal which drives the VCO.
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Fig. 2-4. Block diagram of the basic structure of a decision-directed phase-locked
loop. The main components for phase-locked loop are the phase
detector, loop filter, and complex VCO.
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The control signal changes the phase of the VCO output in a direction that reduces the

phase error betweep andX .

Suppose that the input signglto the PLL has the following form:

Yk = exfiBix + N, (2-21)

wherex, is the channel inpu®, is the phase offset, ang, represents the noise. Two of
the most common types of offsets include the constant phase 6ffse® U [0, 2m), and

the constant frequency offs@t = wk + 6, wherew is the angular frequency offset, afd

0 [0, 2m). To provide a better understanding of these two types of offsets, we look at the

following examples:

Example 2-2. If the phase offset in (2-21) is constant, then the received
constellation is a tilted version of the transmitted constellation in the absence
of noise. An example of a tilted received constellation is shown in Fig. 2-5(a).
The tilt in the received constellation poses two problems: first, it can result in
the symbols crossing decision boundaries leading to incorrect decisions; and
second, it can degrade the immunity of the receiver to noise by bringing the

received symbols closer to the decision boundaries.

Example 2-3. For a constant frequency offset, the received constellation is a
rotating version of the transmitted constellation in the absence of noise. An

example of a rotating received constellation is shown in Fig. 2-5(b). This
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If the ambiguity in the input signal to the PLL is a constant phase offset,
then the received constellation will be a tilted version of the transmitted
constellation as shown in (a). The o’s represent the transmitted 16-QAM
constellation and the x's represent the received constellation. If the
ambiguity is a constant frequency offset, the received constellation will
spin, as illustrated in (b).
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rotation results in severe degradation of the transmitted signal at the receiver

when the received symbols cross the decision boundaries.

The output of the complex VCO can be defined as follows:
Uy = exfjf ), (2-22)

whereék is an estimate of the phase offset. If the estimate of the phase offset is correct
(6, = 8,), then the PLL is said to be iphaselock, and the received signaj = U,y

reduces to:

7, = exp(i€)X + exp(=i 8 )Ny, (2-23)
= Xk T Wy, (2-24)

whereg, =0 — ék Is the actual phase error amngl = exg-jék)nk Is a rotated noise term.

At high SNR, (2-24) reduces 1Q = x.

As shown in Fig. 2-4, the first step in generatiég is to estimate the phase errgy

betweenk , andz, [1]:

(2-25)

SRRLLEY

X2

We should point out that the estimate of the phase error is only an approximation because

of occasional decision errors and noise. Since this phase detector is decision-directed, it
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suffers from a phase ambiguity when the transmitted constellatio& is  -symmetric,
whereM is a positive integer. For example, if the phase error is an integral multiq& of
then the constellation faf, has the same appearance as the transmitted constellation and
therefore, the output of the phase detector is identically zero. Thus, the decision-directed
phase detector given by (2-25) cannot properly estimate this type of phase ambiguity. Typ-

ically, the problem is resolved at a higher layer using differential encoding.

The phase error estimatg, is then passed through a loop filtefz) to produce the
control signalc,. The loop filter serves two purposes: it generates the necessary control
signal for the VCO, and it filters both the noisy and the incorrect estimates produced by
the phase detector [27]. The output of the loop fitigdrives a sum-accumulator to pro-

duce an estimate of the phase offset:
.= 5 ¢ (2-26)

This equation can also be written in terms of a recursive update:
Okar = By + i, (2-27)

wheref, = 0 is the initial condition. Finally, the VCO outpud is generated by passing

0 through a complex exponentiator. The cascade of the sum-accumulator and the com-

plex exponentiator is often referred as the complex VCO.

A first-order PLL is sufficient to track a constant phase-offset, but a second-order PLL

is necessary to track a constant frequency offset. In practice, a second-order PLL is typi-
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cally used to resolve the residual phase error that remains after the Bussgang algorithms.

A thorough treatment of a first-order and second-order PLL is given in Chapter 3.

2.3.3 Blind Multiuser Detection

Many of the early blind multiuser detectors were based explicitly on higher-order sta-
tistics. Cardoso [94] and Comon [95] independently recognized that the second-order sta-
tistics of the channel output are not sufficient to blindly recover a memoryless channel.
Clearly, H and HU produce the same covariance matrix at their output for any unitary
matrix U. Hence, second-order statistical information can only provide an estimate of the
channel up to an arbitrary unitary matrix. Higher-order statistics are needed to resolve the

remaining unitary ambiguity.

Cardoso proposed to estimate a memoryless channel by first whitening the channel
output and then estimating the remaining unitary ambiguity by diagonalizing a cumulant
matrix. Comon, on the other hand, proposed to estimate a memoryless channel by maxi-
mizing a contrast function. He showed that if the channel inputs are non-Gaussian and sta-
tistically independent, the transmitted vector is recovered if and only if the components of
the detector output are also statistically independent. He also introduced the idea of inde-
pendent component analysis (ICA) of a random vector, which consists of searching for a
linear transformation that minimizes the statistical dependence between its components. In
order to implement the linear transformation of ICA, Comon suggested the use of contrast
functions, which were originally introduced by Donoho [96]. Giannaitial. [97] showed
that the parameters of a moving average (MA) multiuser channel model can be uniquely
identified from third-order cumulants. Later Swaetial. [98] extended Giannakis’ algo-

rithm for an auto-regressive moving average (ARMA) channel model. Tugnait [99] later
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proposed an algorithm for channel identification based on both second and fourth-order
cumulants. Recently Comon [36] has extended his idea of contrast functions to channels
with memory. Moreau and Pesquet [37] have also proposed an algorithm for identifying a
channel based on generalized contrast functions. Algorithms based on higher-order statis-
tics are impractical for many real-world applications because of their high computational

complexity.

Recently, a new class of algorithm based on linear prediction (LP) has been introduced
only for tall channels [33-35,38-46,54]. Tong, Xu, and Kailath [38] showed that a memo-
ryless single-input, multiple-output (SIMO) channel can be identified up to an arbitrary
scalar rotatiore!® using only SOS. Slock [39-41] showed that the output of an FIR SIMO
channel has not only a moving-average (MA) representation, but also a finitely parameter-
ized autoregressive (AR) representation. Gorokhov, Loubaton, and Moulines [34]
extended the work of Tonet al. and Slock to multiuser channels. They showed that a tall
multiuser channel can be identified up to an arbitrary unitary matnissing only SOS and
that the channel simultaneously has both an MA and AR representation. Identification of
the residual unitary ambiguity necessarily requires HOS. The majority of these algorithms
are batch-oriented and have high computational complexity. Recently, an adaptive mul-
tiuser linear predictor has been proposed that significantly reduces the computational com-
plexity to the order of the vector LMS [46,54]. Some of the drawbacks of LP-based
algorithms are: they can lead to significant noise enhancement, especially when the
leading taps of the channel are small; they require knowledge of the channel memory; they
only work well when the tap of interest contains most of the channel energy; and they can

be computationally complex whemis much larger than.
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Another class of algorithms is based upon generalizing CMA, which has complexity
on the order of the LMS algorithm, to multiple dimensions [20,100-102]. A common
extension of CMA to multiuser systems is to impose the constant-modulus constraint on

each component of the multiuser detector output [103]:

n
Jp = El®17 = M), (2-28)
i=1

whereM; = E[IxD147E[ 1% is the modulus for the-th user, and, " andy,®
denote tha-th component of the channel inpyt and the detector outpyf, respectively.

We refer to this cost function as theintwise CMAcost function.

The local minima for this cost function are defined by the following theorem:

Theorem 2-4. Assuming an infinite-length multiuser linear detector, the

global minima of (2-28), in absence of noise, have the form [20,53]:

i0 -N
o -o0e'z "0. 0
6, N
F(z) = 0 "t 0 0e 7z : (2-29)
e _Nn .
e’z "o 0 0 |

for any integerdNy, N, ..., N,, and for any angle8,, 6, ..., 6,,, and where

i6; .
thei-th row of F(z) has only one nonzero term of the forrh 'zN , Which can

be located in any column.
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This theorem implies that the pointwise CMA cost function is minimized if and only if the
i-th component of the multiuser detector output is equal to a possibly rotated and delayed
version of thg;-th input,yk(i) = eje‘xf(j‘_)Ni wherej; 0 {1, 2, ..., n}. The arbitrary rotation

for each user is not troublesome because it can be resolved using a bamdependent
single-user decision-directed phase-locked loops. The arbitrary delays and permutation of

the users can be resolved at some higher layer of processing.

The pointwise CMA cost function has both desirable and undesirable local minima.
The desirable local minima occur when all of the transmitted signals have been recovered
up to a possible delay and rotation for each user. Examples of desirable local minima

include:

-1
[10}[1 } "2 0 7 and| 0 2 (2-30)
01 [0 [0z? |10 NIZE I

In each case, information from both users has been recovered. We observe that all of desir-

able local minima are in fact unitary matrices.

The undesirable local minima occur when information from one or more users is lost.

Examples of undesirable local minima include:

-1 -1
[10] 10l oz |-10[ 4|0 | (2-31)
10 |z'0| |g 22 j o 0 el™?;
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In each case, information for either user 1 or user 2 is completely lost. We observe that, for
the undesirable local minima, a subset of the detector outputs are correlated. Several
extensions of pointwise CMA cost function have been proposed to eliminate these unde-
sirable pointwise minima. One extension is based on adding a term to the pointwise CMA
cost function that penalizes any correlations among detector output components

[100,101]:

)

Jg=Ap+tB S S 1EO(in?) 112 (2-32)
nN=-0i#%]j

whereA andB are positive constants ads some positive integer. We refer to this cost
function as thedecorrelation CMAcost function. A drawback of this cost function is that

it requires estimates of the cross-correlationg,oét different delays, which can be diffi-

cult to obtain becausg, is a non-stationary signal. Also, & is less than the sum of the
memory in the channel and the detector, the additional term does not eliminate all of the
undesirable solutions, it only eliminates the undesirable pointwise minima that have

delays within the ranged, ..., z79).

Another extension of the pointwise CMA cost function was introduced by Oda and
Sato [102]. They suggested that the additional term should be a cost function that penal-
izes the variations in the norm of the multiuser detector output relative to a reference mod-

ulus:

Jo=AJ, +BE[(lykIF -M)%, (2-33)
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whereA andB are positive constants amndis the reference modulus. We refer to this cost
function as theeombination CMAcost function. Oda and Sato reasoned that if the second
term in (2-33) is minimized by a unitary matrix, that additional term would eliminate the
undesirable local minima because the non-unitary matrices would produce a higher cost.
Unfortunately, as we will show in Chapters 4 and 5, the second term of (2-33) is only min-
imized by a unitary matrix when the channel is memoryless and the input alphabet is non-
constant modulus. For memoryless channels with a constant-modulus input alphabet and
channels with memory, the second term in (2-33) is minimized by both unitary and non-
unitary matrices. Hence, the combination CMA cost function will still have undesirable
local minima for these cases. For example, if the channel is memoryless and the input

alphabet is BPSK, then
F:[éﬂ, (2-34)

is a local minima of (2-33). On the other hand, if the channel has memory, then

Hn=[11, (2-35)
z 0

minimizes the combination CMA cost function.

Despite the modifications to the pointwise CMA cost function, both decorrelation
CMA and combination CMA can still converge to an undesirable local minima. The dis-

cussion on CMA-based detectors provides a foundation for the development of a new
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blind multiuser detector based on a unique generalization of the constant-modulus algo-

rithm to be presented in Chapters 4 and 5.
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CHAPTER 3

MULTIDIMENSIONAL
PHASE-LOCKED LOOP

Even though a unitary matrix almost never correctly models a real-world multiuser
channel, it often appears in the blind multiuser detection process. For example, when the
detection process is separated into a whitening step and a rotation step, in the absence of
noise, the cascade of the whitening filter and the channel matrix reduces to a unitary
matrix. Because all unitary matrices produce the same covariance matrix, second-order
statistics are insufficient for resolving the unitary ambiguity. Therefore, the estimation of a

unitary matrix requires higher-order statistics.

In the last ten years, a class of blind algorithms, which are referred to as blind unitary
estimators, has been developed. These algorithms can estimate a unitary matrix using only
the observations and information about the properties of the transmitted sequence. Car-
doso and Souloumiac [47-49] proposed the first blind unitary estimator, which jointly and
approximately diagonalizes a set of cumulant matrices in order to estimate the columns of
the unitary matrix. This algorithm is referred to as the joint approximate diagonalization
of eigenmatrices (JADE) algorithm. JADE is a batch-oriented algorithm with a relatively

high computational complexity d(n®), wheren is the number of users. Recently, Car-
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doso and Laheld [50] have introduced a class of blind unitary estimators, based on a serial
update equation, called equivariant adaptive separation via independence (EASI) algo-
rithms. The EASI algorithms are adaptive and have low complefigg®). Both JADE

and EASI are flexible blind unitary estimators because they make no assumption about the

structure of the input signals, other than that they are independent and non-Gaussian.

As an alternative to JADE and EASI, we propose an adaptive blind unitary estimator
that exploits the discrete nature of digital communication signals. We view the unitary
matrix as a constant rotation akin to a constant phase offset in a single-user communica-
tion system. The most popular structure for estimating and resolving a constant phase
offset in a single-user communication system is a decision-directed phase-locked loop
(PLL) [4-3,27-32]. We generalize the structure of the PLL to multiple dimensions in this
chapter and show that the resulting algorithm is able to blindly estimate a unitary ambi-
guity.

In Section 3.1, we review the basic structure of a first-order and second-order deci-
sion-directed phase-locked loop and present a convergence analyses for each. In
Section 3.2, we derive an equivalent structure for a first-order and second-order PLL that
can be used to generalize the PLL to multiple dimensions. In Section 3.3, we derive the
multidimensional phase-locked loop (MPLL), and in Section 3.4, we develop an alterna-
tive model for the MPLL, which has a slightly lower computational complexity. In Sec-
tions 3.5 and 3.6, we present a convergence analysis for a first-order and second-order
MPLL, respectively. Finally in Section 3.7, we compare the performance and complexity

of the MPLL to other well-known blind unitary estimators, JADE and EASI.
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3.1 PHASE-LOCKED LOOP

The basic structure of a decision-directed (DD) phase-locked loop was described in
Section 2.3.2. In this section, we present the equations for, and analyze the convergence

behavior of a first-order and second-order PLL.

3.1.1 First-Order PLL

A first-order PLL, which is sufficient to track a constant phase offset [27-32], uses a
loop filter of the form [1]:L(z) = a, wherea is a small positive constant. The estimate of

the phase error, given earlier in (2-25) and shown below in (3-1):

. _[Im(x, )
il k2K |, )
Pl { | %l |2] } &

is passed through the loop filte(z) and a sum-accumulator to produce an estimate of the

phase offset:
é k= ['§3 i (3-2)

We can also write (3-2) in terms of a recursive update:
Ouer = By + Ay, (3-3)

Whereéo =0 is the initial condition. As before, the VCO output is given by
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Uk =exp(j 0 K- (3-4)

In summary, (3-1), (3-3), and (3-4) define a first-order DD PLL.

3.1.2 Convergence Analysis of a First-Order PLL in the Absence of Noise

Since the PLL is decision-directed, errors in the decision will result in errors at the
phase detector. Proper operation of the DD PLL depends on the decisions being correct.
We need to verify that the errors at the phase detector will not prevent the DD PLL from
correctly estimating the phase offset in the input signal. The following analysis closely
parallels the discussion presented by Simon and Smith [104]. We assume that the channel
inputx, is drawn uniformly from a discrete-input alphabet and that the phase offset is con-
stant:6, = 6 U [0, 2m). We also assume that the noise term is zero. The effect of noise on

the convergence of the DD PLL will be considered in the next section.

By subtractingd from both sides of (3-3) and manipulating the resulting equation, we

find an equivalent update equation for the actual phase error:

€1 = Ec— O €y, (3-5)

whereg  is defined in (3-1). Since, = exp(j&, )X, in the absence of noisé, is a function

of both the channel input vecteg and the actual phase ery. For a very small step size
a, we can assume that, is independent of, and therefore, we can take the expectation
of (3-5) with respect t& . A first-order DD PLL converges in the mean when the update
term in (3-5) is zero on averagee., when the estimate of the phase error is zero on

average.
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E[£,]=0. (3-6)
Conditioning (3-6) with respect &, we arrive at the following functidn
S(e) = E[€ | €], (3-7)

where the expectation is taken over the entire input alphabet. This function, which is

referred to as the “S-curve” [27], is a useful tool for determining the stable points of (3-3).

Definition 3-1. A stable point of a first-order DD PLL is defined to be a point
€ on the S-curve wherg(g;) = 0 andS'(gg) > 0; in other words, a stable point
occurs at a point where the S-curve crosses the zero axis and has a positive

slope.

We observe that if the DD PLL is near a stable pey#nde > g (€ < &), thenS(g) is pos-
itive (negative) on average, and the correction term in (3-5) will reduce the phase error and

drive the DD PLL towards the stable point (provided thata < 1).

Using this S-curve, we determine the stable points of a first-order DD PLL for two
common input alphabets: 4-QAM and 16-QAM. Since a QAM constellatiog is  sym-
metric, we need only consider] [—g, g] in (3-7). The stable points for a 4-QAM input

alphabet are summarized by the following theorem:

1. The dependence on time has been suppressed, for the remainder of this section, to simplify nota-
tion.
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Theorem 3-1. For a 4-QAM input alphabet and a noiseless input signal, the
only stable point of a first-order DD PLL is given lay = 0; in other words, a
first-order DD PLL can correctly estimate any phase offset for a 4-QAM input

alphabet.

Proof: Fore [ [—L—T, g], it is easy show that (2-25) reduces&o e=Hence,
the S-curve is the identity functio®(€) = €, and the only stable point occurs

wheng =0. 0

Corollary 3-1. For a 4-QAM input alphabet, the phase error reduces by a

factor ofa at each iteration.
Proof: Substituting€ . = €, into (3-5), we obtain:

Eie1 = (1-0) & (3-8)

Since the step size [J (0, 1), the phase erra, decreases at each iteration by

a factor ofa. O

We observe that once the DD PLL reaches the stable poigg 0, it will remain there

indefinitely, because whem =0, €, =0 for anyx.
Definition 3-2. The stable point ofs = 0 is adesirable stable point

The stable points for a 16-QAM input alphabet are summarized by the following the-

orem:
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Theorem 3-2. For a 16-QAM input alphabet and a noiseless input signal, the

stable points of a first-order DD PLL aresat= 0, +22.5",

Proof. The S-curve for a 16-QAM constellation is shown in Fig. 3-1. This
curve, normalized to have a maximum value of unity, was evaluated using (2-
25). For each actual phase eredr [-Tt/ 4, 11/ 4], an arithmetic average of the

16 different estimates of the phase error (one for each symbol) was taken. This

S-curve shows that the PLL has stable points,at 0 and ate, = +22.5". The

S(E)
1
1

-45 0 45

Phase Error € (degrees)

Fig. 3-1. A normalized S-curve for a first-order DD PLL with 16-QAM input
alphabet.
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point ate, = 0 is stable point, becausg, = 0 for any x, wheng, = 0. The
points ate, = +22.5” are also stable points, because the sum of estimates of the
phase error for all points in the 16-QAM input alphabet, which are listed in

Table 3-1, equals zeral

Observe that the two stable pointssat= +22.5° are undesirable because there is a non-
zero residual phase errorip, and as a result, the channel input cannot be recovered with

a simple decision device.

Definition 3-3. Any non-zero stable point is amdesirable stable point

For € [0 [0, 20.69°], Fig. 3-1 shows thag(g) is positive (on average) and therefore, the
correction term in (3-5) will reduce the phase error and drive the PLL towards the stable
point ofeg = 0. This figure also indicates that it only takes a small perturbation of less than
—1.81" to move the DD PLL from the undesirable stable poirgat 22.5" to a phase error

that lies in the range0f 20.69°]. As indicated above, this perturbation would guarantee

convergence of the DD PLL (on average) to the desired stable point. The same is also true

TABLE 3-1: Estimates of the phase error at € = 22.5 for all points in a 16-QAM input alphabet.

Xy €, wheng, =-22.5° | g, wheng, =22.5°
+1 +j —22.5° 22.5°
+(1 + 3j), +(3 —j) 3187/784° ~563%392°
+(1 -3j), (3 +j) 5633392 —3187%/78%
3+ 3j 3187/ 784 -318%/78%&
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for the undesirable stable point &= -22.5". In contrast, a perturbation of larger than

20.69 is needed to force the DD PLL away from the desired stable paigt=df.

As mentioned earlier, (3-6) is only valid for very smalland consequently, the results
of Theorem 3-2 are also only valid whens very small. Therefore, this theorem suggests
that, ifa « 1, it is possible for a first-order DD PLL with a 16-QAM input alphabet to con-
verge to an undesirable stable point and remain there indefinitely. To explore this possi-
bility, we consider the following experiment which examines the effects of the step size on

the convergence of a first-order DD PLL with 16-QAM input alphabet.

Experiment 3-1. Suppose that the input signal to the PLL is givenyRy=
exp(jO)xx, where® is a randomly generated constant-phase offset>and
uniformly drawn from a 16-QAM input alphabet. For a given phase offset, we
implemented a first-order DD PLL for 100,000 random symbols and several
different step sizesx 0 {0.3, 0.1, 0.05, 0.01, 0.005, 0.004, 0.003, 0.002,
0.001}. For each step size, we determined the minimum number of symbols
required for the DD PLL to converge to the desired stable point. Convergence
to a stable point is defined to have been achieved when the transfer fuRgtion

= U, exp(j6) = exp(je,) satisfies:

IF,—P]?<1078, (3-9)

whereP 0O {1, j, -1, -} represents the phase ambiguity associated with a
QAM constellation. In all, we considered 3000 different phase offsets. In

Fig. 3-2, Fy(k), the fraction of trials that converged withik symbols, is
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The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless first-order DD PLL with 16-QAM input
alphabet and various step sizes: (a) the number of symbols ranges from
0 to 100,000; (b) an expanded view of the first 2000 symbols.
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plotted versus the number of the symbols. From these curves, we observe that
the DD PLL always converges to the desired stable point, within 100,000
symbols, when the step sipe> 0.004. (In fact, if we increase the number of
symbols to 500,000, then the DD PLL will always converges to the desired
stable point whem > 0.003.) Ifa < 0.001, the DD PLL only converges for a
small fraction of the 3000 trials; in fact, for majority of the phase offsets, the
DD PLL remains trapped around an undesirable stable point even after

100,000 symbols.

This experiment confirms that it is possible for the DD PLL to converge to an undesirable
stable point when the step siae< 0.001. Because of the fact that we implemented the DD
PLL for only 100,000 symbols, the information that this experiment consequently fails to
provide is whether, for aa < 0.001, the DD PLL remains at an undesirable point indefi-
nitely. However, we do gain an insight for the selection of an appropriate step size for a
real-world implementation of the DD PLL. To guarantee convergence of a first-order DD

PLL with a 16-QAM input and no noise, the general rule of thumb is to chaas@.004.

If on the other hand, one includes an infinite number of symbols, Simon and Smith
have shown that a first-order DD PLL always converges to the desired stable point regard-

less of the step size.

Theorem 3-3. For an infinite number of symbols and no noise, a first-order

DD PLL always converges to the desired stable poigj ef0.

Proof: See Simon and Smith [104].
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We observe that the result of this theorem is independent of both the input alphabet and the
step size. This limiting situation considered by Simon and Smith is only of academic
interest because it would require an unlimited time for the first-order DD PLL to converge,;

in practice, however, the speed of convergence is an important consideration.

3.1.3 Convergence Analysis of a First-Order PLL in the Presence of Noise

So far we have only considered the convergence of a first-order DD PLL in the
absence of noise. In this section, we examine the effects that noise has on the convergence
of a first-order DD PLL. We assume that the input signalo the PLL has the following

form:

Yk = eXfliBx + ny, (3-10)

wheren, is a complex Gaussian random variable with variaaéeThe corresponding

received signat, can be expressed as:

Zy = exp(jsk)xk + Wy, (3-11)

wherew, = exg-jék)nk is also a complex Gaussian random variable with variastce
Substituting (3-11) into (3-1) and expanding (3-7), we obtain an equivalent relationship

for the S-curve:

SE)=¢+ E[sin_1 HWE} (3-12)
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where the expectation is taken over both the channel input and the noise term. In deriving
(3-12), we have assumed that the input alphabet is QAM, and therefore, we need only con-

sidere [ [—1—11, g].

Unfortunately, we are unable to simplify (3-12) any further because of the difficultly
theoretically evaluating the expectation. However, we can obtain noisy S-curves by using
numerical integration techniques [105]; in particular, the one-dimensional extended trape-
zoidal rule. The noisy stable points for a 4-QAM are summarized in the following the-

orem:

Theorem 3-4. For a 4-QAM input alphabet and a noisy input signal, the only

stable point of a first-order DD PLL is given &y=0.

Proof: In Fig. 3-3, we plot the noisy S-curves for several values of SNR =
E[Ix1%]702. Each S-curve was evaluated using (3-12). For each SNR, the S-

curve only has one stable pointat 0.

An interesting property of the noisy S-curves is that they tend to become smoother as the
SNR decreases. In fact, when theSN 5 dB, the noisy S-curve is completely devoid of

any sharp edges.

In following experiment, we consider the noisy stable points for a 16-QAM input

alphabet:

Experiment 3-2. In Fig. 3-4, we plot the noisy S-curve for several values of
SNR =E[ | x]%]/0?. Each S-curve was evaluated using (3-12). For an SNR

40 dB, the S-curve does change appreciably from the one shown for infinite
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Fig. 3-3. Normalized S-curves for a first-order DD PLL with 4-QAM input alphabet
and a noisy input signal.
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SNR. In fact, the PLL still has a desirable stable poirgat 0 and two unde-
sirable stable points at = +22.5". However, when SNR < 40 dB, the undesir-
able stable points disappear from the S-curves and the only remaining stable

point occurs whegg = 0.

Observation 3-1. For a 16-QAM input alphabet and a noisy input signal, the
stable points of a first-order DD PLL agg = 0, +22.5° when SNR= 40 dB,

andeg =0 when SNR < 40 dB.

This experiment implies that a noisy signal can prevent a first-order DD PLL with a 16-
QAM input alphabet from converging to an undesirable stable point, no matter what the
step size. This result is due to the fact that the noise provides the necessary perturbation
for the DD PLL to escape the shallow undesirable stable point. To verify this result, we

consider the following experiment:

Experiment 3-3. Suppose that the noisy input signal to the PLL is given by
Yk = exp(jO)xy + ny, whereb is a randomly generated constant-phase offget,

is uniformly drawn from a 16-QAM input alphabet, amg is a zero-mean
white Gaussian noise term. We assume that SNR = 25 dB. For a given phase
offset, we implemented a first-order PLL for 100,000 random symbols and
several different step sizes[] {0.3, 0.1, 0.05, 0.01, 0.005, 0.001}. For each
step size, we determined the minimum number of symbols required for the
DD PLL to converge to the desired stable point. Convergence to a stable point
is defined to have been achieved when the transfer fungtienU, “exp(j6) =

exp(jgi) satisfies:



52

IF-P|?< 1073, (3-13)

whereP 0O {1, j, -1, -} represents the phase ambiguity associated with a
QAM constellation. In all, we considered 3000 different phase offsets. In
Fig. 3-5, we plotF(k), the fraction of trials that converged withinsymbols,
versus time. It is observed that the PLL converges to the desired stable point,

within 10,000 symbols, for all step sizes.

This experiment confirms that noise can prevent the DD PLL from converging to an
undesirable stable point, even for step siaes0.001. This result is reassuring because all

real-world applications are corrupted by noise.

3.1.4 Second-Order PLL

A second-order PLL, which is necessary to track a constant frequency éffsetok

+ 0,0 ][0, 2, andw # 0, uses a loop filter of the form [1]:

L(z) = oy + (3-14)

1-71

where botho; anda, are positive constants awng « a4. From (2-26), we see that for this

filter, the estimate of the phase offs‘:qg is related to the estimate of the phase egrpby:

k-1 i
ék = z [aléi + Z G2§|:|. (3-15)
i=0 1=0
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The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noisy first-order DD PLL with 16-QAM input
alphabet and various step sizes: (a) the number of symbols ranges from
0 to 10,000; (b) an expanded view of the first 1000 symbols.
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We observe that whem, = 0, (3-15) reduces to the update equation for a first-order PLL.

Equation (3-15) can also be expressed as a recursive update:

Bes1 = O+ OpE (3-16)

Ope1 = O+ 01 €K + Oin, (3-17)

with initial conditionséo = 0 and@, = 0. We see that (3-16) represents the integration

loop for the second-order PLL. As before, the VCO output is given by (3-4).

In summary, a second-order DD PLL is defined by (3-1), (3-4), (3-16), (3-17).

3.1.5 Convergence Analysis of a Second-Order PLL

In this section, we investigate the convergence of a second-order DD PLL in the
absence of noise. We assume that the channel kiypstdrawn uniformly from a discrete-
input alphabet and that the only impairment in the input signal to the PLL is a constant fre-
guency offsetB, = wk + 6, wheref [ [0, 2m), andw = 271f is the angular frequency. Typi-
cally, a constant frequency offset arises because of the difference between the frequencies
of the transmitter oscillator and the receiver oscillator. We should point out that a second-
order loop is capable of compensating for a small frequency difference so that the steady-
state phase error is zero. This result is one of the reasons why second-order loops are used

extensively [32].

We are interested in determining the valuesodbr which a second-order PLL would
converge to the desirable stable point of zero phase error. For a continuous-time second-

order PLL, they are determined by usipgaseplane techniquef27-32]. By numerically
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solving the state equations, a phase plane is constructed and the trajectories are plotted for
various initial conditions. This plot shows the dynamics of the second-order loop as it set-

tles (or fails to settle) towards a point of equilibrium.

It is not clear how the phase-plane techniques of a continuous-time second-order PLL
may be extended to a discrete-time second-order DD PLL; nevertheless, we can generate a
phase-plane portrait experimentally. In the following experiment, we determine the range

of wthat a second-order PLL can resolve for fixed values @nda.

Experiment 3-4. This experiment determines the range of frequencies that a
second-order DD PLL is able to resolve. Suppose that the input signal to the
PLL is given byy, = exp(j21itk + jB)x,, wheref is the frequency offsef is the
constant phase offset, ang is drawn uniformly from a 16-QAM input
alphabet. For a given frequency offdet 5%6 where¢ is an integer in the
range [-25, 25], and a given phase offsét U [—TZT, I—:], we implemented a
second-order DD PLL with parametexs = 0.1 anda, = 1073 for 1,000,000
symbols and determined whether or not the PLL converged to the desired
stable point. Convergence to a stable point is defined to have been achieved

when the transfer functioRy = Uk*exp(je) = exp(jgy) satisfies the following

relationship for 15 consecutive symbols:
IF-PI?< 1073, (3-18)

whereP 0O {1, j, -1, -} represents the phase ambiguity associated with a

QAM constellation. The shaded region in the plot of frequency offset versus
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phase offset, displayed in Fig. 3-6, represents the values for which the second-
order DD PLL converged. This type of plot is referred to as a phase-plane por-

trait. This plot shows that, with parameterg = 0.1 anda, = 10~%, a second-

19

360’
regardless of the phase offset, and it can therefore, resolve a frequency offset

order DD PLL always converges to the desired stable poirf Jf <

of up to19 degrees per baud.

This experiment shows, far; = 0.1 anda, = 1073, that it is possible for a second-order
DD PLL to resolve a constant frequency offset. In general, the range of frequency offsets

that a second-order DD PLL can resolve will depend upon the choicg ahda,. As

25

20 o= O Jo ol O Jo ol O =
15

10

Frequency Offset (f/360)
o

Phase Offset O (degrees)

Fig. 3-6. A phase-plane portrait for a second-order DD PLL with parameters 04 =
0.1and O, = 1073,
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seen earlier, with a first-order PLL, a noisy input signal should assist in the convergence of

a second-order PLL.

3.2 ALTERNATIVE MODEL FOR PHASE-LOCKED LOOP

In higher dimensions(= 2), a rotation is completely described by a unitary matrix. A
useful property of unitary matrices is that the product of two unitary matrices is also a uni-
tary matrix. Therefore, a unitary matrix can easily be updated using a multiplicative
update equation. Unfortunately, the update equations for both the first-order and the
second-order PLL are additive and therefore do not easily extend to multiple dimensions.
However, the structure of the PLL can be rearranged so that the update equations become

multiplicative.

3.2.1 Alternative-Model First-Order PLL

From (3-2) and (3-4), the VCO output, is given by:

k-1
Uy= exp[ z o€ i}. (3-19)

i=0

We can exploit some of the properties of exponential function to rewrite (3-19) as follows:
k-1
U= {exp(jé ) } (3-20)

The last two equations imply that we can view a first-order PLL in two distinct and dif-

ferent ways (see Fig. 3-7): in (3-19), it is seen as the cascade of a phase detector, a loop
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filter, and a complex VCO; and in (3-20), as the cascade of a phase detector, a complex
exponentiator, a loop filter, and a product-accumulator. The former description is referred
to as the conventional-model DD PLL, while the latter description is referred to as the

alternative-model DD PLL.

The structure for the alternative-model DD PLL is displayed in Fig. 3-7(b). The

shaded block is referred to as thaation detector which is the cascade of the phase

X z
detector and the complex exponentiator. Detipe )A(—k andv, = K

% |2
the unit circle. As illustrated in Fig. 3-8, the rotation detector produces an estimate of the

to be two points on

rotation between these two points:

R(uk - vi) = exp(i€ ) = uy . (3-21)

The estimate of the rotation is then filtered by a loop filter to produce a control signal for

the product-accumulator. For a first-order DD PLL, the control signal is:

1 Vi = R(ug - vidu

R%(uk - vidug

Uk

v

Fig. 3-8. A graphical representation of a complete and partial rotation on the unit
circle.
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Cy = R%uy - vi) = exp(jag,). (3-22)

As shown in Fig. 3-8R%(uy, - v, ) represents aartial rotation that rotatesu, a fraction

of the way tov,.

Finally, the control signaC, drives the product-accumulator to produce the output of

the first-order DD PLL:

k-l k-1
Uy = [1Ci= [1R"ui - v (3-23)
i=0

i=0

We can also express this equation in terms of a recursive update:

Ut = UR(uy - vy, (3-24)
- - . " Xk 2
whereU, = 1 represents the initial zero rotation condition, ape |)A(——| andv, = m :
k k

In summary, the alternative-model first-order DD PLL is defined by (3-1), (3-21), and

(3-24).

3.2.2 Alternative-Model Second-Order PLL
From (3-4) and (3-15), the VCO output, is given by:

k-1 i

Okz EXp|: z (aléi + Z 02§|):|. (3-25)
1=0

i=0
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Again, we can rewrite (3-25) by exploiting the properties of an exponential function:

k-1 i
Uy= |_| [exp(jéi)al[ |_|
i=0

1=0

exp(,-g,)“zﬂ, (3-26)

Using the definition of the rotation detector given by (3-21), we can express (3-26) as:

k-1 i
0= _UO[Ral(ui - vi)[IUOR“Z(u. - v.)ﬂ, (3-27)

whereR%(u, - v,) = exp(ja€,). Finally, we can write (3-27) in terms of a recursive

update:

a
Wierr = W R (Ui — ), (3-28)

~ ~ a

U = U R (Ui = VigWira, (3-29)
whereU, = 1 andW, = 1 are the initial zero rotation conditions ang = ﬁ andv, =

K
z
|—Z—k—|. We observe that the alternative model for a second-order PLL is completely
k

described by the output of a first-order loop filter and two recursive updates.

In summary, the alternative-model second-order DD PLL is defined by (3-1), (3-21),

(3-28), and (3-29).
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3.3 MULTIDIMENSIONAL PHASE-LOCKED LOOP

We can now generalize the structure of the alternative-model PLL to multiple dimen-
sions. The basic structure of the decision-directed multidimensional phase-locked loop
(MPLL) consists of three major components [51,52fotation detectoraloop filter, and
a productaccumulatoy as illustrated in Fig. 3-9. The rotation detector produces an esti-
mate of the rotation between the received sigpalnd the decisiork . The resulting esti-
mate of the rotation is then filtered by a loop filter to create a control signal that drives the
product-accumulator. The purpose of the control signal is to drive the output of the MPLL

to reduce the rotation error betwegp andz,.

Suppose that the x 1 input signaly, to the MPLL has the following form:

Yk = UpXg + Ny, (3-30)

wherex, is then x 1 channel input vector representing the transmitted symbols from the
independent users), is ann x n time-varying unitary channel matrix representing the
rotation, andn, is ann x 1 noise vector. We limit the focus a&f, to a constant rotation,
whereU, = U andU is ann x n unitary matrix, and to an angular rotation, whésg =

UWK, andU andw aren x n unitary matrices.

The object of the MPLL is to generate an outpuif, that correctly estimates the rota-
tion Uy in (3-30). If this estimate is essentially corrett £ = Uy), the MPLL is said to be

in rotation-lock, and the received sigaal= U "y, reduces to:
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Foxc + U ny, (3-31)
kA k k 'k

Zk

Il

Xi + Wy, (3-32)
Kk + Wi

whereF, = U ,."U, is then x n overall transfer function matrix andy, = U . "n is ann x
1 noise vector. At high SNR, (3-32) reducesjo= x, and the channel input vector can be

recovered by passing through a simple decision device.

As shown in Fig. 3-9, the MPLL generatés, in a manner similar to the alternative-
model PLL. The key component of the MPLL is the rotation detector, which produces an
estimate of the rotation by generating a unitary mapping fﬁéﬁv ”éﬁ . The output of
the rotation detector is then passed through a loop filter to produce the controlGjgnal
The loop filter serves two purposes: it generates the necessary control signal for the
product-accumulator, and it also filters both the noisy and incorrect estimates produced by
the rotation detector. The output of the loop fil@&y drives a product-accumulator to pro-

duce the MPLL output ,:
k-1
U kK= |_| Ci' (3-33)
i=0

Because matrix multiplication is not commutative, a decision as to whether the control
signal should be pre-multiplied (so thalt,,; = C, U ) or post-multiplied (so that) ,.,; =
U «Cr) must be made. The purpose of the control signal is to reduce the rotation error

betweenk , andz,, i.e., the rotation error betweek, to C, "z, is smaller than the rotation
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error betweerk , andz,. SinceC,"z, = (U .C,) "y}, it is clear that post-multiplication is

the natural choice. Hence, we can express (3-33) in terms of recursive update as follows:

U k+1 — U ka, (3'34)

where the MPLL is initialized with a zero rotationd , = I. In the remainder of this
chapter, a product accumulation as in (3-33) will be taken to mean post-multiplication as

in (3-34).

In the following sections, we will derive both the rotation detector and the loop filter,

and also define a first-order and a second-order MPLL.

3.3.1 Rotation Detector

i andvy = Lk to be twon x 1 unit-length vectors. The rotation
[%d |2

detector produces an estimate of the rotation between these two points. Let the output of

Defineuy =

the rotation detector be given B(u, - v,) at timek, where the unitary functioR is

defined as:

Definition 3-4. Let u andv be twon x 1 unit-length vectorsThe functionR

generates a unitary matrix that rotatet® v.

For a single-usem(= 1), the functionR is unique:R(uy - v,) = uy vy. Unfortunately, for
higher dimensionsn(= 2), this function is not unique, but we can derive a particular uni-

tary functionR that we will use as the basis for the rotation detector.
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In this sectio, we determine a unitary matrix that mapgo v. Let p be the normal-
ized inner productp = u’v. Sinceu andv have unit length, the magnitude pfs bounded
by unity; in other words]p] < 1. In deriving the unitary functiol®, we consider the two

caseqp| =1 and]p] <1 separately.

If |p| =1, then the vectorsi andv are colinear. Hence, we can express terms of

u as follows:

V = pu. (3-35)

We recognize that is a basis vector for the subspace spannediandv. Given the
vectoru, we can use the Gram-Schmidt procedure to determine the remairirigvec-
tors {v,, vs, ..., v} that form the basis for th@-dimensional space. Lat be ann x n

matrix whose columns are specified by the basis vecters,

V=[uvyvs... v (3-36)

We see that the matrix is unitary. In terms of this basis, the vectarandv can written
asuy =[10...0]T andvy, =[p 0 ... 0]T respectively. A unitary matrix that maps, to v,

is clearly given by:

Q = ’ (3_37)

2. The dependence on time has been suppressed, for the rest of this section, to simplify notation.
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whereJ is an arbitrary § — 1) x (n — 1) unitary matrix. Mapping the unitary matrix (3-37)

back to Euclidean space, we see that the unitary matrix thaturtapsis given by:

Ru - v)=V 0 Vv, (3-38)

The vectorsu andv only span a one-dimensional subspace. Since we do not have
information about the remainingy (— 1) dimensions, we chose not to rotate vectors that
are orthogonal to either or v by takingJd = 1,,_;. Substituting the identity matrix fa¥ in

(3-38), we find thaR(u - v) reduces to:
Ru - v)=1,+(p-1)uu. (3-39)

We should emphasize that this result is only valid whgh= 1.

On the other hand, ifp] < 1, then the vectorsi andv span a two-dimensional sub-
space. Given the vectotsandv, we can use the Gram-Schmidt procedure to determine
the n vectors that form the basis for timedimensional subspace. These basis vectors are

given by {u, w, v, vy, ..., v}, where

V—pu

J1op?

W= (3-40)

Let VvV be am x n matrix whose columns are specified by the basis vectars,
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V=[uwvzvy...vg]. (3-41)

We observe tha¥ is a unitary matrix. The vectons andv can be written in terms of the
basis vectors (3-41) as, = [1 0 ... 0]T andwy = [p 41 —|pl? 0 ... 0]T. A unitary matrix

that mapsuy, to vy, is given by:

Q = ) (3_42)

whereJ is an arbitraryrf —2) x (n —2) unitary matrix, and

/ 2
R = p —1-pl"|| 1 O , (3-43)
Jicip? po JLo e

wheref3 [J (—t, 1. Mapping the unitary matrix (3-42) back to an Euclidean space, we see

that the unitary matrix that mapsto v is given by:

(3-44)

Recall that the vectora andv span a two-dimensional subspace. Since we have no

information about the remaining (~ 2) dimensions, we chose not to rotate vectors that
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are orthogonal to this two-dimensional subspace by tallirgl,,_,. The choice fof is
not as obvious. We want (3-44) to be consistent with (3-38)Esapproaches one. We

see that whetpp| <1,
det[R(u - v)] = exp(iB). (3-45)
and when|p] =1,
det[R(u - v)] = p. (3-46)

Therefore, agp] - 1, exp(jB) —» p. We should thus choodgé = [p = sin‘l[lm(%)].
This choice off3 also minimizes the Frobenius norm d&® - I,, which is reassuring
because we expe&(u - v) to approach the identity matrix near convergence. Substi-

tutingJ = 1,,_, andp = Op in (3-44), we find that the unitary matriRR(u - v) reduces to:

2
p-1 —2J1-1pl*|[,O
W

Ru-v)=1I,+ [u w] | pl (3-47)
Ji-1pl* Ipl-1
In summary, the unitary functidf is defined as follows:
p | 2
-1 - J1-=
Ru-v)=1,+ [u W] P Ipl Pl [“ﬂ, (3-48)
w

2
N1-]pl Ipl -1
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whereu = ﬁ V= ﬁ ,p=u’v, andw = (v—pu)/A/1—|p|2 if |p] <1, otherwisew =0.
We should point out that whem= 1, the unitary matrixR(u — v) reduces tai*v, which is

the familiar single-user unitary mapping described in Section 3.2.1.

3.3.2 Loop Filter

A PLL of any order can be written in terms of the output of a first-order loop filter and
a recursive update (see Section 3.2.2). The output of a first-order loop filter is generated by
raising the unitary matrik(u, - v,) to a fractional poweh 0 (0, 1), whereA is the step
size of the MPLL. The loop filter output, which rotateg a fractionA of the way tov,, is

referred to as partial rotation matrix

One method for raising a matrix to a fractional power requires calculating an eigende-
composition, which is inherently a computationally intensive task. We can avoid most of
the computational complexity by symbolically determining the partial rotation matrix

RA(uk - V). We begin by considering the two caspgs| =1 and|p] <1, separatel:

When|p]| =1, the partial rotation matriR)‘(u - v) is found by raising (3-38), witl

= 1,1, to a fractional powex:

RMu - v) =V . YA (3-49)

whereV is defined by (3-36). By expanding this matrix, we find that (3-49) reduces to:

3. We again suppress the dependence on time, for the rest of this section, to simplify notation.



71

RMu - v) =1, + (p" = Duu”. (3-50)

whereu = ,v=ﬁ,p=u*v.

When |p] < 1, we can find the partial rotation matrRA(u - V) by raising (3-44),

with J = 1,,_,, to a fractional powex:

RMu - v) =V (3-51)

whereV is defined by (3-41) ang is defined by (3-43). By expanding the components of

this matrix, we see that (3-51) reduces to:
u
W

RMu - v) =1, + [u W](R)‘— |2)[ ﬂ. (3-52)

We can simplify (3-52) even further by symbolically calculatiy

SinceR is a unitary matrix, it has the unique eigendecompositi®m WDW™ [106].

Then x n diagonal unitary matri is given by:

: (3-53)
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wherep = Op andA = sin™2[ | p| cos(B/2)] — TV2. Then x n unitary matrixw is given by:

w=| o -—ive"| (3-54)

—jye a

_ [1_|plsin(B/2) A/ plsin(B/2) | . N
wherea /\/2 2sin(a) Adv= 2sin(a) - Using the eigendecomposition, we

can easily determin@® = wDMW";

B J /—
R} = e”‘z cos(AA) + jC|plsin(B/2) —(e —|I0| , (3-55)

NI

B
i
Ze 2J1-|pl®  cos(AA)—jZlplsin(B/2)

sin(AA)
sin(A)
55) reduces to (3-43) when=1.

where( = . Using the fact thatos(A) = |p|cos(B/2), it is easy to show that (3-

In summary, the unitary functidf is defined as follows:

RMu = v) = 1+ [u w|(R - @[ﬂ, (3-56)
w
whereu = ,p=u'v,w= (v— pu)/A/1—|p| if |p|] <1, otherwisew =0, and

Il || ||Z||

R is defined by (3-55). In a practical application, the partial rotation matrix specified by
(3-56) should be used instead of actually raising the output of the rotation detector to a

fractional power.
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3.3.3 First-Order MPLL

A first-order MPLL is sufficient to track a constant rotation, whelke= U. The output

of a first-order DD MPLL is given by:

k-1
Ukz |_| R)\(Ui — Vi), (3-57)
i=0
whereR(uy, - v,) is the output of the rotation detectar, = m , Vi = "i—k" andA is
k k

some positive constant. As mentioned earlier, the natural choice is to accumulate the par-

tial rotation matrices on the right. Hence, a recursive update equation for (3-57) is given

by:
Uer = URMuy - ), (3-58)

whereU , = | is the initial condition.

We see that the recursive update specified by (3-58) requires the multiplication of two
n x n matrices at each iteration. We can reduce the complexity of this update by manipu-

lating (3-58) into the following form:
Upsr = Uy + OkHQ)\(Uk - Vi) - % (3-59)
While this update seems similar to the update given by (3-58), it is, in fact, less complex

because the term in the parenthesis of (3-59) is at most a rank-two mafpq4 # 1, this

term is the product of an x 1 vector with al x n vector. If the product in (3-59) is carried



74

out from left to right, the number of multiplications, for large valuespfs significantly

less than that required to multiply twox n matrices, as in (3-58). Ifp] < 1, then the

term in the parenthesis is the product of three matricest ar2 matrix, a2 x 2 matrix,

and a2 x n matrix. Again, if the product in (3-59) is carried out from left to right, then we
realize the same computational saving in this case as well wigelarge. In the following
experiment, we compare the total number of multiplications that are used to generate

Uy in (3-58) and (3-59).

Experiment 3-5. In (3-58), n® multiplications are needed to generaﬁlqgﬂ,

while in (3-59), it takes2n®+n and 4n+4n multiplications to generate the
update for thggp] = 1 and |p] <1 cases, respectively. In Fig. 3-10, we plot
the total of multiplications for each update versus the number of users. From
this figure, we see that when= 5, the update given b{3-59) requires fewer
total number of multiplications (for bothp] =1 and|p|] <1) than the update

given by (3-58).
In summary, a first-order MPLL is defined by (3-55), (3-56) and (3-59).

3.3.4 Second-Order MPLL

A second-order MPLL is necessary to track an angular rotatign= UWK. The

output of a second-order DD MPLL output is given by:

k-1 i

0= ] {R“(ui =[]

i=0 1=0

R™(uy - v.)ﬂ, (3-60)
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whereR(uy - v,) is the output of the rotation detectar, = ";—k" y Vi = "z—k" , andA; and
k k

A\, are small positive constants. We can also write (3-60) in terms of a recursive update:

A
Wi = WiR™ (ug = vy, (3-61)

- A A
U1 = UR™ (U = VidWieig, (3-62)

whereU , = 1 andw, = I are the initial conditions for the second-order MPLL.

Total Number of Multiplications

2 4 6 8 10 12 14 16 18 20

Number of Users (n)

Fig. 3-10. A comparison of the total number of multiplications that are needed to
generate the update in (3-58) and (3-59).
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Again, we can reduce the complexity of the update equations given by (3-61) and (3-

62) by manipulating them into the following form:

A
Wk+l = Wk + Wkaq 2(Uk — Vk) - IE’ (3-63)

- ~ ~ A
U1 = UWierq + U R (U - vid = 1 W, (3-64)

The reason that the update equations given by (3-63) and (3-64) are less compler, when
is large, is the same as the one given for a first-order MPLL. We should point out that in
order to obtain the reduction in complexity, the products in (3-63) and (3-64) must be car-

ried out from left to right.

In summary, the second-order MPLL is defined by the equations (3-55), (3-56), (3-63),

and (3-64).

3.4 ALTERNATIVE MODEL FOR THE MPLL

In the previous section, we showed that the output of the combined rotation detector
and loop filter is a partial rotation matrR)‘(uk - V) that rotatesu, to some intermediate
point on the unit hypersphere betwagpandv,. In this section, we develop an alternative
model for the MPLL by switching the order of the rotation detector and the loop filter. We
first select an intermediate point betwagpandv,, and then we project this point on the
unit hypersphere. Finally, we use the rotation detector to determine the unitary matrix that
rotatesu, to the normalized intermediate point. The unitary matrix that is obtained in this

case is also a partial rotation matrix.
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The output of the combined loop filter and rotation detector is derived Belost v

be some intermediate point betwaeandv:

V= (H)u + py, (3-65)

\
wherepl is the step size of the alternative-model MPLL. Define= m to be a point on
M
the unit hypersphere. We can now use the rotation detector defined in Section 3.3.1 to
determine the unitary matrix that rotatego v,,. In terms of the notation for the rotation

detector, the partial rotation matrix is givenRgu - Vi)

We have shown that both the conventional-model MPLL and the alternative-model
MPLL generate a partial rotation matrix which rotateo some intermediate point. If the
input alphabet is real, then it is possible, for a givero select g1 such that the interme-
diate points from the two MPLLs are the same. We prove this result in the following the-

orem.

Theorem 3-5. Let each component of the channel ingudraw symbols from
a real discrete-input alphabet. For a giverthe conventional-model and the

alternative-model MPLL will generate the same partial rotation matrix if

_ sin(AA)
U= S +sin((1=M)d)

(3-66)

whereA = sin(4/1 | p|?).

4. We again suppress the dependence on time, for the rest of this section, to simplify notation.
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Proof: See Appendix 3.1.

We should point out that this result is independent of the number of nsefewever, this
result does not extend to the case of complex input alphabets. Consider the following

counter-example:

Example 3-1. We assume that each component of the chamndraws
symbols from a 16-QAM input alphabet. Let the input to the decision device
be given byz = [-0.7 —j0.2, -0.1 + j1.8] T and letA = 0.5. The corresponding
output of the decision device is given By  =1[—j, -1 + j]T. Sincez,, >‘<k,
andA are fixed quantities, the conventional-model MPLL rotatesuhe" ”
to a fixed intermediate poimt, = RMu - v)u, whereRMu - v) is defined by
(3-55) and (3-56). If, on the other hand, we allpwto vary betweer® and1,
then the alternative-model MPLL rotatesto the intermediate poing, =
” " wherev is defined by (3-65). We observe that is a function ofp.
ThL:a squared error between the two intermediate psipts v _Vu” versus

M is plotted in Fig. 3-11. It is seen that the error never goes to zero, which
implies that there does not exispiesuch that/, = v,. However, it is important

to point out that fory [0 0.5071, the Euclidean distance between the two

intermediate points, andv,,, is found to be very small.

As this example demonstrates, for a givent is possible that there does not exigt a
for which v = v,,. However, it is very likely that there does existgiasuch that the
Euclidean distance betweep andv, is very small. We give the following heuristic argu-

ment to support this statement. The distance between the dedision and the decision
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devicez is generally small and projecting these two points onto the unit hypersphere only
reduces the distance between them. Since the distance batvatv is very small, all
convex paths between them on the unit hypersphere, though generally different for the two
MPLLs, would also lie very close to each other. Hence, it is possible, for a givienfind

a | such that the intermediate points produced by the conventional-model MPLL and the
alternative-model MPLL are nearly identical, and the performance for these two MPLLs

should therefore be similar. This conclusion is supported by the following experiment:

Experiment 3-6. In this experiment, we compare the performance of the con-
vention-model MPLL with that of the alternative-model MPLL. We assume

that the input alphabet for both models is 16-QAM and that there is no noise.

104 ] ] ] ] ] ] ] ] ]
0 01 02 03 04 05 06 07 08 09 1

H

Fig. 3-11. The squared error between the two intermediate points V) and Vpasa
function of .
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The step sizes for the conventional-model MPLL and the alternative-model
MPLL wereA = 0.8 andu = 0.8, respectively. In Fig. 3-12, we plot the M$E

= E[I %Y - 2,M]?], where % = Px, is a permutation of the channel input
vector andP is a complex permutation matrix that accounts for the inherent
ambiguity associated with a blind detection problem alib a -symmetric input
alphabet, versus time. The curves displayed therein represent data that was
averaged over 10,000 randdnx 3 memoryless unitary channels. We con-
clude from the two curves that the performance for the two models is essen-

tially indistinguishable.

-10

N
(6)]

-20

MSE; (dB)

25 Alternative-Model MPLL -

P

Conventional-Model MPLL

-40 ] ] ]
0 50 100 150 200 250 300

Time (K)

Fig. 3-12. Comparison of the conventional-model MPLL and the alternative-model
MPLL in terms of MSE; versus time.
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The conventional-model MPLL differs from the alternative-model MPLL in the degree
of computational complexity. The alternative-model MPLL is inherently less complex,
because it does not require an eigendecomposition. In the following experiment, we calcu-
late the number of floating point operation (FLOPS) that are needed to generate each of

the two partial rotation matrices.

Experiment 3-7. Consider the channel model described by (3-30). In Fig. 3-
13, we plot the number of floating point operations (FLOPS) that are needed

per iteration to generate an estimate of the rotation for each MPLL versus the

5
10 | | | | | | | | |

10* |
Conventional-Model MPLL

10° |

FLOPS / symbol

102 |-

10t ] ] ] ] ]
0 2 4 6 8 10 12 14 16 18 20

Number of Users (n)

Fig. 3-13. Comparison of computational complexity for the conventional-model
MPLL and the alternative-model MPLL.
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number of usera. We observe that both the MPLLs have essentially the same

complexityO(n®).

From these curves, we observe that the difference in computational complexity for the two

models is negligible for large valuesrof

The implementation of both the conventional and the alternative models of the MPLL
are equally valid and interesting in their own right. However, in the remainder of this
chapter, we will focus our attention on the implementation of the conventional model
MPLL (see Section 3.3). Since its structure closely parallels that of the PLL, the insight

gained from the analysis of the PLL could prove useful while analyzing the MPLL.

3.5 CONVERGENCE ANALYSIS FOR A FIRST-ORDER MPLL

In this section we examine the convergence behavior of a first-order MPLL both in the

presence and absence of noise.

3.5.1 In the Absence of Noise

Since the MPLL is a decision-directed algorithm, errors in the decision will produce
errors at the rotation detector. Proper operation of the MPLL depends on the decisions
being correct. We therefore need to verify that errors at the rotation detector do not prevent

the MPLL from estimating the rotation in the input signal correctly.

The following convergence analysis for a first-order MPLL is an extension of the anal-
ysis presented earlier for a first-order PLL. We assume that each component of the channel
input vectorx, is drawn uniformly from a discrete-input alphabet and that the rotation in

the input signaly, is a constanty, = U, whereU is ann x n unitary matrix. We also
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assume that the noise vectyy in (3-30) is zero. (Later in this section, the effect of noise

on the convergence of a first-order MPLL is considered.)

The update equation for a first-order MPLL is given by:

U1 = URMuy - v, (3-67)

whereU K IS an estimate of the rotation in the input sigerr(uk - V) is the partial rota-
tion matrix, and\ is the step size. Sincg = U "Ux, in the absence of noise, the partial
rotation matrixRMuy — vy is a function of bothx, and U . If the step sizé\ is small,
then U « Will vary slowly when compared tcR"(uk - vi). Hence, when we take the
expectation of (3-67) with respect to the statisticé?b(uk - V), we can assume that the

estimate of the rotatioty k IS a constant with respect to this expectation [1]:

U e = ULEIRMuy - v, (3-68)

where the expectation is taken with respecktoEven thoughU K IS varying slowly, it is

still a random process and therefore, we must take the expectation of both side of (3-68):

E[U 1] = E[UJERMuy — v)]. (3-69)

The MPLL converges in the mean whefJ ka1l = E[U «l, or equivalently when,

E[RMu, - v)] = 1. (3-70)
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Recall thatz, = Fyx, whereF, = U U, is the overall transfer function of the MPLL.
Since the partial rotation matri®*(u, — v, is a function of bothF, andx,, we can

define the following function:
S(F) = E[RMu - v) - I]F], (3-71)

where again the expectation is taken over the channel input vector. We refer to this func-
tion as the multidimensional S-curve (MS-curve) for a first-order MPLL. This function
can be used to determine the stable points of a first-order MPLL. The nrati$xa stable

point whenS(F;) = 0, or equivalently when,
1 R)\ —
M % [R*u - Fgu)-1] =0, (3-72)
ullx

wherey is the set of all channel input vectors, which have been normalized to have unit
length, and] x| denotes the number of elements in theysétising (3-72), we can define a

stable point of a first-order MPLL as follows:

Definition 3-5. An n X n unitary matrixF is a stable pointof a first-order

MPLL if it satisfies the following relationship:

E[RMu - v) - 1]F] = ﬁ % [RMu - Fuu)—1] =0, (3-73)
uTx

wherey is the set of all channel input vectors that have been normalized to

have unit length, an§ix ] denotes the number of elements in the(set
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We can derive an alternative expression for (3-73) by using the binomial expansion of
RMu - Fqu). For a very smal\, we find thatRMu - Fqu) 01+ A(R(u - Fqu) —1I).

Substituting this approximation into (3-72), we obtain

1 Y _not . _ )

™ UI%X[R (u - Fgu)—1] D|X| ugx [AMR(u - Fgu) =1)], (3-74)
=1+ 0N R(u - Fou)—nE-1, (3-75)

2. O 0
Dumx 0 + &(R(u - Fu)—nE-1, (3-76)
A
D[ RX¥w - Fsu)} -1, (3-77)
uldy

Relating (3-73) to (3-77), we find that

E[RMu - v) - 11F] D[ M RX

(u - Fsu)} -1 (3-78)
uldy

Hence, am X n unitary matrixF is astable pointof a first-order MPLL if it satisfies the

following approximate relationship:

A

Rm(u - Fgu) =1, (3-79)
uldyx
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which implies that the average geometric rotation produced by the rotation detector and
loop filter together is the identity matrix for a stable point. We should point out that the

identity matrix represents the case of zero rotation.

An example of typical unitary matrices that satisfy either (3-73) or (3-79) is given

below:

Example 3-2. Two stable points for a first-order MPLL are given by the
following matrices:
i

F, =P andF, = P|® of (3-80)
0 e

whereP is a complex permutation matrix afid= 25.43 was found through
computer simulations. The first stable point given in (3-80) is desirable
because it implies that the channel input vector has been recovered up to a
permutation of the users and up to a rotation of.9lhe last stable point is
undesirable because it leaves a non-zero residual rotation error in the MPLL.
This rotation error implies that the channel input vector cannot be recovered

with a simple decision device.

Definition 3-6. The stable point of; = P is adesirable stable pointAny

other stable point igndesirable

It is seen that the definition for the stable point of a first-order MPLL is dependent on the

magnitude of the step size For example, the second stable point given in the previous
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example satisfies (3-73) when= 0.001, but it does not whek = 0.1. The only stable

point that satisfies (3-73) for all step sizeEds= P.

Unlike the S-curve for the PLL, the MS-curve for the MPLL defined in (3-71) is not as
useful for several reasons. First, the zero points of the function are dependent upon the
value of the step size. Second, we know of no graphical approach that would enable us to
display the results of the MS-curve. Finally, it is almost impossible to generate an MS-
curve, because it would require calculating the function for a set of infinken unitary
matrices. In spite of these limitations which will not allow us to determine all of the stable
points for a first-order MPLL, the MS-curve is important because it predicts that a first-

order MPLL has both desirable and undesirable stable points.

For a first-order MPLL, it is important to know whether the MPLL can converge to an
undesirable stable point. In Section 3.1.2, it was seen that a first-order PLL converges to
an undesirable stable point only when the step size is small. We believe this result to be
true for the MPLL as well. In order to determine the conditions that guarantee conver-
gence for a first-order MPLL, we consider a set of experiments, given below, that exam-

ines the effect of the step size on convergence of a first-order MPLL.

We begin by examining a first-order MPLL with a 16-QAM input alphabet. In the fol-

lowing experiments, we vary both the step 3iznd the number of usens

Experiment 3-8. Consider a two-usen(= 2) MPLL. Suppose that the x 1
input signal to the MPLL is given by, = WHx,, whereH is ann X n memo-
ryless Gaussian channel matrix whose coefficients are drawn independently

from a zero-mean, unit-variance, complex Gaussian distributiony\ard
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/" is ann x n ideal whitening matrix that is defined by the singular-value
decomposition oH = UZV*. The cascade of the whitening matrix and the
memoryless channel matrix yields a unitary mattix >V*H; hencey, =

Ux,. Each of the components of tlzex 1 channel input vectogy is drawn
uniformly from a 16-QAM input alphabet. For a given unitary channel, we
implement a first-order MPLL for 500,000 random symbols and for several
different step sizea 0 {0.3, 0.1, 0.05, 0.04, 0.03, 0.01, 0.005, 0.001}. For
each step size, the minimum number of symbols that are required for the
MPLL to converge to the desired stable point is determined. Convergence to a
stable point is defined to have been achieved when the transfer fulgton

U, U satisfies:
IFk - Plli <n1073, (3-81)

whereP is a complex permutation matrix that accounts for the inherent ambi-
guity associated with a blind detection problem ar‘@ a -symmetric constella-
tion. In all, we considered 3000 different unitary matrices. In Fig. 3Fi&),

the fraction of trials that converged within symbols, is plotted versus the
number of the symbols. From these curves, it is observed that the MPLL
always converges within 500,000 symbols to the desired stable point when the
step size\ = 0.04. On the other hand, N < 0.01, the MPLL only converges

for a small fraction of the 3000 trials; in fact, for majority of the phase offsets,
the MPLL remains trapped around an undesirable stable point even after

500,000 symbols.



(@)

(b)

Fig. 3-14.
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The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless two-user first-order MPLL with 16-
QAM input alphabet and various step sizes: (a) the number of symbols
ranges from 0 to 500,000; (b) an expanded view of the first 10,000
symbols.
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Experiment 3-9. In this experiment we essentially repeat Experiment 3-8 for
a three-userm( = 3) MPLL and several different step sizk€1{0.3, 0.1, 0.09,
0.08, 0.07, 0.05 0.01, 0.005, 0.001}. In Fig. 3-F5(k) is plotted versus the
number of the symbols. It is observed from these curves that the MPLL
always converges to the desired stable point when the step &£2075. On

the other hand, iA < 0.05, the MPLL remains trapped around an undesirable

stable point for the majority of the unitary matrices.

Experiment 3-10. Again, we repeat Experiment 3-8 for a four-user<4)

MPLL and several different step size4$1{0.3, 0.11, 0.07, 0.05, 0.01, 0.005}.

In Fig. 3-16, we plotF(k) versus the number of the symbols. From these
curves, we observe that the minimum step size that guarantees convergence
within 500,000 symbols is given by, = 0.10. IfA <0.06, then it is possible

for the MPLL to converge to an undesirable stable point.

These experiments confirm that it is possible for the MPLL to converge to an undesir-
able stable point for a sufficiently small step size. We do not know if the MPLL will ever
escape the undesirable stable point even for an infinite number of symbols. Since the
speed of convergence is of utmost importance in a practical implementation, the result

would only be of an academic interest.

These experiments also indicate that the minimum stephsizethat guarantees con-
vergence within 500,000 symbols increases as a function of the number ohuSanseA

0 (0,1), Amin Must eventually approach a constant value lascomes large.
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The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless three-user first-order MPLL with 16-
QAM input alphabet and various step sizes: (a) the number of symbols
ranges from 0 to 500,000; (b) an expanded view of the first 20,000
symbols.
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Fig. 3-16. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless four-user first-order MPLL with 16-
QAM input alphabet and various step sizes: (a) the number of symbols
ranges from 0 to 500,000; (b) an expanded view of the first 20,000
symbols.
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Experiment 3-11. In Fig. 3-17, we plof\,,;,, versusn. The values oh,,;,for
n {6, 8, 10, 12} were found in a manner similar to that in Experiments 3-8 —
3-10. This curve shows that, asbecomes large)\,;, does indeed start to

approach a constant value.

In summary, these experiments verify that there exists a minimum step size that would

guarantee convergence of a first-order MPLL within 500,000 symbols.

0.2

0.15

0.1

)‘min

0.05

Number of Users (n)

Fig. 3-17. The minimum step size that guarantees convergence within 500,000
symbols A, is plotted versus the number of users n.
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3.5.2 In the Presence of Noise

So far we have only considered the convergence of a first-order MPLL in the absence
of noise. We now examine the effect of noise on convergence. We begin by assuming that
the noise vecton, in (3-30) is a complex Gaussian random vector with power spectral

densitya®l. If the noise term is non-zero, the received sigpaan written as follows:

zy = Frzi + wy, (3-82)

wherew, = U "'n is also a complex Gaussian random vector with power spectral density
o?l.

As before, the MS-curve is not of much use for determining the noisy stable points of
a first-order MPLL, but we can show th& = P, whereP is a complex permutation
matrix, is a noisy stable point of the algorithm. We need to investigate here if there are any
other stable points. For the PLL, we have shown that as the SNR decreases, the undesir-
able stable points disappear, leaving the desired stable point as the only remaining stable
point. We believe this result to be true for the MPLL as well. We describe the following
experiment to support our intuition. We examine a first-order MPLL with a 16-QAM input

alphabet.

Experiment 3-12. Consider a three-user MPLL. Suppose thatzhel input
signal to the MPLL is given by, = Ux, + n,, whereU is a randomly gener-
ated3 x 3 unitary matrix,x is the3 x 1 channel input vector whose compo-
nents are drawn uniformly from a 16-QAM input alphabet, apds a zero-

mean white complex Gaussian noise vector with power spectral density
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E[nyny’] = 6°1. We assume that SNR= 1/62 = 20 dB. For a given unitary
channel, we implement a first-order MPLL for 100,000 random symbols and
for several different step sizes[1 {0.3, 0.1, 0.05, 0.01, 0.005, 0.001}. For
each step size, the minimum number of symbols that are required for the PLL
to converge to the desired stable point. Convergence to a stable point is

defined to have been achieved when the transfer fungtjon U, "U satisfies:
IF—PIZ <n1073, (3-83)

whereP is a complex permutation matrix that accounts for the inherent ambi-
guity associated with a blind detection problem ar@ a -symmetric constella-
tion. In all, we considered 3000 different unitary matrices. In Fig. 3F¢),

the fraction of trials that converged within symbols, is plotted versus the
number of the symbols. It is observed from these curves that the MPLL con-
verges within 100,000 symbols to the desired stable point for all step sizes,
even for those smaller step sizes for which the noiseless MPLL did not always

converge.

These curves clearly show that a noisy signal can prevent a first-order MPLL from
converging to an undesirable stable point, irrespective of the step size. In fact, the noise
provides the necessary perturbation to enable the MPLL to escape from any undesirable

stable point.
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Fig. 3-18. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noisy three-user first-order MPLL with 16-QAM
input alphabet, various step sizes, and SNR; = 20 dB: (a) the number of
symbols ranges from 0 to 250,000; (b) an expanded view of the first
25,000 symbols.
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3.6 CONVERGENCE ANALYSIS FOR A SECOND-ORDER MPLL

In this section, we study the convergence of a second-order MPLL in the absence of
noise. We assume that each component of the channel input wgatodrawn uniformly
from a discrete-input alphabet and that the only impairment in (3-30) is an angular rota-
tion: U, = UWK, whereU is ann x n unitary matrix andV is ann x n diagonal unitary
matrix. Typically, an angular rotation arises because of a difference between the frequen-
cies of then transmitter oscillators and that of a single receiver oscillator. The diagonal

elements ofV represent these frequency differences.

As before with the case for the second-order PLL, a theoretical analysis of the
dynamics of a second-order MPLL is intractable. We can however, determine the range of
frequency offsets that a second-order PLL could resolve experimentally. In the following

experiment, we determine this frequency range for fixed valuesarfdA,.

Experiment 3-13. This experiment determines the ranges of frequencies that
a two-user second-order MPLL is able to resolve. Suppose thatxtheinput
signal to the PLL is given by, = UWKx,, whereU is a randon® x 2 unitary
matrix, W = diag(exp(j21tf;), exp(j2mf,)) is a2 x 2 diagonal unitary matrix
with frequency offsets of; andf,, andx, is the2 x 1 channel input vector

whose components are drawn uniformly from a 16-QAM input alphabet. For a
RZY b2
360 360’
gers in the range p5, 25], and a given random unitary channel, we imple-

given set of frequency offsefg = andf, = whereg, andg, are inte-
mented a second-order MPLL with parametafs= 0.3 and A, = 0.1 for

500,000 symbols and determine whether or not the MPLL converged to the
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desired stable point. Convergence to a stable point is defined to have been
achieved when the transfer functieh, = U, U satisfies the following rela-

tionship for 15 consecutive symbols:
IF—PIZ <n1073, (3-84)

whereP is a complex permutation matrix that accounts for the inherent ambi-
guity associated with a blind detection problem ar@ a -symmetric constella-
tion. The shaded region in the plot of the first frequency offgetersus the

second frequency offséf, shown in Fig. 3-19, represents the values for which

20

15

10 -

Frequency Offset (f,/360)

-10 +

-20 -15 -10 -5 0 5 10 15 20
Frequency Offset (f;/360)

Fig. 3-19. A phase-plane portrait for a second-order MPLL with parameters A; = 0.3
and A\, =0.1.
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the second-order DD MPLL converged. Each point in the plot was averaged
over 1000 different random unitary channels. From this figure, we observe

that a second-order MPLL with parametags= 0.3 andA, = 0.1 always con-

16
360

unitary matrix. Therefore, a second-order MPLL can resolve a frequency

verges to the desired stable poingff] < [ i, regardless of the random

offset of up to 16 degrees per baud.

This experiment shows, fav; = 0.3 andA, = 0.1, that it is possible for a second-order
MPLL to resolve am angular rotation. In general, the range of frequency offsets that a
second-order PLL can resolve will depend upon the choidg ahdA,. As discussed ear-

lier, a noisy input signal should assist in the convergence of a second-order MPLL.

3.7 EXPERIMENTAL RESULTS

We conclude this chapter with several computer experiments. In each of the experi-

ments, we consider the channel model depicted in Fig. 3-20:

Yk = WHXk + Wnk, (3-85)
Ny
nx1 l re nx1
Xk—» H >(+) > W —» Yk
Channel Whitener
mXn nxm

Fig. 3-20. A block diagram of an m X n memoryless channel followed by an n x m
ideal whitener. This model is used to generate the input signal for all
computer simulations.
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whereH is anm X n memoryless Gaussian channel matrix with coefficients that are drawn
independently from a zero-mean, unit-variance, complex Gaussian distributiowy and
>~1U" is ann x m matrix that whitens the signal componentygfand is defined by the
truncated singular-value decomposition df = UZV*. The cascade of the whitening
matrix and the memoryless channel matrix yields a unitary matrix. The channel input
vectorx, is ann x 1 vector consisting of the symbols sent by thendependent users. The
whitened vectog, is ann x 1 vector andn, is anm x 1 complex Gaussian noise vector

with E[nknk*] = 02|.

In these experiments, we compare the performance and complexity of the MPLL to
that of JADE [47-49] and EASI (withG(z)=zz" -1+g9(z)z" - zg9(z)" and
9(z) =z 0 "0 z, where indicates a component-wise product) [50]. Unlike the MPLL,
both JADE and EASI leave a residual phase error on each component of the detector
output; in other words, both JADE and EASI are invariant to a diagonal unitary ambiguity.
In practice, this ambiguity can be resolved by filtering the detector output through a bank
of independent single-user PLLs. The performance criteria used in this comparison is the

mean-squared error for tivth user:
MSE; = E[1 %, - 27, (3-86)

wherex = Px, is a permutation of the channel input vector @&t a complex permuta-

tion matrix (a matrix consisting of only one nonzero value from the $ej,{-1, 5} in

each row and each column) that reorders the sources and rotates the phase of each source
by a multiple of 90°. The permutation is necessary to account for the inherent ambiguity

that exists in any blind detection problem where the input alphaget IS -symmetric.
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3.7.1 Noiseless Memoryless Unitary Channel

In the following two experiments, we consider the speed of convergence of JADE,

EASI, and MPLL detectors in the absence of noise.

Experiment 3-14. Consider & x 2 noiseless channel model described by (3-
85), wherey, = Ux, andU is a2 x 2 random unitary channel. We assume that
each user draws symbols independently and uniformly from a 16-QAM input

alphabet. In Fig. 3-21, we plot the M$Eersus time for JADE, EASI, and

0 | | | | | | | | |
2 X 2 unitary channel, no noise
-5 MPLL: Ay = 0.98/(1+k/2000) | ]
EASI: Wy = 0.2/ (1+k/20),
10 a4 =0.1, 0, = 0.0005 7
JADE: 04 = 0.1, 05 = 0.001
-15 -
D NS ]
= 0 I MSE; =-18 dB |
L
(%))
=
25 K
-30 k
-35
-40 L L L L

0 50 100 150 200 250 300 350 400 450 500

Time (K)

Fig. 3-21. Comparison of the MPLL, JADE, and EASI, in terms of MSE; versus
time, for a 2 x 2 noiseless unitary channel. The shaded regions represent
the variation in convergence time for each of the detector. For each
detector, the lower curve is an average of the fastest 10% of the trials, the
middle represents the average MSE, and the upper curve is an average
of the slowest 10% of the trials.
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MPLL detectors. Since the MSE is biased towards the worst-case perfor-
mance,i.e., towards the trials that converge the slowest, we display three
curves for each detector: the middle curve represents the average over 5,000
random unitary channels and input realizations, the lower curve represents the
average of the fastest 10% of the trials (best 10%), and the upper curve repre-
sents the average of the slowest 10% of the trials (worst 10%). The parameters
for each detector were optimized to provide the fastest rate of convergence so
as to achieve an open-eye diagram, or equivalently an MSEL8 dB. The

step sizes for EASI and MPLL decrease with time accordingujc=
0.2/(1 +k/20) andA, = 0.98/(1 +k/2000), respectively. The parameters

for the second-order PLLs were; = 0.1 anda, = 0.0005 for EASI, and

o4 = 0.1 anda, = 0.001 for JADE. Fig. 3-21 shows that on average, both the
MPLL and JADE converge much faster than EASI. We also observe that the
worst 10% for the MPLL and JADE converge faster than the best 10% for
EASI. Hence, we conclude for this channel that the MPLL and JADE clearly
outperform EASI in terms of speed of convergence. One nice feature about
both EASI and JADE is that they have near-uniform converganeethere is

very little difference between the best 10% and the worst 10%. In contrast,
there is a large differences in the speed of convergence between the best 10%
and the worst 10% for the MPLL. In fact, the best 10% can open the eye dia-
gram in less than 4 symbols, while for the worst 10%, it takes slightly less
than 75 symbols. Since the average MSE curve is very close to the curve for
the worst 10%, we verify that the average MSE is dominated by the slowest

trials. Finally, we should point out that the steady-state performance of the
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MPLL is far superior to that of the other blind unitary estimators because of its

decision-directed nature.

For each trial, we also calculated the convergence time of each detector. The
convergence times defined as the number of symbols it takes for a detector to
reach an MSE< —18 dB for 100 consecutive symbols. This value is a mea-
sure of how many symbols it takes to open the eye diagram. The average con-
vergence time of the MPLL, JADE, and EASI are found to be 26.7, 55.6, and
237.3 symbols, respectively. Hence, we conclude that the MPLL is twice as
fast as JADE and nine times as fast as EASI. From a histogram of the conver-
gence time for each detector, plotted in Fig. 3-22, it is seen that the distribu-
tion for the MPLL and JADE are skewed towards fast convergence times,
while the distribution for EASI is more evenly distributed about its mean. In
fact, 96% trials for the MPLL converge within 75 symbols, while it takes
JADE nearly 110 symbols and EASI almost 390 symbols to reach that same
percentage. Hence, we conclude that, on average, the MPLL will converge

much faster than either JADE or EASI.

This experiment shows that forzax 2 noiseless unitary channel the MPLL is undoubtedly
a better algorithm. In the next experiment, we consider a unitary channel with a slightly

higher dimension.

Experiment 3-15. Consider & x 3 noiseless channel model described by (3-
85), wherey, = Ux, andU is a3 x 3 random unitary channel. Again, we

assume that each user draws symbols independently and uniformly from a 16-
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Fig. 3-22. Histogram of convergence times for a 2 X 2 unitary channel: (a) MPLL; (b)

EASI; (c) JADE.
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QAM input alphabet. In Fig. 3-23, we plot MSEversus time for JADE,
EASI, and MPLL. Each of the three curves is generated by averaging over
5,000 random unitary channels and input realizations. The parameters for each
algorithm were again optimized for fast convergence. The step sizes for EASI
and MPLL decrease with time according i = 0.1/ (1 +k/50) andAy =

0.66/ (1 +k/3000), respectively. The parameters for the second-order PLLs
were a, = 0.1 anda, = 0.0005 for EASI, andx; = 0.1 anda, = 0.001 for

JADE. From Fig. 3-23, it appears that, on average, both JADE and EASI can

0 T T T T T T T T T
\ 3 X 3 unitary channel, no noise
-5 MPLL: Ay = 0.66 /(1+k/3000) |-
EASI: Wy = 0.1/ (1+k/50),
-10 |- 04 =0.1, 0 =0.0005 |
JADE: a1 = 0.1, 0, = 0.001
-15 -
o MSE, =-18 dB
£ LA AN SN N oy PR T Ol
l(.}).l‘_' -20 -
2 ASI
-25
-30
-35 |
-40 ] ] ] ]

0 100 200 300 400 500 600 700 800 900 1000
Time (k)

Fig. 3-23. Comparison of the MPLL, JADE, and EASI, in terms of MSE, versus time,
for a 3 X 3 noiseless unitary channel. The shaded regions represent the
variation in convergence time for each of the detector. For each detector,
the lower curve is an average of the fastest 10% of the trials, the middle
represents the average MSE, and the upper curve is an average of the
slowest 10% of the trials.
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open the eye diagram more quickly than the MPLL. Again, we reiterate that
the average MSE curve is dominated by the slowest converging trials. The
worst trials for the MPLL may converge more slowly than JADE and EASI,
but the best 10% clearly outperform these detectors. From a histogram of the
convergence time for each detector, plotted in Fig. 3-24, it is seen that the dis-
tribution for the MPLL and JADE are skewed towards fast convergence times,
while EASI is more evenly distributed about its mean, indicating a more uni-
form rate of convergence. In fact, the MPLL is more likely to have a fast con-
vergence time than a slow convergence time, but the average MSE curve,
unfortunately, is dominated by the slow convergence times. The average con-
vergence time of JADE, MPLL, and EASI are 85.0, 151.5, and 366.6 symbols,
respectively. So even though, in Fig. 3-23, the MPLL appears to be slower
than EASI, it is in fact more than two times faster. Again, it is important to
note that the steady-state performance of the MPLL is far superior to that of

JADE and EASI.

The speed of convergence of the MPLL is slower than that of JADE due to the fact
that, at each iteration, it is only able to compensate for a rotation in two dimensions,

whereas the unitary ambiguity represents a three-dimensional rotation.

3.7.2 Noisy Memoryless Gaussian Channel

In the following four experiments, we consider the effects of noise and the input
alphabet on the speed of convergence of JADE, EASI, and the MPLL. We begin by

looking at a 4-QAM input alphabet.
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Experiment 3-16. Consider & x 2 noiseless channel model described by (3-
85). We assume that each user draws symbols independently and uniformly
from a 4-QAM input alphabet. For a 4-QAM input alphabet, we detioe-
vergence timas the number of symbols it takes for each detector to reach an
MSE; < -12 dB for 100 consecutive symbols. In Fig. 3-25, we plot the con-
vergence time of each detector versus $NRL/0?. Each curve was gener-
ated by averaging over 1000 different random unitary channels and input and

noise realizations. The step sizes for EASI and MPLL decrease with time

1400

1200 |- * -

3 X 2 Gaussian channel
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Fig. 3-25. The convergence time for each detector is plotted versus SNR; fora 3 X 2
noisy complex Gaussian channel followed by a 2 x 3 ideal whitener and a
4-QAM input alphabet. The optimal parameters for each detector can be
found in Table 3-2.
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according topy = Ho/ (1 +k/kyand A, = Ao/ (1 +k/k,), respectively. The
single-user PLL bank, used by both JADE and EASI, has paramejeasd

0,. The parameters for each detector were optimized to provide the fastest rate
of convergence so as to achieve an open-eye diagram at each SNR; the values
for the optimal parameters are listed in Table 3-2. These curves show that the
MPLL provides the fastest convergence time, followed by JADE and then by

EASI. At high SNR, the convergence time of the MPLL is only slightly better

TABLE 3-2: Optimal Parameters for a 3 X 2 Gaussian Channel with 4-QAM input alphabet.

SNR MPLL o = 10563'2 _ 104 JADE
10.78 Ao =0.98k) =3 O

10.80 — 11.0 0.98, 3 O
11.4 O O a, =102, a, =107
11.5 0.98, 3 Ho = 0.05,k, = 30 O

11.6-11.8 O O 107,107
12.0 0.98, 3 0.05, 30 102,107
13.0 0.98, 3 0.08, 20 102,107
14.0 0.98,5 0.08, 20 102,107
16.0 0.98,5 0.10, 20 102,107
18.0 0.98,5 0.10, 20 4x1072, 107

20.0 - 22.0 0.98, 10 0.10, 20 10,1078
24.0 0.98, 20 0.10, 20 107%, 1072
26.0 0.98, 30 0.10, 20 10,1078
28.0 0.98, 40 0.10, 20 107%, 1072
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than that of JADE. At low SNR, all three detectors start to break down and the

convergence time becomes very large.

For a 4-QAM input alphabet, the MPLL clearly outperforms both JADE and EASI for

all SNR. In the next experiment, we consider a 16-QAM input alphabet.

Experiment 3-17. Consider & x 2 noiseless channel model described by (3-
85). We assume that each user draws symbols independently and uniformly
from a 16-QAM input alphabet. For a 16-QAM input alphabet, we defoe
vergence timéo be the number of symbols it takes for each detector to reach
an MSE, <-18 dB for 100 consecutive symbols. In Fig. 3-26, we plot the con-
vergence time of each detector versus $NRL/0?. Each curve was gener-
ated by averaging over 1000 different random unitary channels and input and
noise realizations. The parameters for each detector were optimized to provide
the fastest rate of convergence so as to achieve an open-eye diagram at each
SNR; the values for the optimal parameters are listed in Table 3-3. These
curves show that the MPLL provides the fastest convergence time, followed
by JADE and then by EASI. At high SNR, the convergence time of the MPLL

is only slightly better than that of JADE. At low SNR, JADE and EASI start to
break down first, and the convergence time for all three detectors becomes

very large.

Again, the MPLL clearly outperforms JADE and EASI for a 16-QAM input alphabet.
In the next experiment, we demonstrate that the MPLL is compatible with shaped-input

alphabets that are necessary for capacity achieving applications.
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Experiment 3-18. Consider &8 x 2 noiseless channel model described by (3-
85). We assume that each user draws symbols independently and uniformly

from a shaped 16-QAM input alphabet, which is defined as follows:

O
E{ﬂ + j} each with probability(x,) = 5/32
5 0
x( = C@3+) 4123}  each with probabilitp(x) = 1/32. (3-87)
O
H(£3 £ 3j) each with probability(x,) = 1/32
O
3000 | | | | | | | | | | |
EASI 3 X 2 Gaussian channel
2500 |- —

16-QAM input alphabet
Averaged over 1000 Channels
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Fig. 3-26. The convergence time for each detector is plotted versus SNR; fora 3 x 2

noisy complex Gaussian channel followed by a 2 x 3 ideal whitener and a

16-QAM input alphabet. The optimal parameters for each detector can be
found in Table 3-3.
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It is easily verified that the kurtosis of this constellatioxis 1.89, which is

very close to the kurtosis of a complex Gaussian distribution. For a shaped 16-
QAM input alphabet, we defineonvergence tim be the number of symbols

it takes for each detector to reach an MSE-18 dB for 100 consecutive sym-
bols. In Fig. 3-27, we plot the convergence time of each detector versug SNR

= 1/02. Each curve was generated by averaging over 1000 different random

TABLE 3-3: Optimal Parameters for a 3 x 2 Gaussian Channel with 16-QAM input alphabet.

SNR MPLL o = 10_2'%@?: Ex104 JADE
18.2 Ao = 0.98ky = 25 0 O

18.4 - 18.6 0.98, 28 O |
18.8 0.98, 30 O 0
19.0 0.98, 30 Ho=0.04k, =40 | o, =2x102 0, =107
19.5 O 0.04, 40 [

20.0 - 21.0 0.98, 30 0.04, 40 xP02, 107
22.0 0.98, 35 0.05, 40 x1072, 107
24.0 0.98, 45 0.05, 40 x4072,107
26.0 0.98, 55 0.10, 20 x@072, 5x1074
28.0 0.98, 70 0.10, 20 x@072, 5x107%
30.0 0.98, 90 0.10, 20 x@072, 5x1074
32.0 0.98, 100 0.10, 20 O
34.0 0.98, 120 0.10, 20 x8072, 5x1074
36.0 0.98, 300 0.10, 20 O
38.0 0.98, 600 0.10, 20 x@072, 5x107%
40.0 0.98, 800 0.10, 20 O
42.0 0.98, 1000 0.10, 20 10,1078
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unitary channels and input and noise realizations. The step sizes for EASI and
MPLL decrease with time according tey =Ho/ (1 +k/kjand A, =

Ao/ (1 +k/ky), respectively. The single-user PLL bank, used by both JADE
and EASI, has parameteos anda,. The parameters for each detector were
optimized to provide the fastest rate of convergence so as to achieve an open-
eye diagram at each SNR; the values for optimal parameters are listed in
Table 3-4. These curves show that the MPLL clearly outperforms both JADE

and EASI. In fact, the convergence time for the MPLL with a shaped 16-QAM

5
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< JADE
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8 10° .
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Shaped 16-QAM input alphabet MPLL
Averaged over 1000 Channels
10! 1 1 1 1 1 1 1 1 1 1 1

18 20 22 24 26 28 30 32 34 36 38 40 42
SNR; (dB)

Fig. 3-27. The convergence time for each detector is plotted versus SNR; fora 3 X 2
noisy complex Gaussian channel followed by a 2 x 3 ideal whitener and a
shaped 16-QAM input alphabet. The optimal parameters for each
detector can be found in Table 3-4.
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input alphabet is slightly better than that of the MPLL with a 16-QAM input

alphabet. In contrast, the convergence times at high SNR for JADE and EASI
are 6000 symbols and 9000 symbols, respectively. Thus for a shaped 16-QAM
input alphabet, the MPLL is 150 times better than JADE and 200 times better

than EASI.

This example demonstrates that the MPLL can resolve a unitary ambiguity for a

shaped-input alphabet. In fact, as long as the input alphabet is discrete and the step size is

TABLE 3-4: Optimal Parameters for a 3 X 2 Gaussian Channel with shaped 16-QAM input alphabet.

SNR MPLL o = 10-2!:_,@(?: Ex 104 JADE
18.2 Ao = 0.98ky = 25 O O
18.4 0.98, 25 0 |
18.6 0.98, 28 0 O
18.8 — 22.0 0.98, 30 O O
24.0 0.98, 45 o =0.10k, =12000 | @, =102 a, =107
26.0 0.98, 45 0.10, 8000 102,107
28.0 0.98, 70 0.10, 6000 102,107
30.0 0.98, 90 O 1072, 107
32.0 0.98, 100 0.10, 4000 0
34.0 0.98, 120 0.10, 4000 1072, 107
36.0 0.98, 300 0.10, 4000 0
38.0 0.98, 600 0.10, 4000 102,107
40.0 0.98, 800 0.10, 4000 O
42.0 0.98, 1000 0.10, 4000 102,107
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chosen appropriately, the DD MPLL will be able to correctly resolve the unitary ambi-
guity. The convergence time of the MPLL for a shaped-input alphabet is found to be
nearly the same as for a non-shaped input alphabet. In contrast, both JADE and EASI have

large convergence times for a shaped-input alphabet, even for high values of SNR.

In the next experiment, we consider the effect that the number of useas on the

convergence time.

Experiment 3-19. Consider & X 3 noiseless channel model described by (3-
85). We assume that each user draws symbols independently and uniformly
from a 16-QAM input alphabet. For a 16-QAM input alphabet, we defoe
vergence timéo be the number of symbols it takes for each detector to reach
an MSE <-18 dB for 100 consecutive symbols. In Fig. 3-28, we plot the con-
vergence time of each detector versus $NRL/0?. Each curve was gener-
ated by averaging over 1000 different random unitary channels and input and
noise realizations. The parameters for each detector were optimized to provide
the fastest rate of convergence so as to achieve an open-eye diagram at each
SNR; the values for optimal parameters are listed in Table 3-5. These curves
show that JADE provides the fastest convergence time, followed by the MPLL
and then by EASI. At high SNR, JADE is two times faster than the MPLL and
five times faster than EASI. At low SNR, all three detectors start to break

down and the convergence becomes very large.

Whenn > 2, JADE provides faster convergence than either the MPLL or EASI. This

result suggests that JADE should always be used in this case. This would indeed be true if
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we were not concerned with the computational complexity of the detector. In the next sec-

tion, we compute the computational complexity of each detector.

3.7.3 Complexity Comparison

In the following experiment, we calculate the complexity of each detector.

Experiment 3-20. Consider the channel model described by (3-30). In Fig. 3-

29, we plot the number of floating point operations (FLOPS) required per iter-

ation to generate an estimate of the rotation for each algorithm versus the
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Fig. 3-28. The convergence time for each detector is plotted versus SNR; fora 5 x 3
noisy complex Gaussian channel followed by a 3 X 5 ideal whitener and a
16-QAM input alphabet. The optimal parameters for each detector can be
found in Table 3-5.
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number of users. For both JADE and EASI, we took into account the com-
plexity of the bank of independent single-user PLLs. These curves demon-
strate the low computational complexity of the MPLL. Both the MPLL and
EASI have essentially the same compleXin3), even though whem = 25,

the complexity of EASI is six times greater than that of the MPLL. In contrast,
the complexity of the JADE is extremely larg®(n®). It has been reported

that it is possible to reduce the complexity of JADB¢a®) [49].

The extremely large computational complexity of JADE makes this algorithm almost
impractical in many real-world applications. When selecting a detector, both the computa-

tional complexity and the performance of the detector must be taken into consideration

TABLE 3-5: Optimal Parameters for a 5 x 3 Gaussian Channel with 16-QAM input alphabet.

SNR MPLL o = 10_2'52‘:": Ex 104 JADE
19.0 Ag = 0.50,k) =200 O a,=2x107%,a, =10
19.5 0.60, 200 O u
20.0 0.60, 200 Ho = 0.10ky, = 20 21072, 107
20.5 0.60, 200 0.10, 20 O
21.0-24.0 0.60, 200 0.10, 20 x¥02, 107
26.0 0.66, 400 0.10, 20 x4072,107
28.0 0.66, 400 0.10, 20 x8072, 51074
30.0 0.66, 700 0.10, 20 x@072, 5x107*
32.0 0.66, 1000 0.10, 20 O
34.0-42.0 0.66, 1000 0.10, 20 107%, 1073
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and the trade-off must be carefully balanced. These experiments demonstrate that the

MPLL provides such a balance and is therefore an excellent algorithm.

3.7.4 Trained MPLL versus Decision-Directed MPLL

In this chapter, we have focused our attention solely on the decision-directed MPLL.
However, it is possible to use it also when a training sequence is available. The algorithm
for a trained MPLL is the same as that of the decision-directed MPLL, except that the

decisionk, is replaced with the training sequence. In the following experiment, we com-
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Fig. 3-29. Comparison of computational complexity of MPLL, JADE, and EASI.
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pare the performance of a decision-directed MPLL with that of a trained MPLL, where the

training sequence is the channel input vegjor

Experiment 3-21. Consider & x 2 noiseless channel model described by (3-
85), wherey, = Ux, andU is a2 x 2 random unitary channel. We assume that
each user draws symbols independently and uniformly from a 16-QAM input
alphabet. The step sizes for the trained MPLL and the decision-directed
MPLL were the samex = 0.8. In Fig. 3-30, we plot the MSEversus time for

the DD MPLL and the trained MPLL. Each curve is an ensemble average over

Decision-Directed MPLL

MSE; (dB)

Trained MPLL

| | | | |
0 50 100 150 200 250 300 350 400

Time (K)

Fig. 3-30. Comparison of a trained MPLL and a decision-directed MPLL in terms of
MSE; versus time.
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10,000 random channels. We observe that the trained MPLL converges much
more quickly than the decision-directed MPLL. We also see that both MPLLs

can open the eye diagram within 100 symbols.

As expected, the performance of the trained MPLL is much better than that of the deci-
sion-directed MPLL, which is inherently a blind algorithm. Despite the fact that the deci-
sion-directed MPLL does not have access to a training sequence, it is still able to

successfully open the eye diagram.

3.8 YUMMARY

In this chapter, we have reviewed the basic structure of a first-order and second-order
phase-locked loop. In particular, we have analyzed the dynamics of these PLLs and have
demonstrated that when the SNR is high and the step size is small, it is possible for a PLL
to false lock,.e., to converge to an undesirable stable point. In that same analysis, we also
showed that in a practical implementation of the PLL, there is a minimum step size that
guarantees convergence to a desirable stable point. Unfortunately, the structure of the con-
ventional PLL does not extend to multiple dimensions. However, we were able to manipu-
late the update equations and develop an alternative model for the PLL whose structure is

shown in Fig. 3-7.

We have generalized the structure of the alternative-model PLL and developed the
multidimensional phase-locked loop (MPLL), which is illustrated in Fig. 3-9. The MPLL
is a decision-directed adaptive algorithm which exploits the discrete nature of digital com-
munication signals. The key component of the MPLL is the rotation detector, which mea-

sures the rotation between two vectors. Using the rotation detector and extending the loop
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filter to multiple dimensions, we are able to derive the update equations for both a first-
order and a second-order MPLL. The computational complexity of the update equations
for the MPLL can be rather large, because it requires raising a matrix to a fractional power
which inherently demands an eigendecomposition. This computational burden was
reduced by combining the operations of the rotation detector and the loop filter. These two
components could be combined into two unique ways, one of which leads to an alternative

structure for the MPLL.

Finally, we have analyzed the dynamics of both a first-order and a second-order
MPLL. Since the MPLL is a generalization of the single-user PLL, it also subject to false
lock when the SNR is high and the step size is small. But just as in the single-user case, the
probability of false lock can be minimized through a careful choice of the step size. We
have shown, through computer simulations, that the MPLL compares favorably, in terms
of both performance and complexity, to both JADE and EASI. It was concluded that the

MPLL offers fast convergence, excellent steady-state performance, and low complexity.
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APPENDIX 3.1

PROOF OF THEOREM 3-5

For a givenA, the conventional-model MPLL rotatesto v, = R)‘(u - V)u, where
R"(u - V) is defined by (3-55) and (3-56). If each component ofrihe1 channel input

vectorx draw symbols from eeal discrete-input alphabet, th&%‘(u - V) reduces to:

. T
RNk _ cos(AA)—1 -sin(AA) ||u , 3-88
(=29 =tn+ |u W][ sin(Ad)  cos(AA) -1, (559)

wherep = u'v = cos(A) andw = (v — cos(A)u)/sin(A). (This analysis implicitly assumes

that |p] <1.) Using (3-88), we find that, simplifies as follows:

_ cos(AA)—1 —sin(AA) u' 3-89
2 =ulu W][ sin(A\A) cos(AA)—l} [WT]UI' o
_ cos(AA)—1 -sin(AA) ||1 3-90
Ul W][ sin(AQ) cos(AA)—l} [0} o

cos(AA)u + sin(AA)w, (3-91)
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_sin((1=A)A) sin(AA)
T T sin) . YT Sing) (3-92)

where the second equality arises from the factwhiatorthogonal tau.

Similarly, for a giveny, the alternative-model MPLL rotatesto a fixed intermediate
v
pointv,, = ﬁ , whereV , is defined by (3-65). We can expangas:
V]

e 12‘“ U+ — ‘2* V. (3-93)
S @-wie2p@-wp  Z+@-w2+2ud-pp

Subtracting (3-93) from (3-92), we obtain:

A u[ sin(A) Ju2+(1_u)2+2u(1—u)p
sin(Ad) _ 2 }V- (399
{ sin(A) A/‘124_(1_‘1)2+2p(1—u)p

One way that the two intermediate poinfsandv,, can be the same is if both terms inside

the square brackets are zero, or in other words, if both of the following equations are satis-
fied:

The only way that the two intermediate points can be the same is if both terms inside the

square brackets are zero; in other words, if both of the following equations are satisfied:

sin((1-\)A) _ 1-H
- _ | (3-95)
sin(A) A/“24_(1_“)2+2}.l(1—|1)p
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sin(Ad) _ = :
sin(A) A/uZJr(l_u)z+2p(1—u)p

(3-96)

Dividing (3-96) by (3-95) and solving fqu, we find that, for a giveA, i must satisfy the

following equation in order for the two intermediate points to be the same:

. sin(AA)
U= SR +sin((1=M)b)

(3-97)

The only way that the two intermediate points can be the same is if the partial rotation

matrix for the conventional-model and alternative-model MPLL are the $ame.
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CHAPTER 4

SPATIAL VECTOR CMA

The constant-modulus algorithm (CMA) is the most commonly implemented and
studied blind equalization algorithm for single-user communication systems [79]. Several
generalizations of CMA to the multiuser framework have been proposed over the last fif-
teen years. To our knowledge, the most common extension is the pointwise constant-mod-
ulus algorithm, which forces each component of the detector output vector to have a
constant modulus. The primary drawback of this algorithm is its susceptibility to the one-
to-many problem, whereby, the detector recovers the same user more than once. Most
modifications of pointwise CMA that have been proposed to eliminate the one-to-many

problem add an additional term to pointwise CMA cost function [100-102].

In contrast, we propose a new generalization of CMA to the multiuser framework.
Instead of imposing the constant modulus constraint on each component of the detector
output, we suggest a new cost function that imposes a constant modulus constraint on the
entire vector-valued detector output. We will show that this cost function has properties
similar to that of the scalar CMA cost function and that the resulting algorithm fits in with

the general whiten-rotate structure described in Chapter 1.
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In this chapter, we limit the focus of the research to a memoryless channel. The insight
gained for a memoryless channel will prove valuable when extending the results to a
channel with memory in Chapter 5. The results presented in this chapter are also important
in their own right, because many real-world applications, such as a synchronous CDMA
system and a narrowband array-processing system, can be modeled by a memoryless
channel. In the following chapter, we extend the concepts and algorithms presented in this

chapter to channels with memory.

In Section 4.1, we introduce the channel model and assumptions that will be used
throughout the remainder of this chapter. In Section 4.2, we introduce the vector constant-
modulus algorithm cost function. In Section 4.3, we determine the local minima of the
cost function in the absence of noise. We show that for certain input alphabets, the cost
function is minimized only by desirable local minima, while for other input alphabets, the
cost function is minimized by both desirable and undesirable local minima. In Section 4.4,
we consider the effects of noise on local minima of the cost function. In Section 4.5, we
propose a modification to the vector CMA cost function, which can eliminate the undesir-
able local minima for all input alphabets. We derive a stochastic gradient-descent algo-
rithm for both cost functions in Section 4.6. Finally, in Section 4.7, we present several
simulation results which demonstrate the effectiveness, in terms of speed of convergence

and complexity, of the two proposed algorithms.
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4.1 CHANNEL MODEL AND ASSUMPTIONS

Consider the memoryless channel model depicted in Fig. 4-1:

rg = HXk + Ny, (4-1)

whereH is anm x n memoryless channel matrix. This memoryless channel arises in a
wide-variety of real-world applications, including a narrowbamdensor uniform linear-
array application, where the columns of therepresents the steering vectors for the
users, and in a synchronous CDMA application, where the columhtrepresent then-

chip length signature sequences of thegsers. The transmitted vectgy is ann x 1 vector
consisting of the symbols sent by thendependent users. The received veejois anm

x 1 vector composed of the receiver observations, whijlerepresents am x 1 noise

vector with power spectral densi#n,n, ] = a1, with 6 > 0.

We assume that channdlhas full-column rankrank(H) = n), which implies that the
channel is either square or tath(= n), and that the channel input vectqgy can be recov-

ered using a linear detector (see Section 2.1.2). We further assume that the signal and

Ny
nx1l l mx1
Xk —» H () > Tk
Channel
m Xn

Fig. 4-1. A block diagram of an M X N noisy memoryless channel model.
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noise components are independent and have zero mean. Finally, we assume that compo-
nents of the channel input vectgg are stationary, independent, and uniformly selected
from a complex discrete-input alphabet. Def'uﬁ-:) ta-le component of the vecto.

The second and fourth moments of itk input alphabet can be defined as follows:

m{" = efx{" 12, (4-2)

m{" =[x 4. (4-3)
An intrinsic property of thé-th input alphabet is the kurtosis, which is defined as:

e
K = o) > (4-4)
(m5”)

A lower bound for the kurtosis is given by the following theorem:
Theorem 4-1. For any given input alphabeat> 1.

Proof: This result is a direct consequence of Jensen’s inequality [107], which

states thatn, > (m,)2.

Property 4-1. The kurtosis, as defined in (4-4), is invariant to an arbitrary
scaling of the input alphabaite., multiplying each point in the input alphabet

by a constant does not change the value of the kurtosis.
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We have calculated the kurtosis for a few of the most common discrete-input alpha-

bets.

Example 4-1. The kurtosis fotM phase-shift keyingMl-PSK) constellations
is one,i.e., kK = 1. This result is due to the fact that all of the symbols in\v&n

PSK constellation lie on a single circle of radinis

Example 4-2. The kurtosis for thev pulse-amplitude modulatiotM-PAM)
alphabet 1, £3, ..., £(M-1)} is given by:

12
g(

M2 — 1)L, (4-5)
Using (4-5), we see that = 1 for a 2-PAM constellationk = 1.64 for a 4-
PAM constellation, and@ = 1.7314 for a 6-PAM constellation. In the limit, as

M—»oo,K—>1.8.

Example 4-3. For the M? quadrature-amplitude modulatio{-QAM)
alphabet &1, £3, ..., £(M-1)} x {%j, %3], ..., £(M-1)j}, where ‘<’ denotes

the two-dimensional Cartesian product, the kurtosis is given by:

(M2 - 1)L, (4-6)

A

1
[S21 N

|
allo
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Using (4-6), we see that = 1 for a 4-QAM constellationk = 1.32 for a 16-
QAM constellation, and = 1.381 for a 64-QAM constellation. In the limit, as

M—»oo,K—>14

From these examples, we observe that the kurtosis can be used to subdivide the set of all

discrete-input alphabets into two distinct and disjoint subsets.

Definition 4-1. An input alphabet is said to mnstant moduluéCM) if K =
1; in other words, all of the symbols in the discrete-input alphabet lie on a

single circle of radius,.

Definition 4-2. An input alphabet is said to h@n-constant modulugnon-

CM) if K > 1.

The importance of these two definitions will become evident later in this chapter.

4.2 VECTOR CMA C OST FUNCTION

Since we have assumed that the channel has full-column rank, the transmitted vector
Xy is linearly detectable and it can therefore be recovered by passing the received
vectorr, through am x m adaptive memoryless linear detecas illustrated in Fig. 4-
2. It can be seen from this figure that the number of outputs for the linear detector is less
than the number of inputs. This detector, often referred to as a short linear detector, is the
“smallest” possible detector that can be used to recover the transmitted data. The detector

output is expressed as:
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Yk = FXk + an, (4-7)

whereF = CH is then x n overall transfer function matrix. It should be emphasized that

the dimension of the detector output is the same as the dimension of the channel input.

We choose to adapt the memoryless linear detectasing a multi-dimensional gener-
alization of the constant modulus-algorithm. The reason for choosing CMA is that it is
adaptive and has low complexity. Another important advantage of CMA is that it can miti-
gate intersymbol interference on both minimum and non-minimum phase channels by
implicitly using higher-order statistics. Further, we can build on the great deal of knowl-

edge about the cost function in the literature.

We now propose theector constantnodulus algorithm(vector CMA) cost function

[20]:

2
Jy = E[E||yk|| -My 5?} , (4-8)
Ny
nx1 re nx1
Xk——» H + > C —» Yk
Channel Linear Detector
mXn nxm

Fig. 4-2. A block diagram of an M X N memoryless channel followed by an N X M
memoryless linear detector.
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wherey, = Cry, and whereM, is some a constant to be specified later in this section. The
cost function given by (4-8) is a special case of the combination CMA cost function with
A =0 andB = 1. Also, (4-8) reduces to the conventional single-user CMA cost function

whenn = 1.

The vector CMA cost function is a unique extension of the single-user CMA cost
function to vector-valued signals. In fact, when compared to the pointwise CMA cost
function, the vector CMA cost function is a natural generalization because it inherits the
most important property, the invariance to an arbitrary (unitary) rotation, from the scalar
CMA cost function. This is a direct consequence of the fact that the vector CMA cost
function attempts to restore the modulus of #dire vector-valued detector output; in
other words, thé,-norm in (4-8) is invariant to an arbitrary unitary transformation. On the
other hand, the pointwise CMA cost function attempts to restore the modulus of each indi-
vidual component and is therefore only invariant to an arbitdégonal(unitary) rotation

(see Section 2.3).

We selectM,, so that in the absence of noise, the gradient is equal to the zero matrix
wheny, = x, or equivalently, when at perfect equalization. By selecting this particular
M,, we ensure thaF = I is a local minimum of the cost function and that the detector
stops updating (on average) when the transmitted data have been recovered. Expanding (4-
8), the noiseless vector CMA cost function can be written in terms of the received vector

r, and the linear detect@ as follows:

J, = E[tr[(Crr*c*)z] — 2Mtr(Crr'C™) + MVZ} (4-9)
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The dependence on time has been suppressed to simplify the notation. The complex gra-

dient of (4-9) with respect tG is
OcJy = 4E(||y||2yx*)H* — 4M,CHE(yx)H". (4-10)

Substitutingy = x into (4-10) and setting the gradient equal to the zero matrix, we find that

M, must satisfy:
[E(”x”zxx*) _ MVE(xx*)}H* = 0. (4-11)
Since the channel matrit has full-column rank, (4-11) reduces to:
E(|x|*xx") = MyE(xx"). (4-12)

For anM,, to exist, it must simultaneously satisfy all of the equations described in (4-12).

The following theorem described the conditions for whicvigrcan exist.

Theorem 4-2. There exists aM,, which satisfies (4-12) if and only if
mP (k-1 =K, Oi (4-13)

whereK is some positive constant.
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Proof: Assuming that all of the users are independent, it is easy to show that
the left- and right-hand sides of (4-12) are both diagonal. Hence, we can write

thei-th equation for (4-12) as:

My md =m{? +m® § mi, (4-14)
iZi

Dividing (4-14) bym( ) and rearranging some of the terms, we find that

M, = m&) (k; — 1) + > mib. (4-15)
J

The last term in (4-15) is the same for allusers. Therefore, (4-15) holds if

and only |fm k; — 1) is a constant for all users[]

Corollary 4-1. If (4-13) holds, them, is given by

SN

M, = :
ELIxI%]

(4-16)

Proof: Since the condition stated in (4-13) holds, we observe that (4-14) rep-
resents a consistent set of equations. Taking the trace of both sides of (4-12),

we arrive at

MVE[||X||2] = E[||x||“]. (4-17)
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XY

Thus, the optimal choice fon, is M,, = 5
ELIxI"]

It can be seen from (4-13) that if the input alphabet is CM for any one uger for
anyi), thenK = 0 for all n users. This result implies that allusers must draw symbols
from either a CM input alphabet or a non-CM input alphabet, but not both; in other words,
there is no way to mix CM input alphabets with non-CM input alphabets. Hexce,
mgi) (k; — 1) for all n users only ifn users draw symbols from an arbitrary set of CM input
alphabetsK; = 1, O i), or if all n users draw symbols from an arbitrary set of non-CM
input alphabets that have a kurtosjs= K / m(zi) +1, O, orif all n users are independent
and identically distributed. We should also emphasize that if (4-13) does not hold, then

there does not exist av,, that satisfies (4-11). To see this result, we look at the following

example:

Example 4-4. Consider a two-user system where the first user selects data
from a normalized 16-QAM constellatiomr((zl) Fandk; = 1.32) and the
second user selects data from a normalized 4-QAM constellaﬂéﬁ)( 1, =

K, = 1). In this case, (4-12) simplifies to the following:

My 0] _l2320 (4-18)
0 M, 0 2

Clearly, there does not exist B, that satisfies this equation.
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For discussion throughout the rest of this chapter, we will assume that all users are
independent and identically distributads., m, = mgi) , My = mgi), andk = k; O i. Note

thatM,, is related to the kurtosisby:

M, =m, (n + K- 1). (4-19)

This assumption will simplify the analysis of the cost function later in this chapter.

4.3 LOCAL MINIMA IN THE ABSENCE OF NOISE

The usefulness of the vector CMA cost function is directly related to the answers of

the following two questions:

* What are the local minima of the vector CMA cost function?

* How many local minima are there?

Initially, we will assume that the noise term in (4-1) is zero. This assumption is made to
simplify the analysis of the cost function. Later in this chapter, we will analyze the cost
function when the noise term is nonzero. In the previous section, we designed the vector
CMA cost function such that = 1 is a local minimum. This local minimum is desirable
because it implies that, = x, and that the transmitted vector can be completely recov-
ered. Since the vector CMA cost function is invariant to an arbitrary unitary transforma-
tion, F = U, whereU is any unitary matrix. Thereforé) is also a local minimum of the

cost function. Thus, the vector CMA cost function may be minimizedahy unitary
matrix, and so there exists an infinite number of local minima! We should emphasize that a

unitary matrix is actually a desirable minimum because we have already designed an algo-
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rithm that can estimate and resolve the unitary ambiguity; this algorithm is the MPLL,

which is described in detail in Chapter 3.

Definition 4-3. A unitary matrix is adesirable minimunof the vector CMA

cost function.

One questions remains: are there any other local minima of the vector CMA cost func-
tion? The answer to this question depends upon the subset in which the input alphabet lies.
The following two theorems summarize the local minima of the vector CMA cost func-
tion; the first theorem applies only to non-CM input alphabets and the second applies only

to CM input alphabets.

Theorem 4-3. If the input alphabet is non-CM(> 1), thenJ,, is minimized if

and only ifF is unitary.

Proof: See Appendix 4.1.

If the input alphabet is non-CM and the linear detector is a local minima of vector CMA,
then the detector output vector is related to the channel input vector by an unknown uni-
tary matrix (an unknown arbitrary rotation)e., y, = Ux,, for an arbitrary unitary matrix

u.

Property 4-2. For a non-CM input alphabet, vector CMA can resolve a

channel up to a unitary ambiguity.
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This particular detector is referred to awhitener because the covariance of the detector

output vectow, is the identity matrix, By, ] = I.

Definition 4-4. An n x m linear detectocC is said to be a whitener if the auto-

correlation ofy, = Cry is the identity matrixi.e., CE[rr, ]JC" =1.

In order to recover the transmitted signals, the detector must be followed by a blind uni-
tary estimator, which identifies and eliminates this unitary ambiguity. Possible solutions to

this problem include the MPLL (see Chapter 3), JADE, and EASI algorithms.

It is important to emphasize that Theorem 4-3 holdsaibmon-CM input alphabets,
including a complex Gaussian input alphabet. This result seems to contradict the widely-
held intuition that CMA does not work for a Gaussian input. To better understand this
conundrum, we begin by considering the single-user system depicted in Fig. 4-3 xwhere
is a normalized complex Gaussian input signal with= 1 andf(z) is the overall transfer
function. The noise term is assumed to be zero. The single-user CMA algorithm attempts
to restore the modulus of the equalizer outpytin other words, the algorithm tries to

match the modulus of the equalizer output with the modulus of the channel input. In this

Xk —» f(z) ——— Yk :ijj Xk—j

M, =2 My=22j|fj|2

Fig. 4-3. A noiseless single-user system with a complex Gaussian input signal.
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example, the modulus of the inputhg, = 2, while the modulus of the equalizer output is

M, =2 zj |fj|2. The moduli of the two signals will match if and only if the power of the
overall transfer function is unityij |fj|2 = 1. For a Gaussian input alphabet, the single-
user CMA ensures that the channel does not amplify the power of the input signal. Unfor-
tunately, the CMA cannot equalize a channel with memory. However, if we restrict our
attention to a memoryless channel, we see that the CMA can resolve it up to an arbitrary

rotation,i.e.,
1012 = Jcohol2=1 0 ¢ = e®hy, (4-20)

for some® O [0, 2m). Thus, a single-user CMA can be used to equalize a memoryless
channel when the input alphabet is Gaussian. An analogous interpretation exists for the
vector CMA utilizing a Gaussian input alphabet. The important lesson derived from this
argument is that the vector CMA is compatible with capacity achieving systems that

employ highly-shaped or near-Gaussian inputs.

Property 4-3. The vector CMA works for highly-shaped or near Gaussian

input alphabets.

Theorem 4-4. If the input alphabet is CMK = 1), thenJ,, is minimized if and

only if F has the following form:

F=uD?, (4-21)
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whereU is a unitary matrix andD is a non-negative real diagonal matrix satis-

fying tr(D) =n.
Proof. See Appendix 4.4.

If the input alphabet is CM, the detector output vegtois related to the channel input
vector x, by the following relationshipy, = UDY?x,, whereU is an arbitrary unitary
matrix andD is a non-negative real diagonal matrix satisfytn¢p) = n. We see that the
overall transfer function matrix given by (4-21)asly unitary for the special case whén
= 1. For all otherD, the overall transfer function matrix is non-unitary. A non-unitary
overall transfer function matrix is undesirable because a blind unitary estimator, such as
the MPLL, cannot resolve the ambiguity present in the detector output vector and there-

fore more processing would be needed in order to recover the transmitted data.

Definition 4-5. A non-unitary matrix is amndesirable minimurof the vector

CMA cost function.

The implications of Theorem 4-4 can be best understood by looking at the following

example.

Example 4-5. A non-unitary matrix that satisfies (4-21) is given by

F= [1 0} , (4-22)
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The overall transfer function given by (4-22) is an undesirable minimum because it
implies that both detector outputs lock on to the first user and therefore the information
from the second user is completely lost. In this case, because it is impossible to recover
information from the second user, appending a blind unitary estimator serves no purpose.
In fact, no amount of processing would be able to recover the lost information from the

second user.

Other examples of undesirable minima satisfying (4-21) include:

J6/5 0 0
F = ’\/372 0 , F = 0 /\/75 0 . (4-23)
0 J1/2

0 0 J7/5

Even though these minima recover information for all of the users, they are undesirable
because of the incorrect gain for each user, which may lead to incorrect decisions at the

decision device.

Property 4-4. For a CM input alphabet, the vector CMA cost function is min-

imized by both unitary and non-unitary matrices.

We should emphasize that the vector CMA cost function reliebaih second-order
and fourth-order statistics in order to invert the channel. Unfortunately, a CM input
alphabet is completely described by its second-order statistics, and therefore, the cost
function does not have enough information to correctly invert the channel. Thus, it is pos-
sible that the cost function can be minimized by non-unitary matrices, such as (4-22) and

(4-23) given in Example 4-5.
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4.4 LocAL MINIMA IN THE PRESENCE OF NOISE

In the previous section, we determined the local minima of the vector CMA cost func-
tion assuming no noise. While this analysis is valid and informative, it is only of academic
interest since in any real-world application, noise is always present. Therefore, in this sec-
tion, we derive the local minima of the cost function in the presence of noise and compare

the performance against the well-known minimum mean-squared error (MMSE) detector.

Recently, many authors [108-111] have demonstrated that in the presence of noise, the
single-user CMA exhibits near MMSE-like performance; in other words, the performance
of the CMA is similar to that of the MMSE equalizer. Unfortunately, in most cases, the
analysis is based on high SNR approximations, and as a result, this analysis is only valid at
high SNR. The exact behavior of the cost function at low to medium SNR is also very
important, because, we can determine from it some of the intrinsic properties of the cost
function, such as the valid SNR operating range. The reason that many authors use high
SNR approximations is that it simplifies the analysis, which otherwise becomes intrac-
table when there is memory in either the channel or the equalizer. However, if the attention
is restricted to memoryless channels, then the analysis becomes straightforward. In fact, it
is then possible to derive a closed-form expression for the behavior of the cost function at
all SNR. For a single-user system, this result is uninteresting, but at higher dimensions, it

becomes much more important.

Consider the noisy memoryless channel and detector model illustrated in Fig. 4-2:

Yk = FXk + an, (4-24)
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whereF = CH is ann x n overall transfer function matri>xC is ann x m linear detector,
andx, is then x 1 channel input vector. We assume thgtis anm x 1 zero-mean white
Gaussian noise vector with power spectral dengits,n, '] = 0?1. Substituting (4-24)

into (4-8), we find that the cost function can be written as follows:

J, = E[(x*F*Fx)2 +(n"C*cn)? + 2(x'F Fx)(n"c*cn) + 2(x*F*Cnn*C*Fx)}

- 2MVE[X*F*FX + n*C*Cn} + M2 (4-25)

We refer to (4-25) as the “noisy” vector CMA cost function.

The goal of this section is to determine the overall transfer function materd the
corresponding linear detectar that minimizes the noisy vector CMA cost function. We
restrict our attention to non-CM input alphabets because convergence to a desirable
minima is guaranteed in the absence of noise. Before we state the results, we give the fol-

lowing definition which will be used to simplify the notation.

2
Definition 4-6. Let U: €™ _ ¢" be a function that unwraps anx n
matrix onto am? x 1 column vector. The unwrapping of the matrix amounts

to stacking of the columns; in other words,
UG)=lg:" 92" .- 9n'1", (4-26)

2
whereG = [g; g5 ... gn]. We see that the inverse of this functibh™: c" -

C"™" also exists.
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The local minima for the noisy vector CMA cost function for a non-CM input alphabet are

summarized by the following theorem:

Theorem 4-5. If the channel matrixH has the following truncated singular-
value decompositiort ,x, = UmnxnZmxnlQmxnl » and if the input alphabet is

non-CM, then the noisy vector CMA cost function is minimized if and only if
F =uDY2Vv", (4-27)

whereU is an arbitraryn x n unitary matrix. Then x n unitary matrixV and

the n x n diagonal matrixD are found by taking the eigendecomposition of

QzU(g)zQ", i.e,
VvDV'= QzU1(g)zQ". (4-28)

Then? x 1 vectorg is given by:
9= MV[(mZVU(ZZ)U(ZZ)T (M2 + (M2k-2)WW + U1 U(1)T
1
+ 0%l 2+ mya?U(EHU®,) T + mya?U, )UEAH)T + 2m202228}

[sz(ZZ) + O'ZU(In):|, (4-29)

where,
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2.2 r T
012 0 2 0
2.2 2
2 2
5= 052 andsg=| =2 . (4-30)
. . 2
0 oﬁzz i 2
Then x n? matrixW is defined as follows
W = [0320; 04y, ..., 010401 Ody, ..., 01040, 0dy, ..., 02dn 0dy, (4-31)

whereg; is thei-th diagonal element di, q; is thei-th column ofQ, and T’
represents the Hadamard product (component-by-component product) [106].
The corresponding linear detector that minimizes the noisy vector CMA cost

function is given byC = FHT, whereH" = (H*H)1H".
Proof: See Appendix 4.6.

Unfortunately, the results of this theorem are not intuitively obvious, but we can gain

some insight as to how the linear detector combats the noise:

*

F=UDY2v" = uv" + U(DY? - 1)V". (4-32)

By resolving the unitary ambiguity in the overall transfer function matrix, (4-32) reduces

to:

1. For this particular equation, *' represents a complex conjugate.
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F =VU'F=1+V(DY2-1)V" (4-33)
We see from (4-33) that the local minimum of the noisy vector CMA cost function are
related to the local minimum of the noiseless vector CMA cost function by a perturbation
matrix. This perturbation matrix isornrdiagonal indicating that a certain amount of mul-

tiuser interference is required to combat the effects of noise.

By using (4-27) through (4-31), we can compare the performance of the vector CMA
to that of the MMSE detector. We choose the MMSE detector because it exhibits a desir-
able balance between the suppression of multiuser interference and the enhancement of
noise. Let MSE= E[ly, - x, V2] denote the mean-squared error (MSE) for ititie user.
The MMSE detector that minimizes the MSE for each user, can be expressed in two equiv-

alent ways:

2
H HH" + 217, (4-34)
ms

@)
I

2
(HH+ 271y, (4-35)
m,

We should emphasize that both (4-34) and (4-35) produce the same result, except when

the noise is zera? = 0) and the channel is tali(> n), in which case (4-34) is not valid.

The MSE for the-th user of the vector CMA detector can be expressed as:

MSE; = m,|3;(F - 1)]|* + 62| 3;C]?, (4-36)
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where J; is a1 x n row vector with a one in théa-th position and zeros elsewhere.
Assuming that an ideal rotator resolves the remaining unitary ambiguity, xhe overall
transfer function and the x n linear detector that minimize the noisy vector CMA cost
function areF = VDY2v", whereV andD are specified by (4-28), ard = F(H"H)H",
respectively. The MSE for thieth user of the MMSE detector, expressed in terms of a sin-
gular-value decomposition of the channel matkk= USV", whereU is anm x m unitary

matrix, V is ann X n unitary matrix, anc is ann x n non-negative real diagonal matrix, is
*, * 0'2
MSE; = 0°v;"(S"S + — N7 1y;, (4-37)
2

wherey; is thei-th column ofv.

In the following experiment, we compare the theoretical performance of the vector

CMA using (4-36) to that of the MMSE detector using (4-37).

Experiment 4-1. Consider a receiver witth = 6 sensors. In Fig. 4-4, we plot
MSE; versus SNR = z:n: 1|hj,1|2/c52 for two different casesa = 2 andn =

6 users. The curves are generated by averaging the mean-squared error over
500 different random & n channels, where the coefficients are drawn inde-
pendently from a zero-mean, unit-variance complex Gaussian distribution.
The columns are scaled so that all of the odd-numbered users have energy 10
dB below that of the even-numbered users. The input alphabet is assumed to
be 16-QAM. For the two-user case, the curves demonstrate that both the

vector CMA detector and the MMSE detector achieve similar performance for
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SNR; > 0 dB. Even at a low SNRof —15 dB, the vector CMA detector only
suffers a modest 2 dB penalty when compared to the MMSE detector. For the
six-user case, the gap in performance between the two detectors widens only

slightly.

This experiment suggests that the MSE performance of the vector CMA detector is essen-

tially similar to that of the MMSE detector.

5 | | | | | | | | |
Vector CMA
0
-5
m -10
RS
—
Ll
€ 15
n = 2 users
-20
m = 6 sensors
25 | | 500 trials
16-QAM constellation
-30 1 1 1 1 1 1 1 1 1

-20 -15 -10 -5 0 5 10 15 20 25 30

SNR; (dB)

Fig. 4-4. A comparison of the mean-squared error versus SNR of the vector CMA
detector and the minimum-MSE detector.
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Property 4-5. Vector CMA exhibits near MMSE-like performance.

This result is reassuring because achieving performance similar to that of the MMSE

detector is the goal of all blind algorithms.

4.5 VECTOR CMA WITH GRAM-SCHMIDT CONSTRAINT

In Section 4.3, we showed that the local minima for the noiseless vector CMA cost
function is always desirable if the input alphabet is non-CM. If the input alphabet is CM,
the cost function is minimized by both desirable and undesirable local minima. We can
make the vector CMA cost function more compatible with CM input alphabets by modi-
fying the cost function to penalize the non-unitary matrices. The non-unitary matrices
described by (4-21) do not satisfy the following propem®fy,y,'] = m,l. Hence, the
undesirable minima can be eliminated by modifying the vector CMA cost function to

penalize those solutions for whigly,y, ] # ml:

Jos = Iy + | Elyiyk 1- myl |||2: , (4-38)

where| 0| is the Frobenius norm for matrices and whetgis the vector CMA cost
function described by (4-8). We refer to (4-38) as thextor CMA cost function with
Gram-Schmidt constrainfGSC), because the additional term in (4-38) is minimized when
the rows of the linear detector are orthonormal with respect to the autocorrelation of the
received vector, a condition that is equivalent to a Gram-Schmidt constraint on the rows of

the linear detectot.



150

The vector CMA cost function with GSC can be thought of as a multi-dimensional
generalization of the CRIMNO (criterion with memory non-linearity) algorithm [Nikias].
We have extended their concept of decorrelation in time to decorrelation in space. We
should also point out that the second term in (4-38) is closely related to the second term of
the decorrelation CMA cost function (see (2-32)). The difference between these two addi-
tional terms is that while the former penalizes cross-correlations in space among the users
as well as restores the modulus for each user, the latter only penalizes for cross-correla-
tions in space among the users. Whereas both terms of (4-38) help to restore the modulus
for each user, the decorrelation CMA cost function leaves the restoration of the moduli to
the pointwise CMA cost function. From this argument, it is clear that the additional term
in (4-38) accomplishes more, and in fact, as we will show later, it helps to speed the con-

vergence of the algorithm.

Now consider the case when the noise term in (4-1) is zero. It is easy to show that the
vector CMA cost function is zero at its local minima when the input alphabet is CM.
Recall from Theorem 4-4 that the local minima for a CM input alphabet are givéh=by
UDY2, whereuU is an arbitrary unitary matrix and is a non-negative diagonal matrix sat-
isfying tr(D) = n. Using the relationship = Fx, the cost function at the local minima sim-

plifies to the following:

3,= [ [|p¥2? - nm, ], (4-39)

where we have used the fact ti{ = nm, for a CM input alphabet. Expanding (4-39),

we obtain:
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3, = E[ |DY2x| | - 2nm,E[ [ DV | + (nmy)? (4-40)

Since the input alphabet is CM atr@D) = n, E[||D1’2x||4} andE[||D1’2x||2} reduce to:

E[” D1’2x||4} = (nm,)?, (4-41)

E[” Dl’zxﬁ = nm,. (4-42)

Substituting (4-41) and (4-42) into (4-40), we see #hat 0 at the local minima.

We can show that the vector CMA cost function with GSC eliminates the undesirable
local minima by looking at the value of the cost function at both the desirable and undesir-
able local minima. For a desirable local minimum, the first term in (4-38) is zero, since it
is a local minimum, and the second term in (4-38) is zero, since it satisfies the property:
Elywyk ] = m,l. Thus,Jgs = 0 for all desirable minima. For an undesirable local min-
imum, the first term in (4-38) is zero, since it is a local minimum, and the second term in
(4-38) is non-zero, because it does not satisfy the propeftyy, ] = m,l. Thus,dgs >0
for all undesirable minima. Clearly, the undesirable local minima do not minimize (4-38).
Therefore, the undesirable local minima cannot be local minima of the vector CMA cost

function with GSC.

The question remains: does the additional term in the vector CMA cost function with
GSC introduce any new local minima? Fortunately, the answer is no. The local minima for

this cost function can be summarized by the following theorem:
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Theorem 4-6. For all input alphabetx(= 1), Jg5 is minimized if and only if

F is unitary.
Proof. See Appendix 4.8.

Thus, the detector output vector is related to the channel input vector by an unknown uni-
tary matrix (an unknown arbitrary rotation)e., y, = Ux,, for an arbitrary unitary matrix

u.

Property 4-6. Vector CMA with GSC can resolve a channel up to a unitary

ambiguity for all input alphabets.

This particular detector is also referred to awlatener The transmitted vector can be
recovered by using a blind unitary estimator, such as the MPLL described in Chapter 3, to

identify and eliminate the remaining unitary ambiguity.

4.6 ADAPTIVE STOCHASTIC ALGORITHM

The main focus of this research is to design an adaptive linear detector. There are sev-
eral methods for adaptively minimizing a cost function, including the classical steepest-
descent algorithm, the Newton-Raphson algorithm, and the recursive-least squares algo-
rithm. We intend to focus here on the classical steepest-descent algorithm, because this
technique has low-complexity and it provides reasonable performance. In this algorithm,

the detector tap weights are adjusted according to the following algorithm:

Ci1 = - £ 0c 3, (4-43)
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where O is the complex gradient of the cost function with respect to the detector tap

weights and wherp is the step size.

4.6.1 Vector CMA

The vector CMA cost function (see Section 4.2) is defined as follows:
2
J, = E[H|yk|| - Mvg} , (4-44)

wherey, = Cr andM,, = E[||xk||4] / E[||xk||2]. This cost function can be written in terms

of the linear detectaC and the detector input vectqy as follows:
|:| * *, |:| |:| * *D
J, = E[ tri(Cryr CH?0- 2MtrCryr, C O+ MVZ] (4-45)
g O O O

The complex gradient of (4-45) with respecCipis given by:

OcJy = 4E[eyr 1, (4-46)
where the “error signak, is defined by

ex =y vi|” — M2 (4-47)

Substituting4e,r,” as a stochastic approximation of the gradient in the steepest-

descent algorithm, we arrive at the following update equation for the linear detector:
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Cis1 = Ci— Heyry (4-48)

wherep is the step size. We refer to this algorithm as the vector CMA. We see that this
algorithm reduces to the familiar single-user CMA whers 1. It is also important to
point out that the update equation described by (4-48) is the same as the one for vector

LMS (see Section 2.2), except that the error sigp# defined differently.

In summary, the vector constant-modulus algorithm is defined by (4-47), (4-48), and

My = E[ x| 17 ElJxi ]

4.6.2 Vector CMA with Gram-Schmidt Constraint

The vector CMA cost function with Gram-Schmidt constraint (see Section 4.5) is

defined as follows:

Jas = Iy + | Elyic1- mal |, (4-49)

wherey, = Cr. The cost function can be written in terms of the linear deteCtand the

detector input vectar, as follows:

Iy =y + tr[(CCDOC*)Z —2my(CPHCY) + (mz)zl} , (4-50)

where®, = E[r,r,]. The complex gradient of (4-50) with respecttés given by:

OcJos = 4E[exri 1+ 4(Elyiyk 1 — maDE[yri 1. (4-51)
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Substituting a stochastic approximation of (4-51) in the classical steepest-descent algo-

rithm, we arrive at the following update for the linear detector:
Cis1 = C— HEIy (4-52)

whereé, = e, + (E[ywyk 1 — m,l)y, andy is the step size.

The update for linear detector given by (4-52) requires an estimaypf, . Since
Yk IS @ non-stationary vector random process, it is difficult to obtain an accurate estimate
of E[yyk ]. By substitutingE[y,y, 1 = Ck®Cy in (4-52), we arrive at an alternative

update equation for the linear detector:
Cis1 = Ci— HEI - (4-53)

where g, = e, + (C,®P,Ci~ — m,l)y,. An estimate of®, = E[r,r,’] is now required
instead of an estimate &Ty,y, ]. Since we have assumed that both the input vexgor
and the channeaH are stationary, it is easy to obtain an accurate estimat,ofn fact,
this estimate can be generated by using a simple running average:

k
Doz — 5 " (4-54)

1
k-1
=1
As k gets larger, this sum approach®g. Since we can estimatg, fairly accurately, we

expect the update equation specified by (4-53) to converge more quickly. In a practical

implementationd, should be substituted fdr, in (4-53).
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An advantage of usin@,®,C," instead of an estimate d[y,y,] is that since
Ck&JOCk* is determined more accurately, the algorithm should converge more quickly. A
disadvantage of using, ®,C," is that, because this term is a product of three matrices,
there is an increase in computational complexity. The computational burden for this addi-
tional term can be quite large even for moderate valuesasfdm. However, a redeeming
feature is that this additional term that is based solely on second-order statistics should
converge quickly and require less symbols than the original vector CMA to invert the
channel. A comparison between the computational complexity of vector CMA and vector

CMA with GSC will be given in the next section.

Finally, even though the vector CMA with GSC was designed especially for CM input
alphabets, it can also be used for non-CM input alphabets. If computational complexity is
not an issue and the speed of convergence is important, then the vector CMA with GSC

would be preferred.

In summary, the vector constant-modulus algorithm with Gram-Schmidt constraint is

defined by (4-47), (4-53), (4-54), amj, = E[||Xk||4] / E[||Xk||2]-

4.7 EXPERIMENTAL RESULTS

We conclude this chapter with several computer experiments. In the first three experi-
ments, we consider a uniform linear array with half-wavelength spacing and a non-CM
(16-QAM) input alphabet. For this channel, we compare the performance, in terms of
mean-squared error, speed of convergence, and complexity, of the vector CMA detector
with that of the decorrelation CMA detector [100,101], the combination CMA detector

[102], and the project-whiten-rotate (PWR) detector [54]. In the next three experiments,
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we consider a synchronous CDMA application with a CM input alphabet. Since the input
alphabet is CM, we compare the performance of the vector CMA with GSC detector with
that of the decorrelation CMA detector and the PWR detector. The seventh experiment
demonstrates that the vector CMA detector is compatible with a shaped input alphabet.
Finally, in the last experiment, we compare the computational complexity of all the detec-

tors used in the previous experiments.

4.7.1 Rotational Ambiguity and Performance Measure

As mentioned previously in this chapter, the vector CMA detector and the vector CMA
with GSC detector are both invariant to an arbitrary unitary ambiguity. Causey has shown
in [54] that the PWR detector is also invariant to a unitary ambiguity. The remaining uni-
tary ambiguity can be resolved by filtering the detector output through an appropriate uni-
tary matrixQ, as shown in Fig. 4-5. If the overall transfer function matfix= CH is

known, then the unitary matri@ that minimizes the MSE is given by:

Q=UVv, (4-55)
N
nx1i l rk yk Q nx1
Xk—» H >(+) » C —b (Qq) —» Zk
Channel Linear Detector Rotator
mXn nxm nxn

Fig. 4-5. A block diagram of a memoryless channel followed by a memoryless
linear detector and a memoryless unitary rotator.
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where then x n unitary matricesJ andV are specified by the singular-value decomposi-
tion of F = UDV". The derivation of (4-55) can be found in Appendix 4.9. In a practical
implementation, the appropriate unitary mat@xcan be determined by using any one of
the following blind unitary estimators: JADE [47-49], EASI [50], or the MPLL (see

Chapter 3).

The pointwise CMA-based detectors, described in Chapter 2, do not realize an exact
inverse of the channel, because of their invariance to an arbitrary diagonal unitary ambi-
guity. This type of ambiguity can be resolved by filtering the detector output through an
appropriate diagonal unitary matryy, as shown in Fig. 4-5. If the overall transfer func-
tion matrix F = CH is known, then the diagonal unitary matiiyy that minimizes the

MSE is given by:

[Qalii = exp((O[FPE i), (4-56)

whereP removes both the ambiguity in assigning labels to each user and the ambiguity
inherent in all QAM constellation from the overall transfer function mal&ix he deriva-

tion of (4-56) can be found in Appendix 4.10. In a practical implementation, the proper the
properQq can be determined by using a bank of independent single-user phase-locked

loops (PLLS).

Even after filtering the detector output through eitleor Qg, there still remains two
sources of ambiguities: an ambiguity in assigning labels to each user aricaenB@uity
inherent to all QAM constellations. The first ambiguity can be resolved at a higher layer,

while the second ambiguity can be resolved by using differential encoding. These two
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ambiguities typically lead to the relatio"F = P (or Q4 F = P), whereP is a complex
permutation matrixi.e., a matrix consisting of only one nonzero value from the gej,{~
1, 5} in each row and each column. The matfxis an inherent problem of blind mul-

tiuser detection and must be taken into account when calculating the MSE.

For each of the detectors in the following experiments, we use the MSE as a measure

of its performance. The MSE for tlwh user is defined as follows:
MSE; = E[1% - 2"17], (4-57)

where X, = Px, is a reordered and rotated version of the channel input vector,ard

Q"y (orz, = Q4yy) is the filtered detector output vector.

4.7.2 Uniform Linear Array

In the following three experiments, we consider an 16-user, 3-sensor uniform linear
array withA/2-spacing. We assume that each users draws symbols independently and uni-
formly from a 16-QAM input alphabet and that the angle of arrival for each user is given
by: 8; = 65°, 8, = —=35°, andB3 = 0°, respectively. All angles were measured from broad-

side. Given these parameters, the channel model is given by (4-1) with

H = —VA, 4-58
16 x 3 Vi (4-58)

where VJ;; = exp[j;\—T(i—l)sin(ej)], Az 3 =diag(A;, Ay, Ag), andA;? is the received power

of thei-th user. The received powers were chosen such that the second and the third users
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are 6 dB and 12 dB stronger than the first user, respectively. We also assume that the noise

vectorn, in (4-1) is a complex Gaussian random variable with covariance roatrix

In the first experiment, we demonstrate the convergence of the vector CMA detector,
decorrelation detector, combination CMA detector [102], and PWR detector [54] in the

absence of noise.

Experiment 4-2. In Fig. 4-6, we plot the MSEversus time for these four
detectors, assuming no noise. Each curve is an ensemble average of 500 dif-
ferent random input sequences. For each detector, two curves are displayed in
the figure: the lower curve corresponds to a fictitious system employing the
minimum-MSE (MMSE) PLL or MPLL, while the upper curve corresponds

to an actual PLL or MPLL implementation. The parameters for each detector
were optimized to provide the fastest rate of convergence to achieve an open-
eye diagram, or equivalently an MSE —18 dB. The step size for the vector
CMA detector, decorrelation CMA detectok € 1, B = 1), and combination

CMA detector A = 1, B = 1.5), werey yec = 0.07¥(1 + k/2200), Yy gec =
0.1%/(1 +k/1000), andly com= 0.04¥(1 +k/6000), respectively. We used a
15-point causal rectangular window to estimate the cross-correlation terms in
decorrelation CMA. The step size wag,,r = 0.06/(1 + k/500) for the PWR
detector, it wagy aqc= 0.0&¢/(1 +k/500) for the AGC, and it waky = 0.8%/
2(k/500)for the subspace projector. The step size for the MPLL was decreased
with time according to\, = 0.6/2(/2000) The pank of scalar PLLs parame-
ters, used by the two extensions of pointwise CMA, weye= 0.08 ando, =

107°. From the curves, we see that the PWR detector is fastest to converge,



161
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Time (k)
Vector CMA: My = 0.075/(1+k/2200)
Decorrelation CMA: L, = 0.15/(1+k/1000)
A=1,B=1
Combination CMA: |, = 0.045/(1+k/6000)
A=1,B=15
PWR: My = 0.06/(1+k/500)

By = 0.06/(1+k/500)
Ay = 0.80/2(K/500)
MPLL: A = 0.60/ 2(K/2000)

PLLs: o, =0.08, 0, = 107°

Fig. 4-6. Comparison of the vector CMA detector, decorrelation CMA detector,
combination CMA detector, and the PWR detector, in terms of MSE,
versus time, for a noiseless 16 x 3 uniform linear-array with half-
wavelength spacing application with 16-QAM input alphabet, assuming
both actual rotators and MMSE rotators.
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followed closely by the vector CMA and the decorrelation CMA detector. The
combination CMA fails to converge to an open-eye within 10,000 symbols.
Even though the initial convergence of the decorrelation CMA detector is
faster than that of the vector CMA detector, the vector CMA detector actually
opens the eye faster than the decorrelation CMA detector. Both the vector
CMA detector and the PWR detector curves show that the actual MPLL ini-
tially suffers a 4 dBpenalty relative to the MMSE MPLL, which is due to the

fact that the initial decisions made by the MPLL are incorrect. Once these
detectors converge, the discrepancy between them disappears. A similar deg-
radation also appears when the actual bank of PLLs is compared to the MMSE
bank of PLLs, but as the detectors converge, the discrepancy in this case also

disappears.

In the next experiment given below, we examine the effect of noise on the convergence

time for each detector.

Experiment 4-3. We define the&eonvergence tim be the average number of
symbols it takes for each detector to reach an MSE-18 dB. The conver-
gence time is a measure of how many symbols it takes to open the eye dia-
gram. In Fig. 4-7, the convergence time for the detectors, with the exception of
the combination CMA detector, versus SNR Z:n: 1|hj,1|2/cr2 is plotted.

The combination CMA detector does not appear on this plot, because its con-
vergence time is greater than 10,000 symbols for all values of SNR. Each

curve was generated by averaging over 500 different random input and noise
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realizations at each SNR. The step size for the vector CMA detector and deco-
rrelation CMA detector4 = 1, B = 1) werepy yec = Hove/ (1 + k/k,) and
Hk,dec™ Ho,ded (1 +k/k,), respectively. We used a 15-point causal rectangular
window to estimate the cross-correlation terms in decorrelation CMA. The
step size waflg g/ (1 +k/ky,) for the PWR detector, it Wl agc= Bo age/ (1

+ k/kp) for the AGC, and it was given by, = 0.80/2*/>09for the subspace
projector. The step size for the MPLL was decreased with time according to
A = 0.672(k72000) The hank of scalar PLLs parameters, used by the two

extensions of pointwise CMA, were, = 0.08 andu, = 107°. The parameters

r 1 1111 T 11T 1T T 1T 1T 7T 11T 1T T 11
6000 —
16 X 3 Uniform Linear Array _
16-QAM input alphabet
5000 —
s -
[} -
£ 4000
|_
> -
=
o 3000 Decorrelation CMA —
@
: e =
8 2000 Vector CMA
1000 PWR -
—0 0
0 I I N N I N T N [ I T I T T N B
20 25 30 35 40

SNR; (dB)

Fig. 4-7. Comparison of the convergence time of the three detector versus SNR;
for a 16 x 3 uniform linear-array with half-wavelength spacing application
with 16-QAM input alphabet. The optimal parameters for each detector
can be found in Table 4-1.
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for each detector were optimized to provide the fastest rate of convergence so
as to achieve an open-eye diagram at each SNR; the values for the optimal
parameters are listed in Table 4-1. These curves show that the PWR detector
provides the fastest convergence time, followed by the vector CMA detector
and the decorrelation CMA detector. We also observe that as the SNR
increases, the convergence time for each detector becomes a constant, sug-

gesting that there is a fundamental limit to the speed of convergence.

In this next experiment, we examine both the convergence time and the computational

complexity of the detectors.

Experiment 4-4. We define thetotal complexityto be the product of the
average convergence time and the number of floating point operations
(FLOPS) required per symbol. It is a measure of how many FLOPS it takes to

open the eye diagram. In Fig. 4-8, we plot the total complexity for each

TABLE 4-1: Optimized Parameters for a Noisy Uniform Linear-Array Application.

SNR; (dB) Vector CMA PWR Decorrelation CMA
19.0 Mo =0.070,k, =1800| Mg =0.06k, =300 [
Bo = 0.06 kg = 300
19.5 0.070, 1800 0 Mo = O.l3,ku =1000
20.0 0.072, 1800 0.06, 300; 0.06, 300 0.13, 1000
21.0-24.0 0.077, 1800 0.06, 400; 0.06, 400 0.13, 1000
28.0 0.077, 1800 0.06, 500; 0.06, 500 0.15, 1000
32.0-40.0 0.075, 2200 0.06, 500; 0.06, 500 0.15, 1000
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detector versus SNRWe see that the total complexity of the vector CMA
detector is actually the smallest, followed by the decorrelation CMA detector,
and the PWR detector, which has the largest total complexity. Even though the
PWR detector converges more quickly than vector CMA detector, it needs

threetimes as many FLOPS to open the eye diagram.

From Experiment 4-3 and Experiment 4-4, we can infer that, for a 3&JLA with A/2-
spacing, the vector CMA detector provides the best trade-off between convergence time

and computational complexity. The PWR detector provides the fastest convergence, but at

9
o r—TT T T T T T T T T T T T T T T T T
16 X 3 Uniform Linear Array
16-QAM input alphabet
n
o 8L -
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-l
&L
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=
Q
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(S PWR
o
O
< 107
2 Decorrelation CMA
—® -0 -® ©
Vector CMA
o0 A N I Y [ S S I N N I B
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Fig. 4-8. Comparison of the total complexity of the three detector versus SNR; for
a 16 x 3 uniform linear-array with half-wavelength spacing application
with 16-QAM input alphabet. The optimal parameters for each detector
can be found in Table 4-1.
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the expense of high computational complexity. Finally, the decorrelation CMA detector

has the worst performance and the highest computational complexity.

4.7.3 Synchronous CDMA

In the following three experiments, we consider a two-user synchronous direct-
sequence CDMA application. We assume that each user draws symbols independently and
uniformly from a 4-QAM input alphabet. We further assume that the transmit pulse-shape
filters are Nyquist and that the received uses a chip-rate sampled-match filter followed by
a serial-to-parallel (S/P) converter. Lgt[ {+1}'® denote the 16-chip binary signature

sequence for thieth user. Given this definition, the channel model is given by (4-1) with

1

H = Cq CH]A, 4-59
16 x 2 m[l 2] (4-59)

whereA, , , = diag(A;, A,) andA;? is the received power of thieth user. The correlation
between the two binary signature sequences is givem tyll—B ci'cy = —g . The received
powers were chosen such that $ER-10 dB. Finally, we assume that the noise veetgr

in (4-1) is a complex Gaussian random variable with covariance nodtrix

In the first experiment, we demonstrate the convergence of the vector CMA with GSC

detector, decorrelation detector, and PWR detector when the noise is zero.

Experiment 4-5. In Fig. 4-9, we plot the MSEversus time for each detector,
assuming no noise. Each curve is an ensemble average of 500 different
random input sequences. There are two curves for each detector: the lower

curve corresponds to a fictitious system employing the minimum-MSE
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Comparison of the vector CMA detector, decorrelation CMA detector, and
the PWR detector, in terms of MSE; versus time, for a noiseless
synchronous CDMA application with 4-QAM input alphabet, assuming
both actual rotators and MMSE rotators.
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(MMSE) PLL or MPLL, while the upper curve corresponds to an actual PLL

or MPLL implementation. The parameters for each detector were optimized to
provide the fastest rate of convergence so as to achieve an open-eye diagram,
or equivalently an MSE= —12 dB. The step size for the vector CMA with
GSC detector and decorrelation CMA detectar< 1, B = 1) were [y yec =

0.387/ (1 +k/200) andyy gec= 0.247 (1 + k/800), respectively. We used a
10-point causal rectangular window to estimate the cross-correlation terms in
decorrelation CMA. The step size wag o,y = 0.20/ (1 + k/500) for the

PWR detector, it waBy 5c= 0.1/ (1 +k/200) for the AGC, and it was =

0.4 7 2(k/200) for the subspace projector. The step size for the MPLL was
decreased with time according 3¢ = 0.4 7 2/2000) The bank of scalar
PLLs parameters used by decorrelation CMA weje= 0.05 anda, = 107,

From the curves, we see that the speed of convergence for both the vector
CMA with GSC detector and the PWR detector are nearly identical. On the
other hand, the speed of convergence of the decorrelation CMA detector is
quite large when compared to the other detectors. We also observe that there
exists a small initial discrepancy between the actual MPLL and the MMSE

MPLL; it is less than 2 dB and it quickly disappears.

In the second experiment, we examine the effect of noise on the convergence time for

each detector.

Experiment 4-6. We define the&eonvergence timw be the average number of

symbols it takes for each detector to reach an MSE-12 dB. In Fig. 4-10,
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we plot the convergence time for each detector versuslS:NErjn: 1|hj,1 1%/

02. Each curve was generated by averaging over 500 different random input
and noise realizations at each SNR. The step size for the vector CMA detector
and decorrelation CMA detectoA (= 1, B = 1) werepy yec = Ho ved/ (1 + k/

ky) and i gec = Ho,de (1 + k/ky,), respectively. We used a 10-point causal
rectangular window to estimate the cross-correlation terms in decorrelation
CMA. The step size wagg pw/ (1 +k/k,,) for the PWR detector, it wef$y a4c

= Bo.age/ (1 + k/kp) for the AGC, and it was\ = A g7 2/%) for the sub-
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16 X 2 Synchronous CDMA Application
4-QAM input alphabet
< 1000 } -
()
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—C o, 5
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Fig. 4-10. Comparison of the convergence time of the three detector versus SNR4
for a synchronous CDMA application. The optimal parameters for each
detector can be found in Table 4-2.
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space projector. The step size for the MPLL was decreased with time
according to\ = 0.472(k/2000) The pank of scalar PLLs parameters, used by
the two extensions of pointwise CMA, wepg = 0.05 anda, = 107°. The
parameters for each detector were optimized to provide the fastest rate of con-
vergence so as to achieve an open-eye diagram at each SNR; the values of the
optimal parameters are listed in Table 4-2. The figure shows that the conver-
gence time of the PWR detector is slightly less than that of vector CMA with
GSC detector. The convergence of the decorrelation CMA detector is by far
the worst of the three detectors. We also observe that as the SNR increases, the
convergence time for each detector becomes a constant, suggesting that there

is a fundamental limit to the speed of convergence.

TABLE 4-2: Optimized Parameters for a Noisy Synchronous CDMA Application.

SNR; (dB) Vector CMA PWR Decorrelation CMA

12.5 Mo =0.30k, =100 | o =0.08k, =100 Hg=0.10k, =800
Bo = 0.05 kg = 100
Ao = 0.40,ky = 75

13.0 0.32, 100 0.1, 100; 0.08, 100; 0.12, 800
0.40, 75

14.0 0.38, 100 0.1, 200; 0.1, 200; 0.16, 800
0.40, 100

16.0 0.38, 200 0.1, 200; 0.1, 200; 0.20, 800
0.40, 200

20.0-32.0 0.38, 200 0.2, 500; 0.1, 200; 0.24, 800

0.40, 200
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This experiment suggests that either the PWR detector or the vector CMA with GSC
detector can be used, since both provide reasonably fast convergence times. In the next

experiment, we examine the computational complexity of each detector.

Experiment 4-7. In Fig. 4-11, we plot the total complexity for each detector
versus SNR It is seen that even though the total complexity of all three

detectors is nearly identical, the PWR detector has the least total complexity,

8
10 T T T T T T T T T
16 X 2 Synchronous CDMA Application
4-QAM input alphabet
n
o 7
o) 10 -
-
5
2
=
Q@
Q.
S
S
= 106 Vector CMA with GSC
8 —— —— —O— =
|_
Decorrelation CMA PWR
105 ] ] ] ] ] ] ] ] ]

12 14 16 18 20 22 24 26 28 30 32
SNR; (dB)
Fig. 4-11. Comparison of the total complexity of the three detector versus SNR; for

a synchronous CDMA application.The optimal parameters for each
detector can be found in Table 4-2.
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followed by the decorrelation CMA detector and then by the vector CMA with

GSC detector.

From Experiments 4-6 and 4-7, we can infer that, for a«Z6synchronous CDMA appli-
cation, both the PWR detector and the vector CMA with GSC detector provide a reason-
able trade-off between convergence time and computational complexity. We should point
out that the computational complexity of the vector CMA with GSC detector is slightly
higher than that of the PWR detector because the former algorithm requires an estimate of

the autocorrelation of the received vector.

4.7.4 Shaped Constellation

In the previous experiments, we assumed that each user selects symbols uniformly
from a QAM input alphabet. Thus, the probability distribution for the symbols is uniform.
It is a well-known fact that it is possible to approach the Shannon capacity on an additive
white-Gaussian noise (AWGN) channel by using a near-Gaussian input alphabet. One way
to generate a near-Gaussian input alphabet is to shape the signal constellation such that the
symbols closer to the origin have a greater probability of being transmitted than symbols
farther away [112]. In the following example, we demonstrate that the vector CMA

detector converges when the input constellation is shaped.

Experiment 4-8. Consider the channel described by (4-58) except with 4
sensors. We assume that each user draws symbols independently from a

shaped 16-QAM constellation, which is defined as follows:
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O

E{ﬂ +j} each with probability(x,) = 5/32
0
x\ = E{i3 +j,+1+3j}  each with probabilitp(x,) = 1/32. (4-60)
0
H(£3 £ 3j) each with probability(x,) = 1/32
0

It is easily verified that the kurtosis of this constellatioxis 1.89, which is

very close to the kurtosis of a complex Gaussian distribution. In Fig. 4-12(a),
we plot the MSE versus time for the vector CMA detector. The curves are an
ensemble average of 500 different random input and noise sequences, with
SNR; = 28 dB. Again, there are two curves for this detector: the lower curve
corresponds to a fictitious system employing the MMSE MPLL, while the
upper curve corresponds to an actual MPLL implementation. The parameter
for the vector CMA detector was optimized to provide the fastest rate of con-
vergence so as to achieve an open-eye diagram, or equivalently ap MSE

18 dB. The step size for the vector CMA detector was giveppy,.= 0.030

/ (1 + k/1200). The step size for the MPLL was decreased with time
according toh, = 0.6 7 2(/2000) From the curves, we see that the vector
CMA detector converges quickly and is able to successfully open the eye dia-
gram after only 2000 symboils. Fig. 4-12(b) shows the constellations of the last
1000 symbols from the last trial. We see that the eye diagram is indeed open
and that the transmitted symbols can be recovered using a simple decision

device.
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Shaped 16-QAM input alphabet
M = 0.037/(1+k/1200)

Ay = 0.60/2(K/2000)

MSE, =18 dB

Vector CMA + MPLL
Vector CMA + Ideal Rotator

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (K)

@)
kl P Il_ a;l . v Is\_
” * » % W e » @
# ® & 4!- | & "® w %
oo v e -&I " % .%-

User 1 User 2
(b)

The vector CMA detector applied to a uniform linear-array with half-
wavelength spacing and a shaped 16-QAM input alphabet: (a) learning
curves, assuming both an actual MPLL and an MMSE MPLL; (b)
constellations from the last trial, baud 9000 to 10,000.
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This example clearly demonstrated that the vector CMA detector is compatible with

capacity-achieving systems.

4.7.5 Computational Complexity

In the following example, we compare the computational complexity for all of the

detectors.

Experiment 4-9. Consider a receiver witim = 20 sensors. In Fig. 4-13, we
plot the number of FLOPS required per symbol for each detector with the

appropriate blind unitary estimator (either the MPLL or a bank of single-user

6
10 | | | | | | | | | | | | | | | | |

FLOPS / symbol

103 l 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Users (n)

Fig. 4-13. Comparison of the computational complexity of the various detectors
versus the number of users N for a fixed number of sensors M = 20.
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PLLs) versus the number of userg.(This figure shows that the combination
CMA detector with a scalar PLL bank has the lowest complexity of any
detector. The vector CMA detector by itself has a lower complexity than com-
bination CMA detector, but the MPLL, which is somewhat more complex
algorithm, raises the overall complexity of this detector. The PWR detector
has a nearly constant computational complexity for all values, dfecause

the dimension of the subspace projector also depentyson the number of
sensorsm, which is fixed in this experiment. Far < 9, the decorrelation
CMA detector has the third lowest complexity, while for> 12, it has the
second highest complexity. The vector CMA with GSC detector has the
largest computational complexity when> 5. The reason that these two
detectors have the highest computational complexity is because each detector

requires an estimation of a system parameter.

Both computational complexity and performance of the detector are important consider-
ations when selecting a detector. As mentioned earlier in Experiments 4-4 and 4-7, there is
an inherent trade-off between performance and complexity. This trade-off must be care-

fully balanced when selecting a detector.

4.8 SUMMARY

We began this chapter by defining the vector CMA detector which is based on a unique
multidimensional generalization of the constant-modulus algorithm. This detector inherits

the most important property, the invariance to an arbitrary unitary rotation, from CMA. It



177

uses a linear detector with the smallest possible dimensions to recover the transmitted

data. We have also included a detailed implementation of this blind detector.

One of the main results of this chapter is determination of the local minima of the
vector CMA cost function. We have shown that, in the absence of noise, this cost function
is minimized by only unitary matrices when the input alphabet is non-CM (see Theorem
4-3), and by both unitary and non-unitary matrices when the input alphabet is CM (see
Theorem 4-4). The unitary matrices are indeed desirable because we have already devel-
oped an algorithm that can estimate and resolve the unitary ambiguity. A consequence of
Theorem 4-3 is that the vector CMA detector is compatible with both nearly-Gaussian and
highly shaped input alphabets and therefore it can be used on capacity-achieving systems.
We have also determined the local minima of the cost function in the presence of noise.
Using the noisy local minima, we were able to demonstrate that the vector CMA has near-

MMSE like performance in the presence of noise.

By exploiting the properties of the desirable minima, we were able to add an additional
term to the vector CMA cost function that penalized the undesirable local minima. The
modified cost function was referred to as the vector CMA cost function with Gram-
Schmidt constraint (GSC). We have shown that this cost function is minimized by only
unitary matrices for all input alphabets, including CM input alphabets. The elimination of
the undesirable local minima, however, is accompanied by an increase in complexity. For-
tunately, the additional term in this cost function, which is based solely on second-order
statistics, assists in reducing the convergence time. We have also included a detailed

implementation for the vector CMA with GSC detector. This detector is certainly impor-
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tant because, as will be shown in the next chapter, it extends quite naturally to channels

with memory.

Finally, we have shown, through computer simulations, that both the vector CMA
detector and the vector CMA with GSC detector compare favorably in terms of perfor-

mance and complexity to other blind multiuser detectors.
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APPENDIX 4.1

PROOF OF THEOREM 4-3

The noiseless vector CMA cost function can be written in terms of the channel input

vectorx and the overall transfer function matexas follow<:
J,(F) = E[(X*F*Fx)z _2M (X FFx) + MVZ} . (4-61)

Sincex is a random vector sequence, (4-61) is completely parameterized by the overall
transfer function matrixc. The matrix F°'F is Hermitiar® and positive-semidefini‘tle
matrix [106]; therefore, it has a unique eigendecompositioi = VDV", whereV is a

unitary matrix and is a diagonal matrix with non-negative real entries.

Letu =V"x and letw denote am x 1 vector whosé-th component is given by

w; = Juil? = |vi'x]?, (4-62)

2. The dependence on time has been suppressed to simplify the notation.
3. The matrixG is Hermitian matrix if and only i5 = G".

4. An Hermitian matrixG is positive semi-definite if and only if Gr = 0 for all r OJ C".
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wherev; is thei-th column ofV. Using these definitions, it is easy to show tBft F Fx]
= dTE[w], whered is ann x 1 vector composed of the diagonal element®oThe expec-

tation of thei-th term ofw is given by:

E[w;] = E[1v; x12] = vi E[xX"]v; = ma | v;] 2 = my, (4-63)

where the third equality is due to the assumption that all users are independent and identi-
cally distributed. Henceg[w] = m,1,, where then x 1 vectorl, =[1 ... 1]T. We can sim-

plify (4-61) to:

Ju(V, d) = dTRyd - 2moM,dT1, + M2, (4-64)

whereR,,,, = E[ww] is a function ofv.

We observe that (4-64) is completely parameterized/lgndd. Since the variables
are independent, the local minima can be determined by first minimizing the cost function

with respect tal and then with respect ¥ The gradient o8, with respect ta:

Dd‘JV = ZRWWd - 2m2MV1n. (4-65)

The optimald occurs when (4-65) is equal to the zero vector:

Rywd = MM, 1, (4-66)

Adding then equations of (4-66) yields:
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) n
E[|u| Z lu;1%di] = nmoM,. (4-67)
i=1

SinceE[||u||2] = E[||x||2] = nm, andM,, = E[||x||4] / E[||x||2], we can rewrite (4-67) as:

n
ElJu|® ¥ Tuil?di] = E[Ju]’]. (4-68)
i=1

Clearly,d = 1,, satisfies (4-68). Sincé,(F) =0 and (4-64) is quadratic id, d =1, is a
global minimum for the vector CMA cost function. If the mat#Ry,,, is full rank, then the

global minimumd = 1,, is also unique (independent of the choic& pf

Lemma 4-1: The matrixR,,,, can be written as a linear combination of three

matrices:
Ry = (mz)z[lnlnT +(1-BTB) + (K—1)BTB} (4-69)

where B]” = Ivijlz'
Proof: See Appendix 4.2.

Lemma 4-2: If k > 1, then the matriR,,,, IS a positive definite.

Proof: See Appendix 4.3.
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SinceR,,,, is positive definite, it must also be full rank.Therefodes 1,, is the only
solution to (4-66) when the input alphabet is non-CM. In fact, this solution is also the
unique global minimum. It is seen that wher¥ 1,,, F'F = I. Thus, the vector CMA cost

function is minimized if and only iF is unitary.lJ



183

APPENDIX 4.2

PROOF OFLEMMA 4-1

Recall that thé-th component oiv is given by:

n 2

wi = Jvi x| = > Vi X[ - (4-70)
=1

Thus, the ij)-th component oR,,,, can be written as:

[Rywlij = E[wiw; 1, (4-71)
n 2 n
= E|: z V|i*X| :||: Z ij*Xp :|, (4'72)
=1 p=1

n n n n

=5 > 5> Vii VimiVpj VaiEXXm XpXq 1- (4-73)
I=Im=1p=1q=1

We can use the following identity: kfxy,*x,x,*] = (m2)2[6km6pq+6kq6mp+(K—2)6kmpq],

to simplify (4-73):



n n n n
e \2 2 2 x *
[Ruwlij = (My) [ > IVil® S Ivgil™+ S vivii ) vpivp
p:]_ |=1 p:1

1=1

+(K-2) z IVIi|2|VIj|2:|7

1=1

n
= (m,)? 1+6ij+(K—2)Ez |v|i|2|v|j|25 :
Dlzl U

= (m2)2|:[lnlnT]ij + [I];; + (K_Z)[BTB]ij:| :

= (mz)z[[lnlnﬁi,- +[1-BTBJ;; + (K—l)[BTB]i,-]

where we have define®[;; = |v;;]°%.

184

(4-74)

(4-75)

(4-76)

(4-77)

Hence R,,, can be expressed in terms of its elemental component as follows:

Ry = (mz)z[lnlnT +(1-BTB) + (K—1)BTB}

where B]” = IVijIZ. O

(4-78)
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APPENDIX 4.3

PROOF OFLEMMA 4-2

First, we show thaR,,,, iS a positive-semidefinite matrix. Recall from (4-69) tRg},,

can be written in terms of its elemental components as follows:
Ry = (m2)2[1nlnT +(1-BTB) + (K—1)BTB}, (4-79)

where BJ;; = |vj;12. Clearly, the matrix.,1," is positive semidefinite because its eigen-
values are zero, with multiplicith—1, and n. The matrix k-1)BTB is also positive
semidefinite because B'Br = ||Br||2 >0 for all r O €" and &-1) > O for a non-CM

input alphabets.

The matrix { —B'B) is positive semidefinite if (1 -B"B)r = | r||2—||Br||2 >0 for all

r O C". Observe that:

n

|Br|*=S

i=1

2
. (4-80)

n
2
> il

i=1

. _ 2 n _ . n
Definep; = |v;;]“ and observe thaEj _PiT 1. We can view the :sunzj _,Pifj @san

expectatiorE[R], whereR is a random variable over the setf{with probability mass
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function {p;}. From Jensen’s inequality [Cover & Thomas], the square of the mean cannot

exceed the second moment:

2 n
= IERIZ<E[RIZ = 5 1vil21n12 (4-81)
j=1

n

> Ivijl
i=1
Hence, (4-80) is upper-bounded by:

n n n n n
Br?< S S glPIngl2= S IGIE Y gl2= S Inl2= 2 @82

i=1j=1 j=1 i=1 j=1

where zn 1|Vij|2 = 1 because the columns @fhave unit length. This equation implies
1 =

that | r|*>~|Br|® 2 0 for all r O €" and so (- BTB) is a positive-semidefinite matrix.

Since the sum of positive-semidefinite matrices is positive semidefinite [R)g],is a

positive-semidefinite matrix.

The matrixR,, can be either singular or positive definite. If we assume this matrix to

be singular, then there exists a nonzero vactuch that:

'Rywr =0 = (m2)2r*{1n1nT +(1-B™B) + (K—l)BTB} r=0, (4-83)

- (mz)z[llnTr|2+(||r||2—||Br||2)+(K—1)||Br||2} =0, (4-84)

« 11,"r|?=0and|r|* = |Br|* and|Br| =0, (4-85)
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where the third implication is due to the fact that each term in (4-84) is non-negative. From
(4-85), we see that the last two conditions imply tMZ =0, which is impossible since
we assumed thatis nonzero. Therefor&,,,, is never singular and thus, must be positive

definite.[
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APPENDIX 4.4

PROOF OF THEOREM 4-4

For a CM input alphabek (= 1), (4-69) reduces to:
Ryw = (mz)z[lnlnT +(1 - BTB)}. (4-86)

In Appendix 4.3, we saw that,1," and ( — BTB) are both positive-semidefinite
matrices; henceR,,,, is also a positive-semidefinite matrix. The matRy,,, can either be
singular or full rank, depending on the exact valua/off R,,,, is full rank, thend =1, is
the only solution that satisfies (4-66). (It is independent of the choioe)dflowever, if
Rww IS singular, then the solution to (4-66) depends upon the choisé dhe rank of

Rww IS summarized in the following lemma.

Lemma 4-3: If k =1, thenR,,,, is singular if

V = PL Q2 PR’ (4'87)
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where Q; is a k; % k; unitary matrix withk; O {1, ..., n—-1} satisfying
P : ,

Z_ . k; = n, and whereP| and Pk are real permutation matrices; other-
1=

wise, R, IS nonsingular.
Proof: See Appendix 4.5.

In Appendix 4.1, we showed that= 1, is a solution to (4-66) regardless of the rank
of Ry If Ryw IS Singular, then any vector in the nullspace of this matrix addeb+d,

is also a solution. In Appendix 4.5, we show that the nullspacRgf, must have the

form:

a1l

1
r=pPgT |92k, (4-88)

. L . P
whereaq; is a nonzero constant atkglJ { 1, ..., n—1} satisfying the relatlonsz_ ) k; =
1=

n, and zip_ 1cxiki =0. Thus, wherr,,,, is singular, the solution to (4-66) is given by:

o1y,

1
d=1,+PgT| 27|, (4-89)

aplkp

Observe that this vector satisfies the following property:
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Sy di=n, (4-90)

or equivalentlytr(D) = n.

In summary, wherm,,,, is singular, the vector CMA cost function is minimized if and
only if F'F = VDV, whereV is given by (4-87) and wher® is a non-negative diagonal
matrix satisfyingtr(D) = n. By expanding the produét’F, it easy to show thae"F = D,
whereD is a diagonal matrix, whose diagonal entries are a possibly reordered version of
the diagonal entries @. Hence, the vector CMA cost function is minimized if and only if

F'F =D, whereD isa positive diagonal matrix satisfytr(gS) =n.

In both cases, whether,,,, is either singular or nonsingular, the vector CMA cost
function is minimized wher'F = D, whereD is a positive diagonal matrix satisfying
tr(D) = n. Therefore, the optimal overall transfer function matrix is giverFby UDY2,

whereU is a unitary matrix and is a positive diagonal matrix satisfyingD) =n. [
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APPENDIX 4.5

PROOF OFLEMMA 4-3

SinceR,,,, IS a positive-semidefinite matrix for a CM input alphabet, it can either be
singular or nonsingular. The matrir,,,, is singular if and only if there exists a nonzero

vectorr O C" such that:

rRywr=0 = (mz)zr*[lnlnT + (1 - BTB)} r=0, (4-91)
- (mz)z[llnTrlz + (||r||2—||Br||2)} =0, (4-92)

T _ 2 _ 2
= 1,"r=0and|Br|* = |r|". (4-93)

In Appendix 4.3, we showed that

n

|Br|*=S

i=1

2 n n )
< Z Z i 121517 = | r|”. (4-94)

i=1j=1

n
2
z Ivijl“rj

i=1

Equality in (4-94) is achieved when the random varialRles no longer random; but is

deterministic. This random variable becomes deterministic when the componerdaseof
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equal to a constant for all nonzero entries onitlierow of V. For exampleR is determin-
istic whenr = a1, for some nonzero constaat Unfortunately,r = a1, violates the first

condition of (4-93), and therefore this vector does not lie in the nullspag,of

If V is a block-diagonal matrix, then the vectocan be subdivided into disjoint sub-
vectors corresponding to the nonzero blocks/ofn this case, the random varialieis
deterministic if the components of each subvector are equal to some nonzero constant. If
there are at least two subvectors, then we can choose the constant for each subvector in
such a way that,,'r = 0. SinceR is deterministic and the vectersums to zero, (4-93) is

satisfied and therefor,,,, is singular.

With this information, we see th&,,,, is singular if and only if the matrix/ has the

form:

V = PL Q2 PR’ (4'95)

. : N o P
whereQ; is ak; x k; unitary matrix withk; [0 {1, ..., n—1} satisfying z 1ki =n and

1 =
where P and Pg are M+N+1)n x (M+N+1)n andn X n real permutation matrices,
respectively. The vectarthat lies in the nullspace &, has the form:

a1l

1
r=PgT| 27k |, (4-96)

_aplkp_
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: L . P
whereq; is a nonzero constant satisfying the constralntEat 1aiki =0.
1=

In summaryR,,,, is singular if and only i¥ is given by (4-95)0
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APPENDIX 4.6

PROOF OF THEOREM 4-5

The noisy vector CMA cost function can be expressed in terms ofitke channel
input vectorx, then x 1 noise vectomn, then x n overall transfer function matri¥, and

then x m linear detecto€C as follows:

J, = E[(X*F*Fx)z +(n"C*cn)? + 2(x'FFx)(n"c*cn) + 2(x*F*Cnn*C*Fx)}

- 2MVE[X*F*FX + n*C*Cn} + M2 (4-97)

Recall from (4-24) that the overall transfer function matfixis related to the linear
detectorC by the following relationshipF = CH, whereH is them x n channel matrix.

Both the channel matrix and the linear detector can be expressed in terms of a unique trun-
cated singular-value decompositidti= UZQ" andC = QAW", whereU andW arem x n
truncated unitary matrice® is ann x n unitary matrix, and andA aren x n real non-
negative diagonal matrices. Using these definitions, we findrfats QZG=Q" and that

C*C =UGU", where then x n matrixG = U"WAW*U.

Lets = >Q"x andw = U"n. Using these definitions, we can rewrite (4-97) as:
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J, = E|:(S*GS)2 + (W'GW)? + 2(s"Gs) (W Gw) + Z(S*GWW*GS):|
- ZMVE[S*GS + W*GW} + M2 (4-98)

This equation is seen to be completely parameterized by the n@tBy unwrapping the
matrix G into a column vectog = U(G), expanding the products, and taking the expecta-

tion, we find that (4-98) reduces to:

Jy= g*{(mz)ZU(ZZ)U(ZZ)T + (M)222 + (M2 (K-2)W'W + a*U(1)U(1)T + 0%l 7

+2m,a?UE)HU,) T + ZmZGZZZB}g - 2Mvg*{m2U(Zz) +o?U(1,) |+ M2, (4-99)

where

2
5% = 052 andsg=| X . (4-100)

Then x n2 matrixW is defined as follows

W =[01%0; 00y, .., 010,01 Odp, -+, 01040y Uy, -, Op’dy O], (4-101)

5. For this particular equation, *’ represents a complex conjugate.
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whereg; is thei-th diagonal element di, q; is thei-th column ofQ, and T’ represents
the Hadamard product (component-by-component product) [HJ]. The derivation of (4-99)
can be found in Appendix 4.7. As before, this cost function is completely parameterized

by the vectop.

The local minima of the noisy vector CMA cost function can be found by taking the

gradient of (4-99) with respect tp
Ogdy = [2(m2)2U(22)U(22)T + 2(m2)22§ +2(my)?2(K-2)W'W + 20*U(1,)U1,)T
+20% 2 + 2m,a?U(Z2)U1,)T + 2m,c?U(1,)UE?)T + 4m202225}g

- 2Mv[m2U(ZZ) + OZU(In)}. (4-102)

The inflection points of the cost function occur when the gradient is equal to the zero

vector; or equivalently when,
g= MV{(mz)ZU(zz)U(ZZ)T +(MR)2Z2 + (M2 (k-2)W'W + c*U (1)U (1)T + 0%l 2
-1
+ m,a2UE)U(1,)T + m,a2U(1,,)UE2)T + 2m2022é} [mZU(Zz) + GZU(In)}.(4—1OS)

If we map the column vectay back onto the matrix, we find that the noisy vector CMA
cost function is minimized if and only #F = Q=U(g)=Q", whereg is defined by (4-

100), (4-101), and (4-103).
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Recall from Appendix 4.1 that F has a unique eigendecompositidhf = VDV”,
whereV is ann x n unitary matrix and is ann X n non-negative real diagonal matrix.

Relating the two forms df'F, we find that

VvDV'= QzU(g)=Q". (4-104)

The overall transfer function matrix that minimizes the noisy vector CMA cost function
can be found by taking the square-root of the eigendecompositisnyD2v", whereu
is an arbitraryn x n unitary matrix. The corresponding linear detector that minimizes the

noisy vector CMA cost function is given ky= FHT, whereH = (H*"H)H". O



198

APPENDIX 4.7

DERIVATION OF (4-99)

The noisy vector CMA cost function is written as follows (see (4-98)):

J, = E[(S*GS)Z + (W'GW)? + 2(s"Gs) (W' Gw) + 2(S*GWW*GS):|

- 2MVE[S*GS + W*Gw} + M2 (4-105)

wheres = ZQ"x, w = U"n, U is anm % n truncated unitary matrixQ is ann x n unitary

matrix, and is ann x n non-negative real diagonal matrix. The first term of (4-105) can

be expanded as follows:

M s

E[(S*GS)Z} =

n n n
> S > gigiElsisisi s, (4-106)
j =11=1 p= 1

1

where

n n n n

E[si sjs1 spl = 0i0j010p, > > > > Jaidbj Jeiddp ElXa XpXc Xql- (4-107)
a=1lb=1c=1d=1
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Using the fact thaE[x, xpXe Xgl = (M2)2[8ap8cq + ®adhe + (K—2)8apcql, We simplify (4-

107) as follows:

n n n n
E[Si*sjsl*sp]: (m2)20'i0'j0'|0'p|: 2 qaiQaj* z QCIQCp* + z Qaiqap* z qC|qu*
a=1 c=1 a=1 c=1

n

*(k=2) H Qaiqaj*anQap*:|- (4-108)

a=1

n
=(m2)2[0i20|25ij5|p+0i20|25ip5j|+0i0j0|0p(K—2) > QaiQaj*anQap*:|-(4'109)

a=1
Substituting (4-109) into (4-106), we obtain:
n n n n
E[7GsP| =(m)?] 5 Y ofotaig+ Y Y ofollgyl?
i=1j=1 i=1j=1

n n n n

n
+(K-2)_Z > > > zgijgIpo-io-jGIO_aniQaj*anQap*}- (4-110)

i=lj=1l=1p=1a=1

This equation can be expressed in terms of the column \eeetbl(G) as follows:
E[(S*Gs)z} = (mz)zg*[ UEHUEHT + 52 + (K—2)W*W:|g, (4-111)

where
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2.2
012 0
2.2
52 = 0,2 , (4-112)
0 05,22
and then x n? matrix W is defined as follows
W = [032d; 04y, ..., 010401 Ody, ..., 01040, 0dy, ..., 0%dn Oy, (4-113)

whereao; is thei-th diagonal element df, g; is thei-th column ofQ, and TJ’ represents

the Hadamard product (component-by-component product) [106].

Expanding the second term of (4-105), we find that:

n n n n
ElWew?|= 5 5 ST aiginElwwwwg). (4-114)
i=1j=11=1p=1

We have assumed thatis a zero-mean white Gaussian noise vector with power spectral
densityo?l. Thereforew is also a zero-mean white Gaussian noise vector with power
spectral densityg?l. Using this information, we obtaifE[w, wyw, Wyl = 0%8,p8.q +

048,4%,c. Hence, (4-114) can be simplified to:

E[(W*GW)Z} =o'y Yoaigi+oty Y lgl? (4-115)

i=1j=1 i=1j=1

6. Again, **' represents a complex conjugate.
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We express this equation in terms of the column vegtolJ(G):
E[(W*GW)Z} _ 049*[ U )U,)T + 1,2 }g. (4-116)

The third term of (4-105) can be expanded as follows:

E[(S*Gs)(W*GW)} = [ % % gijE[si*sj]}[ % % g|pE[w|*wp]}, (4-117)

i=1j=1 I=1p=1
where

n n n

Elsi'sj] = 0i0; > > Gailbj E[Xa Xp] = My0;0; > Gailaj = M20;%djj. (4-118)
a=1b =1 a=1

Sincew is a zero-mean Gaussian noise vector with power spectral deﬁ$it&[wi*wj] =

0. Hence, (4-117) reduces to:

E[(S*GS)(W*GW):| = [mz % oigii“ % ozg”] (4-119)

i=1 1=1

We express this equation also in terms of the column vgetdd(G):

E[(S*Gs)(w*Gw)} = g*[mZGZU(ZZ)U(In)T}g. (4-120)
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Expanding the fourth term of (4-105), we obtain:
n n n n
E[S*GWW*G8:| =33 5> 9ij9ip Elsi slE[wjw, 1. (4-121)

From (4-118), we see th&(s; s|] = m,0;2d;,. Using the fact thaiv is a zero-mean Gaus-
sian noise vector with power spectral densit, we find thatE[ijp*] = 02 Therefore,

(4-121) reduces to:

n n
E[S*GWW*GS} = m,0? Z z oi?1gij12 (4-122)
i=1j=1

We express this equation also in terms of the column vgetdd(G):

E[s*wa*Gs} = m,0%g" 324, (4-123)
where
2 o
2 2
55 = 2 . (4-124)
o
- zz_

Finally, the last two terms of (4-105) can be expanded as follows:
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n n n
E[S*Gs} =5y giiElsi’sj] = m; > 0;%0;; = myg U(Z?), (4-125)
iT1j=1 i=1
n n n
E|:W*GW:| = z z g”E[Wl*WJ] = 02 Z g” = Ozg*U(ln). (4-126)
i=1j=1 i=1

Substituting each of the expanded terms back into the cost function, we arrive at (4-99).
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APPENDIX 4.8

PROOF OF THEOREM 4-6

The vector CMA cost function with Gram-Schmidt constraint can be written in terms

of the channel input vectarand the overall transfer function matexas follows:
Jos(F) = E[ HCFRXE2 - 2M, BCFTRXE + M2 |+ (mp)? || FFT - 1z, @127)

Sincex is random vector sequence, (4-127) is completely parameterized by the overall
transfer function matrixe. Both F'F andFF™ are positive semi-definite (PSPand Her-
mitian® matrices; therefore, both matrices have a unique eigendecompogiien=
VDV" andFF" = UDU™ whereV andU are unitary matrices and is a diagonal matrix

with non-negative real entries.

In Appendix 4.1, we showed that the first term in (4-127) can be expressed as follows:

3V, d)=d"R,d - 2moM,d"1, + M2, (4-128)

7. The dependence on time has been suppressed to simplify the notation.
8. A matrixG is positive semi-definite if and only if Gr >0 for all complex vectors.

9. The matrixG is Hermitian matrix if and only i =G”.
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whered is ann x 1 vector composed of the diagonal elementfoénd wherer,,,, =

E[ww]. Thei-th component of tha x 1 vectorw is given by:
wi = vi I3, (4-129)

wherey; is thei-th column ofV.

We can express the second term in (4-127) in a similar form. The second term can be

expanded as follows:
(mp)?|FF" - |||2F = (my)?|uUDU" - |||2F = (my)%tr|D - |||2F, (4-130)

where the second equality is a result of the fact that the Frobenius norm is invariant to a

unitary transformation. We can express (4-130) in terms of the \a@et®follows:
(2| FF™ =17 = (mpX(dTd - 2dT1, + n). (4-131)
Therefore, the vector CMA cost function with GSC can be simplified to:

Jas(V; d) = dT Ry + (M1 = 2HNoM,, + (Mp)?HIT1, + M2 + (mp)ng - (4-132)

We see that (4-132) is completely parameterize¥layndd. Since the variableg and
d are independent, the local minima can be determined by first minimizing the cost func-
tion with respect tal and then with respect t@. The gradient ofigg with respect tad is

given by:
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Og Jas = 2 Ruw + (M)?1H = 2HnoM, + (mo)?Hl,. (4-133)

The optimald occurs when (4-133) is equal to the zero vector, or equivalently wiheat-

isfies the following equation:

HRuw + (M2)?1Hd = HnaM, + (Mp)?HL,. (4-134)

In Appendix 4.1, we showed th#,,,, 1, = m,M,1,. Using this relationship, it easy to
show thatd = 1,, satisfies (4-134). Sinc&zs(F) = 0 and (4-132) is quadratic id, d = 1,
is a global minimum for the vector CMA cost function with GSC. K,{, + (m,)?1) is a

full rank matrix, therd = 1,, is also a unique global minimum (independen¥pf

We know that if a matrix is positive definite, then it also full rank. In Appendix 4.1, we
showed thaRr,,,, is positive definite for non-CM input alphabets% 1), and in Appendix
4.4, we showed tha,,,, is positive semi-definite for CM input alphabeks< 1). In either
case, the matrixi,,,, + (m,)?1) is positive definite becaugm,)?1 is positive definite and
the sum of a positive definite matrix with either a positive definite or positive semi-definite
matrix is always positive definite matrix [106]. Hence, the mat®y,{, + (m,)?1) is full
rank, and therefore = 1,, is the only solution to (4-134). In fact, this solution is also the
unique global minimum for any input alphabet. We observe that witven,,, F'F = 1 and
FF" =1 and therefore, the vector CMA cost function with GSC is minimized for any input

alphabet if and only iF is unitary.]
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APPENDIX 4.9

DERIVATION OF (4-55)

Recall that the output of the linear detector is giverypy Fx, + Cn,. Then x n uni-
tary matrixQ that minimizes the total (and individual) mean-squared error can be found

by minimizing:

MSE = E[|Q"(Fx, + Cny) — xylI°], (4-135)

with respect t@. Expanding (4-135) and taking the expectation, we find it reduces to:

MSE = E[I(Q"F - I)x, + Q“Cny’], (4-136)
* 2 * 2
=my|Q F~Ilg +[QClE, (4-137)
* 2 2
= my|Q'F-1[g +[Cllg, (4-138)

where the third equality is due to the fact that the Frobenius norm is invariant to a unitary
matrix. We observe that last term in (4-138) is independent of the unitary ma@trix

Hence, minimizing the MSE is equivalent to minimizitiQ”“F — |||,2: with respect toQ.
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This minimization problem is a classical problem in factor analysis [106]. The unitary
matrix that minimizes the MSE is given lfy = UV", where then x n unitary matricesJ

andV are specified by the singular-value decomposkenuDV". [
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APPENDIX 4.10

DERIVATION OF (4-56)

Recall that the output of the linear detector is givenyRy= Fx, + Cn,. Then x n
diagonal unitary matrixQq that minimizes the total (and individual) mean-squared error

can be found by minimizing:

MSE = E[|Qq"(Fx + Cny) — Pexyd ], (4-139)

wherePg is a complex permutation matrix that accounts for the inherent ambiguities asso-
ciated with a blind detection problem, with respectlg. Expanding (4-139) and taking
the expectation, we find it reduces to:

MSE = E[I(Q4"F - PE)x + Qq"Cnyl’], (4-140)

* 2 * 2
mMz[Qq F — Pellg +1Qq CliE, (4-141)

* 2 2
mMy[lQq F - Pellg + IClE, (4-142)
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where the third equality is due to the fact that the Frobenius norm is invariant to a unitary
matrix. We observe that last term in (4-142) is independent of the unitary m@fix
Hence, minimizing the MSE is equivalent to minimizifi@4F — PF||2F with respect to

Qu-

Expanding the first term in (4-142), we find that it reduces to:

MSE = [Qq"F - PellZ, (4-143)

IF - Qal, (4-144)

n
> il + 1-21filcos(@i—6) + 5 1%  (4-145)

i=1 iZ

where we have defined  EP:", [F1j; = If;lexp(i@;), and Rql;; = exp(i6;). Clearly, (4-
145) is minimized if and only ify; = 6;. Hence, the diagonal unitary mati@y that mini-

mizes the total MSE is given by:
[Qalii = exp(O[FPE To), (4-146)

whereP removes both the ambiguity in assigning labels to each user and the ambiguity

inherent in all QAM constellation from the overall transfer function ma&trix
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CHAPTER 5

SPATIO-TEMPORAL
VECTOR CMA

The original constant-modulus algorithm (CMA) cost function was designed to
blindly mitigate intersymbol interference (I1SI) for channels with memory [85]. Godard
showed that, in the absence of noise, the global minimum of the cost function corresponds
to the case of zero ISI [85]. Later, Foschini demonstrated that this minimum is the only
minima of the cost function when the equalizer has infinite length [86]. These results are
valid for both minimum-phase and non-minimum phase channels. The CMA cost function
can thus mitigate ISI for all types of channels. This result is a consequence of the fact that
the cost function uses both second-order statistics and higher-order statistics when

inverting a channel.

In Chapter 2, we showed that almost all square channels with memory are non-min-
imum phase and that almost all tall channels with memory are minimum-phase. One of the
reasons that we proposed a generalization of the CMA to vector-valued signals is because
of its ability to mitigate interference on both minimum-phase and non-minimum phase
channels. In this chapter, the vector CMA-based algorithms and results from the previous

chapter are extended to channels with memory. We show that the resulting cost function
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can mitigate intersymbol interference and multiuser interference on both square and tall
channels with memory. We also show that the resulting algorithms fit in with the general

whiten-rotate structure described in Chapter 1.

In Section 5.1, we introduce the channel model and assumptions that will be used
throughout the remainder of this chapter. In Section 5.2, we show that tall channels with
memory have some astonishing properties: they are almost always minimum-phase and
more importantly, they can always be inverted by an FIR linear detector. In Section 5.3,
we introduce the vector constant-modulus algorithm cost function and we derive its corre-
sponding stochastic gradient-descent algorithm. In Section 5.4, we determine the local
minima of the cost function in the absence of noise. We show that for certain input alpha-
bets, the cost function is minimized only by desirable local minima, while for other input
alphabets, it is minimized by both desirable and undesirable local minima. In Section 5.5,
we propose a modification to the vector CMA cost function, which can eliminate the unde-
sirable local minima for all input alphabets. We also determine the local minima of the
modified vector CMA cost function in the absence of noise, and derive the corresponding
stochastic gradient-descent algorithm. In Section 5.6, we quantify the performance of this
algorithm in the presence of noise. Finally, in Section 5.7, we present several simulation
results which demonstrate the effectiveness, in terms of speed of convergence and com-

plexity, of the proposed algorithm.

5.1 CHANNEL MODEL AND ASSUMPTIONS

Consider the multiuser channel model depicted in Fig. 5-1:
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M

e = Z Hix—i + N, (5-1)
i=0

whereH(z) = Ho + Hyz 1 + ... + Hyz ™M is anm x n causal and finite-impulse response
(FIR) channel transfer function matrix with memax§. This type of channel arises in a
wide variety of real-world applications, such asrarsensorn-user uniform linear array
with multipath and am-user asynchronous CDMA system. The transmitted veg{os
ann x 1 vector consisting of the symbols sent by théndependent users. The received
vectorr, is anm x 1 vector composed of the receiver observations, wijleepresents an

m X 1 noise vector with power spectral dendify.n,'] = 61, with g2 > 0.

We make the following assumptions: first, the charnd@) has full-column rank on
the unit circle {z] = 1), which implies that the channel input vectqr can be recovered
using a linear detector (see Section 2.1.2). Second, the signal and noise components are
independent and have zero mean. Third, the components of the channel inpukyeceor

stationary, independent, and uniformly selected from a finite input-alphabet.

Ny
nx1 l mx1
Xk —— H(2) > » Tk
Channel
m X n

Fig. 5-1. A block diagram of an M X N noisy channel with memory.
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As in Section 4.1, we can use the kurtosis to subdivide the set of all input alphabets
into three distinct and disjoint subsets. The following three definitions summarize the dif-

ferent subsets.

Definition 5-1. If k <2, then the input alphabet is said tododsGaussian

Almost all well-known input alphabets, such phase-shift keying (PSK) and quadrature
amplitude modulation (QAM) constellations, are sub-Gaussian (see Section 4.1). The
reason these input alphabets are called sub-Gaussian is because their kurtosis is less than

the kurtosis for a complex Gaussian input alphabet.

Definition 5-2. An input alphabet is said to InmeeseGaussianf K = 2.

Clearly, a complex Gaussian input alphabet is meso-Gaussian. However, not all meso-
Gaussian input alphabets have a complex Gaussian distribution. For example, the fol-

lowing input alphabet does not have a complex Gaussian distribution:

0 {+1+j} each with probabilitp(x) = =27
(i _ O 6
Xk - D y (5'2)
0 ) . . _3+./7
0 {£3 % 3j} each with probability(xy) = o1

but it is a meso-Gaussian input alphabet. Finally, the last subset is defined as follows:

Definition 5-3. If kK > 2, then the input alphabet is said todoperGaussian
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A super-Gaussian input alphabet can be created by heavily shaping the inner symbols of

an input alphabet. For example, the following input alphabet:

_ E {(x1£j} each with probabilityp(x,) = 0.20
X = g , (5-3)
H @#3+3j)  each with probabilitp(x,) = 0.05

has a kurtosis of =2.5148.

We focus our attention primarily on the sub-Gaussian input alphabets, since they are

used in most real-world applications.

5.2 TALL CHANNELS

In this chapter, we consider both square € n) and tall fn > n) channels with
memory in (5-1). Tall channels have some surprising properties: they are almost always
minimum-phase and they can be inverted by an finite-impulse response (FIR) linear

detector. However, these results do not apply to square channels.

In the following discussion, we show that a tall channel with menMng inverted by

an FIR linear detector. A zero-forcing linear detector can be defined as follows:

Definition 5-4. A zero-forcing linear detector is any x m stable LTI filter
C(z) satisfying C(z)H(z) = D(z), whereD(z) is ann x n diagonal matrix

: -D; : :
whosei-th diagonal element has the foum™*  dmds an arbitrary integer.

Consider arm x n tall channel with memor: H(z) = Ho + Hyz 1 + ... + Hyz ™, and

ann x m linear detector with memori: C(z) = Cy + C;z % + ... + Cpyz ™. We can
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express the relationship(z)H(z) = D(z) = Dg + D1zt + ... + Dpyenz M in block-

matrix notation as:
[CoCy...CNIH=[Dg Dj ... Dpanl, (5-4)

whereH is the N+1)m x (M+N+1)n block-Toeplitz matrix:

Ho Hl "'HM O

H= 0 HoH; Hy O (5-5)

0 = 0 HgH; - Hy
A solution to (5-4) exists if there are at least as many unknowns as the number of equa-
tions. We observe that the linear detector coefficienty,{C;, ..., CN} represent
(N+1)mn unknowns, while each block column of (5-4) defin€sequations; yielding a
total of (M+N+1)n? equations. Hence, a solution (5-4) exists wheé+{)mn =

(M+N+1)n?, or equivalently when [39,53,54,113],

N > [m'\/'_nnw ~1. (5-6)

In other words, a solution to (5-4) exists if the total number of taps in the linear detector

equals[ Mn —‘ .
m-n
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Example 5-1. Consider ar8 x 2 channel with memory = 2. There exists a

zero-forcing linear detectaC(z) with memoryN = [ Mn -‘ = [8_42—‘ =1
m-n -

that inverts the channel.

If [ Mn W is an integer, therH is a square matrix and so the zero-forcing linear
m-n

detector satisfying (5-4) is unique and is given by

[CO Cl CN] = [DO Dl DM+N]H_1' (5-7)

On the other hand, iF Mn W is not an integer, thidris a tall matrix (it has more rows
m-—n
than columns). For this case, the zero-forcing linear detector coefficients are not unique
because any vector in the nullspacdfcan be added to any row of (5-4) to yield another

linear detector.

A surprising by-product of the above discussion is that both the intersymbol interfer-
ence and the multiuser interference can often be mitigated wittemorylessletector,

which is a linear detector consisting of a single tap. A memoryless detector is sufficient

When[ Mn —‘ =1, or equivalently when
m-n

m = (N+1)n. (5-8)

This result is due to Falconeral. [113].

If we solve forn instead oim in (5-8), we find that the number of users that can be lin-

early separated by a memoryless detector is given by [39,53,54,113]:
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(5-9)

The number of users that can be separated is therefore a fraction of the number of sensors.
If we allow memory in the linear detector and fix the valué&Nathen the number of users

that can be linearly separated is given by [53,113]:

(N+1)m

<
NEMIN+T

(5-10)
As the memoryN of the linear detector increases and approaches infinity, the number of

usersn that can be linearly separated approaches the number of sensatsich is the

dimension of the channel output.

5.3 VEcTOR CMA

Since we have assumed that the chamit@) has full-column rank on the unit circle,
the transmitted vectot, can be recovered by passing thex 1 received vector, through
ann x m adaptive linear detect@(z), as illustrated in Fig. 5-2. We assume that the linear
detector is causal and FIR with memo; C(z) = Co + Cyz71 + ... + C\z . This
detector, often referred to as a short linear detector, has fewer outputs than inputs. We can

express the detector output vector as follows:

N

Yk = z Cilk-i- (5-11)
i=0
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It should be emphasized that the dimension of the detector output is the same as the

dimension for the channel input.

Using block-matrix notation, (5-11) reduces to:

Yk = CRy, (5-12)

whereC =[Cy C; ... Cy] is n x (N+1)m matrix composed of the multiuser detector coef-
ficients andR, " = [r" ry' ... NN 'l is an (N+1)m x 1 stacked-observation vector.
Finally, we can relate the detector output veatprto the channel input vectot, again

using the block-matrix notation:

Yk = CHXk + CNk, (5-13)

whereX, " = [x" X1 " . Xegueny '] iS @n (M+N+1)n x 1 stacked-input vectom, " =
[N" Ny ' ... NN '] is an (N+1)m x 1 stacked-noise vector, arld is the (N+1)m x

(M+N+1)n block-Toeplitz matrix of (5-5). The& x n overall transfer function matrik(z)

Ny
nx1 l re nx1
Xk —>» H(2) >(+) » C(z) —» Yk
Channel Linear Detector
mXn nxm

Fig. 5-2. A block diagram of an m X N channel with followed by an N X M linear
detector with memory.
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= C(z)H(z) (or equivalentlyF = CH) represents the cascade of the channel matrix and the

linear detector.

As in Chapter 4, we propose to adapt the linear detezfoyusing a multidimensional
generalization of the constant modulus-algorithm. The reason for choosing CMA is that it
is adaptive and has low complexity. Another important advantage of CMA is that it can
mitigate intersymbol interference on both minimum and non-minimum phase channels by

implicitly using higher-order statistics.

5.3.1 Cost Function

The cost function for vector CMA is defined in (4-8). For convenience, the equation is

reproduced below
2= E[Hwd’ -ME . (519

wherey, = CR,. Following the approach presented in Section 4.2, we can determine the
value for the constan¥l,. The noiseless vector CMA cost function can be expressed in

terms of the stacked-received ved®yrand the linear detect@r as:
J, = E[tr[(CRR*C*)Z] ~ 2Mtr(CRR’C") + MVZ}. (5-15)

We observe that (5-15) is a generalization of (4-9) to channels with memory. The depen-
dence on time has been suppressed in order to simplify the notation. The complex gradient

of (5-15) with respect t@ is given by:
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Oc Iy = 4E(Jy| yXHH" — 4M E(yxX)H". (5-16)

Substitutingy = x into (5-16) and setting the gradient equal to the zero matrix, we find that

M, must satisfy:
[E(||x||2xx*) - MVE(XX*)}H* = 0. (5-17)

Since the block-Toeplitz channel mattikhas full rank, the only solution to (5-17) occurs

when:
E(x|*xX") = MyE(xX"). (5-18)
Assuming that all users are independent in both space and time, (5-18) reduces to:
E(||x||2xx*) = M E(xx"), (5-19)

which is identical to (4-12).

We now restate the theorem and corollary given in Chapter 4 that describes the condi-

tions for which arM,, can exist and its corresponding value.

Theorem 5-1. There exists aM,, which satisfies (5-19) if and only if

mP (k-1 =K, Oi (5-20)
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whereK is some positive constant.

Corollary 5-1. If (5-20) holds, them, is given by

4
w, = EIX] 5-21)
ElIxI?)

As in Section 4.2, we will assume that all users are independent and identically distrib-
uted,i.e,, m, = mg), my = mg), andk = k; U i, for the remainder of this chapter. Note

thatM, is related to the kurtosisby the following relationship:

M, =my (n+K-1). (5-22)

This assumption will simplify the analysis of the cost function later in this chapter.

5.3.2 Stochastic Algorithm

The main focus of this research is to design an adaptive linear detector. As in
Section 4.6.1, we adjust the detector tap weights according to the classical steepest-

descent algorithm:
Cir1 = Crc— £ 0cdy (5-23)

where ¢ is the complex gradient of the cost function with respect to the detector tap
weights and wherg is the step size. The complex gradient of (5-14) with respeCt i®

given by:
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Oc Iy = 4E[exR,], (5-24)
where the “error signak, is the same as that of Section 4.6.1, namely,
2
ex = Yi(|Yk|” = My)- (5-25)

Substituting4e,R, as a stochastic approximation of the gradient in the steepest-

descent algorithm, we arrive at the following update equation for the linear detector:
Cis1 = C— HexRy . (5-26)

We refer to this algorithm as the vector CMA. Observe that this algorithm reduces to that
of Section 4.6.1 for memoryless channels and it reduces to the familiar single-user CMA

whenn = 1.

In summary, the vector CMA, for channels with memory, is defined by (5-25), (5-26),

andM, = E[ x| *1 / E[xq|"].

5.4 LocAL MINIMA IN THE ABSENCE OF NOISE

In this section, we determine the local minima for the vector CMA cost function in the
absence of noise for a channel with memory. As shown in Section 4.3, this cost function is
minimized by any unitary matrix;(z) = U. Hence, there exists an infinite number of local
minima. One question remains: are there any other local minima of the vector CMA cost

function? The answer to this question depends on the subset in which the input alphabet
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lies. The following four theorems summarize the local minima of the vector CMA cost

function for all input alphabets.

Theorem 5-2. If the input alphabet is sub-Gaussian and non-GM k < 2)
and the linear detector has infinite length, then the vector CMA cost function

is minimized if and only if

F(z) = UP(2), (5-27)

whereU is an arbitrary unitary matrix ang(z) is ann x n matrix which has
only one nonzero entry of the formm™® whereD is an arbitrary delay value,
per row. If there is more than one nonzero entry in any column, then the delay

values in that column must all be different.

Proof. See Appendix 5.1.

Theorem 5-3. If the input alphabet is CMK = 1) and the linear detector has

infinite length, then the vector CMA cost function is minimized if and only if

F(z) = UDY2pP(z), (5-28)

where U is an arbitrary unitary matrixpD is a non-negative real diagonal
matrix satisfyingtr(D) = n, andP(z) is ann x n matrix which has only one
nonzero entry of the forri® whereD is an arbitrary delay value, per row. If
there is more than one nonzero entry in any column, then the delay values in

that column must all be different.
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Proof: See Appendix 5.3.

Some examples of valid(z) are given below:

_Dl
2P o 2Pt ’ ° 0
P(Z) = o Pl’ o P2, 0 Z_DZ 0 P3, (5-29)
0z °? z %0 D
0 z %0

whereD; is any integer such thd@; # D, # D3, andP; any real permutation matrix. An
example of a matrix that does not satisfy the conditiongi@) stated in either Theorem

-1
5-2 or Theorem 5-3 is given ¢ 9
7o

From Theorem 5-2 and Theorem 5-3, we observe that the vector CMA cost function

for a sub-Gaussian input alphabet has both desirable and undesirable local minima.

Property 5-1. For a sub-Gaussian input alphabet, the vector CMA cost func-

tion is minimized by both desirable and undesirable local minima.

The desirable minima occur when the detector output vector is related to the channel input

vector by an unknown unitary ambiguity and by an unknown delay for each users.

Definition 5-5. A desirable localminima of the vector CMA cost function
has the formF(z) = UD(z), whereU is an arbitrary unitary matrix and(z) is
a diagonal matrix whose diagonal entries are of the forth whereD is an

arbitrary delay value.
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If F(z) = UD(z), then detector output vector takes on the form:

1 2
Y= U o x2p x(Up T (5-30)

whereD; is an arbitrary integer value. In the general, the delay valigsdre unknown.
Unfortunately, delay in the detector output vector is an inherent problem of blind detec-
tion, but fortunately, the delay does not interfere with the reconstruction of the original

input sequencex,}.

When the vector CMA cost function is minimized by a desirable local minimum, the

autocorrelation of the detector output vectors given by:
Elyiyir 1=31, 01, (5-31)

wheregd, is the Kronecker delta function. The corresponding linear detector that results in

this desirable local minimum is referred to ashatener

Definition 5-6. An n x m linear detectoIC(z) is said to be a whitener if the

autocorrelation oy is given by E[y,yk_'1= &1, O 1.

For a desirable local minimum, the transmitted data can be recovered by appending a blind
unitary estimator to the output of the linear detector. Possible solutions to this problem

include the MPLL (see Chapter 3), JADE, and EASI algorithms.
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From Theorem 5-2 and Theorem 5-3, we also see that the vector CMA cost function
for a sub-Gaussian input alphabet has many undesirable local minima. For example, the

following matrix

2

zZ°00
F2)=1|,50 0" (5-32)
0 022

is an undesirable local minimum for both non-CM and CM input alphabets, because the
information from the second user is completely lost; the first two detector outputs lock on
to the first user, while the third detector output locks on to the third user. Another example

of an undesirable local minimum is given by the matrix

(5-33)

We see that thig=(z) only minimizes the vector CMA cost function when the input
alphabet is CM. Even though it recovers information from both users, this local minimum
is undesirable because the gain for each user is incorrect, which in turn may lead to an

incorrect decision at the decision device.

Definition 5-7. A matrix, where information from one or more of the users is
lost or where the gain for each user is incorrect, isiadesirable minimurof

the vector CMA cost function.
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In Section 4.3, we showed that the local minima for a memoryless channel and a non-
CM input alphabet are always desirable. However, when we extend this result to channels
with memory, we observe that the cost function is minimized by both desirable and unde-
sirable local minima. The reason that the vector CMA cost function is not just minimized
by desirable minima is because the cost function is memoryless; (5-14) is only a function
of the detector output at time The cost function can prevent the detector outputs from
being correlated if all the detector outputs have the same delay, but if the delays are dif-
ferent, then it is possible for the detector to recover the same user more than once as long
as the delays are different, because to the detector, the same user with different delays
appears to be uncorrelated users. For example, this latter case is described by (5-32),
where the detector recovers the first user twice, but with different delays. This result sug-
gests that if we add memory to the cost function, then it might be possible to eliminate the

undesirable local minima. We will explore this possibility in the next section.

There occur even more undesirable local minima for a CM input alphabet because of
the implicit reliance of the vector CMA cost function on both second-order and fourth-
order statistics to invert a channel. Unfortunately, a CM input alphabet is completely
described by its second-order statistics, and therefore, the cost function does not have

enough information to correctly invert the channel.

Before we can state the local minima results for a meso-Gaussian input alphabet, we

need the following definition:

Definition 5-8. A multiuser filter F(z) = Fo + Fiz1 + ... + Fcz X is an

energy-preserving filter if and only if
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K n
> > IFRdl?=1, (5-34)

k=0j=1

where F,];; is the {, j)-th component of the-th tap ofF(z).

Theorem 5-4. If the input alphabet is meso-Gaussian=2) and the linear
detector has infinite length, then the vector CMA cost function is minimized if

and only ifF(z) is an energy-preserving filter.
Proof: See Appendix 5.5.

If the transfer function matri¥(z) is viewed in terms of a block-matrix notatidf then

the constraint specified by (5-34) is equivalent to the condition that each rBvina$ unit
length; in other words, the rows & must lie on an fM+N+1)n-dimensional unit hyper-
sphere. It is observed thalmost allof the points on the unit hypersphere are undesirable
local minima. Assuming that all points on the unit hypershpere are equally likely, the
probability that the linear detector will converge to a desirable local minima is infinites-

imal. Hence, the vector CMA cost function is useless for a meso-Gaussian input alphabet.

Property 5-2. The vector CMA cost function is useless for a meso-Gaussian

input alphabet.

As with a sub-Gaussian input alphabet, the local minima of the cost function are desirable
for a memoryless channel, but are both desirable and undesirable for a channel with

memory.
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We have seen that the vector CMA cost function relies on both second-order and
fourth-order statistics to invert a channel. Since second-order statistics completely
describe a meso-Gaussian input alphabet, the vector CMA cost function can only restore
the amplitude of the input signal that is completely described by second-order statistics.
This results can also be seen by examining (5-34) more closely. If we assume that all of
the users are independent and identically distributed and there is no source correlation,
then (5-34) ensures that the amplitude of the detector output is the same as the amplitude
of the channel input. The phase information of the input signal can never be restored

unless more information is known.

Theorem 5-5. If the input alphabet is super-Gaussian> 2) and the linear
detector has infinite length, then the vector CMA cost function is minimized if

and only ifF(z) has maximal multiuser and intersymbol interference.

Proof: See Appendix 5.6.

From this theorem, we observe that the local minima of the vector CMA cost function
for a super-Gaussian input alphabet results in maximal multiuser and intersymbol interfer-

ence. Therefore, the vector CMA cost function is useless for this input alphabet.

Property 5-3. The vector CMA cost function is useless for a super-Gaussian

input alphabet.

Unlike with a sub-Gaussian and a meso-Gaussian input alphabet, the vector CMA cost

function for a super-Gaussian input is minimized only by undesirable local minima for a
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channel with memory. In contrast, we have shown in Section 4.3, that for a memoryless
channel, the vector CMA cost function for a super-Gaussian input alphabet is minimized

only by desirable local minima.

We should emphasize that the results described by Theorem 5-2 through Theorem 5-5
reduce to the familiar results for a single-user CAM cost function wiheni. Also, the

results obtained in this chapter are consistent with those of Chapter 4.

5.5 VECTOR CMA WITH GRAM-SCHMIDT CONSTRAINT

In the previous section, we showed that the vector CMA cost function only has desir-
able local minima for a sub-Gaussian input alphabet. Unfortunately, this cost function is
also minimized by undesirable local minima for this input alphabet. We also showed that
this cost function is useless for meso-Gaussian and super-Gaussian input alphabets. There-
fore, in the remainder of this chapter, we will focus exclusively on sub-Gaussian input

alphabets.

5.5.1 Cost Function

The desirable local minima of the vector CMA cost function have the fd¥(n) =

D,

UD(z), whereU is an arbitrary unitary matrix and(z) = diag(z ..., z_D"). The corre-

sponding detector output vectgrfrom (5-30) is given by:
1 2
Y= UIX o X, X T, (5-35)

whereD; is an arbitrary integer value. We see that the autocorrelation of (5-35) is given

by:
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Elywio 1=mxd1, Ol. (5-36)

We should point out that the undesirable local minima do not satisfy (5-36). We can there-
fore eliminate them by modifying the vector CMA cost function to penalize the solutions
for which E[y,yyx_; 1 2 mydl, O I. Since both the channel and the linear detector have
finite memory, we only need to consider the autocorrelation for the rangeN) to

(M+N), becaus&[y,y,_,'] = 0 for |I] > (M+N). The modified cost function is given by:

M+N

Jes=dh+ > | Elyiyir 1 m313, |||2: : (5-37)
I=—(M +N)

where | 0| is the Frobenius norm for matrices, adglis the vector CMA cost function
described by (5-14). We refer to (5-37) as thector CMA cost function with Gram
Schmidt constrainfGSC). Observe that (5-37) is a generalization of (4-38) to channels
with memory. We should point out that this cost function penalizes cross-correlation in

both time and space.

5.5.2 Local Minima in the Absence of Noise

As in Section 4.5, the second term in the vector CMA cost function is minimized only
by the desirable local minima. The value of the cost function is larger when the transfer
function matrix is equal to an undesirable local minima. Thus, the additional term in the
cost function eliminates the undesirable local minima. The question remains: does the

additional term introduce any new local minima? Fortunately, the answer is no. The local
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minima for the cost function described by (5-37) are summarized by Theorem Proof:

given below:

Theorem 5-6. For all sub-Gaussian input alphabets<(k < 2), Jgg IS mini-
mized if and only ifF(z) = UD(z), whereuU is an arbitrary unitary matrix and
D(z) is a diagonal matrix whose diagonal entries are of the forfwhereD

is an arbitrary delay value.
Proof: See Appendix 5.7.

WhenF(z) = UD(z), the detector output vector is related to the channel input vector by
an unknown unitary ambiguity and an unknown delay for each user; in other words,

1 2
Vi = U[xf(_)Dl,xf(_)Dz, e xf(n_)Dn]T,

(5-38)
whereD; is an arbitrary integer value. The corresponding linear detector is givexi)y
UD(z)H(z) 2. We see that the cost function inverts the entire channel. As with a zero-
forcing detector, this result can lead to noise enhancement if any of the zeros of the

channel are near the unit circle.

Property 5-4. For all sub-Gaussian input alphabets, the vector CMA with
GSC can resolve a channel up to an unknown unitary ambiguity and an

unknown set of delays.
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The transmitted vector can be recovered by appending a blind unitary estimator, that iden-
tifies and eliminates the unitary ambiguity, to the linear detector. Possible solutions for the
blind unitary estimator include the MPLL (see Chapter 3), JADE, and EASI algorithms. In
general, the delay valu€y are unknown, but they do not interfere with the reconstruction

of the original input vector sequence,].

5.5.3 Stochastic Algorithm

Recall that the vector CMA cost function with Gram-Schmidt constraint is given by

(5-37):

M+ N

Jes=dht > |ELyiykt 1 - m2|5||||2: : (5-39)
I=—(M+N)

wherey, = CRy. The cost function can be expressed in terms of the stacked-received

vectorRy and the linear detectar as follows:

M+ N
Jes=dy+ Y tr] (CPR CCPR(C) - MBC(@R +Pr)C” + (M1 |, (5-40)
I =—(M +N)

where®g | = E[RRi_ . The complex gradient of (5-40) with respecttés given by:

M+ N

OcJos = 4E[exRi 1 + 4[ z ElyiYier JEIVkRks+1 1| = MoE[ycRi . (5-41)
I =—(M+N)
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Substituting a stochastic approximation of (5-41) in the classical steepest-descent algo-

rithm, we arrive at the following update equation for the linear detector:

M + N
* * *D *
Ck+1 =Ck— p-|:ekRk +0 Z ElyiYkt 1IYkRk+1 O— moy Ry } (5-42)
= -(M+N) -

wherep is the step size. The first term in the square brackets of (5-42) is the original
update term for the vector constant-modulus algorithm, while the remaining terms in the

square brackets penalize any undesirable local minima.

We observe that (5-42) requires an estimatg[gfy,_, ] for ]I] < M+N. Sincey, is a
non-stationary vector random process, it is difficult to obtain an accurate estimate of
Elywk 1 for J1] < M+N. By substitutingE[y,yy_;'] = Ck®g Cy into (5-42), we arrive

at an alternative update equation for the linear detector:

M+ N
* * *D *
Cys1=Ck— U[ekRk + 0 z (Ck®Pr ICxk )YkRk+1 E— Moy Ry } (5-43)
= (M+N)

An estimate ofPg | for |1] < M+N is now required instead of an estimate&f,y,_;’]
for |1] < M+N. Since we have assumed that the input vegfoand the channdH(z) are
both stationary, it is easy to obtain an accurate estimadgqffor 1] < M+N. In fact, the

estimates can obtained by using a simple running average:

k
~ 1 -
CDR,I = —k—l - Z 1RiRi—| . (5'44)
=1+
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As k gets large, this sum approach®g |. Since we can estimateg | fairly accurately we
expect the update equation (5-43) to converge more quickly. In a practical implementation,

®g, should be substituted fdrg | in (5-43).

As stated earlier in Section 4.6;kd>R,,Ck* can be estimated more accurately than
E[yiYi 1. Although determiningc, ® R,ICk* results in an increase in computational com-
plexity, this additional term is based solely on second-order statistics, and therefore,
should converge quickly and require less symbols to invert the channel. Furthermore, this
complexity in (5-43) can be reduced by exploiting the redundancdig |. The best way

to see this redundancy is to look at the following example:

Example 5-2. If the channeH(z) has memoryM = 1 and the linear detector

C(z) has memory =2, then

E[o 0 Co®_, ] 1==8

E[o Co®_, CoPy+C1®_, ] 1==2

%[Codb_l CoPy+C1®_, Co®, +C1®,+ Cch_l] =4
CyPg = D[CO<DO+C1<D_1 Co®, +C @ +Cy®_ C1@, +Cyd, ] 1=0 ,(5-45)

D[coqal +C @ +Cy®  Cid +Cp0 C®, ] 1=1

0Cy®, +Cp®, C,®, 0 ] 1=2

E[Cﬂl 0 0 ] 1=3

where ®; = E[ryry ;'] and Cy = [Cy C; C;]. We see thaC, Dy is a left-
shifted version ofC, ®g ,_; Where a new term is inserted on the right. Because

of this structure, there is appreciable redundancy in (5-45). In fact, there are
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only five non-redundant terms, excluding the zero matrices. De&fitoebe the

matrix that contains the non-redundant terms:

Notice thatA can also be formed by taking the block-matrix convolution of
the linear detectoC, with the stacked-correlation matr®, = [®_; ®g D],

ie,

A=Cy*®, (5-47)

We should emphasize that (5-47) is an efficient method for calculating the
non-redundant terms in (5-45). Also the matAx can used to efficiently

construct all of the matrices given by (5-45).

Using this example, we can develop an algorithm to efficiently compyéey, | for |I] <

M+N. Before, we can state the algorithm, we need the following definition:

Definition 5-9. LetZ = [Z; Z, ... Z\] whereZ; is ann x m matrix and let
Zn+1 also be ann x m matrix. Define the block-shifting functior:

c™(N+1)m gnxm - enX(N+1)m 49 follows:

L(Z, Zns1) = (21 - Zn Zneal- (5-48)

The algorithm for computin@,®g | for |I] < M+N is given by the following steps:
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Step 1. Compute the block-matrix convolution of the linear dete@gr= [Cy ... Cp]
with the stacked-correlation matri®, = [P_y; ... Dg ... Py]. The augmented matrix
A is formed by appending the block-matrix convolution wiiln x m zero matrices,

i.e.,

A= [A—(M+N) Ao AM+N] = [Ck*cbr OI’IXI'T‘I Onxm Onxm]. (5-49)

Step 2. Initialize CPg _p+n)-1 10 be am x (N+1)m zero matrix.

Step 3. The matrixCy®g | for | 1] < M+N is given by the following recursive update:

CyPr = L(CPR -1, A (5-50)

whereA, is defined in Step 1.

This method for computing, @y, | is very efficient because it only requires the computa-

tion of one block-matrix convolution.

In general, the stacked-correlation matrix is unknown, but since we have assumed that
both input vectorx, and the channeH(z) are stationary®, can be estimated using a

simple running average:

K
®=iv D [FiimTi - Ficali FiF FiFiia .. Fifiow 1 (5-51)
i=M+1

As k gets large, this sum approacl®s In a practical implementatior‘ﬁ,)r should be used

instead of®, in (5-49).
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In summary, the vector constant-modulus algorithm with GSC is defined by (5-25), (5-

43), Steps 1-3, and (5-51).

5.6 PERFORMANCE IN NOISE

In the previous section, we determined the local minima of the vector CMA cost func-
tion with GSC in the absence of noise. This analysis, though valid and informative, is only
of academic interest since in any real-world application, noise is always present and must
be included in the analysis. The analysis of the noisy vector CMA cost function, presented
in the previous chapter, when extended to channels with memory unfortunately becomes
intractable. We could use high SNR approximations in order to obtain a closed-form
expression for the noisy local minima, but these results would not describe the cost func-

tion for all SNR.

Since it is difficult to obtain a closed-form expression of the noisy local minima, we
have chosen to quantify the performance of the vector CMA with GSC detector experi-
mentally. We can determine the minimum mean-squared error (MMSE) performance of
this detector by implementing the stochastic algorithm for a large number of symbols and
a very small step size. Unfortunately, the update algorithm may affect the performance of
the detector. To minimize this effect, we initialized the linear detector with the zero-
forcing solution, averaged the steady-state MSE over a large number of symbols, and used
an ideal rotator to resolve the unitary ambiguity in the detector output. Initializing the
linear detector at the zero-forcing solution allows the update algorithm to converge more
quickly and more accurately to the noisy local minimum. By averaging the steady-state

MSE over a large number of symbols, we reduce the effects of the update algorithm wan-
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dering about the local minimum. Finally, using an ideal rotator instead of an adaptive algo-
rithm, such as the MPLL, ensures that the only contribution to the MSE comes from the
vector CMA with GSC detector. In spite of these measures to reduce the effects of the sto-
chastic algorithm, the measured MMSE will still be higher than the true MMSE. However,
by correctly choosing the number of symbols and the step size, the difference between

these two values can be minimized.

In the following experiment, we quantify the performance of the vector CMA with
GSC detector in the presence of noise and compare it with the theoretical performance of
both the MMSE detector and the forward-backward LP detector [54]. We restrict the focus
of this experiment to tall channels with memory, because in other cases the LP does not
exist. To ensure that comparison among these detectors is fair, we assume that all three

linear detectors have the same length and that the delay for each detector is optimal.

To facilitate the comparison between the vector CMA with GSC detector and the for-

ward-backward linear predictor, we use an example similar to the one presented in [54].

Experiment 5-1. Consider a8 x 2 random channel with memoi = 2. The
coefficients of the channel are drawn independently from a zero-mean unit-
variance complex Gaussian distribution. The columns of the channel are
scaled so that the energy of users 10 dB below that of use2; in other
words, SIR = —10 dB. The input alphabet is assumed to be 16-QAM. For
each channel, we determined the optimal 3-tap vector CMA with GSC
detector, the optimal 3-tap MMSE detector, and the optimal minimum-order

forward-backward LP detector, which had at most 3 taps. The optimal vector
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CMA with GSC detector was found by implementing the stochastic algorithm
for all possible delays. For each delay, the stochastic algorithm was initialized
with the zero-forcing solution and implemented for 200,000 symbols. The
step size for each implementation decreased with time according, to
0.001/(1 +k/20000). The MMSE for each delay was calculated by aver-
aging the MSE over the last 20,000 symbols. The optimal vector CMA with
GSC detector was the one which produced the smallest MMSE. In Fig. 5-3,

we plot the best MMSE versus SNR = ZTzlnh(jl)” / 02, where h(jl)

5 | | | | | | |

Vector CMA with GSC

-10

MSE; (dB)
KN
a1

m = 8 sensors
N =2 users
SIR; =-10dB
channel memory: M =2
detector memory: N =2
25 1000 channels

16-QAM constellation

-30 | | | | |
-10 -5 0 5 10 15 20 25 30

SNR; (dB)

Fig. 5-3. A comparison of the mean-squared error versus SNR of the optimal
vector CMA with GSC detector, the optimal minimum-MSE detector, and
optimal forward-backward LP detector.
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denotes the first column of thjegh channel tap, for each detector. The curves
are the ensemble average of 1000 random channels. From these curves, we
observe that the performance of the vector CMA with GSC detector is essen-
tially similar to that of the MMSE detector, except at extremely low SNR
values where the vector CMA with GSC detector starts to break down. We
also see from the horizontal gap between the curves that the LP detector suf-
fers an SNR penalty relative to both the MMSE detector and the vector CMA
with GSC detector. The size of this penalty is roughly equivalent to the
amount of energy discarded by the LP. In this particular example, the LP dis-
carded an average of 39% of the total channel energy, which is equivalent to a

gap of 1/ 0.39 = 4.09 dB.

An important result of this experiment is that whereas the optimal MMSE detector and the
optimal vector CMA with GSC detector achieve nearly identical performance, the optimal
LP detector suffers a 4.09 dB penalty at high SNR. The relatively low performance of the
LP detector is due to the fact that it inverts only a single tap of the channel, thereby
throwing away the energy from the remaining ¢ 1) taps. It was stated in [54] that the
performance of the LP detector suffers when the energy of the chosen tap is small and the
noise is nonzero or when the channel energy is evenly distributed across all taps. In both
cases an under-utilization of the channel energy occurs. In contrast, both the MMSE and
the vector CMA with GSC detectors invert the entire channel, thereby using all of the

channel energy.
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5.7 EXPERIMENTAL RESULTS

We conclude this chapter with several computer experiments. In the first experiment,
we consider a two-user, two-sensor uniform linear array with half-wavelength spacing,
multipath, and a 16-QAM input alphabet. Since this channel is square, we compare the
performance of the vector CMA with GSC detector with that of the decorrelation CMA
based detector [101,102]. In the next experiment, we consider & 2@&synchronous
CDMA application with a 16-QAM input alphabet. For this channel, we compare the per-
formance of the vector CMA with GSC detector with that of the decorrelation CMA
detector and of the forward linear predictor (LP) detector [54]. Finally, in the last two
experiments, specific channels where the vector CMA with GSC detector outperforms the

LP detector are considered.

5.7.1 Uniform Linear Array with Multipath

In the following experiment, we consider a 2-user, 2-sensor, uniform linear array with
A/2-spacing and multipath. This channel is a generalization of the memoryless channel
presented in Section 4.7.2. We assume that each user draws symbols independently and
uniformly from a 16-QAM input alphabet. The energy from each user is received at the
linear array along two paths: a direct line-of-sight (LOS) path and a reflected path. Each
path is characterized by its amplitudeits propagation delay, and its angle of incidence
8. For user 1, the parameters are ¢, 6) = (0.5, 0.4, -3% and @A, 1, 6) = (0.4, 1.1, 80)
for the LOS path and reflected path, respectively. For user 2, the parameteksa® €
(0.8,0.2, 10) and @, 1, 6) = (0.1, 1.3, —65) for the LOS path and reflected path, respec-
tively. The transmit pulse for both users is a raised-cosine pulse with 100% excess band-

width. In general, this channel has an infinite memory, but since more than 99% of the
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energy is contained in first three taps, we can truncate the channel to have a meivory of
= 2, without losing any significant amount of energy. We set $NRB0 dB and SNR =

33 dB for this channel, so that SIR -3 dB.

Experiment 5-2. In Fig. 5-4, we plot MSE versus time, for the optimal
delay, of both the vector CMA with GSC detector and the decorrelation CMA
detector. Each curve is an ensemble average of 500 different random input and
noise sequences. The parameters for each were optimized to provide the

fastest rate of convergence so as to achieve an open-eye diagram, or equiva-

5 1T 1 T T T T T T T T T 1
Vector CMA with GSC: | = 0.012/(1+k/1500)
0 kL Decorrelation CMA: My = 0.010/(1+k/5000) | |
A=15B=07
MPLL: Ay = 0.40/2(k/2000)
5 PLLs: 0;=0.050,=10"° | |
o
RS
i
L
0
= 10 | .
Vector CMA with GSC
-15 -
MSE, = —18 dB Decorrelation CMA
220 I NN AN N NN (NN N SN NN N (N N N |
0 5000 10000 15000
Time (k)

Fig. 5-4. Comparison of the vector CMA with GSC detector and decorrelation CMA
detector, in terms of MSE; versus time, for a 2 X 2 uniform linear with
multipath.
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lently an MSE = —-18dB. The step size for the vector CMA with GSC detector
and the decorrelation CMA detectoh = 1.5 andB = 0.7) werepy yec =
0.012(1+k/1500) andyy gec= 0.01¥(1+k/5000), respectively. We used a
100-point causal rectangular window to estimate the cross-correlation terms
for the decorrelation CMA detector. The MPLL step size was decreased with
time according to\, = 0.40/2(*/2000) The bank of scalar PLLs parameters
used by the decorrelation CMA detector werg= 0.05 andu, = 107°. From

these curves, we observe that both of these detector can open the eye diagram
for this square channel, but the vector CMA with GSC detector needed only

half as many symbols as did the decorrelation CMA detector.

The vector CMA with GSC detector converges much faster than the decorrelation CMA
detector because the former detector requires an estimate of a stationary signal that can be
determined fairly quickly and reasonably accurately, whereas the latter detector requires
an estimate of a non-stationary signal that is somewhat difficult to obtain and which is usu-
ally not very accurate. The better the estimate, the more quickly each of these detectors
converge. Another reason for the fast convergence of the vector CMA with GSC detector
is due to the additional term in the cost function, which makes two contributions: it penal-
izes any cross-correlation among the users in both time and space, and it also aids the
vector CMA cost function in restoring the modulus for each user. In contrast, the addi-
tional term in the decorrelation CMA cost function only penalizes the cross-correlations
among the users, but the restoration of the moduli is left to the pointwise CMA cost func-
tion. Thus, the additional term in the vector CMA cost function with GSC not only elimi-

nates the undesirable local minima, but also aids in reducing the convergence time.



246

5.7.2 Asynchronous CDMA

In the following experiment, we consider a two-user asynchronous direct-sequence
CDMA application as shown in Fig. 5-5. This channel [54] is a generalization of the mem-
oryless channel presented in Section 4.7.3. We assume that each users draws symbols
independently and uniformly from a 16-QAM input alphabet. The spreading sequence for

thei-th users is given by

AWGN

Xk(l) —> Sl(t) —» Alh(t—Tl)

LPF —>§—> S/P > Ik

Xk(z) —> Sz(t) > Azh(t - T2) m/T mx1

(@)

AWGN
2x1 l mx1
Xk —» H(2) () > Tk
Channel
mx?2

(b)

Fig. 5-5. Models for a two-user asynchronous CDMA application: (a) continuous-
time model with a chip-rate receiver; (b) equivalent discrete-time model.
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m-1
i T
s = > C(jl)p(t—la), (5-52)
i=0
where the chip-pulse shapét) = % is an ideal sinc function with bandwidth

equal to half the chip rate/T and c(ji) is the binary chip sequence for ikl user. Each
chip sequence has a lengthh= 16 and a period equal to one baud intervalFor this

channel, the two binary chip sequences were generated randomly:

M ={1111,1,1-1,1,1-1,-1,1,-1,-1,1,-1) (5-53)

(¢ ={1,-1,-1,111,-1,1,1,1,-1,-1,-1,-1,-1, 1} (5-54)

The normalized correlation between the two binary chip sequences is giyen b9.125.

Each CDMA signal is then passed through a channel with severe dispersion. This
channel is modeled by a first-order low pass fitié) that ha a 3 dBbandwidth equal to
one-fourth the chip rate,e., W = 1/4T., whereT, = T/m is the period of each chip. To
generate an asynchronous model, we delay the first usgr$9.7 T, and the second user
by 1, = 5.2 T.. The front-end of the receiver consists of an anti-aliasing filter followed by
a chip-rate sampler and a serial-to-parallel (S/P) converter. Since the transmit filters have
zero-excess bandwidth, the anti-aliasing filter is matched to the transmit filter. The serial-
to-parallel converter groups the chip-rate samples into blocks ef 16 to generate the

baud-rate received vecteg. The resulting discrete-time channel transfer function matrix
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H(z) is a 16x 2 channel with memori = 1. The amplitudes for each us&; andA, and

the noise variance® were selected in such a way that SNR25 dB and SNR= 35 dB.

Experiment 5-3. In Fig. 5-6, we plot MSE versus time, for the optimal delay

of the vector CMA with GSC detector, the decorrelation CMA detector, and
the forward LP detector. Each curve is an ensemble average of 500 different
random input and noise sequences. The parameters for each detector were
optimized to provide the fastest rate of convergence so as to achieve an open-
eye diagram, or equivalently an M$E —18dB. The step size for the vector
CMA with GSC and the decorrelation CMA detectey € 1.0 andB = 1.0)

were Py yec = 0.1/ (1+k/1600) andyy gec= 0.12/(1+k/4500), respectively.

We used a 100-point causal rectangular window to estimate the cross-correla-
tion terms for the decorrelation CMA detector. The step size for the forward
LP detector was given by, = 0.0&/(1+k/500) and the step size for the
AGC was given by 5gc= 0.017 (1 + k/500). The step size for the MPLL

was decreased with time according\fo= 0.4/ 2(*/2000) The pank of scalar
PLLs parameters used by the decorrelation CMA detector were0.05 and

o, = 10™°. From the curves in Fig. 5-6, we observe that all three detector can
open the eye diagram for this tall channel. The forward LP detector is the
fastest to converge, followed by the vector CMA with GSC detector and the
decorrelation CMA detector in that order. Both the forward LP detector and
the vector CMA with GSC detector can open the eye diagram in less than
4000 symbols, while the decorrelation CMA detector needs almost twice as

many symbols.
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PLLs: 0, =0.050,=10"

Fig. 5-6. Comparison of the vector CMA with GSC detector, decorrelation CMA
detector, and a zero-delay forward LP detector, in terms of MSE; versus
time, for a two-user asynchronous CDMA application.
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The forward LP detector is designed to isolate and invert the first tap of the channel.
This detector works well when channel energy is concentrated primarily in the first tap of
the channel, as is the case for this particular two-tap channel in the above experiment.
However, if the channel energy were concentrated primarily in the second tap and the
energy of the first tap were significant relative to the noise powérgH,") = a2), then
the performance of a forward LP detector would be unacceptable. (We will demonstrate
this case in the next experiment.) We should point out that the vector CMA with GSC

detector should have acceptable performance for either channel configuration.

5.7.3 Small First Tap

In the following experiment, we consider a two-tap<£2 channeH(z) such that the
channel energy is concentrated primarily in the second tap and the energy of the first tap is

significant relative to the noise power(HoHy ) = 62). This channel is given as follows:

H(z) =
0.031-j0.082 0.057 + j0.024 —0.606 + j0.144 —0.310+ j0.00
0.027 - j0.002 —0.058 + j0.082| , | 0.097-j0.381 0.204-j0.124 | 1 (5-55)
0.049 - j0.038 —0.001 + j0.029 —0.399 - j0.007 0.085+ j0.422

0.025 + j0.023 —0.008 — j0.031 0.534-j0.018 —-0.355-j0.722

For this channel, we compare the performance of the vector CMA with GSC detector with
that of the forward LP detector. The amplitudes for each As@ndA, and the noise vari-

anceo? were selected in such a way that SNRSNR, = 24 dB, so that SIR= 0 dB.
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Experiment 5-4. In Fig. 5-7, we plot MSE versus time, for the optimal
delay, of the vector CMA with GSC detector and the forward LP detector.
Each curve is an ensemble average of 500 different random input and noise
sequences. The parameters for each detector were optimized to provide the
fastest rate of convergence so as to achieve an open-eye diagram, or equiva-
lently an MSE = —18 dB. The step size Wag e = 0.01/(1+k/500) for the
vector CMA with GSC detector, it wagy j, = 0.05(1+k/500) for the for-

ward LP detector, and it wasg aqc= 0.02/(1+k/100) for the AGC. The step

size for the MPLL was decreased with time accordinte 0.4Q/2(+/2000)

From the curves in Fig. 5-7, we see that only the vector CMA with GSC
detector was able to open the eye diagram. In fact, to open the eye diagram,
this detector needed slightly more than 500 symbols. We also observe that the
forward LP detector reaches a steady-state MSE of —13 dB. This value of the
MSE implies that the eye diagram is not open and therefore the forward LP

detector cannot recover the transmitted data.

This experiment demonstrates that the forward LP detector is not a viable option on a
channel where the energy of the first tap is significant relative to the noise power
(tr(HoHg") = 6?). In fact, this result also extends to the forward-backward LP; the perfor-
mance of this detector will also be unacceptable if the channel energy of the selected tap is
significant relative to the noise power. Ideally, the forward-backward LP detector must
choose the channel tap with the greatest energy. Since the channel is unknown, the channel
energy distribution is also unknown. Hence, it is impossible ch@aoggori the channel

tap with the greatest energy and as a result, the performance of any forward-backward
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Fig. 5-7. Comparison of the vector CMA with GSC detector and the forward LP, in
terms of MSE; versus time, for a channel with a small first tap.
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linear predictor will suffer when compared to the MMSE detector and the vector CMA
with GSC detector, both of which work well on all channels irrespective of the channel

energy distribution.

5.7.4 Non-Minimum Square Right Factor

A linear prediction detector is based on the concept that a tall channel is almost always
minimum-phase. It is possible for a chank#k) to be physically tallifh > n) and still not
be minimum-phase. In this case, the channel is said teethecible which implies that

there exists a square right-factor that is non-minimum phase,

H(2) = HZ)G(2), (5-56)

whereH @) is anm x n minimum-phase channel ai®(z) is an x n non-minimum phase
channel. For the channel described by (5-56), the LP detector will only be able to resolve
the minimum-phase portion of this chanrtel z), (thus leaving the non-minimum phase
portion of the channel unresolved. Hence, the output of the LP detector would still be cor-
rupted by both intersymbol interference and multiuser interference. Thus, the LP detector
is unable to resolve a reducible tall channel. In contrast, the vector CMA with GSC
detector should still be able to invert this particular channel and recover the transmitted

data.

To demonstrate this point, we consider the following three-tap 2ichannelH(z),
which is a cascade of a two-tapx42 minimum-phase channel and a two-tapg 2 non-

minimum-phase channel:



254

0.071 - j0.070 —0.090 + j0.088| |—0.093 + j0.232 0.024 — j0.238
H(z) = | 0-058+ j0.039 —0.088~j0.045| , |-0.086-j0.210 0.170 + j0.257| -1,
~0.253-j0.272 0.244 + j0.301 0.072 + j0.230 0.200 + j0.180

—0.019 + j0.554 —0.041 — j0.602 0.006 + j0.075 0.191— j0.391

0.023 + j0.170 —0.002 - j0.017
—0.147 — j0.042 0.031 + j0.027
0.253 + j0.119 0.089 — j0.018
0.386-j0.288 0.001 — j0.191

s (5-57)

We observe that the majority of the energy in this channel is concentrated in the first tap.
For this channel, we compare the performance of the vector CMA with GSC detector with
that of the forward LP detector. The amplitudes for each useandA, were selected in

such a way that SHR= -3 dB.

Experiment 5-5. In Fig. 5-8, we plot MSE versus time, for the optimal
delay, of the vector CMA with GSC detector and the forward LP detector,
assuming no noise. Each curve is an ensemble average of 500 different
random input sequences. The parameters for each detector were optimized as
to provide the fastest rate of convergence to achieve an open-eye diagram, or
equivalently an MSE= —18dB. The step size wag e = 0.01/(1+k/4000)

for the vector CMA with GSC detector, it wag |, = 0.0¥(1+k/2000) for the
vector CMA with GSC detector, and it wfty 5qc= 0.01/(1+k/500) for the

step size for the AGC. The step size for the MPLL was decreased with time
according to\, = 0.40/2(+/2000) From these curves, we see that only the
vector CMA with GSC detector was able to open the eye diagram. In fact, this

detector can open the eye diagram in less than 5000 symbols. We also observe
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Fig. 5-8. Comparison of the vector CMA with GSC detector and the forward LP, in
terms of MSE, versus time, for a reducible tall channel.
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that MSE of the forward LP detector approaches —4 dB in steady state. This
value of the MSE implies that the transmitted data can never be recovered and

therefore the forward LP detector is unacceptable.

These experiments demonstrate that the vector CMA with GSC detector can recover
the transmitted data for a wide variety of channels: square, tall, minimum-phase, and non-
minimum phase, so long as these channels are linearly separable and the input alphabet is
sub-Gaussian. As shown in [114], the error surface for the CMA cost function becomes
progressively “flatter” as the input alphabet approaches Gaussianity. Hence, one can
expect prolonged convergence times. This result also extends to the vector CMA cost
function with GSC. In contrast, a forward-backward LP detector can recover the trans-
mitted dateonly for a specific class of channels: tall and minimum-phase, and it can do so

irrespective of the distribution of the input alphabet.

5.8 SUMMARY

In this chapter, we have extended the definition for the vector CMA detector to chan-
nels with memory and have provided a detailed implementation of this blind detector. We
have shown in Theorems 5-2 and 5-3 that, in the absence of noise, the vector CMA cost
function is minimized by both unitary and non-unitary matrices when the input alphabet is
sub-Gaussian. The unitary matrices are desirable because the unitary ambiguity can be
estimated and resolved by the MPLL, which we have already developed. The non-unitary
matrices, unfortunately, limit the usefulness of the vector CMA detector in the case of sub-
Gaussian input alphabets. For a meso-Gaussian and super-Gaussian input alphabets, as

shown in Theorems 5-4 and 5-5, the vector CMA cost function proved to be useless.
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By exploiting the properties of the desirable minima, we were able to add an additional
term to the vector CMA cost function that penalized the undesirable local minima. The
modified cost function was referred to as the vector CMA cost function with Gram-
Schmidt constraint (GSC). This cost function for a sub-Gaussian input alphabet is mini-
mized by only unitary matrices. The additional term in this cost function, which is based
solely on second-order statistics, assists in reducing the convergence time. The elimination
of the undesirable local minima, unfortunately, is accompanied by an increase in computa-
tional complexity. We have shown that this computational burden can be reduced by
exploiting the redundancy in the update equation. We have included a detailed implemen-

tation of the reduced-complexity vector CMA with GSC detector.

The local minima of the vector CMA cost function with GSC in the presence of noise
could not be theoretically determined. Instead, we chose to experimentally quantify the
performance. We have shown that the performance of the optimal vector CMA with GSC

detector is nearly identical to that of the optimal MMSE detector.

Finally, we have shown through computer simulations that the vector CMA with GSC
detector compares favorably in terms of performance and complexity to other known
CMA-based blind multiuser detectors. Specific cases where this detector outperforms a LP

detector were identified.
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APPENDIX 5.1

PROOF OF THEOREM 5-2

The noiseless vector CMA cost function can be expressed in terms of the stacked-

channel input vectox and the block-matrix transfer functi®has follows:
J(F) = E[(X*F*FX)Z - 2M(X'FFX) + MVZ} . (5-58)

SinceF’F is an HermitiaR matrix and therank(F*F) < n, this matrix has a unique trun-
cated eigendecompositioR:F = VDV", whereV is an M+N+1)n x n truncated unitary
matrix andD is ann x n diagonal matrix. We see th&f F is also a positive-semidefinite

matrix, and hence the diagonal element® ohust be real and non-negative.

Letu = V"X and letw denote am x 1 vector whosé-th component is given by
w; = Juil? = vy X]2, (5-59)

wherev; is thei-th column ofV. The first and second terms of (5-58) can be simplified

using the previous two definitions:

1. The dependence on time has been suppressed to simplify the notation.
2. The matrixG is Hermitian matrix if and only i5 = G".

3. An Hermitian matrixG is positive semi-definite if and only if Gr = 0 for all r O C".
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E[X'"F'FX] = E[u'Du] = d"E[w], (5-60)
E[(X'"F'FX)?] = E[(u"Du)?] = d"E[ww]d, (5-61)

whered is ann x 1 vector composed of the diagonal element®oT he expectation of;

is given by:
E[w;] = E[1vi X12] = vi E[XX]v; = my]v; % = my, (5-62)

where the third equality is due to the assumption that all users are independent and identi-
cally distributed withE[xx"] = m,I. Therefore E[w] = m,1,, where then x 1 vectori,, =

[1 ... 1]. Using the previous three equations, (5-58) can be written as:
J,(V, d)=d"R,,,d -2m,M,d"1, + M2, (5-63)

whereR,,,, = E[ww']. The exact structure and rank Bf,,, are summarized by the fol-

lowing two lemmas.

Lemma 5-1: The matrixR,,, can be written as a linear combination of three

matrices:
Ry = (mz)z[lnlnT + 1+ (K—z)BTB} (5-64)

where thei( j)-th component oB is given by BJ;; = IVij|2-
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Proof: See Appendix 5.2.
Lemma 5-2: If k > 1, thenR,,,, iS @ positive-definite matrix.
Proof: See Appendix 5.3.

We see that (5-63) is completely parameterized/tandd. Since these two variables
are independent, the local minima of (5-63) can be determined by first minimizing the cost
function with respect tal, and then with respect td The gradient of (5-63) with respect

tod is given by:

Ogdy = 2Rypd — 2moMy 1, (5-65)

The inflection points of the cost function occur when the gradient is equal to the zero

vector, or equivalently when:
d = moM,Ryw 15, (5-66)

where the inverse dr,,,, exists because the matrix is positive definite, and therefore full
rank. The solution to this equation depends upon the exact valRg,pfThe matrixR,,,,
that minimizes the cost function can be determined by substituting (5-66) into (5-63).

After rearranging some of terms, we find that the vector CMA cost function reduces to:

J(V) = Mvz[l - (m2)21nTRWW—11n}. (5-67)
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This equation is only a function @t,,,,, which in turn is a function o¥. Therefore, mini-

mizing the cost function is equivalent to maximizing,)°1," R, -1, With respect tov.

Using the matrix inversion lemrfighe quantityf1,)?1,,"R,,, 1, can be written as:
(ML R 10 = (0 + )7, (5-68)

wherey = 1,7[1 + (k—2)B'B]1,. We observe that maximizingn()?1,,"Ry,, 11, is
equivalent to maximizing. SinceB'B is an Hermitian and a positive-semidefinite matrix,
it has a unique eigendecompositi@’:B = Q>Q', whereQ is ann x n unitary matrix and
> is ann x n diagonal matrix with non-negative real entries. The quanfityan be

expressed in terms of this eigendecomposition as follows:

1

- TH.)2 -
¥ Y Tcae o W (5-69)

wheregj; is thej-th diagonal element af and wherey; is thej-th column ofQ. Notice
that maximizingy is equivalent to simultaneously maximizirflgqu and simultaneously

minimizing [1 + (k-2)o;;] O j. Clearly,q; = 1 1,, maximizes the numerator, and since
n

7

the columns of) are orthogonal, (5-69) reduces to:

n

= 1+(K-2)0q;

(5-70)

4. The matrix inversion lemma i&¢BCD) ™t = A7 —AY(DAIB + c DA
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For a non-CM sub-Gaussian input alphaldet(k < 2), the denominator is minimized by
choosingoy; as large as possible; the largest eigenvalue corresponding to this eigenvector

occurs whero; = 1. Thus,y is maximized when
BTB1, = 1,. (5-71)

The question remains: for what values/ofloes (5-71) hold?

Multiplying (5-71) on the right-hand side hy", we find that

T

2 _
[Bln["=n = >

i=1

n 2
> lvil? =n, (5-72)

i=1

whereT = (M+N+1)n. A property of the matriB is that all of the components sunrto

T n

> Y lvil?=n (5-73)

i=1 j=1

Subtracting (5-73) from (5-72), and rearranging some of the terms, we obtain:

T n 0 n 0
> {Z |vijlzgz |Vij|2—15:|:07 (5-74)

i=1 Lj=1 i=1

which holds if and only if tha-th row of B sums to zero or theth row sums to one. From
(5-73), we deduce that only rows of B can sum to one, while the remaining rows must

sum to zero; in other words,
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|2 _ 01 wherep =1,...,n, andipD{l,...,T} st.ip #igwhenp # g

> Vi O _ (5-75)
i1 P 00  otherwise
Thus, the matrix/, which satisfies (5-75) and equivalently (5-71), is given by:
|
V=P nxno1qQ, (5-76)
0(T —n)xn

whereQ is an arbitraryn x n unitary matrix andP is a (M+N+1)n x (M+N+1)n real per-
mutation matrix. Substituting (5-76) into (5-66), we find that the optichel given byd =
1, or equivalenD = 1. This inflection point is a local minima because the Hessian of (5-

65) with respect tal, which is given by
Ddd‘JV = 2RWW (5'77)

is positive definite for a non-CM sub-Gaussian input alphabet (see Lemma 5-2).

Using the fact thaF F = VDV", we find that the vector CMA cost function for a non-

CM sub-Gaussian input alphabet is minimized if and only if
0 } PT (5-78)
whereU is an arbitraryn x n unitary matrix. Finally, mapping the block-matrix notation

back to thez-domain, we see that the vector CMA cost function for a non-CM sub-Gaus-

sian input alphabet is minimized if and only if
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F(z) = UP(2), (5-79)

whereP(z) is ann x n matrix which has only one nonzero entry of the far™, whereD
is an arbitrary delay value per row. If there is more than one nonzero entry in any column,

then the delay values in that column must all be diffetent.



265

APPENDIX 5.2

PROOF OFLEMMA 5-1

We recall from (5-59) that thieth component odv is given by:

2

-
Z VIi*XI ,

=1

w; = vy X7 = (5-80)

whereT = (M+N+1)n is the total number of elements in the veckrThus, the ij)-th

component oR,,,, can be written as:

[Rywlij = E[wiw; T, (5-81)

T 2 T 2
:E[ > ViX }[ > Voi %p } (5-82)
=1 p:l
T T T T
=Y 3 Y Y Vi Vmivpj VoiEDXXm XpXq ] (5-83)
|:1m=1p:1q:1

We can use the following identity: kfxy,*x,x,*] = (m2)2[6km6pq+6kq6mp+(K—2)6kmpq],

to simplify (5-83):
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T T T T

[Ruwlij =(mz)2{ > Iviil? > Ivpil? + > Vijvii- > VpiVpj
1=1 p=1 1=1 p=1
T
(k-2 'y |V|i|2|V|j|2}, (5-84)
=1
= (Mp)?| 1+ & + (K—Z)%% vl ?1vy 120 (5-85)
! 04, " @
= (m2)2|:[ln1nT]ij + [I];; + (K_Z)[BTB]iji| : (5-86)

where we have define®[;; = |v;;|°.

Hence,R,,, Can be expressed as a linear combination of three matrices:
Ry = (mz)z[lnlnT +1+ (K—2)BTB} (5-87)

where B]” = IVijIZ. U
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APPENDIX 5.3

PROOF OFLEMMA 5-2

We recall from (5-64) that the mati,,,, can be written as follows:
Ry = (m2)2[1n1nT +(1-B"B) + (K—1)BTB} (5-88)

where BJ;; = |Vij|2- The matrix1,1," is clearly positive semidefinite, because its eigen-
values are zero, with multiplicith—1, and n. The matrix k-1)BTB is also positive
semidefinite, becaus€ BTBr = ||Br||2 >0 for all r O €" and k-1) > O for a non-CM

input alphabets.

The third matrix in (5-88) is positive semidefiniterif(l — BTB)r = ||r||2—||Br||2 >0

for all r O €". We observe that:

T

|Bri*=S

i=1

n

> Ivijl %y

=1

2
(5-89)

. _ l 2 _ n 2 n _ . .
Definep; = a—i Ivijl<, whereaq; = Zj _ 1|Vij| , SO thatzj _PiE 1. SinceV is a trun-
cated unitary matrixQ < a; < 1. We can view the sunzr_' (Pifj asan expectatioB[R],

J =
whereR is a random variable over the sef{with probability mass function g;}. From

Jensen’s inequality [107], the square of the mean cannot exceed the second moment:
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2 n
= IERIZ<E[IRIZ = 5 pjIrj]> (5-90)
j=1

n
> Pifj

i=1

Using the fact thap; = al IVij|2 and thato; is positive, we simplify the inequality given
i

by (5-90) to the following:

<a z Vi1 1712 z il 2112, (5-91)

i=1 i=1

z 1vijl

j=1

where the last inequality is due to the fact that a; < 1. Hence, (5-89) is upper-bounded

by:

T

T n
|Br|” < Z vul “Irjl? = Z 1512 S 1viil?= Z|r|2=||r|| (5-92)

= j=1 i=1 j=1

T . . . . .
whereS | ]v;il? = 1 because the columns wfhave unit length. This equation implies
i=1" Y

that I r||2—||Br||2 >0 for all r O €" and so [-BTB) is a positive-semidefinite matrix.

Since the sum of positive-semidefinite matrices is positive semidefinite [RQG]is a
positive-semidefinite matrix. The matri,,,, therefore can be either singular or nonsin-
gular. If this matrix is assumed to be singular, then there exists a honzero vesich

that:

Ryl =0 = (MmyY)?r|1,1,"+(1-B™B) + (K—1)BTB} r=0, (5-93)
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o (M2 1L,Tr 12+ (|r|*~|Br|®) + «-D)|Br|* | =0, (5-94)

= 1,r=0and|r|* = |Br|* and||Br|* = 0, (5-95)

where the third implication is due to the fact that each term in (5-94) is non-negative. From
(5-95), we see that the last two conditions imply tMZ = 0, which is impossible since
we have assumed thato be nonzero. Henc®,,,, can never be singular. The matfRy,,,

must therefore be nonsingular and also positive definite fot. [
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APPENDIX 5.4

PROOF OF THEOREM 5-3

In Appendix 5.1, we showed that minimizing the vector CMA cost function is equiva-

lent to maximizing (5-69). For a CM input alphabet< 1), yis maximized if and only if
(1 —BTB) is singular. We observe that £ B'B) is singular if and only if there exists a

nonzero vector [ C" such that:
* T _ 2 _ 2
r(1-B'B)r=0 = IBr|™=|r|" (5-96)

The question remains: for what valuesvofloes (5-96) hold?

In Appendix 5.3, we showed that

n

.
< z > il 212 = | r|> (5-97)

=1j=1

|Br)” = Z

i=1

z Lvijl?r;

J_

Equality in (5-97) is achieved when the random varia®lis no longer random, but is
deterministic. This random variable becomes deterministic if the componentsad
equal to a constant for all nonzero entries onittferow of V. For exampleR is determin-
istic whenr = a1, for some nonzero constaat This vector achieves equality in (5-97)

only when each row oB sums to either one or zero. Because of the Bay constructed,
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this type of matrix can never exists, and hemceal,, cannot lie in the nullspace of ¢

BTB).

If V is a partial block-diagonal matrix, then the vectaran be subdivided into disjoint
subvectors corresponding to the nonzero blockg dr this case, the random varialiteas
deterministic if the components of each subvector are equal to a constant. By choosing the
constant for each subvector carefully, we can achieve equality in (5-97). If a revhaé
unit length, then the constant for the subvector corresponding to the nonzero entries on
that row should be nonzero. However, if the row does not have unit length, then the con-
stant for the subvector corresponding to the nonzero entries on that row must be zero.
Using this insight, we see that £ BTB) is singular if and only if the matrix/ has the

form:

V=P, o 0|pg, (5-98)
P

. : o L P

whereQ; is ak; x k; unitary matrix withk; O {1, ..., n} satisfyingl <k = Z 1ki <n,W
1 =

is an (M+N+1)n—k) x (n—k) truncated unitary matrix, ang, andPg are M+N+1)n X

(M+N+1)n andn x n real permutation matrices, respectively. The vectthrat lies in the

nullspace of (- B'B) has the form:
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r=PpPg' , (5-99)

whereai IS some nonzero constant.

Substituting (5-98) into (5-65), we find that the optimia given by:

: (0,1, |8
n L
o
-0 1, 27k
d=Pr O + O, (5-100)
Eon—k a 1 E
plk
- o |B
0 L -kl

whereaq; is a nonzero constant satisfyiniipz 1aiki = 0 andd; = 0. We observe that all
solutions ford satisfy the following property:zin: 1di =n, or equivalentlytr(D) = n.
Thus, the vector CMA for a CM input alphabet is minimized if and onlg§if = VDV”,
whereV is given by (5-98) and wher® is a non-negative diagonal matrix satisfyir¢D)

= n. By expanding the produc'F, it easy to show tha&"F = D, whereD is a diagonal

matrix, whose diagonal entries are a permutation of the diagonal entibes of

Finally, the vector CMA cost function for a CM input alphabet is minimized if and

only if
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— 1/2 T
F=UDY[I 00 r_mP" (5-101)

whereU is an arbitraryn x n unitary matrix,D is a non-negative real diagonal matrix sat-
isfying tr(D) = n, andP is an M+N+1)n x (M+N+1)n real permutation matrix. Mapping
the block-matrix notation back to thedomain, we then see that the vector CMA cost

function is minimized if and only if
F(z) = UDY2p(z), (5-102)

whereP(z) is ann x n matrix which has only one nonzero entry of the farh, whereD
is an arbitrary delay value per row. If there is more than one nonzero entry in any column,

then the delay values in that column must all be diffefent.



274

APPENDIX 5.5

PROOF OF THEOREM b5-4

If the input alphabet is meso-Gaussiarr(2), thenrR,,,, given in (5-64) reduces to:
Ry = (m2)2[1,11nT + '} (5-103)

Observe thar,,,, is independent o¥/, and therefore, the solution to (5-66) is also inde-
pendent olVv. Substituting (5-103) into (5-66), we find that the optindaik given byd =
1, or equivalentlyD = 1. This inflection is a local minima because the Hessian of (5-65)

with respect tal, which is given by
Ddd‘JV = ZRWW! (5-104)

is positive definite for a meso-Gaussian input alphabet (see Lemma 5-2).

Using the fact thaF'F = VDV", we find that the vector CMA cost function for a

meso-Gaussian input alphabet is minimized if and only if

F=U, (5-105)
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whereU is an M+N+1)n x n truncated unitary matrix. Observe that each rowrdhas
unit length, and therefor&; is an energy-preserving filter. Mapping the block-matrix nota-
tion back to the-domain, we see that the vector CMA cost function for a meso-Gaussian

input alphabet is minimized if and orii(z) is a energy-preserving filtern
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APPENDIX 5.6

PROOF OF THEOREM 5-5

In Appendix 5.1, we showed that minimizing the vector CMA cost function is equiva-
lent to maximizing (5-69). Notice that maximizirygs equivalent to simultaneously maxi-
mizing 1anj and minimizing [ + (k—2)o;] U j. Clearly,q; = %1n maximizes the

n

numerator, and since the columnsQére orthogonal, (5-69) reduces to:

—_— n -
Y= 1+(K-2)0q (5-106)

For a super-Gaussian input alphabetx2), the denominator is minimized by choosing
011 as small as possible; the smallest eigenvalue corresponding to this eigenvector occurs

whenoy; = . Thusy is maximized when

1
M+N+1

TR -1 i
B'BL, = &g Ine (5-107)

The question remains: for what valuesvofioes (5-107) hold?

Multiplying (5-107) on the right-hand side hy', we find that
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T | n 2
2___nh g2l = N .
[Bnl" = genez = 2 | 2 Ml M+N+1' (5-108)

i=1lj=1

whereT = (M+N+1)n. Recall that all of the components®imust sum tm:
T n
Z Ivijl>=n. (5-109)
i=1 j=1

Subtracting (5-109) from (5-108), and rearranging some of the terms, we obtain:

T n n
2H 2 O]
> Ivi I “OM+N+1) % vl “-10(=0, (5-110)
i i=1 . j=1 .

i=1

which holds if and only if thei-th row of B sums to zero or the-th row sums to

1 T
T NTL From (5-109), we deduce that all of the rows Bf must have length
m . Thus, the matri®/, which satisfies (5-110) and equivalently (5-107), is given

by:

Qo
) M +1N +1 Q'2 , (41D
_QM + N|

whereQ; is ann x n unitary matrix. Substituting (5-111) into (5-66), we find that the

optimald is given byd = a1,,, or equivalenD =al, where
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Q
1
1

=y (5-112)

+1+ =7
n M+ N +1

This inflection point is a local minima because the Hessian of (5-65) with respeit to

which is given by

Oaady = 2Ry (5-113)

is positive definite for a super-Gaussian input alphabet (see Lemma 5-2).

Using the fact thaF'F = VDV", we find that the vector CMA cost function for a

super-Gaussian input alphabet is minimized if and only if

1g M7

— v -

T N1t 1. (D) g[“o Uy Upgon (5-114)
M+N+1

whereU; is an arbitraryn x n unitary matrix. Mapping the block-matrix notation back to

thez-domain, (5-114) can be written as:

1 M 0
v 1 ~M-N

Ug+Uz-+...+U Z . 5-115

/M+N+1Erw+1+ (K =2) B( ot U M+N ) ( )

M+N+1

F(z) =

This transfer function, which has maximal multiuser and intersymbol interference, mini-

mizes the vector CMA cost function for a super-Gaussian input alplabet.
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APPENDIX 5.7

PROOF OF THEOREM 5-6

We recall from (5-39) that the noiseless vector CMA cost function with Gram-Schmidt

constraint is given by:

M+ N

Jes=dv+t ) | Elywyier 1= maIdy |||2: 1 (5-116)
l="M-N

wherey, = FX,. Using the fact thaE[y,y,_,'] = m,FJ,F", whereJ, is a block-diagonal
matrix with a block-identity matrix on theth diagonal, and thauFJ|F*||,2:: ||FJ_|F*||,2:,

we can express (5-116) as follows:

M+ N
* 2 * 2
Jos =y + M?IFF = 1I + 2my)* 5 IFIF IR (5-117)
=1

Sincerank(F) < n, the matrixF has a unique truncated singular-value decomposigon:
UDY2v", whereU is ann x n unitary matrix,D is ann x n non-negative diagonal matrix,
andV is an M+N+1)n x n truncated unitary matrix. In Appendix 5.1, we showed that the

first term of (5-117) can be written as follows:
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3V, d)=d"R,d - 2moM,d"1, + M2, (5-118)

whered is ann x 1 vector composed of the diagonal elementdoénd wherer,,,, =

E[ww']. Thei-th component of tha x 1 vectorw is given by:
wi = v X]?, (5-119)

wherey; is thei-th column ofv.

We can express the second term of (5-117) in terms of the keaofollows:
* 2 _ * 2 _ 2 _ 4T T
IFF =1l = lUDU — 1|z = ID- 1|z =d'd-2d"1, +n, (5-120)

where the second equality is due to the fact that the Frobenius norm is invariant to a uni-

tary transformation. Letv, denote am x n matrix whosei( j)-th component is given by:
[Wilij = 1[IV I\V];12% (5-121)
Using this definition, the third term of (5-117) can be written compactly as:
IF3,F"12 = JuD¥2v*3,vDY2U"|2 = |DY2v"3,vDY2|% = dTwd. (5-122)

Again, the second equality is due to the fact that the Frobenius norm is invariant to a uni-

tary transformation. Now, we can rewrite (5-117) as follows:
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Jgs = d'Ryd - 2moM,dT1, + M2 + (my)%(d"d — 2d "1, + n)

M+ N
+2(m5)? Z (d™w,d). (5-123)
=1

Observe that this equation is completely parameterized bpdd. Since these two vari-
ables are independent, the local minima can be determined by first minimizing the cost
function with respect tal and then with respect t@. The gradient of (5-123) with respect

tod is given by:

Ogdas = Rywd — 2moM 1, + 2(my)2(d — 1,,) + 2(my)?Ad, (5-124)
where
M+ N
A= S Wi+ w,, (5-125)

1=1

is a real non-negative symmetric matrix.

The inflection points of the cost function occur when the gradient is equal to the zero

vector, or equivalently whea satisfies the following equation:

[Ryw + (M2)?1 + (My)?Ald = [moM,, + (My)?]1,,. (5-126)

Substituting (5-126) into (5-123), we find that the vector CMA cost function with GSC

reduces to:
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M + N
Jss = [M? + n(my)? — (MM, + (my)?)dT1,] + (mz)sz[ Z (W, - WlT)}d- (5-127)
1=1

Sincez:v'_JrlN W, —w,T) is a real skew-symmetric matrix, the last term in (5-127) is iden-
tically zero for alld. Therefore, minimizing the vector CMA cost function with GSC is

equivalent to maximizingl'1,, = Zn )
1 =

di =n.
The question remains: for what values\ofs d "1, maximized? In Appendix 5.1, we
showed that the vector CMA cost function for a non-CM sub-Gaussian input alphabet is

minimized if and only if
|
V=P nxn 1qQ, (5-128)
o n

whereQ is an arbitraryn x n unitary matrix and® is an M+N+1)n x (M+N+1)n real per-
mutation matrix. Substituting (5-128) into (5-126) and multiplying (5-126) on the right-

hand side byi,,", we find that (5-126) reduces to:

n n

(MV+ 1) Z di + z z a”dj = (MV+ 1)n, (5-129)
i=1 i=1lj=1

wherea;; is the , j)-th component ofA and where we have used the fact that, forthe

specified by (5-128), the columnsRy,, sum toM,. Rearranging (5-129), we find that
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(MV + 1)|:n - Z d|:| = z Z a”dj =0, (5-130)

where the right-hand side is non-negative because Adathdd are non-negative. Sinae

Z0, Zn d; is maximized wher = 0.
i=1

If we view V in term of its tapsij.e., VT = [V' VT ... VN '], Wherev; is ann x n

matrix, then the condition that = 0 implies that

M+N-1 M+N

)3 S ViV =o. (5-131)

i=0 j=i+l

This condition in turn implies that there cannot be any correlation between the users in the
detector output. Substitutingy = 0 in (5-126), we find that the optimal is given byd =

1,, or equivalenD = I. The Hessian of (5-124) with respectias given by
Oggdy = 2Ry + 2(My)21. (5-132)

This matrix is clearly positive definite, because the identity matrix is positive definite and
the sum of a positive-definite matrix and a positive-semidefinite matrix is always positive
definite. Therefore, this inflection point is a local minima for all sub-Gaussian input alpha-

bets, including the CM input alphabet.

Using the fact thaE"F = VDV", we find that the vector CMA cost function with GSC

for a sub-Gaussian input alphabet is minimized if and only if



284

F=[FoF1 e Frand =U 1 O _| P (5-133)

whereU is an arbitraryn x n unitary matrix,P is an M+N+1)n x (M+N+1)n real permu-
tation matrix, and- satisfies the following constraint:
M+N-1 M+N

*

i=0 j=i+1
Finally, mapping the block-matrix notation back to theomain, we see that the vector

CMA cost function with GSC for a sub-Gaussian input alphabet is minimized if and only

if
F(z) = UD(z)P, (5-135)

whereU is an arbitraryn x n unitary matrix,D(z) is ann x n diagonal matrix with ele-
ments of the fornz™® whereD is an arbitrary delay value, amlis ann x n real permuta-

tion matrix.O
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CHAPTER 6

CONCLUSIONS AND
FUTURE RESEARCH

6.1 CONCLUSIONS

We have proposed several new algorithms for blind multiuser detection. The inspira-
tion for these algorithms is drawn from two time-tested single-user blind algorithms: the
constant-modulus algorithm (CMA) and the decision-directed phase-locked loop (PLL).
The proposed detectors have good performance, low complexity, and fast convergence.
We have demonstrated the effectiveness of these algorithms in a wide variety of contexts

including a uniform linear array application and a code-division multiple-access system.

In Chapter 3, we have reviewed the basic structure of a first-order and a second-order
phase-locked loop. We have analyzed the dynamics, both theoretically and experimentally,
of these PLLs. We have shown that there exists a minimum step size that guarantees con-
vergence of the PLL within a finite number of symbols. Unfortunately, the structure of the
conventional PLL does not extend to multiple dimensions, so we have manipulated the
update equations to develop an alternative model for the PLL, which is shown in Fig. 3-7.

Using this alternative model, we have proposed the multidimensional phase-locked loop
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(MPLL), which is illustrated in Fig. 3-9. The MPLL is a decision-directed algorithm that
exploits the discrete nature of digital communication signals in order to blindly estimate
and resolve a unitary ambiguity. We have experimentally analyzed the dynamics of both a
first-order and second-order MPLL. There exists a minimum step size, as was the case for
the PLL, that guarantees convergence of the MPLL within a finite number of symbols.
Finally, when compared to JADE and EASI, for various unitary channels, we have shown
that the MPLL offers fast convergence, excellent steady-state performance, and low com-

plexity.

In Chapter 4, we have proposed the vector CMA cost function, which is based on a
unigue generalization of the CMA cost function. For this cost function, we have deter-
mined the local minima both in the absence and in the presence of noise. We have shown
that in the absence of noise, this cost function is minimized only by unitary matrices when
the input alphabet is non-CM (Theorem 4-3), and by both unitary and non-unitary
matrices when the input alphabet is CM (Theorem 4-4). A consequence of Theorem 4-3 is
that the vector CMA detector is compatible with highly shaped input alphabets and can,
therefore, be used on system that approach Shannon capacity. In the presence of noise, we
have demonstrated that the vector CMA has near-MMSE like performance. For a CM
input alphabet, we have proposed the vector CMA cost function with Gram-Schmidt con-
straint (GSC). This cost function is minimized only by unitary matrices for all input alpha-
bets. Unfortunately, the elimination of the undesirable minima comes at the expense of
higher complexity. We have also presented detailed implementations of both of these

detectors. Finally, we have compared the performance and complexity of both the vector
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CMA and vector CMA with GSC detectors to other known CMA-based blind multiuser

detectors for a multisensor receiver and a synchronous CDMA application.

In Chapter 5, we have extended the vector CMA cost function to channels with
memory. In the absence of noise, we have shown that the vector CMA cost function is
minimized by both unitary and non-unitary matrices when the input alphabet is sub-Gaus-
sian. For non-sub-Gaussian input alphabets, this cost function proves to be useless, as
expected. In order to eliminate the undesirable local minima, we have also extended the
vector CMA cost function with GSC to channels with memory. In the absence of noise,
this cost function is minimized only by unitary matrices for a sub-Gaussian input alphabet.
As with memoryless channels, the elimination of the undesirable local minima comes at
the expense of increased computational complexity. We have included a detailed imple-
mentation of a reduced-complexity vector CMA with GSC detector. We have also shown
that in the presence of noise, the performance of optimal vector with GSC detector is
nearly identical to that of the optimal MMSE detector. Finally, using a multisensor
receiver with multipath and an asynchronous CDMA application, we have compared the
performance of the vector CMA with GSC detector to that of a forward-backward LP and

decorrelation CMA detector.

6.2 FUTURE RESEARCH

6.2.1 MPLL Convergence

The computer simulations in Chapter 3 suggest that the first-order MPLL does indeed
converge to the desired stable point for an appropriately chosen step size. We currently

lack a rigorous mathematical proof of convergence for this first-order MPLL, which may
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have provided us insight into the nonlinear behavior of higher order systems, such as the
second-order MPLL. It may be possible to derive it by using a multidimensional generali-
zation of the Fokker-Planck equation, which has been used to provide convergence for a

first-order PLL [32].

6.2.2 Fading Channels

Throughout this dissertation, we assumed that the channel transfer function is sta-
tionary. We have, in fact, exploited this property in the implementation of the vector CMA
with GSC detector. While this assumption is valid in some cases, it does not always reflect
all real-world applications. In fact, many applications are described by either fading chan-
nels or rapidly time-varying channels. For these channels, there is a need to speed up the
convergence of the proposed detectors. All of the adaptive algorithm described in this dis-
sertation are designed in the spirit of the LMS algorithm; the instantaneous estimates of
the gradient are used in place of their true values. One possible approach to increase the
rate of convergence is to design algorithms similar to the recursive least-squares algo-
rithm. The resulting algorithms would be relatively more complex, but the greater speed of
convergence would enable them to work well on both fading channels and rapidly time-

varying channels.

6.2.3 Undesirable Local Minima for FIR Linear Detectors

The fundamental work of Benvenistt al., Godard, Foschini, and Shalet al. on the
convergence characteristics of the constant-modulus algorithm for infinite-length equal-
izers has recently been examined and extended to finite-length equalizers by Ding et al.

[89,90] and Johnson [91]. Ding and colleagues have shown that for a QAM input alphabet
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and a broad class of non-pathological (minimum-phase channels) channels, there exists
undesirable local minima, which do not correspond to an open eye diagram. The CMA
therefore suffers from undesirable local minima when the channel has memory and the

equalizer is FIR.

An open area of research is to extend the analysis presented by Ding and his col-
leagues to the vector constant-modulus algorithm. These results would apply only to
square multiuser channels and finite-length linear detectors. In the analysis, it may be pos-
sible to determine the class of channels for which vector CMA fails to converge to the
desired local minima and also to develop techniques which can prevent misconvergence.
For a tall multiuser channel, as we have shown in Chapter 5, we do not expect that there
will exist undesirable local minima because it can be inverted by a FIR linear detector.

This conclusion still needs to be confirmed.
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