
EXTENSIONS OF THE CONSTANT-MODULUS ALGORITHM

AND THE PHASE-LOCKED LOOP

FOR BLIND MULTIUSER DETECTION

A Dissertation

Presented to

The Academic Faculty

by

Anuj Batra

In Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia

April, 2000

Copyright 2000 by Anuj Batra

NI•AI
GR

O
E

G
•

E
H

T
•

F
O •

L A E S •

S T I T U T E
• O

F
•

T
E

C
H

N
O

LOGY•

8 581

NA D
PR O G R ESS S ER V I C E



ii

To my parents, Anand and Mridul.



iii

ohn

e and

have

ers,

us

sor at

r sys-

ff at

stant

Steve

uter

s for

glu,

ara-

lped

s in
A C K N O W L E D G M E N T S

I would like to begin by extending my most sincere thanks to my advisor, Dr. J

Barry for guiding me through my graduate studies and research, and for his patienc

understanding, without which this dissertation would have never been completed. I

learned much from working with him. I am also grateful to my thesis committee memb

Dr. Douglas Williams, Dr. Mary Ann Ingram, Dr. Steven McLaughlin, and Dr. Marc

Spruill for their guidance and support.

I express my deepest gratitude to Dr. David Delchamps, my undergraduate advi

Cornell, who showed me the beauty of signal processing, communications, and linea

tems.

I greatly appreciate the support that I have received from the faculty and sta

Georgia Tech. In particular, I would like to thank Dr. Dale Ray, who has been a con

source of encouragement and comfort during my stay at Georgia Tech. I thank

Flynn, Dave Webb, and Joe Amond for their friendship and support with the comp

facilities.

My special thanks to my former roommates Ram Rao and James Caffery. Thank

all the great memories! I am grateful to Jim Kosmach, Joey Arrowood, Haluk Aydino

Mike Gazarik, Chris Lanciani, and Peter Cardillo for their invaluable support and cam

derie. I would especially like to thank Ravi Sivasankaran and Sarat Krishnan who he

me in the editing of my dissertation. I would be remiss if I did not thank my colleague



iv

hen-

ank,

Jen-

mem-

an

nce

er

ecial

the

I only
the Communications Theory Research Group: Ricky Causey, Hyuncheol Park and C

Chu Yeh.

There are also many people outside of my academic life that I would like to th

Alysse Rosewater, Tara Lane, and Marcy Lipp for their friendship. I especially thank

nifer Horton who has always supported me since I met her. Special thanks go to the

bers ofOur Lady Peace, Mike, Raine, Jeremy, and Duncan, who provided me with

amazing creative outlet. I am grateful to Natalie Turano, Rob Lanni, and Eric Lawre

who have supported me in my creative endeavors.

Finally, and most importantly, I would like to thank my family. My mother and fath

have provided me with endless support and infinite wisdom. My father deserves sp

praise for editing this very long dissertation. I would also thank my brother, Arun for

encouragement he has always provided. I could never say enough to thank them, so

say that I love them.

AB



v

... 6

7

10

1

39

47
T A B L E O F C O N T E N T S

List of Tables  x

List of Figures xi

Summary  xix

1 INTRODUCTION 1

2 BACKGROUND .......................................................................................

2.1 Multiuser Channel Model 7

2.1.1 Conversion from Continuous-Time to Discrete-Time

2.1.2 Conditions for the Existence of a Zero-Forcing Linear Detector

2.1.3 Minimum-Phase Channels 1

2.2 Non-Blind Detection 14

2.2.1 Optimal Detection 15

2.2.2 Suboptimal Detection 16

2.2.3 Adaptive Detection 17

2.3 Blind Detection 19

2.3.1 Blind Single-User Detection 19

2.3.2 Phase-Locked Loop 23

2.3.3 Blind Multiuser Detection 29

3 MULTIDIMENSIONAL PHASE-LOCKED LOOP 36

3.1 Phase-Locked Loop 38

3.1.1 First-Order PLL 38

3.1.2 Convergence Analysis of a First-Order PLL in the Absence of Noise

3.1.3 Convergence Analysis of a First-Order PLL in the Presence of Noise

3.1.4 Second-Order PLL 52



vi

54

7

0

2

2

4

97

01

06

8

2

25

7

6

3.1.5 Convergence Analysis of a Second-Order PLL

3.2 Alternative Model for Phase-Locked Loop 5

3.2.1 Alternative-Model First-Order PLL 57

3.2.2 Alternative-Model Second-Order PLL 6

3.3 Multidimensional Phase-Locked Loop 6

3.3.1 Rotation Detector 65

3.3.2 Loop Filter 70

3.3.3 First-Order MPLL 73

3.3.4 Second-Order MPLL 74

3.4 Alternative Model for the MPLL 76

3.5 Convergence Analysis for a First-Order MPLL 8

3.5.1 In the Absence of Noise 82

3.5.2 In the Presence of Noise 9

3.6 Convergence Analysis for a Second-Order MPLL

3.7 Experimental Results 99

3.7.1 Noiseless Memoryless Unitary Channel 1

3.7.2 Noisy Memoryless Gaussian Channel 1

3.7.3 Complexity Comparison 116

3.7.4 Trained MPLL versus Decision-Directed MPLL 11

3.8 Summary 120

Appendix 3.1: Proof of Theorem 3-5 12

4 SPATIAL VECTORCMA ....................................................................... 1

4.1 Channel Model and Assumptions 12

4.2 Vector CMA Cost Function 130

4.3 Local Minima in the Absence of Noise 13



vii

2

9

4

57

2

9

8

4

4

1

2

4.4 Local Minima in the Presence of Noise 14

4.5 Vector CMA with Gram-Schmidt Constraint 14

4.6 Adaptive Stochastic Algorithm 152

4.6.1 Vector CMA 153

4.6.2 Vector CMA with Gram-Schmidt Constraint 15

4.7 Experimental Results 156

4.7.1 Rotational Ambiguity and Performance Measure 1

4.7.2 Uniform Linear Array 159

4.7.3 Synchronous CDMA 166

4.7.4 Shaped Constellation 17

4.7.5 Computational Complexity 175

4.8 Summary 176

Appendix 4.1: Proof of Theorem 4-3 17

Appendix 4.2: Proof of Lemma 4-1 183

Appendix 4.3: Proof of Lemma 4-2 185

Appendix 4.4: Proof of Theorem 4-4 18

Appendix 4.5: Proof of Lemma 4-3 191

Appendix 4.6: Proof of Theorem 4-5 19

Appendix 4.7: Derivation of (4-99) 198

Appendix 4.8: Proof of Theorem 4-6 20

Appendix 4.9: Derivation of (4-55) 207

Appendix 4.10: Derivation of (4-56) 209

5 SPATIO-TEMPORAL VECTORCMA ...................................................... 21

5.1 Channel Model and Assumptions 21

5.2 Tall Channels 215

5.3 Vector CMA 218



viii

3

1

2

3

8

0

4

6

9

5

5.3.1 Cost Function 220

5.3.2 Stochastic Algorithm 222

5.4 Local Minima in the Absence of Noise 22

5.5 Vector CMA with Gram-Schmidt Constraint 23

5.5.1 Cost Function 231

5.5.2 Local Minima in the Absence of Noise 23

5.5.3 Stochastic Algorithm 234

5.6 Performance in Noise 239

5.7 Experimental Results 243

5.7.1 Uniform Linear Array with Multipath 243

5.7.2 Asynchronous CDMA 246

5.7.3 Small First Tap 250

5.7.4 Non-Minimum Square Right Factor 25

5.8 Summary 256

Appendix 5.1: Proof of Theorem 5-2 25

Appendix 5.2: Proof of Lemma 5-1 265

Appendix 5.3: Proof of Lemma 5-2 267

Appendix 5.4: Proof of Theorem 5-3 27

Appendix 5.5: Proof of Theorem 5-4 27

Appendix 5.6: Proof of Theorem 5-5 27

Appendix 5.7: Proof of Theorem 5-6 27

6 CONCLUSIONS ANDFUTURE RESEARCH .............................................. 28

6.1 Conclusions 285

6.2 Future Research 287

6.2.1 MPLL Convergence 287

6.2.2 Fading Channels 288



ix

88
6.2.3 Undesirable Local Minima for FIR Linear Detectors 2

REFERENCES 290

VITA 301



x

L I S T O F T A B L E S

3-1 Estimates of the phase error atεk = ±22.5° for all points in a 16-QAM input

alphabet. ................................................................................................................ 43

3-2 Optimal Parameters for a3 × 2 Gaussian Channel with 4-QAM input alphabet. 109

3-3 Optimal Parameters for a3 × 2 Gaussian Channel with 16-QAM input alphabet. 112

3-4 Optimal Parameters for a3 × 2 Gaussian Channel with shaped 16-QAM input

alphabet. .............................................................................................................. 114

3-5 Optimal Parameters for a5 × 3 Gaussian Channel with 16-QAM input alphabet. 117

4-1 Optimized Parameters for a Noisy Uniform Linear-Array Application. ............ 164

4-2 Optimized Parameters for a Noisy Synchronous CDMA Application. .............. 170



xi

...... 4

7

.. 9

.... 17

.

r,

.... 24

n

.. 26

.42

.... 45
L I S T O F F I G U R E S

1-1 A block of the general whiten-rotate structure. .................................................

2-1 A block diagram of a complex basebandp × n continuous-time channel model. ... 

2-2 (a) Ap × n continuous-time channel followed by an oversampling receiver

front end; (b) an equivalentm × n baud-rate discrete-time channel model. .........

2-3 A block diagram of anm × n channel with followed by ann × m linear detector

with memory. ....................................................................................................

2-4 Block diagram of the basic structure of a decision-directed phase-locked loop

The main components for phase-locked loop are the phase detector, loop filte

and complex VCO. ............................................................................................

2-5 If the ambiguity in the input signal to the PLL is a constant phase offset, then

the received constellation will be a tilted version of the transmitted constellatio

as shown in (a). The o’s represent the transmitted 16-QAM constellation and

the x’s represent the received constellation. If the ambiguity is a constant

frequency offset, the received constellation will spin, as illustrated in (b). ........

3-1 A normalized S-curve for a first-order DD PLL with 16-QAM input alphabet. ..

3-2 The fraction of trials that converge withink symbols is plotted versus the

number of symbols for a noiseless first-order DD PLL with 16-QAM input

alphabet and various step sizes: (a) the number of symbols ranges from 0 to

100,000; (b) an expanded view of the first 2000 symbols. ...............................



xii

..... 49

..... 50

.... 53

... 56

..... 58

.  59

.... 63

te the

.... 75

.... 79
3-3 Normalized S-curves for a first-order DD PLL with 4-QAM input alphabet

and a noisy input signal. ...................................................................................

3-4 Normalized S-curves for a first-order DD PLL with 16-QAM input alphabet

and a noisy input signal. ...................................................................................

3-5 The fraction of trials that converge withink symbols is plotted versus the

number of symbols for a noisy first-order DD PLL with 16-QAM input alphabet

and various step sizes: (a) the number of symbols ranges from 0 to 10,000;

(b) an expanded view of the first 1000 symbols. ..............................................

3-6 A phase-plane portrait for a second-order DD PLL with parametersα1 = 0.1

andα2 = 10–3. ....................................................................................................

3-7 Block diagram of the basic structure of a first-order PLL: (a) conventional

model consisting of a phase detector, loop filter, and complex VCO;

(b) alternative model consisting of a rotation detector, loop filter, and a

product accumulator. ........................................................................................

3-8 A graphical representation of a complete and partial rotation on the unit circle

3-9 Block diagram of the basic structure of a decision-directed multidimensional

phase-locked loop. The main components for MPLL are the rotation detector,

loop filter, and product accumulator. ................................................................

3-10 A comparison of the total number of multiplications that are needed to genera

update in (3-58) and (3-59). ..............................................................................

3-11 The squared error between the two intermediate pointsvλ andvµ as a function

of µ. ...................................................................................................................



xiii

L

.. 80

... 81

.... 89

.... 91

.... 92

3

.... 96
3-12 Comparison of the conventional-model MPLL and the alternative-model MPL

in terms of MSE1 versus time. ............................................................................

3-13 Comparison of computational complexity for the conventional-model MPLL

and the alternative-model MPLL. ......................................................................

3-14 The fraction of trials that converge withink symbols is plotted versus the

number of symbols for a noiseless two-user first-order MPLL with 16-QAM

input alphabet and various step sizes: (a) the number of symbols ranges from

0 to 500,000; (b) an expanded view of the first 10,000 symbols. .....................

3-15 The fraction of trials that converge withink symbols is plotted versus the

number of symbols for a noiseless three-user first-order MPLL with 16-QAM

input alphabet and various step sizes: (a) the number of symbols ranges from

0 to 500,000; (b) an expanded view of the first 20,000 symbols. .....................

3-16 The fraction of trials that converge withink symbols is plotted versus the

number of symbols for a noiseless four-user first-order MPLL with 16-QAM

input alphabet and various step sizes: (a) the number of symbols ranges from

0 to 500,000; (b) an expanded view of the first 20,000 symbols. .....................

3-17 The minimum step size that guarantees convergence within 500,000 symbols

λmin is plotted versus the number of usersn. ....................................................... 9

3-18 The fraction of trials that converge withink symbols is plotted versus the number

of symbols for a noisy three-user first-order MPLL with 16-QAM input

alphabet, various step sizes, and SNR1 = 20 dB: (a) the number of symbols

ranges from 0 to 250,000; (b) an expanded view of the first 25,000 symbols. .



xiv

.... 98

..... 99

in

ge

... 101

. 104

on

ve

ge

... 105

. 107
3-19 A phase-plane portrait for a second-order MPLL with parametersλ1 = 0.3 and

λ2 = 0.1. .............................................................................................................

3-20 A block diagram of anm × n memoryless channel followed by ann × m ideal

whitener. This model is used to generate the input signal for all computer

simulations. ......................................................................................................

3-21 Comparison of the MPLL, JADE, and EASI, in terms of MSE1 versus time, for

a 2 × 2 noiseless unitary channel. The shaded regions represent the variation 

convergence time for each of the detector. For each detector, the lower curve

is an average of the fastest 10% of the trials, the middle represents the avera

MSE, and the upper curve is an average of the slowest 10% of the trials. ......

3-22 Histogram of convergence times for a2 × 2 unitary channel: (a) MPLL;

(b) EASI; (c) JADE. ...........................................................................................

3-23 Comparison of the MPLL, JADE, and EASI, in terms of MSE1 versus time,

for a3 × 3 noiseless unitary channel. The shaded regions represent the variati

in convergence time for each of the detector. For each detector, the lower cur

is an average of the fastest 10% of the trials, the middle represents the avera

MSE, and the upper curve is an average of the slowest 10% of the trials. ......

3-24 Histogram of convergence times for a3 × 3 unitary channel: (a) MPLL;

(b) EASI; (c) JADE. ...........................................................................................

3-25 The convergence time for each detector is plotted versus SNR1 for a3 × 2

noisy complex Gaussian channel followed by a2 × 3 ideal whitener and a

4-QAM input alphabet. The optimal parameters for each detector can be



xv

.. 108

nd

.. 111

n

.. 113

nd

.. 116

118

.. 119

27

... 131

... 138

.. 148
found in Table 3-2. ............................................................................................

3-26 The convergence time for each detector is plotted versus SNR1 for a3 × 2

noisy complex Gaussian channel followed by a2 × 3 ideal whitener and a

16-QAM input alphabet. The optimal parameters for each detector can be fou

in Table 3-3. ......................................................................................................

3-27 The convergence time for each detector is plotted versus SNR1 for a3 × 2

noisy complex Gaussian channel followed by a2 × 3 ideal whitener and a

shaped 16-QAM input alphabet. The optimal parameters for each detector ca

be found in Table 3-4. .......................................................................................

3-28 The convergence time for each detector is plotted versus SNR1 for a5 × 3

noisy complex Gaussian channel followed by a3 × 5 ideal whitener and a

16-QAM input alphabet. The optimal parameters for each detector can be fou

in Table 3-5. ......................................................................................................

3-29 Comparison of computational complexity of MPLL, JADE, and EASI. ........... 

3-30 Comparison of a trained MPLL and a decision-directed MPLL in terms of

MSE1 versus time. .............................................................................................

4-1 A block diagram of anm × n noisy memoryless channel model. ....................... 1

4-2 A block diagram of anm × n memoryless channel followed by ann × m

memoryless linear detector. .............................................................................

4-3 A noiseless single-user system with a complex Gaussian input signal. ...........

4-4 A comparison of the mean-squared error versus SNR of the vector CMA

detector and the minimum-MSE detector. ........................................................



xvi

... 157

.. 161

nd

.. 163

nd

.. 165

.. 167

n

.. 169
4-5 A block diagram of a memoryless channel followed by a memoryless linear

detector and a memoryless unitary rotator. ......................................................

4-6 Comparison of the vector CMA detector, decorrelation CMA detector,

combination CMA detector, and the PWR detector, in terms of MSE1 versus

time, for a noiseless16 × 3 uniform linear-array with half-wavelength spacing

application with 16-QAM input alphabet, assuming both actual rotators and

MMSE rotators. .................................................................................................

4-7 Comparison of the convergence time of the three detector versus SNR1 for a

16 × 3 uniform linear-array with half-wavelength spacing application with

16-QAM input alphabet. The optimal parameters for each detector can be fou

in Table 4-1. ......................................................................................................

4-8 Comparison of the total complexity of the three detector versus SNR1 for a

16 × 3 uniform linear-array with half-wavelength spacing application with

16-QAM input alphabet. The optimal parameters for each detector can be fou

in Table 4-1. ......................................................................................................

4-9 Comparison of the vector CMA detector, decorrelation CMA detector, and the

PWR detector, in terms of MSE1 versus time, for a noiseless synchronous

CDMA application with 4-QAM input alphabet, assuming both actual rotators

and MMSE rotators. ..........................................................................................

4-10 Comparison of the convergence time of the three detector versus SNR1 for a

synchronous CDMA application. The optimal parameters for each detector ca

be found in Table 4-2. .......................................................................................



xvii

.. 171

th

l,

... 174

13

.. 219

.. 241

.. 244

. 246
4-11 Comparison of the total complexity of the three detector versus SNR1 for a

synchronous CDMA application.The optimal parameters for each detector can

be found in Table 4-2. .......................................................................................

4-12 The vector CMA detector applied to a uniform linear-array with half-waveleng

spacing and a shaped 16-QAM input alphabet: (a) learning curves, assuming

both an actual MPLL and an MMSE MPLL; (b) constellations from the last tria

baud 9000 to 10,000. ........................................................................................

4-13 Comparison of the computational complexity of the various detectors versus

the number of usersn for a fixed number of sensorsm = 20. ............................ 175

5-1 A block diagram of anm × n noisy channel with memory. ............................... 2

5-2 A block diagram of anm × n channel with followed by ann × m linear detector

with memory. ....................................................................................................

5-3 A comparison of the mean-squared error versus SNR of the optimal vector

CMA with GSC detector, the optimal minimum-MSE detector, and optimal

forward-backward LP detector. .........................................................................

5-4 Comparison of the vector CMA with GSC detector and decorrelation CMA

detector, in terms of MSE1 versus time, for a2 × 2 uniform linear with

multipath. ..........................................................................................................

5-5 Models for a two-user asynchronous CDMA application: (a) continuous-time

model with a chip-rate receiver; (b) equivalent discrete-time model. ...............

5-6 Comparison of the vector CMA with GSC detector, decorrelation CMA

detector, and a zero-delay forward LP detector, in terms of MSE1 versus time,



xviii

252

255
for a two-user asynchronous CDMA application.............................................. 249

5-7 Comparison of the vector CMA with GSC detector and the forward LP, in

terms of MSE1 versus time, for a channel with a small first tap. ........................ 

5-8 Comparison of the vector CMA with GSC detector and the forward LP,

in terms of MSE1 versus time, for a reducible tall channel. ............................... 



xix

mul-

ltiuser

nce to

hms

s, the

ser

a

ci-

nals.

sing

xity,

hich

oise,

s a

noise,

ener,

put
SU M M A R Y

Multiuser detection is the process of mitigating interference among users in a

tiuser communications system. This dissertation addresses the problem of blind mu

detection, where the transmitters do not provide training sequences or other assista

the receiver. We propose new low-complexity, adaptive, linear blind detection algorit

for square and tall channels by extending two well-established single-user algorithm

constant-modulus algorithm (CMA) and the phase-locked loop (PLL), to multiu

channel framework.

We propose a multidimensional phase-locked loop (MPLL) for blindly resolving

unitary ambiguity. The MPLL, a multidimensional generalization of the PLL, is a de

sion-directed algorithm that exploits the discrete nature of digital communication sig

We investigate the convergence behavior of a first-order and second-order MPLL. U

computer simulations, we show that the MPLL offers fast convergence, low comple

and excellent steady-state performance.

For memoryless channels, we propose the vector constant-modulus algorithm, w

is a unique generalization of the CMA to vector-valued signals. In the absence of n

we show that the vector CMA detector is a whitener for all non-CM input alphabets. A

result, this detector is compatible with shaped-input alphabets. In the presence of

this detector displays near MMSE-like performance. We also propose another whit

the vector CMA with Gram-Schmidt constraint detector, that can be used for all in
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alphabets. Using numerical examples, we compare that the performance and comp

of these two detectors with other blind detectors.

We also extend both the vector CMA and vector CMA with GSC detectors to chan

with memory. In the absence of noise, we show that the vector CMA detector converg

both unitary and non-unitary matrices and that the vector CMA with GSC detector

whitener for a sub-Gaussian input alphabet. In the presence of noise, the performa

optimal vector with GSC detector is similar to that of the optimal MMSE detector. Fina

through simulations, we demonstrate that the vector CMA with GSC detector comp

favorably with other blind detectors.
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I N T R O D U C T I O N

With the advent of cellular technology, more and more people are using digital mo

phones for personal as well as business needs, which places greater demands on

providers to ensure reliable voice and data transmissions over a wireless communic

channel. Improvements in integrated chip technology, which have led to cheaper ph

and substantial reductions in the cost of providing services, have resulted in an

whelming popularity of the digital mobile phones, which in turn has led to an expone

growth in the transmission of digital information. Unfortunately, the available spect

for transmission of data from mobile phones is finite. So it is inevitable that multiple u

share the same transmission medium and frequencies; in other words, they transm

over a multiple-access or multiuser communications channel [1-3].

A consequence of having multiple users transmit asynchronously and from diffe

geographic locations over a common channel is that these users interfere with one an

Traditionally, transmission protocols, such as FDMA, TDMA, and CDMA, are used at

transmitter to prevent multiuser interference at the receiver [4]. Each of these techn

seeks to eliminate multiuser interference by orthogonalizing the transmit signals. Unf

nately, in practice, these techniques can only reduce, and not eliminate the multiuser
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ference. For example, in systems that employ either FDMA or TDMA, multiu

interference arises from nearby cells re-using the same carrier frequency and from i

fections in either bandpass filters or system timing [5]. In systems that employ CDMA

combination of asynchronous transmissions and multipath propagation can de

orthogonality of the spreading sequences at the receiver and lead to significant mu

interference [6].

The digital wireless cellular network is only one example of a communications sys

where multiuser interference is present. Other examples include satellite communica

local-area networks, multi-track magnetic recording systems [7, 8], fixed wireless

loops, digital radio, interactive television, twisted-pair bundles [9,10], and dually-po

ized radio [11]. Since the multiuser interference has considerable structure, large ga

performance can be achieved by using suitable signal processing techniques to expl

structure at the receiver. Although the gains in performance come at the expense of

plexity at the receiver, this trade-off is often acceptable in many applications [1,2,12

The design and analysis of detectors in the presence of multiuser interference are of

importance, and research in this area has led to the development ofmultiuser detection

theory.

Even though digital communication systems were viewed in terms of a multiu

channel as early as the 1960s, it was not until the mid 1980s that the first algorithms

designed to exploit the structure of the multiuser channel [12]. The discrete-time mult

channel model is described below:

rk = H0xk + H1xk–1 + … + HMxk–M + nk, (1-1)
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wherexk is an n × 1 channel input vector whose components are the discrete sym

transmitted by then independent users,H(z) = H0 + H1z–1 + … + HMz–M is them × n

channel transfer function matrix,nk is anm × 1 noise vector, andrk is anm × 1 vector

sequence comprised of the receiver observations. The dimension of the observatio

equivalently, the number of virtual sensors,m, is related to the number of samples p

baudβ and the number of actual sensors at the receiver,p, according tom = βp.

Since the mid 1980s, several different detection strategies, such as maximum-

hood sequence detectors [14,15], linear detectors [9,16,17,18-20], and decision-fee

detectors [19-24] have been developed for the case when the multiuser channel resp

known or when a training sequence is available. In certain applications, such as broa

digital television, interactive cable television, and certain non-cooperative environm

the channel response is either unknown or the receiver does not have access to a t

sequence. In these situations, the receiver must adapt according to a blind detection

rithm [25]. The blind multiuser detection problem requires the determination of the tr

mitted sequencexk using only the observationsrk and the information about the propertie

of the transmitted sequence, such as the modulation scheme for each user. An in

drawback of blind multiuser detection is its inability to distinguish between the differ

users. Therefore, it is impossible to recover information from a particular user. Hence

propose to design algorithms that recover the entire transmit vectorxk and to use some

higher-level processing to differentiate between the individual users.

This research considers the design of a blind multiuser detector in the presence o

the multiuser and the intersymbol interference and noise. Our primary objective

develop low-complexity, adaptive, linear blind detection algorithms for square (m = n)
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and tall (m > n) channels. In our work, we consider only linear detectors, as oppose

nonlinear detectors, because they are more amenable to blind implementation. The

strategy that we have followed is to extend well-established single-user algorithms t

multiuser channel framework. The new blind multiuser detectors are fashioned afte

time-tested single-user blind algorithms: the constant-modulus algorithm (CMA) [26]

the decision-directed phase-locked loop (PLL) [1-3,27-32]. These two algorithms

adaptive, well understood, purported to be more robust in the presence of noise, an

lower computational complexity than many batch-oriented and signal subspace

rithms.

It is often convenient to decompose the blind multiuser detection process into

steps, as illustrated in Fig. 1-2:whitenand thenrotate[33-54]. The first step eliminates the

channel memory and whitens the output by using ann × m whitening filterW(z). The cas-

cade of the whitening filterW(z) and the channel matrixH(z) leaves a unitary ambiguity.

The second step in the process resolves this ambiguity by usingn × n rotating filterU. In

the following chapters, we develop algorithms that perform both the whitening

rotating tasks.

Fig. 1-1. A block of the general whiten-rotate structure.

W(z) yk

n × m
Whitener

n × 1

U

n × n
Rotator

wk

n × 1

H(z)xk

nk

rk

m × n
Channel

n × 1 m × 1
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The remainder of this dissertation is organized as follows. In Chapter 2, we re

some of the key concepts from multiuser linear system theory. We also determine the

ditions required for the existence of a linear detector for both a continuous-time cha

and a discrete-time channel. We then present a survey of prior work in multiuser dete

theory. We begin Chapter 3 by reviewing a first-order and second-order phase-lo

loop. We then present convergence analyses for these PLLs. Using an alternative

for the PLL, we extend the algorithm to multiple dimensions. This algorithm, which

referred to as the multidimensional PLL (MPLL), is a rotator that can blindly estima

unitary ambiguity. Finally in this chapter, we present convergence analyses for first-o

and second-order MPLLs. In Chapter 4, we present a novel and unique generalizat

the constant-modulus algorithm to multiple dimensions. We show that this algorithm a

modification of this algorithm can whiten a memoryless channel for all discrete in

alphabets. In Chapter 5, we generalize the whitening detectors presented in Chapt

channels with memory. Finally in Chapter 6, we summarize the key contributions of

research and present ideas for future work.
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C H A P T E R 2

B A C K G R O U N D

While most communication channels are inherently continuous time, the grow

trend in designing receivers is towards digital processing of the received signal. Thu

equivalent discrete-time model of the continuous-time channel is required. The que

naturally arises: given a discrete-time channel, how can we recover the transmitted

mation? The answer to this question is the focus of this research, with particular emp

on the design of blind linear detection strategies. In this chapter, we review key con

that will be used throughout the remainder of the dissertation.

In Section 2.1, we begin by converting the continuous-time channel into an equiv

discrete-time using a canonical receiver front end. We also state the conditions for

ence of a zero-forcing linear detector. We then review the notion of minimum phas

discrete-time multiuser channels. In the later part of this chapter, we present a surv

prior work in multiuser detection theory. In Section 2.2, we review the different detec

strategies for non-blind detectors, where knowledge of the channel or a training seq

is assumed. Finally in Section 2.3, we review blind equalization methods for a single

channel, a decision-directed phase-locked loop, and the literature concerning the g

problem of blind multiuser detection.
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2.1 MULTIUSER CHANNEL M ODEL

With the advent of integrated circuit technology, a great deal of the receiver proce

is now being performed in discrete time. Indeed, in the following chapters, it is assu

that we have a discrete-time channel for the systems described therein. However, in

communication systems, the underlying physical channel is continuous-time in natu

is important, therefore, to review the relationship between the underlying continuous

channel and its equivalent discrete-time model, because sometimes a discrete-time

may obscure interesting and exploitable properties of the continuous-time channe

example, a baud-rate discrete-time channel hides the inherent cyclostationarity o

underlying continuous-time channel model.

2.1.1 Conversion from Continuous-Time to Discrete-Time

Consider the following baseband additive-white Gaussian noise (AWGN) continu

time multiuser channel depicted in Fig. 2-1, in which thep continuous-time complex-

valued received signals are grouped into ap × 1 vectorr(t):

r(t) = H(t – jT)xj + n(t), (2-1)

H(f)

AWGN

p × n
Channel

n × 1 p × 1
xk r(t)

Fig. 2-1. A block diagram of a complex baseband p × n continuous-time channel
model.

j ∞–=

∞

∑
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wherexk is ann × 1 vector composed of the discrete symbol sequences transmitted b

n users,n(t) is ap × 1 zero-mean white complex Gaussian noise vector with power sp

tral density (PSD)Sn(f) = E[n(t)n(t-τ)*]e–j2πfτdτ = N0I, andT is the symbol period

for all users. The (i, j)-th element of thep × n matrix H(t), referred to as thecontinuous-

time impulse response, is the response of thei-th output element when an impulse i

applied to thej-th input element. Thep × n matrixH(f), which is referred to as thecontin-

uous-time channel transfer function, is the corresponding Fourier transform ofH(t). We

assume thatH(f) includes the pulse shaping for each user, which is usually bandlimite

The authors of [53,54] have shown that the continuous-time signal can be discre

by using the receiver front-end illustrated in Fig. 2-2. We assume that each compone

the channelH(f) is bandlimited to|f| ≤ W. This front end consists of 3 components:

bank of ideal anti-aliasing lowpass filters (LPFs), each with a cut-off frequency

/2T, an ideal sampler with a rate of /T, and a serial-to-parallel (S/P),

which concatenates the samples into anm × 1 vectorrk, wherem = p.

This sampling rate was chosen for two reasons: it avoids aliasing, and it ensures tha

will be an integral number of samples per baud. As shown in [53,54], the resulting

crete-time received vectorrk can be modeled as the output of an equivalent discrete-t

channel:

rk = Hj xk–j + nk, (2-2)

∞–

∞
∫

W2T W2T

W2T W2T

j ∞–=

∞

∑
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wherenk is anm × 1 zero-mean white Gaussian noise vector with power spectral den

σ2I, with σ2 = N0 /T. Them × n discrete-time channelH(z) can be expressed in

terms of the continuous-time channel transfer functionH(f) as:

H(z) = H(f), (2-3)

wherel = .

rkH(f)xk

AWGN

r(t)

p × n
Channel

n × 1

p × p

Wcut = l/T

rate = l/T

l = W2T

S/P

(a)

H(z)xk

AWGN

rk

m × n
Channel

n × 1 m × 1

(b)

Fig. 2-2. (a) A p × n continuous-time channel followed by an oversampling receiver
front end; (b) an equivalent m × n baud-rate discrete-time channel model.

LPF
BANK

W2T

1
T
----

k ∞–=

∞

∑
Ip e

j2π f k
T
----– 

  T
l
----–

Ip e
j2π f k

T
----– 

  l 1–( )T
l

--------------------–

Ip

T

…

W2T
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We are now in a position to discuss some of the properties of the discrete-time ch

transfer function matrixH(z). From (2-2), it is clear that the channel is causal ifHj = 0 for

all j < 0 and the channel is anti-causal ifHj = 0 for all j > 0. The channel described by (2

2) has an infinite-impulse response (IIR). If the support of the channel is finite, then

channel transfer function matrix is said to have a finite-impulse response (FIR). In m

real-world applications, an IIR channel can be approximated by an FIR channel w

large number of taps. This channel is stable if and only ifH(z) converges uniformly on the

unit circle [55],i.e.,

Hkz–k  < ∞. (2-4)

Finally, this channel has full rank if and only ifH(z0) has full rank for allz0 on the unit

circle (|z0| = 1) [56].

2.1.2 Conditions for the Existence of a Zero-Forcing Linear Detector

Linear detection of alln users is possible if and only if the intersymbol interferen

and the multiuser interference can be completely removed using only linear filtering,

other words, if there exists ann × m stable linear time-invariant filterC(z) satisfying

C(z)H(z) = I. The n × m filter that satisfiesC(z)H(z) = I is called azero-forcing linear

detectorbecause it forces both the intersymbol and the multiuser interference to zer

shown in [53,54], the condition for the existence of a zero-forcing linear detecto

directly related to the rank of the discrete-time channel matrix on the unit circle.

k ∞–=

∞

∑ 1
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Theorem 2-1. For anm × n multiuser discrete-time channelH(z), a zero-

forcing linear detectorC(z) exists if and only ifH(z) has full rank on the unit

circle.

Hence, the transmitted sequencexk can be recovered using only a linear detector if a

only if H(z) has full rank on the unit circle. Since the rank of a channel is inheren

related to the determinant of the channel, we can also express the result of the pre

theorem as follows [57]:

Corollary 2-1. For anm × n multiuser discrete-time channelH(z), a zero-

forcing linear detectorC(z) exists if and only ifdet(H*(1/z*)H(z)) ≠ 0 for all

z on the unit circle (|z| = 1).

2.1.3 Minimum-Phase Channels

Minimum-phase channels are an important class of channels in single-user com

cation theory. These are stable channels characterized by the fact that all of their pol

zeros lie inside the unit circle,i.e., the channels are stable and causal. As a result, a m

imum-phase channel has many special properties. For example, its inverse is min

phase and its spectrum completely describes the channel. Delfosse has extended t

cept of minimum phase to multiuser channels [33].

Definition 2-1. An m × n casual stable discrete-time channelH(z) is said to

beminimum phaseif and only if there exists a causal stable zero-forcing linear

detector.
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This definition reduces to the familiar definition for a single-user minimum-phase cha

whenm = n = 1 [55]. Using this definition, we can determine the conditions for which

square FIR multiuser channel is minimum phase.

Theorem 2-2. A squaren × n FIR causal channel of the form:H(z) = H0 +

H1z–1 + … + HMz–M, whereM is the channel memory, is minimum phase if

and only ifdet(H(z)) is minimum phase.

Proof: The channelH(z) is minimum phase if and only there exists a causal

stable inverse. A left-inverse, for this channel, is given by:

C(z) = H(z)–1 = adj(H(z)), (2-5)

whereadj(⋅) represents the adjoint of a matrix. SinceH(z) is causal and FIR,

adj(H(z)) will also be causal and FIR. Becauseadj(H(z)) is FIR, it is also

stable. Therefore,C(z) will be a casual stable left-inverse ofH(z) if and only if

is causal and stable. Sincedet(H(z)) is an FIR polynomial inz, the

zeros of lie inside the unit circle. For to be causal and

stable, the poles of this function must also lie inside the unit circle. In other

words, is causal and stable if and only if the poles and zeros of

det(H(z)) lie inside the unit circle. This last condition implies thatdet(H(z))

must be minimum phase.❏

Hence, a square FIR causal channelH(z) is minimum phase if and only if the channel ha

full rank and the determinant is minimum phase.

1
det H z( )( )
---------------------------

1
det H z( )( )
---------------------------

1
det H z( )( )
--------------------------- 1

det H z( )( )
---------------------------

1
det H z( )( )
---------------------------
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We can now determine the conditions for a tall FIR multiuser channel to be minim

phase.

Theorem 2-3. [54,34-35] A tallm × n FIR causal channel of the form:H(z) =

H0 + H1z–1 + … + HMz–M, whereM is the channel memory, is minimum

phase if and only ifrank(HM) = rank(H(z)) = n for all z including∞.

Proof: First, we prove the “if” portion of the proof. As shown in [54], if

rank(HM) = rank(H(z)) = n for all values ofz including∞, then the following

moving average (MA) channel:rk = Hixk–i, where the input sequence

xk is white:E[xkxk–l
*] = Iδl, can also be expressed in terms of an autoregres-

sive (AR) channel:rk = Airk–i + H0xk, where the feedback filterA(z) =

Aiz
–i is square (m × m) and strictly causal. By equating the transfer

functions of the MA and AR channels, we find thatH(z) = [I – A(z)]–1H0, or

equivalently, [I – A(z)]H(z) = H0. We observe that [I – A(z)] is causal and

FIR. It follows thatC(z) = H0
†[I – A(z)], whereH0

† = (H0
*H0)–1H0

*, is a

causal FIR left-inverse ofH(z). SinceC(z) is FIR, it is also stable. Hence,C(z)

is a causal stable left-inverse ofH(z) and therefore,H(z) is a minimum-phase

channel.

Next, we prove the “only if” portion of the proof. IfH(z) is minimum phase,

then there exists a causal stable filterC(z) that satisfiesC(z)H(z) = I. This

constraint can also be expressed in block-matrix notation:

[C0 C1 … CN]H = [I 0 … 0], (2-6)

i 0=

M∑

i 1=

N∑

i 1=

N∑
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whereC(z) = C0 + C1z–1 + … + CNz–N andH is the (N+1)m × (M+N+1)n

block-Toeplitz matrix:

H = . (2-7)

Since C(z) exists, the block-Toeplitz matrixH must have full-row rank.

Forney showed in [58] thatH has full-row rank only if rank(HM) =

rank(H(z)) = n for all z including∞. ❏

Thus, every tall FIR causal channelH(z) that satisfies the condition thatrank(HM) =

rank(H(z)) = n for all z including∞ is minimum phase.

2.2 NON-BLIND DETECTION

In the first part of this chapter, we derived the discrete-time multiuser channel

determined the conditions for the existence of a zero-forcing linear detector. The que

still remains: how can we recover the transmitted data? The answer to this que

depends on how much information is available. We can classify the detection strat

into two groups: non-blind detection, where we either know the channel or have acce

a training sequence; and blind detection, where we only have knowledge of the statis

the transmitted symbols. We begin this section by examining non-blind detection s

gies. In the next section, we review both single-user and multiuser blind detection s

gies.

H0 H1 HM 0 0

0 H0 H1 HM 0 0

0 0 H0 H1 HM

…
…

…

…
…

…

… …
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2.2.1 Optimal Detection

Consider them × n multiuser channel model described by (1-1), where the recei

vector is given by:

rk = H0xk + H1xk–1 + … + HMxk–M + nk. (2-8)

If nk is a zero-mean white Gaussian noise vector, then the optimal detector for this

tiuser channel is themaximum-likelihood sequence detector(MLSD), which was derived

by Van Etten [14,15] following the single-user approach suggested by Forney [59].

MLSD generates an estimate of the input sequence by minimizing the Euclidean dis

between the received sequence and a noiseless received sequence:

. (2-9)

It can be efficiently implemented via a Viterbi decoder withLnM states, whereL is the size

of the input alphabet,n is the number of users, andM is the channel memory. The Viterb

algorithm [60] is quite efficient, but it can be computationally complex even for mode

values ofL, n, andM, thus making the MLSD impractical for most real-world applic

tions. Therefore, much research effort has been recently directed towards devel

reduced-complexity techniques having near-optimal performance.

min

x̂k
rk H i x̂k i–

i 0=

M

∑–
2

k 1=

∞

∑
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2.2.2 Suboptimal Detection

As we mentioned previously, the zero-forcing linear detector forces both

intersymbol and the multiuser interference to zero in the absence of noise. The tra

function for the detector is given byCZF(z) = H(z)† = [H*(1/z*)H(z)]–1H*(1/z*). As in a

single-user channel, the zero-forcing linear detector can suffer from severe noise enh

ment. The output of the zero-forcing detector is given byyk = xk + vk, wherevk is a col-

ored noise vector with PSDN0H(z)†. In theory, the mean-squared error (MSE) of th

zero-forcing linear detector will be nearly infinite ifdet(H(z)) has a zero close to the uni

circle.

In contrast, the minimum mean-squared error (MMSE) linear detector seeks to m

mize the MSE between the detector outputyk and the channel input vectorxk; in other

words, it attempts to minimize the total MSE =E[ yk – xk ]. Let MSEi = E[|yk
(i) - xk

(i)|2]

denote the MSE for thei-th user. Since the total MSE is the sum of the MSEs for ea

user,i.e., E[ yk – xk ] = E[|yk
(i) - xk

(i)|2], the MMSE linear detector minimizes the

MSE for each individual user. This detector is desirable because it provides a reaso

balance between the suppression of interference and the enhancement of nois

transfer function of the MMSE linear detector can be expressed in two equivalent

[61]:

CMMSE(z) = H*(1/z*)[H(z)H*(1/z*) + σ2Im]–1, (2-10)

= [H*(1/z*)H(z) + σ2In]–1H*(1/z*). (2-11)

2

2

i i=

n∑
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We should emphasize that both (2-10) and (2-11) produce the same result, except

the noise is zero (σ2 = 0), and when the channel is tall (m > n), in which case (2-10) is not

valid. We observe that whenσ2 = 0, (2-11) reduces to a zero-forcing linear detector. W

also observe that the MMSE linear detector would exist even whendet(H(z)) has zeros on

the unit circle.

2.2.3 Adaptive Detection

So far we have focused on unconstrained receivers with full knowledge of the cha

and of the signal and noise characteristics. However, in practice these parameters w

unknown and possibly time-varying, and so adaptive detection techniques are requir

this section, we present the vector least-mean squared (LMS) algorithm [19,20], whic

straightforward extension of the single-user LMS algorithm.

Consider the adaptive multiuser linear detector shown in Fig. 2-3. We assume th

linear detector has a transfer function ofC(z) = C0 + C1z–1 + … + CNz–N, whereN is the

memory of the detector. The detector output can be expressed as follows:

yk = CRk, (2-12)

Fig. 2-3. A block diagram of an m × n channel with followed by an n × m linear
detector with memory.

H(z) C(z)xk

nk

rk yk

m × n n × m
Channel Linear Detector

n × 1 n × 1
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whereC = [C0 C1 … CN] is an n × (N+1)m matrix composed of the multiuser detecto

coefficients andRk
T = [rk

T rk–1
T … rk–N

T] is an (N+1)m × 1 stacked-observation vector

The goal of the vector LMS algorithm is to minimize the MSE cost function, defin

by:

J = E[ yk – xk ], (2-13)

wherexk is the channel input or the desired input signal. In the classical steepest-de

algorithm, the detector tap weights are adjusted according to the following update e

tion:

Ck+1 = Ck – ∇CJ, (2-14)

where∇C is the complex gradient1 of the cost function with respect to the detector ta

weights andµ is the step size. The complex gradient of (2-13) with respect to the lin

detectorC is given by:

∇CJ = 4E[ekRk
*], (2-15)

whereek = yk – xk is the error signal between the detector output and the channel inp

Substituting4ekRk
* as a stochastic approximation for the gradient in the steep

descent algorithm, we arrive at the following update equation for the linear detector:

1. The complex gradient ofJv with respect toC is defined as follows:∇ Jv = ∇ Jv + j∇ Jv,
whereCR = Re(C) andCI = Im(C) [1].

2

µ
4
---

C CR CI
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Ck+1 = Ck – µekRk
*. (2-16)

We refer to this algorithm as the vector LMS algorithm. Observe that this algori

reduces to the familiar single-user LMS algorithm whenn = 1. We should point out that

the vector LMS isnot equivalent ton independent single-user LMS algorithms operatin

in parallel. For example, when the input signals are highly cross-correlated, as in the

of multiuser interference, the vector LMS will outperform a bank ofn independent single-

user LMS algorithms. Finally, it is important to emphasize that the steady-state pe

mance of the vector LMS algorithm approaches that of the MMSE linear detector, i

step size of the algorithm is appropriately chosen.

2.3 BLIND DETECTION

In certain applications, the channel response is unknown and the receiver doe

have access to training sequence. In these situations, the receiver must adapt acco

a blind detection algorithm [25]. In this section, we review both the single-user and m

tiuser blind detection strategies.

2.3.1 Blind Single-User Detection

Over the last quarter century, many different blind equalization algorithms have

developed. These algorithms can be classified into three distinct groups: nonlinear

rithms, algorithms that are based on higher-order statistics (HOS), and those that are

on steepest-descent techniques. Nonlinear blind equalization algorithms include

imum-likelihood estimation techniques [62,63], decision-feedback equalizers [64,65]

neural networks [66,67]. These algorithms are typically used when the channel disto
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is too severe for linear equalizers [68]. The maximum-likelihood approach, neural

work, and decision feedback methods are not very popular in practical applica

because they are either too complex or have convergence problems.

The second class of algorithms, those based on higher-order statistics, in

polyspectra algorithms [69-71] and algorithms that explicitly use fourth-order cumul

[72-74]. These algorithms generate higher-order cumulants by applying a nonlinear

formation to the equalizer inputs; they generally have faster convergence rates an

guaranteed to converge globally. However, their improved performance comes a

expense of higher computational complexity.

The last class of algorithms are those that are based on steepest-descent tech

They are the most popular blind algorithms to date and hence, we will describe the

somewhat greater detail. These algorithms are typically implemented using the

mean-square (LMS) adaptation [75,76], where the “desired response” at each itera

generated by applying a memoryless nonlinearityg(⋅) to the output of linear filter. The

basic difference between these algorithms lies in the choice of the memoryless no

earity. Although the algorithms are different in this respect, they can all be classifie

Bussgang2 algorithms [78,79].

The most well-known Bussgang algorithm is the decision-directed equalizer.

equalizer is not suited for blind equalization because, in general, the initial decision

unreliable and therefore convergence can never be guaranteed. In 1975, Sato intro

the first blind equalization algorithm for the recovery of pulse-amplitude modula

2. Since the equalizer outputyk satisfiesE[ykg(yk)*] = E[ykyk
*] in equilibrium, it is referred to as a

Bussgang process [77].
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(PAM) signals [80]. He proposed to the generation of the error signal for LMS by us

the nonlinearityg(yk) = γ sgn(yk), where the gainγ = E[xk
2] / E[|xk|] is a function of the

channel inputxk. Sato later extended this algorithm to two-dimensional PAM sign

(quadrature-amplitude modulated signals) [81]. Both of these algorithms, unfortuna

have slow convergence because the error signalek = g(yk) − yk is very noisy around the

desired solution. In an attempt to speed up convergence, Benveniste and Goursat pr

using a combination of the Sato and decision-directed errors [82,83]. Their algor

relies on the more dependable Sato errors before the eye diagram opens and th

dependable decision-directed errors thereafter. Similarly, Picchi and Prati [84] propo

technique that updates only when the error is deemed reliable,i.e., when the Sato and

decision-directed errors have the same sign. Since this algorithm may not update w

at each iteration, it was referred to as the “Stop-and-Go” algorithm.

Realizing that equalizing a channel up to a phase offset is equivalent to forcing

magnitude of the ISI to zero, Godard suggested a cost function that characterizes t

present at the equalizer output, independent of the carrier phase [85]. This cost func

given by:

J(p, q) = E[(|yk|p – |xk|p)q], (2-17)

wherep andq are positive integers. Since, in practice, the input sequencexk is unknown,

Godard suggested using a dispersion function instead of (2-17):

D(p, q) = E[(|yk|p – Rp)2], (2-18)
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whereRp = E[|xk|2p]/E[|xk|p] for some positive integerp. Treichler and Agee indepen

dently proposed the constant-modulus algorithm (CMA) cost function, which is a sp

case of Godard’s cost function forp = q = 2 [26]. The CMA was originally designed to

restore the constant-modulus property of phase-shift keyed (PSK) constellation a

equalizer output. Godard showed that forp = q = 2 and input alphabets that satisf

E[|xk|4] < 2E[|xk|2], the global minima of (2-18) corresponds to the case of zero

[85]. For infinite-length equalizers, Foschini showed that (2-18) has many unstable s

points but only one global minimum [86].

Example 2-1. The constant-modulus algorithm cost function is defined as

follows:

J = E[(|yk|2 – M)2], (2-19)

where the modulusM = E[|xk|4] / E[|xk|2].

Shalvi and Weinstein [87] introduced a blind equalization scheme based on matc

the kurtosis of the channel input and the equalizer output. The kurtosis of a complex

sequence is defined as:

K(x) = E[|x|4] – 2E2[|x|2] – |E[x2]|2. (2-20)

These authors showed that ifE[|xk|2] = E[|yk|2], then|K(yk)| ≤ |K(xk)| with equality

only when perfect equalization has been achieved. Thus, they suggested an algorith
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maximizes|K(yk)| subject to the constraintE[|xk|2] = E[|yk|2]. We should point out

that a special case of the Shalvi-Weinstein algorithm is the original Godard algorithm

Many of the Bussgang algorithms are based on minimizing a non-convex cost fun

and so, global convergence cannot always be guaranteed [88-91]. Even the algorithm

are guaranteed to converge for infinite-length equalizers suffer from ill-convergenc

finite-length equalizers [89,90]. To deal with ill-convergence, Godard [85] suggest

tap-initialization procedure, while Foschini [86] suggested an algorithm to track

center the primary tap. Moreover, the convergence for the Bussgang algorithms is

slow because the convergence rate of the underlying adaptation scheme (LMS algo

is dependent on the eigenvalue spread of the channel. To speed up convergence,

and colleagues [92,93] proposed the CRIMNO (criterion with memory non-linear

algorithm, which uses additional nonlinearity to exploit the correlation between symb

Another drawback of Bussgang algorithms is that they are invariant to an arbitrary

tion. Typically, an estimate of this rotation can be generated by using a decision-dire

phase-locked loop (PLL). In the next section, we describe the basic structure of a PL

2.3.2 Phase-Locked Loop

The basic structure of a decision-directed (DD) phase-locked loop consists of

major components [1-3,27]: aphase detector, a loop filter, and acomplex voltage-con-

trolled oscillator(VCO), as illustrated in Fig. 2-4. The phase detector compares the p

of the received signalzk with the phase of the decisionk. The output of the phase

detector is a measure of the phase error between the two input signals. The estimate

phase error is then filtered by a loop filter to create a control signal which drives the V

x̂
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Fig. 2-4. Block diagram of the basic structure of a decision-directed phase-locked
loop. The main components for phase-locked loop are the phase
detector, loop filter, and complex VCO.
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The control signal changes the phase of the VCO output in a direction that reduce

phase error betweenzk and k.

Suppose that the input signalyk to the PLL has the following form:

yk = exp(jθk)xk + nk, (2-21)

wherexk is the channel input,θk is the phase offset, andnk represents the noise. Two o

the most common types of offsets include the constant phase offsetθk = θ ∈ [0, 2π), and

the constant frequency offsetθk = ωk + θ, whereω is the angular frequency offset, andθ

∈ [0, 2π). To provide a better understanding of these two types of offsets, we look a

following examples:

Example 2-2. If the phase offset in (2-21) is constant, then the received

constellation is a tilted version of the transmitted constellation in the absence

of noise. An example of a tilted received constellation is shown in Fig. 2-5(a).

The tilt in the received constellation poses two problems: first, it can result in

the symbols crossing decision boundaries leading to incorrect decisions; and

second, it can degrade the immunity of the receiver to noise by bringing the

received symbols closer to the decision boundaries.

Example 2-3. For a constant frequency offset, the received constellation is a

rotating version of the transmitted constellation in the absence of noise. An

example of a rotating received constellation is shown in Fig. 2-5(b). This

x̂
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Fig. 2-5. If the ambiguity in the input signal to the PLL is a constant phase offset,
then the received constellation will be a tilted version of the transmitted
constellation as shown in (a). The o’s represent the transmitted 16-QAM
constellation and the x’s represent the received constellation. If the
ambiguity is a constant frequency offset, the received constellation will
spin, as illustrated in (b).
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rotation results in severe degradation of the transmitted signal at the receiver

when the received symbols cross the decision boundaries.

The output of the complex VCO can be defined as follows:

k = exp(j k), (2-22)

where k is an estimate of the phase offset. If the estimate of the phase offset is co

( k ≈ θk), then the PLL is said to be inphase-lock, and the received signalzk = k
*yk

reduces to:

zk = exp(jεk)xk + exp(–j k)nk, (2-23)

≈ xk + wk, (2-24)

whereεk = θ – k is the actual phase error andwk = exp(–j k)nk is a rotated noise term.

At high SNR, (2-24) reduces tozk ≈ xk.

As shown in Fig. 2-4, the first step in generatingk is to estimate the phase errorεk

between k andzk [1]:

k = sin−1 . (2-25)

We should point out that the estimate of the phase error is only an approximation be

of occasional decision errors and noise. Since this phase detector is decision-direc

Û θ̂

θ̂

θ̂ Û

θ̂

θ̂ θ̂

θ̂

x̂

ε̂
Im x̂k

∗zk( )
x̂k zk

----------------------------
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suffers from a phase ambiguity when the transmitted constellation is -symme

whereM is a positive integer. For example, if the phase error is an integral multiple of

then the constellation forzk has the same appearance as the transmitted constellation

therefore, the output of the phase detector is identically zero. Thus, the decision-dir

phase detector given by (2-25) cannot properly estimate this type of phase ambiguity

ically, the problem is resolved at a higher layer using differential encoding.

The phase error estimatek is then passed through a loop filterL(z) to produce the

control signalck. The loop filter serves two purposes: it generates the necessary co

signal for the VCO, and it filters both the noisy and the incorrect estimates produce

the phase detector [27]. The output of the loop filterck drives a sum-accumulator to pro

duce an estimate of the phase offset:

k = ci. (2-26)

This equation can also be written in terms of a recursive update:

k+1 = k + ck, (2-27)

where 0 = 0 is the initial condition. Finally, the VCO output k is generated by passing

k through a complex exponentiator. The cascade of the sum-accumulator and the

plex exponentiator is often referred as the complex VCO.

A first-order PLL is sufficient to track a constant phase-offset, but a second-order

is necessary to track a constant frequency offset. In practice, a second-order PLL is

π
M
------

π
M
------

ε̂

θ̂
i 0=

k 1–

∑

θ̂ θ̂

θ̂ Û

θ̂
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cally used to resolve the residual phase error that remains after the Bussgang algor

A thorough treatment of a first-order and second-order PLL is given in Chapter 3.

2.3.3 Blind Multiuser Detection

Many of the early blind multiuser detectors were based explicitly on higher-order

tistics. Cardoso [94] and Comon [95] independently recognized that the second-orde

tistics of the channel output are not sufficient to blindly recover a memoryless cha

Clearly, H and HU produce the same covariance matrix at their output for any unit

matrix U. Hence, second-order statistical information can only provide an estimate o

channel up to an arbitrary unitary matrix. Higher-order statistics are needed to resolv

remaining unitary ambiguity.

Cardoso proposed to estimate a memoryless channel by first whitening the ch

output and then estimating the remaining unitary ambiguity by diagonalizing a cumu

matrix. Comon, on the other hand, proposed to estimate a memoryless channel by

mizing a contrast function. He showed that if the channel inputs are non-Gaussian an

tistically independent, the transmitted vector is recovered if and only if the componen

the detector output are also statistically independent. He also introduced the idea of

pendent component analysis (ICA) of a random vector, which consists of searching

linear transformation that minimizes the statistical dependence between its compone

order to implement the linear transformation of ICA, Comon suggested the use of con

functions, which were originally introduced by Donoho [96]. Giannakiset al. [97] showed

that the parameters of a moving average (MA) multiuser channel model can be uni

identified from third-order cumulants. Later Swamiet al. [98] extended Giannakis’ algo-

rithm for an auto-regressive moving average (ARMA) channel model. Tugnait [99] l
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proposed an algorithm for channel identification based on both second and fourth-

cumulants. Recently Comon [36] has extended his idea of contrast functions to cha

with memory. Moreau and Pesquet [37] have also proposed an algorithm for identify

channel based on generalized contrast functions. Algorithms based on higher-order

tics are impractical for many real-world applications because of their high computati

complexity.

Recently, a new class of algorithm based on linear prediction (LP) has been introd

only for tall channels [33-35,38-46,54]. Tong, Xu, and Kailath [38] showed that a me

ryless single-input, multiple-output (SIMO) channel can be identified up to an arbit

scalar rotationejθ using only SOS. Slock [39-41] showed that the output of an FIR SIM

channel has not only a moving-average (MA) representation, but also a finitely param

ized autoregressive (AR) representation. Gorokhov, Loubaton, and Moulines

extended the work of Tonget al. and Slock to multiuser channels. They showed that a

multiuser channel can be identified up to an arbitrary unitary matrixU using only SOS and

that the channel simultaneously has both an MA and AR representation. Identificati

the residual unitary ambiguity necessarily requires HOS. The majority of these algori

are batch-oriented and have high computational complexity. Recently, an adaptive

tiuser linear predictor has been proposed that significantly reduces the computationa

plexity to the order of the vector LMS [46,54]. Some of the drawbacks of LP-ba

algorithms are: they can lead to significant noise enhancement, especially whe

leading taps of the channel are small; they require knowledge of the channel memory

only work well when the tap of interest contains most of the channel energy; and the

be computationally complex whenm is much larger thann.
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Another class of algorithms is based upon generalizing CMA, which has comple

on the order of the LMS algorithm, to multiple dimensions [20,100-102]. A comm

extension of CMA to multiuser systems is to impose the constant-modulus constrai

each component of the multiuser detector output [103]:

Jp = E[(|yk
(i)|2 − Mi)

2], (2-28)

whereMi = E[|xk
(i)|4]/E[|xk

(i)|2] is the modulus for thei-th user, andxk
(i) and yk

(i)

denote thei-th component of the channel inputxk and the detector outputyk, respectively.

We refer to this cost function as thepointwise CMA cost function.

The local minima for this cost function are defined by the following theorem:

Theorem 2-4. Assuming an infinite-length multiuser linear detector, the

global minima of (2-28), in absence of noise, have the form [20,53]:

F(z) = , (2-29)

for any integersN1, N2, …, Nn, and for any anglesθ1, θ2, …, θn, and where

thei-th row ofF(z) has only one nonzero term of the form , which can

be located in any column.

i 1=

n

∑

0 0 e
jθ1z

N1–
0 0

0 0 0 e
jθ2z

N2–

e
jθnz

Nn–
0 0 0

… …

……

… …

………

e
jθiz

Ni
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This theorem implies that the pointwise CMA cost function is minimized if and only if t

i-th component of the multiuser detector output is equal to a possibly rotated and de

version of theji-th input,yk
(i) = whereji ∈ { 1, 2, …, n}. The arbitrary rotation

for each user is not troublesome because it can be resolved using a bank ofn independent

single-user decision-directed phase-locked loops. The arbitrary delays and permuta

the users can be resolved at some higher layer of processing.

The pointwise CMA cost function has both desirable and undesirable local min

The desirable local minima occur when all of the transmitted signals have been reco

up to a possible delay and rotation for each user. Examples of desirable local m

include:

, , , , and . (2-30)

In each case, information from both users has been recovered. We observe that all of

able local minima are in fact unitary matrices.

The undesirable local minima occur when information from one or more users is

Examples of undesirable local minima include:

, , , , and . (2-31)

e
jθixk Ni–

ji( )

1 0
0 1

1 0
0 j

1 0

0 z 2–
0 z2

1– 0

0 z 1–

e jπ 3⁄ 0

1 0
1 0

1 0

z 1– 0

0 z 1–

0 z 2–

1– 0
j 0

0 z 1–

0 e jπ 2⁄ z
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In each case, information for either user 1 or user 2 is completely lost. We observe tha

the undesirable local minima, a subset of the detector outputs are correlated. S

extensions of pointwise CMA cost function have been proposed to eliminate these u

sirable pointwise minima. One extension is based on adding a term to the pointwise

cost function that penalizes any correlations among detector output compo

[100,101]:

Jd = A Jp + B |E[yk
(i)(yk–n

(j))*]|2, (2-32)

whereA andB are positive constants andδ is some positive integer. We refer to this co

function as thedecorrelation CMAcost function. A drawback of this cost function is tha

it requires estimates of the cross-correlations ofyk at different delays, which can be diffi-

cult to obtain becauseyk is a non-stationary signal. Also, ifδ is less than the sum of the

memory in the channel and the detector, the additional term does not eliminate all o

undesirable solutions, it only eliminates the undesirable pointwise minima that

delays within the range [zδ, …, z−δ].

Another extension of the pointwise CMA cost function was introduced by Oda

Sato [102]. They suggested that the additional term should be a cost function that p

izes the variations in the norm of the multiuser detector output relative to a reference

ulus:

Jc = A Jp + B E[(||yk ||2 − M)2], (2-33)

n δ–=

δ

∑
i j≠
∑
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whereA andB are positive constants andM is the reference modulus. We refer to this co

function as thecombination CMAcost function. Oda and Sato reasoned that if the sec

term in (2-33) is minimized by a unitary matrix, that additional term would eliminate

undesirable local minima because the non-unitary matrices would produce a higher

Unfortunately, as we will show in Chapters 4 and 5, the second term of (2-33) is only

imized by a unitary matrix when the channel is memoryless and the input alphabet is

constant modulus. For memoryless channels with a constant-modulus input alphab

channels with memory, the second term in (2-33) is minimized by both unitary and

unitary matrices. Hence, the combination CMA cost function will still have undesira

local minima for these cases. For example, if the channel is memoryless and the

alphabet is BPSK, then

F = , (2-34)

is a local minima of (2-33). On the other hand, if the channel has memory, then

F(z) = , (2-35)

minimizes the combination CMA cost function.

Despite the modifications to the pointwise CMA cost function, both decorrela

CMA and combination CMA can still converge to an undesirable local minima. The

cussion on CMA-based detectors provides a foundation for the development of a

1 0
1 0

1 0

z 1– 0
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blind multiuser detector based on a unique generalization of the constant-modulus

rithm to be presented in Chapters 4 and 5.
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C H A P T E R 3

M U L T I D I M E N S I O N A L

PH A S E- L O C K E D L O O P

Even though a unitary matrix almost never correctly models a real-world multiu

channel, it often appears in the blind multiuser detection process. For example, whe

detection process is separated into a whitening step and a rotation step, in the abse

noise, the cascade of the whitening filter and the channel matrix reduces to a u

matrix. Because all unitary matrices produce the same covariance matrix, second

statistics are insufficient for resolving the unitary ambiguity. Therefore, the estimation

unitary matrix requires higher-order statistics.

In the last ten years, a class of blind algorithms, which are referred to as blind un

estimators, has been developed. These algorithms can estimate a unitary matrix usin

the observations and information about the properties of the transmitted sequence

doso and Souloumiac [47-49] proposed the first blind unitary estimator, which jointly

approximately diagonalizes a set of cumulant matrices in order to estimate the colum

the unitary matrix. This algorithm is referred to as the joint approximate diagonaliza

of eigenmatrices (JADE) algorithm. JADE is a batch-oriented algorithm with a relativ

high computational complexity ofO(n5), wheren is the number of users. Recently, Ca
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doso and Laheld [50] have introduced a class of blind unitary estimators, based on a

update equation, called equivariant adaptive separation via independence (EASI)

rithms. The EASI algorithms are adaptive and have low complexity,O(n3). Both JADE

and EASI are flexible blind unitary estimators because they make no assumption abo

structure of the input signals, other than that they are independent and non-Gaussia

As an alternative to JADE and EASI, we propose an adaptive blind unitary estim

that exploits the discrete nature of digital communication signals. We view the un

matrix as a constant rotation akin to a constant phase offset in a single-user comm

tion system. The most popular structure for estimating and resolving a constant p

offset in a single-user communication system is a decision-directed phase-locked

(PLL) [4-3,27-32]. We generalize the structure of the PLL to multiple dimensions in

chapter and show that the resulting algorithm is able to blindly estimate a unitary a

guity.

In Section 3.1, we review the basic structure of a first-order and second-order

sion-directed phase-locked loop and present a convergence analyses for ea

Section 3.2, we derive an equivalent structure for a first-order and second-order PLL

can be used to generalize the PLL to multiple dimensions. In Section 3.3, we deriv

multidimensional phase-locked loop (MPLL), and in Section 3.4, we develop an alte

tive model for the MPLL, which has a slightly lower computational complexity. In Se

tions 3.5 and 3.6, we present a convergence analysis for a first-order and second

MPLL, respectively. Finally in Section 3.7, we compare the performance and comple

of the MPLL to other well-known blind unitary estimators, JADE and EASI.
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The basic structure of a decision-directed (DD) phase-locked loop was describ

Section 2.3.2. In this section, we present the equations for, and analyze the conver

behavior of a first-order and second-order PLL.

3.1.1 First-Order PLL

A first-order PLL, which is sufficient to track a constant phase offset [27-32], us

loop filter of the form [1]:L(z) = α, whereα is a small positive constant. The estimate

the phase error, given earlier in (2-25) and shown below in (3-1):

k = sin−1 , (3-1)

is passed through the loop filterL(z) and a sum-accumulator to produce an estimate of

phase offset:

k = α i. (3-2)

We can also write (3-2) in terms of a recursive update:

k+1 = k + α k, (3-3)

where 0 = 0 is the initial condition. As before, the VCO output is given by

ε̂
Im x̂k

∗zk( )
x̂k zk

----------------------------

θ̂
i 0=

k 1–

∑ ε̂

θ̂ θ̂ ε̂

θ̂
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k = exp(j k). (3-4)

In summary, (3-1), (3-3), and (3-4) define a first-order DD PLL.

3.1.2 Convergence Analysis of a First-Order PLL in the Absence of Noise

Since the PLL is decision-directed, errors in the decision will result in errors at

phase detector. Proper operation of the DD PLL depends on the decisions being c

We need to verify that the errors at the phase detector will not prevent the DD PLL f

correctly estimating the phase offset in the input signal. The following analysis clo

parallels the discussion presented by Simon and Smith [104]. We assume that the c

inputxk is drawn uniformly from a discrete-input alphabet and that the phase offset is

stant:θk = θ ∈ [0, 2π). We also assume that the noise term is zero. The effect of nois

the convergence of the DD PLL will be considered in the next section.

By subtractingθ from both sides of (3-3) and manipulating the resulting equation,

find an equivalent update equation for the actual phase error:

εk+1 = εk – α k, (3-5)

where k is defined in (3-1). Sincezk = exp(jεk)xk in the absence of noise,k is a function

of both the channel input vectorxk and the actual phase errorεk. For a very small step size

α, we can assume thatk is independent ofεk and therefore, we can take the expectati

of (3-5) with respect to k. A first-order DD PLL converges in the mean when the upda

term in (3-5) is zero on average,i.e., when the estimate of the phase error is zero

average:

Û θ̂

ε̂

ε̂ ε̂

ε̂

ε̂



40

h is

-3).

r and

two

m-

t

ta-
E[ k] = 0. (3-6)

Conditioning (3-6) with respect toεk, we arrive at the following function1:

S(ε) = E[ |ε], (3-7)

where the expectation is taken over the entire input alphabet. This function, whic

referred to as the “S-curve” [27], is a useful tool for determining the stable points of (3

Definition 3-1. A stable point of a first-order DD PLL is defined to be a point

εs on the S-curve whereS(εs) = 0 andS′(εs) > 0; in other words, a stable point

occurs at a point where the S-curve crosses the zero axis and has a positive

slope.

We observe that if the DD PLL is near a stable pointεs andε > εs (ε < εs), thenS(ε) is pos-

itive (negative) on average, and the correction term in (3-5) will reduce the phase erro

drive the DD PLL towards the stable point (provided that0 < α < 1).

Using this S-curve, we determine the stable points of a first-order DD PLL for

common input alphabets: 4-QAM and 16-QAM. Since a QAM constellation is sy

metric, we need only considerε ∈ [– , ] in (3-7). The stable points for a 4-QAM inpu

alphabet are summarized by the following theorem:

1. The dependence on time has been suppressed, for the remainder of this section, to simplify no
tion.

ε̂

ε̂

π
2
---

π
4
---

π
4
---
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Theorem 3-1. For a 4-QAM input alphabet and a noiseless input signal, the

only stable point of a first-order DD PLL is given byεs = 0; in other words, a

first-order DD PLL can correctly estimate any phase offset for a 4-QAM input

alphabet.

Proof: For ε ∈ [– , ], it is easy show that (2-25) reduces to =ε. Hence,

the S-curve is the identity function:S(ε) = ε, and the only stable point occurs

whenε = 0. ❏

Corollary 3-1. For a 4-QAM input alphabet, the phase error reduces by a

factor ofα at each iteration.

Proof: Substituting k = εk into (3-5), we obtain:

εk+1 = (1–α) εk. (3-8)

Since the step sizeα ∈ (0, 1), the phase errorεk decreases at each iteration by

a factor ofα. ❏

We observe that once the DD PLL reaches the stable point ofεs = 0, it will remain there

indefinitely, because whenεk = 0, k = 0 for anyxk.

Definition 3-2. The stable point ofεs = 0 is adesirable stable point.

The stable points for a 16-QAM input alphabet are summarized by the following

orem:

π
4
---

π
4
--- ε̂

ε̂

ε̂
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Theorem 3-2. For a 16-QAM input alphabet and a noiseless input signal, the

stable points of a first-order DD PLL are atεs = 0, ±22.5°.

Proof: The S-curve for a 16-QAM constellation is shown in Fig. 3-1. This

curve, normalized to have a maximum value of unity, was evaluated using (2-

25). For each actual phase errorε ∈ [−π / 4, π / 4], an arithmetic average of the

16 different estimates of the phase error (one for each symbol) was taken. This

S-curve shows that the PLL has stable points atεs = 0 and atεs = ±22.5°. The

-45 0 45

-1

0

1

Phase Error ε (degrees)

S
(ε

)

Fig. 3-1. A normalized S-curve for a first-order DD PLL with 16-QAM input
alphabet.
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point atεs = 0 is stable point, becausek = 0 for any xk whenεk = 0. The

points atεs = ±22.5° are also stable points, because the sum of estimates of the

phase error for all points in the 16-QAM input alphabet, which are listed in

Table 3-1, equals zero.❏

Observe that the two stable points atεs = ±22.5° are undesirable because there is a no

zero residual phase error inzk, and as a result, the channel input cannot be recovered w

a simple decision device.

Definition 3-3. Any non-zero stable point is anundesirable stable point.

For ε ∈ [0, 20.69°], Fig. 3-1 shows thatS(ε) is positive (on average) and therefore, th

correction term in (3-5) will reduce the phase error and drive the PLL towards the s

point ofεs = 0. This figure also indicates that it only takes a small perturbation of less t

–1.81° to move the DD PLL from the undesirable stable point atεs = 22.5° to a phase error

that lies in the range [0, 20.69°]. As indicated above, this perturbation would guarant

convergence of the DD PLL (on average) to the desired stable point. The same is als

ε̂

xk k, whenεk = –22.5° k, whenεk = 22.5°

±1 ± j –22.5° 22.5°

±(1 + 3j), ±(3 – j) 3187/784° –5633/392°

±(1 – 3j), ±(3 + j) 5633/392° –3187/784°

±3 ± 3j 3187/784° –3187/784°

ε̂ ε̂

TABLE  3-1:  Estimates of the phase error at εk = 22.5° for all points in a 16-QAM input alphabet.
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for the undesirable stable point atεs = –22.5°. In contrast, a perturbation of larger tha

20.69° is needed to force the DD PLL away from the desired stable point ofεs = 0.

As mentioned earlier, (3-6) is only valid for very smallα, and consequently, the result

of Theorem 3-2 are also only valid whenα is very small. Therefore, this theorem sugges

that, if α « 1, it is possible for a first-order DD PLL with a 16-QAM input alphabet to co

verge to an undesirable stable point and remain there indefinitely. To explore this p

bility, we consider the following experiment which examines the effects of the step siz

the convergence of a first-order DD PLL with 16-QAM input alphabet.

Experiment 3-1. Suppose that the input signal to the PLL is given byyk =

exp(jθ)xk, whereθ is a randomly generated constant-phase offset andxk is

uniformly drawn from a 16-QAM input alphabet. For a given phase offset, we

implemented a first-order DD PLL for 100,000 random symbols and several

different step sizesα ∈ {0.3, 0.1, 0.05, 0.01, 0.005, 0.004, 0.003, 0.002,

0.001}. For each step size, we determined the minimum number of symbols

required for the DD PLL to converge to the desired stable point. Convergence

to a stable point is defined to have been achieved when the transfer functionFk

= k
*exp(jθ) = exp(jεk) satisfies:

|Fk – P|2 ≤ 10–3, (3-9)

whereP ∈ { 1, j, –1, –j} represents the phase ambiguity associated with a

QAM constellation. In all, we considered 3000 different phase offsets. In

Fig. 3-2, Ft(k), the fraction of trials that converged withink symbols, is

Û
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Fig. 3-2. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless first-order DD PLL with 16-QAM input
alphabet and various step sizes: (a) the number of symbols ranges from
0 to 100,000; (b) an expanded view of the first 2000 symbols.
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plotted versus the number of the symbols. From these curves, we observe that

the DD PLL always converges to the desired stable point, within 100,000

symbols, when the step sizeα ≥ 0.004. (In fact, if we increase the number of

symbols to 500,000, then the DD PLL will always converges to the desired

stable point whenα ≥ 0.003.) Ifα ≤ 0.001, the DD PLL only converges for a

small fraction of the 3000 trials; in fact, for majority of the phase offsets, the

DD PLL remains trapped around an undesirable stable point even after

100,000 symbols.

This experiment confirms that it is possible for the DD PLL to converge to an undesir

stable point when the step sizeα ≤ 0.001. Because of the fact that we implemented the D

PLL for only 100,000 symbols, the information that this experiment consequently fai

provide is whether, for anα ≤ 0.001, the DD PLL remains at an undesirable point inde

nitely. However, we do gain an insight for the selection of an appropriate step size

real-world implementation of the DD PLL. To guarantee convergence of a first-order

PLL with a 16-QAM input and no noise, the general rule of thumb is to chooseα ≥ 0.004.

If on the other hand, one includes an infinite number of symbols, Simon and S

have shown that a first-order DD PLL always converges to the desired stable point re

less of the step size.

Theorem 3-3. For an infinite number of symbols and no noise, a first-order

DD PLL always converges to the desired stable point ofεs = 0.

Proof: See Simon and Smith [104].
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We observe that the result of this theorem is independent of both the input alphabet a

step size. This limiting situation considered by Simon and Smith is only of acade

interest because it would require an unlimited time for the first-order DD PLL to conve

in practice, however, the speed of convergence is an important consideration.

3.1.3 Convergence Analysis of a First-Order PLL in the Presence of Noise

So far we have only considered the convergence of a first-order DD PLL in

absence of noise. In this section, we examine the effects that noise has on the conve

of a first-order DD PLL. We assume that the input signalyk to the PLL has the following

form:

yk = exp(jθk)xk + nk, (3-10)

wherenk is a complex Gaussian random variable with varianceσ2. The corresponding

received signalzk can be expressed as:

zk = exp(jεk)xk + wk, (3-11)

wherewk = exp(–j k)nk is also a complex Gaussian random variable with varianceσ2.

Substituting (3-11) into (3-1) and expanding (3-7), we obtain an equivalent relation

for the S-curve:

S(ε) = ε + E , (3-12)

θ̂

sin 1– Im x̂* x w+( )[ ]
x̂ x w+

-------------------------------------- 
 
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where the expectation is taken over both the channel input and the noise term. In de

(3-12), we have assumed that the input alphabet is QAM, and therefore, we need onl

siderε ∈ [– , ].

Unfortunately, we are unable to simplify (3-12) any further because of the difficu

theoretically evaluating the expectation. However, we can obtain noisy S-curves by

numerical integration techniques [105]; in particular, the one-dimensional extended t

zoidal rule. The noisy stable points for a 4-QAM are summarized in the following t

orem:

Theorem 3-4. For a 4-QAM input alphabet and a noisy input signal, the only

stable point of a first-order DD PLL is given byεs = 0.

Proof: In Fig. 3-3, we plot the noisy S-curves for several values of SNR =

E[|xk|2]/σ2. Each S-curve was evaluated using (3-12). For each SNR, the S-

curve only has one stable point atεs = 0.

An interesting property of the noisy S-curves is that they tend to become smoother a

SNR decreases. In fact, when the SNR = 5 dB, the noisy S-curve is completely devoid o

any sharp edges.

In following experiment, we consider the noisy stable points for a 16-QAM in

alphabet:

Experiment 3-2. In Fig. 3-4, we plot the noisy S-curve for several values of

SNR =E[|xk|2]/σ2. Each S-curve was evaluated using (3-12). For an SNR≥

40 dB, the S-curve does change appreciably from the one shown for infinite

π
4
---

π
4
---
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Fig. 3-3. Normalized S-curves for a first-order DD PLL with 4-QAM input alphabet
and a noisy input signal.
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Fig. 3-4. Normalized S-curves for a first-order DD PLL with 16-QAM input
alphabet and a noisy input signal.
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SNR. In fact, the PLL still has a desirable stable point atεs = 0 and two unde-

sirable stable points atεs = ±22.5°. However, when SNR < 40 dB, the undesir-

able stable points disappear from the S-curves and the only remaining stable

point occurs whenεs = 0.

Observation 3-1. For a 16-QAM input alphabet and a noisy input signal, the

stable points of a first-order DD PLL areεs = 0, ±22.5° when SNR≥ 40 dB,

andεs = 0 when SNR < 40 dB.

This experiment implies that a noisy signal can prevent a first-order DD PLL with a

QAM input alphabet from converging to an undesirable stable point, no matter wha

step size. This result is due to the fact that the noise provides the necessary pertur

for the DD PLL to escape the shallow undesirable stable point. To verify this result

consider the following experiment:

Experiment 3-3. Suppose that the noisy input signal to the PLL is given by

yk = exp(jθ)xk + nk, whereθ is a randomly generated constant-phase offset,xk

is uniformly drawn from a 16-QAM input alphabet, andnk is a zero-mean

white Gaussian noise term. We assume that SNR = 25 dB. For a given phase

offset, we implemented a first-order PLL for 100,000 random symbols and

several different step sizesα ∈ {0.3, 0.1, 0.05, 0.01, 0.005, 0.001}. For each

step size, we determined the minimum number of symbols required for the

DD PLL to converge to the desired stable point. Convergence to a stable point

is defined to have been achieved when the transfer functionFk = k
*exp(jθ) =

exp(jεk) satisfies:

Û
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|Fk – P|2 ≤ 10–3, (3-13)

whereP ∈ { 1, j, –1, –j} represents the phase ambiguity associated with a

QAM constellation. In all, we considered 3000 different phase offsets. In

Fig. 3-5, we plotFt(k), the fraction of trials that converged withink symbols,

versus time. It is observed that the PLL converges to the desired stable point,

within 10,000 symbols, for all step sizes.

This experiment confirms that noise can prevent the DD PLL from converging to

undesirable stable point, even for step sizesα ≤ 0.001. This result is reassuring because

real-world applications are corrupted by noise.

3.1.4 Second-Order PLL

A second-order PLL, which is necessary to track a constant frequency offset:θk = ωk

+ θ, θ ∈ [0, 2π), andω ≠ 0, uses a loop filter of the form [1]:

L(z) = α1 + , (3-14)

where bothα1 andα2 are positive constants andα2 « α1. From (2-26), we see that for this

filter, the estimate of the phase offsetk is related to the estimate of the phase errork by:

k = α1 i + α2 l . (3-15)

α2

1 z 1–
–

-----------------

θ̂ ε̂

θ̂
i 0=

k 1–

∑ ε̂
l 0=

i

∑ ε̂
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Fig. 3-5. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noisy first-order DD PLL with 16-QAM input
alphabet and various step sizes: (a) the number of symbols ranges from
0 to 10,000; (b) an expanded view of the first 1000 symbols.
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We observe that whenα2 = 0, (3-15) reduces to the update equation for a first-order PL

Equation (3-15) can also be expressed as a recursive update:

φk+1 = φk + α2 k, (3-16)

k+1 = k + α1 k + φk+1, (3-17)

with initial conditions 0 = 0 andφ0 = 0. We see that (3-16) represents the integrati

loop for the second-order PLL. As before, the VCO output is given by (3-4).

In summary, a second-order DD PLL is defined by (3-1), (3-4), (3-16), (3-17).

3.1.5 Convergence Analysis of a Second-Order PLL

In this section, we investigate the convergence of a second-order DD PLL in

absence of noise. We assume that the channel inputxk is drawn uniformly from a discrete-

input alphabet and that the only impairment in the input signal to the PLL is a constan

quency offset:θk = ωk + θ, whereθ ∈ [0, 2π), andω = 2πf is the angular frequency. Typi-

cally, a constant frequency offset arises because of the difference between the frequ

of the transmitter oscillator and the receiver oscillator. We should point out that a sec

order loop is capable of compensating for a small frequency difference so that the st

state phase error is zero. This result is one of the reasons why second-order loops a

extensively [32].

We are interested in determining the values ofω for which a second-order PLL would

converge to the desirable stable point of zero phase error. For a continuous-time se

order PLL, they are determined by usingphase-plane techniques[27-32]. By numerically

ε̂

θ̂ θ̂ ε̂

θ̂
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solving the state equations, a phase plane is constructed and the trajectories are plo

various initial conditions. This plot shows the dynamics of the second-order loop as i

tles (or fails to settle) towards a point of equilibrium.

It is not clear how the phase-plane techniques of a continuous-time second-orde

may be extended to a discrete-time second-order DD PLL; nevertheless, we can gen

phase-plane portrait experimentally. In the following experiment, we determine the r

of ω that a second-order PLL can resolve for fixed values ofα1 andα2.

Experiment 3-4. This experiment determines the range of frequencies that a

second-order DD PLL is able to resolve. Suppose that the input signal to the

PLL is given byyk = exp(j2πfk + jθ)xk, wheref is the frequency offset,θ is the

constant phase offset, andxk is drawn uniformly from a 16-QAM input

alphabet. For a given frequency offsetf = , whereϕ is an integer in the

range [–25, 25], and a given phase offsetθ ∈ [– , ], we implemented a

second-order DD PLL with parametersα1 = 0.1 andα2 = 10–3 for 1,000,000

symbols and determined whether or not the PLL converged to the desired

stable point. Convergence to a stable point is defined to have been achieved

when the transfer functionFk = k
*exp(jθ) = exp(jεk) satisfies the following

relationship for 15 consecutive symbols:

|Fk – P|2 ≤ 10–3, (3-18)

whereP ∈ { 1, j, –1, –j} represents the phase ambiguity associated with a

QAM constellation. The shaded region in the plot of frequency offset versus

ϕ
360
----------

π
4
--- π

4
---

Û
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phase offset, displayed in Fig. 3-6, represents the values for which the second-

order DD PLL converged. This type of plot is referred to as a phase-plane por-

trait. This plot shows that, with parametersα1 = 0.1 andα2 = 10–3, a second-

order DD PLL always converges to the desired stable point if|f| ≤ ,

regardless of the phase offset, and it can therefore, resolve a frequency offset

of up to19 degrees per baud.

This experiment shows, forα1 = 0.1 andα2 = 10–3, that it is possible for a second-orde

DD PLL to resolve a constant frequency offset. In general, the range of frequency o

that a second-order DD PLL can resolve will depend upon the choice ofα1 andα2. As
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Fig. 3-6. A phase-plane portrait for a second-order DD PLL with parameters α1 =
0.1 and α2 = 10–3.

19
360
----------



57

ce of

A

uni-

tive

d the

ions.

ecome

ws:

dif-

a loop
seen earlier, with a first-order PLL, a noisy input signal should assist in the convergen

a second-order PLL.

3.2 ALTERNATIVE M ODEL FOR PHASE-L OCKED L OOP

In higher dimensions (n ≥ 2), a rotation is completely described by a unitary matrix.

useful property of unitary matrices is that the product of two unitary matrices is also a

tary matrix. Therefore, a unitary matrix can easily be updated using a multiplica

update equation. Unfortunately, the update equations for both the first-order an

second-order PLL are additive and therefore do not easily extend to multiple dimens

However, the structure of the PLL can be rearranged so that the update equations b

multiplicative.

3.2.1 Alternative-Model First-Order PLL

From (3-2) and (3-4), the VCO outputk is given by:

k = exp α i . (3-19)

We can exploit some of the properties of exponential function to rewrite (3-19) as follo

k = exp(j i) . (3-20)

The last two equations imply that we can view a first-order PLL in two distinct and

ferent ways (see Fig. 3-7): in (3-19), it is seen as the cascade of a phase detector,

Û

Û
i 0=

k 1–

∑ ε̂

Û
i 0=

k 1–

∏ ε̂ α
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Fig. 3-7. Block diagram of the basic structure of a first-order PLL: (a) conventional
model consisting of a phase detector, loop filter, and complex VCO; (b)
alternative model consisting of a rotation detector, loop filter, and a
product accumulator.
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filter, and a complex VCO; and in (3-20), as the cascade of a phase detector, a co

exponentiator, a loop filter, and a product-accumulator. The former description is ref

to as the conventional-model DD PLL, while the latter description is referred to as

alternative-model DD PLL.

The structure for the alternative-model DD PLL is displayed in Fig. 3-7(b). T

shaded block is referred to as therotation detector, which is the cascade of the phas

detector and the complex exponentiator. Defineuk = andvk = to be two points on

the unit circle. As illustrated in Fig. 3-8, the rotation detector produces an estimate o

rotation between these two points:

R(uk → vk) = exp(j k) = uk
*vk. (3-21)

The estimate of the rotation is then filtered by a loop filter to produce a control signa

the product-accumulator. For a first-order DD PLL, the control signal is:

x̂k
x̂k

---------
zk
zk

--------

Fig. 3-8. A graphical representation of a complete and partial rotation on the unit
circle.

uk

vk = R(uk → vk)uk

Rα(uk → vk)uk

1

0 1

ε̂
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and
Ck = Rα(uk → vk) = exp(jα k). (3-22)

As shown in Fig. 3-8,Rα(uk → vk) represents apartial rotation that rotatesuk a fraction

of the way tovk.

Finally, the control signalCk drives the product-accumulator to produce the output

the first-order DD PLL:

k = Ci = Rα(ui → vi). (3-23)

We can also express this equation in terms of a recursive update:

k+1 = kRα(uk → vk), (3-24)

where 0 = 1 represents the initial zero rotation condition, anduk =  andvk = .

In summary, the alternative-model first-order DD PLL is defined by (3-1), (3-21),

(3-24).

3.2.2 Alternative-Model Second-Order PLL

From (3-4) and (3-15), the VCO outputk is given by:

k = exp (α1 i + α2 l) . (3-25)

ε̂

Û
i 0=

k 1–

∏
i 0=

k 1–

∏

Û Û

Û
x̂k
x̂k

---------
zk
zk

--------

Û

Û
i 0=

k 1–

∑ ε̂
l 0=

i

∑ ε̂
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Again, we can rewrite (3-25) by exploiting the properties of an exponential function:

k = exp(j i) exp( j l) . (3-26)

Using the definition of the rotation detector given by (3-21), we can express (3-26) a

k = R (ui → vi) R (ul → vl) , (3-27)

whereRα(uk → vk) = exp(jα k). Finally, we can write (3-27) in terms of a recursiv

update:

Wk+1 = WkR (uk → vk), (3-28)

k+1 = kR (uk → vk)Wk+1, (3-29)

where 0 = 1 andW0 = 1 are the initial zero rotation conditions anduk = andvk =

. We observe that the alternative model for a second-order PLL is comple

described by the output of a first-order loop filter and two recursive updates.

In summary, the alternative-model second-order DD PLL is defined by (3-1), (3-

(3-28), and (3-29).

Û
i 0=

k 1–

∏ ε̂ α1

l 0=

i

∏ ε̂ α2

Û
i 0=

k 1–

∏ α1

l 0=

i

∏ α2

ε̂

α2

Û Û
α1

Û
x̂k
x̂k
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zk

--------
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3.3 MULTIDIMENSIONAL PHASE-L OCKED L OOP

We can now generalize the structure of the alternative-model PLL to multiple dim

sions. The basic structure of the decision-directed multidimensional phase-locked

(MPLL) consists of three major components [51,52]: arotation detector, a loop filter, and

a product-accumulator, as illustrated in Fig. 3-9. The rotation detector produces an e

mate of the rotation between the received signalzk and the decision k. The resulting esti-

mate of the rotation is then filtered by a loop filter to create a control signal that drive

product-accumulator. The purpose of the control signal is to drive the output of the M

to reduce the rotation error betweenk andzk.

Suppose that then × 1 input signalyk to the MPLL has the following form:

yk = Ukxk + nk, (3-30)

wherexk is then × 1 channel input vector representing the transmitted symbols from thn

independent users,Uk is ann × n time-varying unitary channel matrix representing th

rotation, andnk is ann × 1 noise vector. We limit the focus ofUk to a constant rotation,

whereUk = U andU is ann × n unitary matrix, and to an angular rotation, whereUk =

UWk, andU andW aren × n unitary matrices.

The object of the MPLL is to generate an outputk that correctly estimates the rota

tion Uk in (3-30). If this estimate is essentially correct (k ≈ Uk), the MPLL is said to be

in rotation-lock, and the received signalzk = k
*yk reduces to:

x̂

x̂

Û

Û

Û
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Fig. 3-9. Block diagram of the basic structure of a decision-directed
multidimensional phase-locked loop. The main components for MPLL are
the rotation detector, loop filter, and product accumulator.
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zk = Fkxk + k
*nk, (3-31)

≈ xk + wk, (3-32)

whereFk = k
*Uk is then × n overall transfer function matrix andwk = k

*nk is ann ×

1 noise vector. At high SNR, (3-32) reduces tozk ≈ xk and the channel input vector can b

recovered by passingzk through a simple decision device.

As shown in Fig. 3-9, the MPLL generatesk in a manner similar to the alternative

model PLL. The key component of the MPLL is the rotation detector, which produce

estimate of the rotation by generating a unitary mapping from to . The outpu

the rotation detector is then passed through a loop filter to produce the control signaCk.

The loop filter serves two purposes: it generates the necessary control signal fo

product-accumulator, and it also filters both the noisy and incorrect estimates produc

the rotation detector. The output of the loop filterCk drives a product-accumulator to pro

duce the MPLL output k:

k = Ci. (3-33)

Because matrix multiplication is not commutative, a decision as to whether the co

signal should be pre-multiplied (so thatk+1 = Ck k) or post-multiplied (so that k+1 =

kCk) must be made. The purpose of the control signal is to reduce the rotation

between k andzk, i.e., the rotation error betweenk to Ck
*zk is smaller than the rotation

Û

Û Û

Û

x̂k
x̂k

-----------
zk
zk

----------

Û

Û
i 0=

k 1–

∏

Û Û Û

Û

x̂ x̂
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error between k andzk. SinceCk
*zk = ( kCk)*yk, it is clear that post-multiplication is

the natural choice. Hence, we can express (3-33) in terms of recursive update as fo

k+1 = kCk, (3-34)

where the MPLL is initialized with a zero rotation: 0 = I. In the remainder of this

chapter, a product accumulation as in (3-33) will be taken to mean post-multiplicatio

in (3-34).

In the following sections, we will derive both the rotation detector and the loop fil

and also define a first-order and a second-order MPLL.

3.3.1 Rotation Detector

Define uk = andvk = to be twon × 1 unit-length vectors. The rotation

detector produces an estimate of the rotation between these two points. Let the out

the rotation detector be given byR(uk → vk) at timek, where the unitary functionR is

defined as:

Definition 3-4. Let u andv be twon × 1 unit-length vectors. The functionR

generates a unitary matrix that rotatesu to v.

For a single-user (n = 1), the functionR is unique:R(uk → vk) = uk
*vk. Unfortunately, for

higher dimensions (n ≥ 2), this function is not unique, but we can derive a particular u

tary functionR that we will use as the basis for the rotation detector.

x̂ Û

Û Û

Û

x̂k
x̂k

-----------
zk
zk

----------
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In this section2, we determine a unitary matrix that mapsu to v. Let p be the normal-

ized inner product:p = u*v. Sinceu andv have unit length, the magnitude ofp is bounded

by unity; in other words,|p| ≤ 1. In deriving the unitary functionR, we consider the two

cases|p| = 1 and|p| < 1 separately.

If |p| = 1, then the vectorsu andv are colinear. Hence, we can expressv in terms of

u as follows:

v = pu. (3-35)

We recognize thatu is a basis vector for the subspace spanned byu and v. Given the

vectoru, we can use the Gram-Schmidt procedure to determine the remainingn – 1 vec-

tors {v2, v3, …, vn} that form the basis for then-dimensional space. LetV be ann × n

matrix whose columns are specified by the basis vectors,i.e.,

V = [u v2 v3 … vn]. (3-36)

We see that the matrixV is unitary. In terms of this basis, the vectorsu andv can written

asuV = [1 0 … 0]T andvV = [p 0 … 0]T respectively. A unitary matrix that mapsuV to vV

is clearly given by:

Q = , (3-37)

2. The dependence on time has been suppressed, for the rest of this section, to simplify notation

p 0

0 J
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whereJ is an arbitrary (n – 1) × (n – 1) unitary matrix. Mapping the unitary matrix (3-37

back to Euclidean space, we see that the unitary matrix that mapsu to v is given by:

R(u → v) = V V*. (3-38)

The vectorsu and v only span a one-dimensional subspace. Since we do not h

information about the remaining (n – 1) dimensions, we chose not to rotate vectors th

are orthogonal to eitheru or v by takingJ = In–1. Substituting the identity matrix forJ in

(3-38), we find thatR(u → v) reduces to:

R(u → v) = In + (p – 1)uu*. (3-39)

We should emphasize that this result is only valid when|p| = 1.

On the other hand, if|p| < 1, then the vectorsu andv span a two-dimensional sub

space. Given the vectorsu andv, we can use the Gram-Schmidt procedure to determ

then vectors that form the basis for then-dimensional subspace. These basis vectors

given by {u, w, v3, v4, …, vn}, where

w = . (3-40)

Let V be ann × n matrix whose columns are specified by the basis vectors,i.e.,

p 0

0 J

v pu–

1 p 2
–

-----------------------
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V = [u w v3 v4 … vn]. (3-41)

We observe thatV is a unitary matrix. The vectorsu andv can be written in terms of the

basis vectors (3-41) asuV = [1 0 … 0]T andvV = [p 0 … 0]T. A unitary matrix

that mapsuV to vV is given by:

Q = , (3-42)

whereJ is an arbitrary (n – 2) × (n – 2) unitary matrix, and

R = , (3-43)

whereβ ∈ (–π, π]. Mapping the unitary matrix (3-42) back to an Euclidean space, we

that the unitary matrix that mapsu to v is given by:

R(u → v) = V V*. (3-44)

Recall that the vectorsu andv span a two-dimensional subspace. Since we have

information about the remaining (n – 2) dimensions, we chose not to rotate vectors th

1 p 2
–

R 0

0 J

p 1 p 2
––

1 p 2
– p∗

1 0

0 e jβ

R 0

0 J
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are orthogonal to this two-dimensional subspace by takingJ = In–2. The choice forβ is

not as obvious. We want (3-44) to be consistent with (3-38) as|p| approaches one. We

see that when|p| < 1,

det[R(u → v)] = exp(jβ), (3-45)

and when|p| = 1,

det[R(u → v)] = p. (3-46)

Therefore, as|p| → 1, exp(jβ) → p. We should thus chooseβ = ∠p = sin–1[Im( )].

This choice ofβ also minimizes the Frobenius norm ofR − I2, which is reassuring

because we expectR(u → v) to approach the identity matrix near convergence. Sub

tuting J = In–2 andβ = ∠p in (3-44), we find that the unitary matrixR(u → v) reduces to:

R(u → v) = In + . (3-47)

In summary, the unitary functionR is defined as follows:

R(u → v) = In + , (3-48)

p
p

------

u w
p 1– p

p
------– 1 p 2

–

1 p 2
– p 1–

u∗

w∗

u w
p 1– p

p
------– 1 p 2

–

1 p 2
– p 1–

u∗

w∗
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whereu = , v = , p = u*v, andw = (v – pu)/ if |p| < 1, otherwise,w = 0.

We should point out that whenn = 1, the unitary matrixR(u → v) reduces tou*v, which is

the familiar single-user unitary mapping described in Section 3.2.1.

3.3.2 Loop Filter

A PLL of any order can be written in terms of the output of a first-order loop filter a

a recursive update (see Section 3.2.2). The output of a first-order loop filter is genera

raising the unitary matrixR(uk → vk) to a fractional powerλ ∈ (0, 1), whereλ is the step

size of the MPLL. The loop filter output, which rotatesuk a fractionλ of the way tovk, is

referred to as apartial rotation matrix.

One method for raising a matrix to a fractional power requires calculating an eige

composition, which is inherently a computationally intensive task. We can avoid mo

the computational complexity by symbolically determining the partial rotation ma

Rλ(uk → vk). We begin by considering the two cases:|p| = 1 and|p| < 1, separately3.

When|p| = 1, the partial rotation matrixRλ(u → v) is found by raising (3-38), withJ

= In–1, to a fractional powerλ:

Rλ(u → v) = V V*, (3-49)

whereV is defined by (3-36). By expanding this matrix, we find that (3-49) reduces to

3. We again suppress the dependence on time, for the rest of this section, to simplify notation.

x̂
x̂

-------- z
z

------- 1 p 2
–

pλ 0

0 In–1
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Rλ(u → v) = In + (pλ – 1)uu*. (3-50)

whereu = , v = , p = u*v.

When|p| < 1, we can find the partial rotation matrixRλ(u → v) by raising (3-44),

with J = In–2, to a fractional powerλ:

Rλ(u → v) = V V*. (3-51)

whereV is defined by (3-41) andR is defined by (3-43). By expanding the components

this matrix, we see that (3-51) reduces to:

Rλ(u → v) = In + (Rλ – I2) . (3-52)

We can simplify (3-52) even further by symbolically calculatingRλ.

SinceR is a unitary matrix, it has the unique eigendecomposition:R = WDW* [106].

Then × n diagonal unitary matrixD is given by:

D = , (3-53)

x̂
x̂

-------- z
z

-------

Rλ 0

0 In–2

u w
u∗

w∗

e
j β

2
--- ∆– 

 

0

0 e
j β

2
--- ∆+ 

 



72

e

by

to a
whereβ = ∠p and∆ = sin–1[|p|cos(β/2)] – π/2. Then × n unitary matrixW is given by:

W = , (3-54)

whereα = andγ = . Using the eigendecomposition, w

can easily determineRλ = WDλW*:

Rλ = , (3-55)

whereζ = . Using the fact thatcos(∆) = |p|cos(β/2), it is easy to show that (3-

55) reduces to (3-43) whenλ = 1.

In summary, the unitary functionR is defined as follows:

Rλ(u → v) = In + (Rλ – I2) , (3-56)

whereu = , v = , p = u*v, w = (v – pu)/ if |p| < 1, otherwise,w = 0, and

Rλ is defined by (3-55). In a practical application, the partial rotation matrix specified

(3-56) should be used instead of actually raising the output of the rotation detector

fractional power.

α jγ e
jβ
2
---

–

jγ e
jβ
2
---–

– α

1
2
--- p sin β 2⁄( )

2sin ∆( )
-------------------------------– 1

2
--- p sin β 2⁄( )

2sin ∆( )
-------------------------------+

e
jλβ

2
---

cos λ∆( ) jζ p sin β 2⁄( )+ ζe–
jβ
2
---

1 p 2
–

ζe
j–
β
2
---

1 p 2
– cos λ∆( ) jζ p sin β 2⁄( )–

sin λ∆( )
sin ∆( )

--------------------

u w
u∗

w∗

x
x

-------- z
z

------- 1 p 2
–
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3.3.3 First-Order MPLL

A first-order MPLL is sufficient to track a constant rotation, whereUk = U. The output

of a first-order DD MPLL is given by:

k = Rλ(ui → vi), (3-57)

whereR(uk → vk) is the output of the rotation detector,uk = , vk = , andλ is

some positive constant. As mentioned earlier, the natural choice is to accumulate th

tial rotation matrices on the right. Hence, a recursive update equation for (3-57) is g

by:

k+1 = kRλ(uk → vk), (3-58)

where 0 = I is the initial condition.

We see that the recursive update specified by (3-58) requires the multiplication o

n × n matrices at each iteration. We can reduce the complexity of this update by ma

lating (3-58) into the following form:

k+1 = k + k Rλ(uk → vk) – I . (3-59)

While this update seems similar to the update given by (3-58), it is, in fact, less com

because the term in the parenthesis of (3-59) is at most a rank-two matrix. If|p| = 1, this

term is the product of ann × 1 vector with a1 × n vector. If the product in (3-59) is carried

Û
i 0=

k 1–

∏

x̂k
x̂k

-----------
zk
zk

----------

Û Û

Û

Û Û Û 




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out from left to right, the number of multiplications, for large values ofn, is significantly

less than that required to multiply twon × n matrices, as in (3-58). If|p| < 1, then the

term in the parenthesis is the product of three matrices: ann × 2 matrix, a2 × 2 matrix,

and a2 × n matrix. Again, if the product in (3-59) is carried out from left to right, then w

realize the same computational saving in this case as well whenn is large. In the following

experiment, we compare the total number of multiplications that are used to gen

k+1 in (3-58) and (3-59).

Experiment 3-5. In (3-58),n3 multiplications are needed to generatek+1,

while in (3-59), it takes2n2+n and 4n2+4n multiplications to generate the

update for the|p| = 1 and|p| < 1 cases, respectively. In Fig. 3-10, we plot

the total of multiplications for each update versus the number of users. From

this figure, we see that whenn ≥ 5, the update given by(3-59) requires fewer

total number of multiplications (for both|p| = 1 and|p| < 1) than the update

given by (3-58).

In summary, a first-order MPLL is defined by (3-55), (3-56) and (3-59).

3.3.4 Second-Order MPLL

A second-order MPLL is necessary to track an angular rotation:Uk = UWk. The

output of a second-order DD MPLL output is given by:

k = R (ui → vi) R (ul → vl) , (3-60)

Û

Û

Û
i 0=

k 1–

∏ λ1

l 0=

i

∏ λ2
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whereR(uk → vk) is the output of the rotation detector,uk = , vk = , andλ1 and

λ2 are small positive constants. We can also write (3-60) in terms of a recursive upd

Wk+1 = WkR (uk → vk), (3-61)

k+1 = kR (uk → vk)Wk+1, (3-62)

where 0 = I andW0 = I are the initial conditions for the second-order MPLL.

Fig. 3-10. A comparison of the total number of multiplications that are needed to
generate the update in (3-58) and (3-59).
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Again, we can reduce the complexity of the update equations given by (3-61) an

62) by manipulating them into the following form:

Wk+1 = Wk + Wk R (uk → vk) – I , (3-63)

k+1 = kWk+1 + k R (uk → vk) – I Wk+1. (3-64)

The reason that the update equations given by (3-63) and (3-64) are less complex, wn

is large, is the same as the one given for a first-order MPLL. We should point out th

order to obtain the reduction in complexity, the products in (3-63) and (3-64) must be

ried out from left to right.

In summary, the second-order MPLL is defined by the equations (3-55), (3-56), (3

and (3-64).

3.4 ALTERNATIVE M ODEL FOR THE MPLL

In the previous section, we showed that the output of the combined rotation det

and loop filter is a partial rotation matrixRλ(uk → vk) that rotatesuk to some intermediate

point on the unit hypersphere betweenuk andvk. In this section, we develop an alternativ

model for the MPLL by switching the order of the rotation detector and the loop filter.

first select an intermediate point betweenuk andvk, and then we project this point on th

unit hypersphere. Finally, we use the rotation detector to determine the unitary matrix

rotatesuk to the normalized intermediate point. The unitary matrix that is obtained in

case is also a partial rotation matrix.


 λ2




Û Û Û 
 λ1



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The output of the combined loop filter and rotation detector is derived below4. Let

be some intermediate point betweenu andv:

µ = (1–µ)u + µv, (3-65)

whereµ is the step size of the alternative-model MPLL. Definevµ = to be a point on

the unit hypersphere. We can now use the rotation detector defined in Section 3.

determine the unitary matrix that rotatesu to vµ. In terms of the notation for the rotation

detector, the partial rotation matrix is given byR(u → vµ).

We have shown that both the conventional-model MPLL and the alternative-m

MPLL generate a partial rotation matrix which rotatesu to some intermediate point. If the

input alphabet is real, then it is possible, for a givenλ, to select aµ such that the interme-

diate points from the two MPLLs are the same. We prove this result in the following

orem.

Theorem 3-5. Let each component of the channel inputx draw symbols from

a real discrete-input alphabet. For a givenλ, the conventional-model and the

alternative-model MPLL will generate the same partial rotation matrix if

µ = , (3-66)

where∆ = sin–1( ).

4. We again suppress the dependence on time, for the rest of this section, to simplify notation.

ṽ

ṽ

ṽµ
ṽµ

-----------

sin λ∆( )
sin λ∆( ) sin 1 λ–( )∆( )+
--------------------------------------------------------------

1 p 2
–
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Proof: See Appendix 3.1.

We should point out that this result is independent of the number of usersn. However, this

result does not extend to the case of complex input alphabets. Consider the follo

counter-example:

Example 3-1. We assume that each component of the channelx draws

symbols from a 16-QAM input alphabet. Let the input to the decision device

be given byz = [–0.7 – j0.2, –0.1 + j1.8]T and letλ = 0.5. The corresponding

output of the decision device is given by = [–1 – j, –1 + j]T. Sincezk, k,

andλ are fixed quantities, the conventional-model MPLL rotates theu =

to a fixed intermediate pointvλ = Rλ(u → v)u, whereRλ(u → v) is defined by

(3-55) and (3-56). If, on the other hand, we allowµ to vary between0 and1,

then the alternative-model MPLL rotatesu to the intermediate pointvµ =

, where µ is defined by (3-65). We observe thatvµ is a function ofµ.

The squared error between the two intermediate pointsεµ = vλ – vµ versus

µ is plotted in Fig. 3-11. It is seen that the error never goes to zero, which

implies that there does not exist aµ such thatvλ = vµ. However, it is important

to point out that forµ ≅ 0.5071, the Euclidean distance between the two

intermediate points,vλ andvµ, is found to be very small.

As this example demonstrates, for a givenλ, it is possible that there does not exist aµ

for which vλ = vµ. However, it is very likely that there does exists aµ such that the

Euclidean distance betweenvµ andvλ is very small. We give the following heuristic argu

ment to support this statement. The distance between the decision and the de

x̂ x̂

x̂
x̂

--------

ṽµ
ṽµ

----------- ṽ

2

x̂
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devicez is generally small and projecting these two points onto the unit hypersphere

reduces the distance between them. Since the distance betweenu andv is very small, all

convex paths between them on the unit hypersphere, though generally different for th

MPLLs, would also lie very close to each other. Hence, it is possible, for a givenλ, to find

a µ such that the intermediate points produced by the conventional-model MPLL an

alternative-model MPLL are nearly identical, and the performance for these two MP

should therefore be similar. This conclusion is supported by the following experimen

Experiment 3-6. In this experiment, we compare the performance of the con-

vention-model MPLL with that of the alternative-model MPLL. We assume

that the input alphabet for both models is 16-QAM and that there is no noise.

Fig. 3-11. The squared error between the two intermediate points vλ and vµ as a
function of µ.
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The step sizes for the conventional-model MPLL and the alternative-model

MPLL wereλ = 0.8 andµ = 0.8, respectively. In Fig. 3-12, we plot the MSE1

= E[| k
(1) – zk

(1)|2], where k = Pxk is a permutation of the channel input

vector andP is a complex permutation matrix that accounts for the inherent

ambiguity associated with a blind detection problem and a -symmetric input

alphabet, versus time. The curves displayed therein represent data that was

averaged over 10,000 random3 × 3 memoryless unitary channels. We con-

clude from the two curves that the performance for the two models is essen-

tially indistinguishable.

Fig. 3-12. Comparison of the conventional-model MPLL and the alternative-model
MPLL in terms of MSE1 versus time.
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The conventional-model MPLL differs from the alternative-model MPLL in the deg

of computational complexity. The alternative-model MPLL is inherently less comp

because it does not require an eigendecomposition. In the following experiment, we c

late the number of floating point operation (FLOPS) that are needed to generate ea

the two partial rotation matrices.

Experiment 3-7. Consider the channel model described by (3-30). In Fig. 3-

13, we plot the number of floating point operations (FLOPS) that are needed

per iteration to generate an estimate of the rotation for each MPLL versus the

Fig. 3-13. Comparison of computational complexity for the conventional-model
MPLL and the alternative-model MPLL.
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number of usersn. We observe that both the MPLLs have essentially the same

complexityO(n3).

From these curves, we observe that the difference in computational complexity for th

models is negligible for large values ofn.

The implementation of both the conventional and the alternative models of the M

are equally valid and interesting in their own right. However, in the remainder of

chapter, we will focus our attention on the implementation of the conventional m

MPLL (see Section 3.3). Since its structure closely parallels that of the PLL, the ins

gained from the analysis of the PLL could prove useful while analyzing the MPLL.

3.5 CONVERGENCE ANALYSIS FOR A FIRST-ORDER MPLL

In this section we examine the convergence behavior of a first-order MPLL both in

presence and absence of noise.

3.5.1 In the Absence of Noise

Since the MPLL is a decision-directed algorithm, errors in the decision will prod

errors at the rotation detector. Proper operation of the MPLL depends on the dec

being correct. We therefore need to verify that errors at the rotation detector do not pr

the MPLL from estimating the rotation in the input signal correctly.

The following convergence analysis for a first-order MPLL is an extension of the a

ysis presented earlier for a first-order PLL. We assume that each component of the ch

input vectorxk is drawn uniformly from a discrete-input alphabet and that the rotation

the input signalyk is a constant,Uk = U, whereU is ann × n unitary matrix. We also
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assume that the noise vectornk in (3-30) is zero. (Later in this section, the effect of nois

on the convergence of a first-order MPLL is considered.)

The update equation for a first-order MPLL is given by:

k+1 = kRλ(uk → vk), (3-67)

where k is an estimate of the rotation in the input signal,Rλ(uk → vk) is the partial rota-

tion matrix, andλ is the step size. Sincezk = k
*Uxk in the absence of noise, the partia

rotation matrixRλ(uk → vk) is a function of bothxk and k. If the step sizeλ is small,

then k will vary slowly when compared toRλ(uk → vk). Hence, when we take the

expectation of (3-67) with respect to the statistics ofRλ(uk → vk), we can assume that the

estimate of the rotation k is a constant with respect to this expectation [1]:

k+1 = kE[Rλ(uk → vk)], (3-68)

where the expectation is taken with respect toxk. Even though k is varying slowly, it is

still a random process and therefore, we must take the expectation of both side of (3

E[ k+1] = E[ k]E[Rλ(uk → vk)]. (3-69)

The MPLL converges in the mean whenE[ k+1] = E[ k], or equivalently when,

E[Rλ(uk → vk)] = I. (3-70)

Û Û

Û

Û

Û

Û

Û

Û Û

Û

Û Û

Û Û



84

.

func-

ion

unit
Recall thatzk = Fkxk whereFk = k
*Uk is the overall transfer function of the MPLL

Since the partial rotation matrixRλ(uk → vk) is a function of bothFk and xk, we can

define the following function:

S(F) = E[Rλ(u → v) – I|F], (3-71)

where again the expectation is taken over the channel input vector. We refer to this

tion as the multidimensional S-curve (MS-curve) for a first-order MPLL. This funct

can be used to determine the stable points of a first-order MPLL. The matrixFs is a stable

point whenS(Fs) = 0, or equivalently when,

[Rλ(u → Fsu) – I] = 0, (3-72)

whereχ is the set of all channel input vectors, which have been normalized to have

length, and|χ| denotes the number of elements in the setχ. Using (3-72), we can define a

stable point of a first-order MPLL as follows:

Definition 3-5. An n × n unitary matrixFs is a stable pointof a first-order

MPLL if it satisfies the following relationship:

E[Rλ(u → v) – I|Fs] = [Rλ(u → Fsu) – I] = 0, (3-73)

whereχ is the set of all channel input vectors that have been normalized to

have unit length, and|χ| denotes the number of elements in the setχ.

Û

1
χ
------

u χ∈
∑

1
χ
------

u χ∈
∑
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We can derive an alternative expression for (3-73) by using the binomial expansi

Rλ(u → Fsu). For a very smallλ, we find thatRλ(u → Fsu) ≅ I + λ(R(u → Fsu) – I).

Substituting this approximation into (3-72), we obtain

[Rλ(u → Fsu) – I] ≅ [λ(R(u → Fsu) – I)], (3-74)

= I + (R(u → Fsu) – I)  – I, (3-75)

≅ I + (R(u → Fsu) – I)  – I, (3-76)

≅ R (u → Fsu)  – I. (3-77)

Relating (3-73) to (3-77), we find that

E[Rλ(u → v) – I|Fs] ≅ R (u → Fsu)  – I. (3-78)

Hence, ann × n unitary matrixFs is astable pointof a first-order MPLL if it satisfies the

following approximate relationship:

R (u → Fsu) = I, (3-79)

1
χ
------

u χ∈
∑ 1

χ
------

u χ∈
∑

u χ∈
∑ 

 λ
χ
------ 



u χ∈
∏ 

 λ
χ
------ 



u χ∈
∏

λ
χ
------

u χ∈
∏

λ
χ
------

u χ∈
∏

λ
χ
------
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which implies that the average geometric rotation produced by the rotation detecto

loop filter together is the identity matrix for a stable point. We should point out that

identity matrix represents the case of zero rotation.

An example of typical unitary matrices that satisfy either (3-73) or (3-79) is giv

below:

Example 3-2. Two stable points for a first-order MPLL are given by the

following matrices:

Fs = P andFs = P , (3-80)

whereP is a complex permutation matrix andθ = 25.43° was found through

computer simulations. The first stable point given in (3-80) is desirable

because it implies that the channel input vector has been recovered up to a

permutation of the users and up to a rotation of 90°. The last stable point is

undesirable because it leaves a non-zero residual rotation error in the MPLL.

This rotation error implies that the channel input vector cannot be recovered

with a simple decision device.

Definition 3-6. The stable point ofFs = P is a desirable stable point. Any

other stable point isundesirable.

It is seen that the definition for the stable point of a first-order MPLL is dependent on

magnitude of the step sizeλ. For example, the second stable point given in the previo

e jθ 0

0 e j– θ



87

as

n the

us to

MS-

ble

rst-

an

es to

to be

ver-

xam-

ol-
example satisfies (3-73) whenλ = 0.001, but it does not whenλ = 0.1. The only stable

point that satisfies (3-73) for all step sizes isFs = P.

Unlike the S-curve for the PLL, the MS-curve for the MPLL defined in (3-71) is not

useful for several reasons. First, the zero points of the function are dependent upo

value of the step size. Second, we know of no graphical approach that would enable

display the results of the MS-curve. Finally, it is almost impossible to generate an

curve, because it would require calculating the function for a set of infiniten × n unitary

matrices. In spite of these limitations which will not allow us to determine all of the sta

points for a first-order MPLL, the MS-curve is important because it predicts that a fi

order MPLL has both desirable and undesirable stable points.

For a first-order MPLL, it is important to know whether the MPLL can converge to

undesirable stable point. In Section 3.1.2, it was seen that a first-order PLL converg

an undesirable stable point only when the step size is small. We believe this result

true for the MPLL as well. In order to determine the conditions that guarantee con

gence for a first-order MPLL, we consider a set of experiments, given below, that e

ines the effect of the step size on convergence of a first-order MPLL.

We begin by examining a first-order MPLL with a 16-QAM input alphabet. In the f

lowing experiments, we vary both the step sizeλ and the number of usersn.

Experiment 3-8. Consider a two-user (n = 2) MPLL. Suppose that the2 × 1

input signal to the MPLL is given byyk = WHxk, whereH is ann × n memo-

ryless Gaussian channel matrix whose coefficients are drawn independently

from a zero-mean, unit-variance, complex Gaussian distribution, andW = Σ–
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1V* is ann × n ideal whitening matrix that is defined by the singular-value

decomposition ofH = UΣV*. The cascade of the whitening matrix and the

memoryless channel matrix yields a unitary matrixU = Σ–1V*H; hence,yk =

Uxk. Each of the components of the2 × 1 channel input vectorxk is drawn

uniformly from a 16-QAM input alphabet. For a given unitary channel, we

implement a first-order MPLL for 500,000 random symbols and for several

different step sizesλ ∈ {0.3, 0.1, 0.05, 0.04, 0.03, 0.01, 0.005, 0.001}. For

each step size, the minimum number of symbols that are required for the

MPLL to converge to the desired stable point is determined. Convergence to a

stable point is defined to have been achieved when the transfer functionFk =

k
*U satisfies:

Fk – P ≤ n10–3, (3-81)

whereP is a complex permutation matrix that accounts for the inherent ambi-

guity associated with a blind detection problem and a -symmetric constella-

tion. In all, we considered 3000 different unitary matrices. In Fig. 3-14,Ft(k),

the fraction of trials that converged withink symbols, is plotted versus the

number of the symbols. From these curves, it is observed that the MPLL

always converges within 500,000 symbols to the desired stable point when the

step sizeλ ≥ 0.04. On the other hand, ifλ ≤ 0.01, the MPLL only converges

for a small fraction of the 3000 trials; in fact, for majority of the phase offsets,

the MPLL remains trapped around an undesirable stable point even after

500,000 symbols.

Û

F
2

π
2
---
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Fig. 3-14. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless two-user first-order MPLL with 16-
QAM input alphabet and various step sizes: (a) the number of symbols
ranges from 0 to 500,000; (b) an expanded view of the first 10,000
symbols.
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Experiment 3-9. In this experiment we essentially repeat Experiment 3-8 for

a three-user (n = 3) MPLL and several different step sizesλ ∈ {0.3, 0.1, 0.09,

0.08, 0.07, 0.05 0.01, 0.005, 0.001}. In Fig. 3-15,Ft(k) is plotted versus the

number of the symbols. It is observed from these curves that the MPLL

always converges to the desired stable point when the step sizeλ ≥ 0.075. On

the other hand, ifλ ≤ 0.05, the MPLL remains trapped around an undesirable

stable point for the majority of the unitary matrices.

Experiment 3-10. Again, we repeat Experiment 3-8 for a four-user (n = 4)

MPLL and several different step sizesλ ∈ {0.3, 0.11, 0.07, 0.05, 0.01, 0.005}.

In Fig. 3-16, we plotFt(k) versus the number of the symbols. From these

curves, we observe that the minimum step size that guarantees convergence

within 500,000 symbols is given byλmin = 0.10. Ifλ ≤ 0.06, then it is possible

for the MPLL to converge to an undesirable stable point.

These experiments confirm that it is possible for the MPLL to converge to an und

able stable point for a sufficiently small step size. We do not know if the MPLL will e

escape the undesirable stable point even for an infinite number of symbols. Sinc

speed of convergence is of utmost importance in a practical implementation, the

would only be of an academic interest.

These experiments also indicate that the minimum step sizeλmin that guarantees con-

vergence within 500,000 symbols increases as a function of the number of usersn. Sinceλ

∈ (0,1), λmin must eventually approach a constant value asn becomes large.
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Fig. 3-15. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless three-user first-order MPLL with 16-
QAM input alphabet and various step sizes: (a) the number of symbols
ranges from 0 to 500,000; (b) an expanded view of the first 20,000
symbols.
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Fig. 3-16. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noiseless four-user first-order MPLL with 16-
QAM input alphabet and various step sizes: (a) the number of symbols
ranges from 0 to 500,000; (b) an expanded view of the first 20,000
symbols.
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Experiment 3-11. In Fig. 3-17, we plotλmin versusn. The values ofλminfor

n ∈ {6, 8, 10, 12} were found in a manner similar to that in Experiments 3-8 –

3-10. This curve shows that, asn becomes large,λmin does indeed start to

approach a constant value.

In summary, these experiments verify that there exists a minimum step size that w

guarantee convergence of a first-order MPLL within 500,000 symbols.

Fig. 3-17. The minimum step size that guarantees convergence within 500,000
symbols λmin is plotted versus the number of users n.
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3.5.2 In the Presence of Noise

So far we have only considered the convergence of a first-order MPLL in the abs

of noise. We now examine the effect of noise on convergence. We begin by assumin

the noise vectornk in (3-30) is a complex Gaussian random vector with power spec

densityσ2I. If the noise term is non-zero, the received signalzk can written as follows:

zk = Fkzk + wk, (3-82)

wherewk = k
*nk is also a complex Gaussian random vector with power spectral den

σ2I.

As before, the MS-curve is not of much use for determining the noisy stable poin

a first-order MPLL, but we can show thatFs = P, whereP is a complex permutation

matrix, is a noisy stable point of the algorithm. We need to investigate here if there are

other stable points. For the PLL, we have shown that as the SNR decreases, the u

able stable points disappear, leaving the desired stable point as the only remaining

point. We believe this result to be true for the MPLL as well. We describe the follow

experiment to support our intuition. We examine a first-order MPLL with a 16-QAM in

alphabet.

Experiment 3-12. Consider a three-user MPLL. Suppose that the3 × 1 input

signal to the MPLL is given byyk = Uxk + nk, whereU is a randomly gener-

ated3 × 3 unitary matrix,xk is the3 × 1 channel input vector whose compo-

nents are drawn uniformly from a 16-QAM input alphabet, andnk is a zero-

mean white complex Gaussian noise vector with power spectral density

Û
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E[nknk
*] = σ2I. We assume that SNR1 = 1/σ2 = 20 dB. For a given unitary

channel, we implement a first-order MPLL for 100,000 random symbols and

for several different step sizesλ ∈ {0.3, 0.1, 0.05, 0.01, 0.005, 0.001}. For

each step size, the minimum number of symbols that are required for the PLL

to converge to the desired stable point. Convergence to a stable point is

defined to have been achieved when the transfer functionFk = k
*U satisfies:

Fk – P ≤ n10–3, (3-83)

whereP is a complex permutation matrix that accounts for the inherent ambi-

guity associated with a blind detection problem and a -symmetric constella-

tion. In all, we considered 3000 different unitary matrices. In Fig. 3-18,Ft(k),

the fraction of trials that converged withink symbols, is plotted versus the

number of the symbols. It is observed from these curves that the MPLL con-

verges within 100,000 symbols to the desired stable point for all step sizes,

even for those smaller step sizes for which the noiseless MPLL did not always

converge.

These curves clearly show that a noisy signal can prevent a first-order MPLL f

converging to an undesirable stable point, irrespective of the step size. In fact, the

provides the necessary perturbation to enable the MPLL to escape from any undes

stable point.

Û

F
2

π
2
---
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Fig. 3-18. The fraction of trials that converge within k symbols is plotted versus the
number of symbols for a noisy three-user first-order MPLL with 16-QAM
input alphabet, various step sizes, and SNR1 = 20 dB: (a) the number of
symbols ranges from 0 to 250,000; (b) an expanded view of the first
25,000 symbols.
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3.6 CONVERGENCE ANALYSIS FOR A SECOND-ORDER MPLL

In this section, we study the convergence of a second-order MPLL in the absen

noise. We assume that each component of the channel input vectorxk is drawn uniformly

from a discrete-input alphabet and that the only impairment in (3-30) is an angular

tion: Uk = UWk, whereU is ann × n unitary matrix andW is ann × n diagonal unitary

matrix. Typically, an angular rotation arises because of a difference between the fre

cies of then transmitter oscillators and that of a single receiver oscillator. The diago

elements ofW represent these frequency differences.

As before with the case for the second-order PLL, a theoretical analysis of

dynamics of a second-order MPLL is intractable. We can however, determine the ran

frequency offsets that a second-order PLL could resolve experimentally. In the follow

experiment, we determine this frequency range for fixed values ofλ1 andλ2.

Experiment 3-13. This experiment determines the ranges of frequencies that

a two-user second-order MPLL is able to resolve. Suppose that the2 × 1 input

signal to the PLL is given byyk = UWkxk, whereU is a random2 × 2 unitary

matrix, W = diag(exp(j2πf1), exp(j2πf2)) is a 2 × 2 diagonal unitary matrix

with frequency offsets off1 and f2, andxk is the2 × 1 channel input vector

whose components are drawn uniformly from a 16-QAM input alphabet. For a

given set of frequency offsetsf1 = andf2 = , whereϕ1 andφ2 are inte-

gers in the range [–25, 25], and a given random unitary channel, we imple-

mented a second-order MPLL with parametersλ1 = 0.3 and λ2 = 0.1 for

500,000 symbols and determine whether or not the MPLL converged to the

ϕ1
360
----------

ϕ2
360
----------
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desired stable point. Convergence to a stable point is defined to have been

achieved when the transfer functionFk = k
*U satisfies the following rela-

tionship for 15 consecutive symbols:

Fk – P ≤ n10–3, (3-84)

whereP is a complex permutation matrix that accounts for the inherent ambi-

guity associated with a blind detection problem and a -symmetric constella-

tion. The shaded region in the plot of the first frequency offsetf1 versus the

second frequency offsetf2, shown in Fig. 3-19, represents the values for which

Û

F
2

π
2
---

Fig. 3-19. A phase-plane portrait for a second-order MPLL with parameters λ1 = 0.3
and λ2 = 0.1.
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the second-order DD MPLL converged. Each point in the plot was averaged

over 1000 different random unitary channels. From this figure, we observe

that a second-order MPLL with parametersλ1 = 0.3 andλ2 = 0.1 always con-

verges to the desired stable point if|fi| ≤ ∀ i, regardless of the random

unitary matrix. Therefore, a second-order MPLL can resolve a frequency

offset of up to 16 degrees per baud.

This experiment shows, forλ1 = 0.3 andλ2 = 0.1, that it is possible for a second-orde

MPLL to resolve am angular rotation. In general, the range of frequency offsets th

second-order PLL can resolve will depend upon the choice ofλ1 andλ2. As discussed ear-

lier, a noisy input signal should assist in the convergence of a second-order MPLL.

3.7 EXPERIMENTAL RESULTS

We conclude this chapter with several computer experiments. In each of the ex

ments, we consider the channel model depicted in Fig. 3-20:

yk = WHxk + Wnk, (3-85)

16
360
----------

Fig. 3-20. A block diagram of an m × n memoryless channel followed by an n × m
ideal whitener. This model is used to generate the input signal for all
computer simulations.

H Wxk

nk

rk yk

m × n n × m
Channel  Whitener

n × 1 n × 1
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whereH is anm × n memoryless Gaussian channel matrix with coefficients that are dr

independently from a zero-mean, unit-variance, complex Gaussian distribution, andW =

Σ–1U* is ann × m matrix that whitens the signal component ofyk and is defined by the

truncated singular-value decomposition ofH = UΣV*. The cascade of the whitening

matrix and the memoryless channel matrix yields a unitary matrix. The channel i

vectorxk is ann × 1 vector consisting of the symbols sent by then independent users. The

whitened vectoryk is ann × 1 vector andnk is anm × 1 complex Gaussian noise vecto

with E[nknk
*] = σ2I.

In these experiments, we compare the performance and complexity of the MPL

that of JADE [47-49] and EASI (with G(z) = zz* − I + g(z)z* − zg(z)* and

g(z) = z ⊗ z*⊗ z, where⊗ indicates a component-wise product) [50]. Unlike the MPL

both JADE and EASI leave a residual phase error on each component of the de

output; in other words, both JADE and EASI are invariant to a diagonal unitary ambig

In practice, this ambiguity can be resolved by filtering the detector output through a

of independent single-user PLLs. The performance criteria used in this comparison

mean-squared error for thei-th user:

MSEi = E[| k
(i) – zk

(i)|2], (3-86)

where k = Pxk is a permutation of the channel input vector andP is a complex permuta-

tion matrix (a matrix consisting of only one nonzero value from the set {1, j, –1, –j} in

each row and each column) that reorders the sources and rotates the phase of each

by a multiple of 90˚. The permutation is necessary to account for the inherent ambi

that exists in any blind detection problem where the input alphabet is -symmetric.

x

x

π
2
---
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3.7.1 Noiseless Memoryless Unitary Channel

In the following two experiments, we consider the speed of convergence of JA

EASI, and MPLL detectors in the absence of noise.

Experiment 3-14. Consider a2 × 2 noiseless channel model described by (3-

85), whereyk = Uxk andU is a2 × 2 random unitary channel. We assume that

each user draws symbols independently and uniformly from a 16-QAM input

alphabet. In Fig. 3-21, we plot the MSE1 versus time for JADE, EASI, and

Fig. 3-21. Comparison of the MPLL, JADE, and EASI, in terms of MSE1 versus
time, for a 2 × 2 noiseless unitary channel. The shaded regions represent
the variation in convergence time for each of the detector. For each
detector, the lower curve is an average of the fastest 10% of the trials, the
middle represents the average MSE, and the upper curve is an average
of the slowest 10% of the trials.
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MPLL detectors. Since the MSE is biased towards the worst-case perfor-

mance,i.e., towards the trials that converge the slowest, we display three

curves for each detector: the middle curve represents the average over 5,000

random unitary channels and input realizations, the lower curve represents the

average of the fastest 10% of the trials (best 10%), and the upper curve repre-

sents the average of the slowest 10% of the trials (worst 10%). The parameters

for each detector were optimized to provide the fastest rate of convergence so

as to achieve an open-eye diagram, or equivalently an MSE1 = –18 dB. The

step sizes for EASI and MPLL decrease with time according toµk =

0.2 ⁄ (1 +k ⁄ 20) andλk = 0.98 ⁄ (1 +k ⁄ 2000), respectively. The parameters

for the second-order PLLs wereα1 = 0.1 andα2 = 0.0005 for EASI, and

α1 = 0.1 andα2 = 0.001 for JADE. Fig. 3-21 shows that on average, both the

MPLL and JADE converge much faster than EASI. We also observe that the

worst 10% for the MPLL and JADE converge faster than the best 10% for

EASI. Hence, we conclude for this channel that the MPLL and JADE clearly

outperform EASI in terms of speed of convergence. One nice feature about

both EASI and JADE is that they have near-uniform convergence,i.e., there is

very little difference between the best 10% and the worst 10%. In contrast,

there is a large differences in the speed of convergence between the best 10%

and the worst 10% for the MPLL. In fact, the best 10% can open the eye dia-

gram in less than 4 symbols, while for the worst 10%, it takes slightly less

than 75 symbols. Since the average MSE curve is very close to the curve for

the worst 10%, we verify that the average MSE is dominated by the slowest

trials. Finally, we should point out that the steady-state performance of the
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MPLL is far superior to that of the other blind unitary estimators because of its

decision-directed nature.

For each trial, we also calculated the convergence time of each detector. The

convergence timeis defined as the number of symbols it takes for a detector to

reach an MSE1 ≤ –18 dB for 100 consecutive symbols. This value is a mea-

sure of how many symbols it takes to open the eye diagram. The average con-

vergence time of the MPLL, JADE, and EASI are found to be 26.7, 55.6, and

237.3 symbols, respectively. Hence, we conclude that the MPLL is twice as

fast as JADE and nine times as fast as EASI. From a histogram of the conver-

gence time for each detector, plotted in Fig. 3-22, it is seen that the distribu-

tion for the MPLL and JADE are skewed towards fast convergence times,

while the distribution for EASI is more evenly distributed about its mean. In

fact, 96% trials for the MPLL converge within 75 symbols, while it takes

JADE nearly 110 symbols and EASI almost 390 symbols to reach that same

percentage. Hence, we conclude that, on average, the MPLL will converge

much faster than either JADE or EASI.

This experiment shows that for a2 × 2 noiseless unitary channel the MPLL is undoubted

a better algorithm. In the next experiment, we consider a unitary channel with a slig

higher dimension.

Experiment 3-15. Consider a3 × 3 noiseless channel model described by (3-

85), whereyk = Uxk and U is a 3 × 3 random unitary channel. Again, we

assume that each user draws symbols independently and uniformly from a 16-
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Fig. 3-22. Histogram of convergence times for a 2 × 2 unitary channel: (a) MPLL; (b)
EASI; (c) JADE.
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QAM input alphabet. In Fig. 3-23, we plot MSE1 versus time for JADE,

EASI, and MPLL. Each of the three curves is generated by averaging over

5,000 random unitary channels and input realizations. The parameters for each

algorithm were again optimized for fast convergence. The step sizes for EASI

and MPLL decrease with time according toµk = 0.1 ⁄ (1 +k ⁄ 50) andλk =

0.66 ⁄ (1 +k ⁄ 3000), respectively. The parameters for the second-order PLLs

were α1 = 0.1 andα2 = 0.0005 for EASI, andα1 = 0.1 andα2 = 0.001 for

JADE. From Fig. 3-23, it appears that, on average, both JADE and EASI can

Fig. 3-23. Comparison of the MPLL, JADE, and EASI, in terms of MSE1 versus time,
for a 3 × 3 noiseless unitary channel. The shaded regions represent the
variation in convergence time for each of the detector. For each detector,
the lower curve is an average of the fastest 10% of the trials, the middle
represents the average MSE, and the upper curve is an average of the
slowest 10% of the trials.
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open the eye diagram more quickly than the MPLL. Again, we reiterate that

the average MSE curve is dominated by the slowest converging trials. The

worst trials for the MPLL may converge more slowly than JADE and EASI,

but the best 10% clearly outperform these detectors. From a histogram of the

convergence time for each detector, plotted in Fig. 3-24, it is seen that the dis-

tribution for the MPLL and JADE are skewed towards fast convergence times,

while EASI is more evenly distributed about its mean, indicating a more uni-

form rate of convergence. In fact, the MPLL is more likely to have a fast con-

vergence time than a slow convergence time, but the average MSE curve,

unfortunately, is dominated by the slow convergence times. The average con-

vergence time of JADE, MPLL, and EASI are 85.0, 151.5, and 366.6 symbols,

respectively. So even though, in Fig. 3-23, the MPLL appears to be slower

than EASI, it is in fact more than two times faster. Again, it is important to

note that the steady-state performance of the MPLL is far superior to that of

JADE and EASI.

The speed of convergence of the MPLL is slower than that of JADE due to the

that, at each iteration, it is only able to compensate for a rotation in two dimens

whereas the unitary ambiguity represents a three-dimensional rotation.

3.7.2 Noisy Memoryless Gaussian Channel

In the following four experiments, we consider the effects of noise and the in

alphabet on the speed of convergence of JADE, EASI, and the MPLL. We begi

looking at a 4-QAM input alphabet.
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Fig. 3-24. Histogram of convergence times for a 3 × 3 unitary channel: (a) MPLL; (b)
EASI; (c) JADE.
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Experiment 3-16. Consider a3 × 2 noiseless channel model described by (3-

85). We assume that each user draws symbols independently and uniformly

from a 4-QAM input alphabet. For a 4-QAM input alphabet, we definecon-

vergence timeas the number of symbols it takes for each detector to reach an

MSE1 ≤ –12 dB for 100 consecutive symbols. In Fig. 3-25, we plot the con-

vergence time of each detector versus SNR1 = 1/σ2. Each curve was gener-

ated by averaging over 1000 different random unitary channels and input and

noise realizations. The step sizes for EASI and MPLL decrease with time

Fig. 3-25. The convergence time for each detector is plotted versus SNR1 for a 3 × 2
noisy complex Gaussian channel followed by a 2 × 3 ideal whitener and a
4-QAM input alphabet. The optimal parameters for each detector can be
found in Table 3-2.
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according toµk = µ0 ⁄ (1 + k ⁄ kµ)and λk = λ0 ⁄ (1 + k ⁄ kλ), respectively. The

single-user PLL bank, used by both JADE and EASI, has parametersα1 and

α2. The parameters for each detector were optimized to provide the fastest rate

of convergence so as to achieve an open-eye diagram at each SNR; the values

for the optimal parameters are listed in Table 3-2. These curves show that the

MPLL provides the fastest convergence time, followed by JADE and then by

EASI. At high SNR, the convergence time of the MPLL is only slightly better

SNR MPLL
EASI

α1 = 10–2, α2 = 10–4 JADE

10.78 λ0 = 0.98,kλ = 3  

10.80 – 11.0 0.98, 3  

11.4   α1 = 10–2, α2 = 10–4

11.5 0.98, 3 µ0 = 0.05,kµ = 30 

11.6 – 11.8   10–2, 10–4

12.0 0.98, 3 0.05, 30 10–2, 10–4

13.0 0.98, 3 0.08, 20 10–2, 10–4

14.0 0.98, 5 0.08, 20 10–2, 10–4

16.0 0.98, 5 0.10, 20 10–2, 10–4

18.0 0.98, 5 0.10, 20 4×10–2, 10–4

20.0 – 22.0 0.98, 10 0.10, 20 10–1, 10–3

24.0 0.98, 20 0.10, 20 10–1, 10–3

26.0 0.98, 30 0.10, 20 10–1, 10–3

28.0 0.98, 40 0.10, 20 10–1, 10–3

TABLE  3-2:  Optimal Parameters for a 3 × 2 Gaussian Channel with 4-QAM input alphabet.
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than that of JADE. At low SNR, all three detectors start to break down and the

convergence time becomes very large.

For a 4-QAM input alphabet, the MPLL clearly outperforms both JADE and EASI

all SNR. In the next experiment, we consider a 16-QAM input alphabet.

Experiment 3-17. Consider a3 × 2 noiseless channel model described by (3-

85). We assume that each user draws symbols independently and uniformly

from a 16-QAM input alphabet. For a 16-QAM input alphabet, we definecon-

vergence timeto be the number of symbols it takes for each detector to reach

an MSE1 ≤ –18 dB for 100 consecutive symbols. In Fig. 3-26, we plot the con-

vergence time of each detector versus SNR1 = 1/σ2. Each curve was gener-

ated by averaging over 1000 different random unitary channels and input and

noise realizations. The parameters for each detector were optimized to provide

the fastest rate of convergence so as to achieve an open-eye diagram at eac

SNR; the values for the optimal parameters are listed in Table 3-3. These

curves show that the MPLL provides the fastest convergence time, followed

by JADE and then by EASI. At high SNR, the convergence time of the MPLL

is only slightly better than that of JADE. At low SNR, JADE and EASI start to

break down first, and the convergence time for all three detectors becomes

very large.

Again, the MPLL clearly outperforms JADE and EASI for a 16-QAM input alphab

In the next experiment, we demonstrate that the MPLL is compatible with shaped-

alphabets that are necessary for capacity achieving applications.
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Experiment 3-18. Consider a3 × 2 noiseless channel model described by (3-

85). We assume that each user draws symbols independently and uniformly

from a shaped 16-QAM input alphabet, which is defined as follows:

 = . (3-87)

Fig. 3-26. The convergence time for each detector is plotted versus SNR1 for a 3 × 2
noisy complex Gaussian channel followed by a 2 × 3 ideal whitener and a
16-QAM input alphabet. The optimal parameters for each detector can be
found in Table 3-3.
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It is easily verified that the kurtosis of this constellation isκ = 1.89, which is

very close to the kurtosis of a complex Gaussian distribution. For a shaped 16-

QAM input alphabet, we defineconvergence timeto be the number of symbols

it takes for each detector to reach an MSE1 ≤ –18 dB for 100 consecutive sym-

bols. In Fig. 3-27, we plot the convergence time of each detector versus SNR1

= 1/σ2. Each curve was generated by averaging over 1000 different random

SNR MPLL
EASI

α1 = 10–2, α2 = 5×10–4 JADE

18.2 λ0 = 0.98,kλ = 25  

18.4 – 18.6 0.98, 28  

18.8 0.98, 30  

19.0 0.98, 30 µ0 = 0.04,kµ = 40 α1 = 2×10–2, α2 = 10–4

19.5  0.04, 40 

20.0 – 21.0 0.98, 30 0.04, 40 2×10–2, 10–4

22.0 0.98, 35 0.05, 40 2×10–2, 10–4

24.0 0.98, 45 0.05, 40 4×10–2, 10–4

26.0 0.98, 55 0.10, 20 8×10–2, 5×10–4

28.0 0.98, 70 0.10, 20 8×10–2, 5×10–4

30.0 0.98, 90 0.10, 20 8×10–2, 5×10–4

32.0 0.98, 100 0.10, 20 

34.0 0.98, 120 0.10, 20 8×10–2, 5×10–4

36.0 0.98, 300 0.10, 20 

38.0 0.98, 600 0.10, 20 8×10–2, 5×10–4

40.0 0.98, 800 0.10, 20 

42.0 0.98, 1000 0.10, 20 10–1, 10–3

TABLE  3-3:  Optimal Parameters for a 3 × 2 Gaussian Channel with 16-QAM input alphabet.
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unitary channels and input and noise realizations. The step sizes for EASI and

MPLL decrease with time according toµk = µ0 ⁄ (1 + k ⁄ kµ)and λk =

λ0 ⁄ (1 + k ⁄ kλ), respectively. The single-user PLL bank, used by both JADE

and EASI, has parametersα1 andα2. The parameters for each detector were

optimized to provide the fastest rate of convergence so as to achieve an open-

eye diagram at each SNR; the values for optimal parameters are listed in

Table 3-4. These curves show that the MPLL clearly outperforms both JADE

and EASI. In fact, the convergence time for the MPLL with a shaped 16-QAM

Fig. 3-27. The convergence time for each detector is plotted versus SNR1 for a 3 × 2
noisy complex Gaussian channel followed by a 2 × 3 ideal whitener and a
shaped 16-QAM input alphabet. The optimal parameters for each
detector can be found in Table 3-4.
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or a

size is
input alphabet is slightly better than that of the MPLL with a 16-QAM input

alphabet. In contrast, the convergence times at high SNR for JADE and EASI

are 6000 symbols and 9000 symbols, respectively. Thus for a shaped 16-QAM

input alphabet, the MPLL is 150 times better than JADE and 200 times better

than EASI.

This example demonstrates that the MPLL can resolve a unitary ambiguity f

shaped-input alphabet. In fact, as long as the input alphabet is discrete and the step

SNR MPLL
EASI

α1 = 10–2, α2 = 5×10–4 JADE

18.2 λ0 = 0.98,kλ = 25  

18.4 0.98, 25  

18.6 0.98, 28  

18.8 – 22.0 0.98, 30  

24.0 0.98, 45 µ0 = 0.10,kµ = 12000 α1 = 10–2, α2 = 10–4

26.0 0.98, 45 0.10, 8000 10–2, 10–4

28.0 0.98, 70 0.10, 6000 10–2, 10–4

30.0 0.98, 90  10–2, 10–4

32.0 0.98, 100 0.10, 4000 

34.0 0.98, 120 0.10, 4000 10–2, 10–4

36.0 0.98, 300 0.10, 4000 

38.0 0.98, 600 0.10, 4000 10–2, 10–4

40.0 0.98, 800 0.10, 4000 

42.0 0.98, 1000 0.10, 4000 10–2, 10–4

TABLE 3-4: Optimal Parameters for a 3 × 2 Gaussian Channel with shaped 16-QAM input alphabet.
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chosen appropriately, the DD MPLL will be able to correctly resolve the unitary am

guity. The convergence time of the MPLL for a shaped-input alphabet is found to

nearly the same as for a non-shaped input alphabet. In contrast, both JADE and EAS

large convergence times for a shaped-input alphabet, even for high values of SNR.

In the next experiment, we consider the effect that the number of usersn has on the

convergence time.

Experiment 3-19. Consider a5 × 3 noiseless channel model described by (3-

85). We assume that each user draws symbols independently and uniformly

from a 16-QAM input alphabet. For a 16-QAM input alphabet, we definecon-

vergence timeto be the number of symbols it takes for each detector to reach

an MSE1 ≤ –18 dB for 100 consecutive symbols. In Fig. 3-28, we plot the con-

vergence time of each detector versus SNR1 = 1/σ2. Each curve was gener-

ated by averaging over 1000 different random unitary channels and input and

noise realizations. The parameters for each detector were optimized to provide

the fastest rate of convergence so as to achieve an open-eye diagram at eac

SNR; the values for optimal parameters are listed in Table 3-5. These curves

show that JADE provides the fastest convergence time, followed by the MPLL

and then by EASI. At high SNR, JADE is two times faster than the MPLL and

five times faster than EASI. At low SNR, all three detectors start to break

down and the convergence becomes very large.

Whenn > 2, JADE provides faster convergence than either the MPLL or EASI. T

result suggests that JADE should always be used in this case. This would indeed be
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sec-
we were not concerned with the computational complexity of the detector. In the next

tion, we compute the computational complexity of each detector.

3.7.3 Complexity Comparison

In the following experiment, we calculate the complexity of each detector.

Experiment 3-20. Consider the channel model described by (3-30). In Fig. 3-

29, we plot the number of floating point operations (FLOPS) required per iter-

ation to generate an estimate of the rotation for each algorithm versus the

Fig. 3-28. The convergence time for each detector is plotted versus SNR1 for a 5 × 3
noisy complex Gaussian channel followed by a 3 × 5 ideal whitener and a
16-QAM input alphabet. The optimal parameters for each detector can be
found in Table 3-5.

18 20 22 24 26 28 30 32 34 36 38 40 42

0

500

1000

1500

2000

2500

3000

3500

4000

4500

SNR1 (dB)

C
on

ve
rg

en
ce

 T
im

e 
(k

)

18 20 22 24 26 28 30 32 34 36 38 40 42

0

500

1000

1500

2000

2500

3000

3500

4000

4500

18 20 22 24 26 28 30 32 34 36 38 40 42

0

500

1000

1500

2000

2500

3000

3500

4000

4500

18 20 22 24 26 28 30 32 34 36 38 40 42

0

500

1000

1500

2000

2500

3000

3500

4000

4500

EASI

MPLL

JADE

5 × 3 Gaussian channel

16-QAM input alphabet
Averaged over 1000 Channels



117

ost

puta-

ation
number of usersn. For both JADE and EASI, we took into account the com-

plexity of the bank of independent single-user PLLs. These curves demon-

strate the low computational complexity of the MPLL. Both the MPLL and

EASI have essentially the same complexityO(n3), even though whenm = 25,

the complexity of EASI is six times greater than that of the MPLL. In contrast,

the complexity of the JADE is extremely large,O(n6). It has been reported

that it is possible to reduce the complexity of JADE toO(n5) [49].

The extremely large computational complexity of JADE makes this algorithm alm

impractical in many real-world applications. When selecting a detector, both the com

tional complexity and the performance of the detector must be taken into consider

SNR MPLL
EASI

α1 = 10–2, α2 = 5×10–4 JADE

19.0 λ0 = 0.50,kλ = 200  α1 = 2×10–2, α2 = 10–4

19.5 0.60, 200  

20.0 0.60, 200 µ0 = 0.10,kµ = 20 2×10–2, 10–4

20.5 0.60, 200 0.10, 20 

21.0 – 24.0 0.60, 200 0.10, 20 4×10–2, 10–4

26.0 0.66, 400 0.10, 20 4×10–2, 10–4

28.0 0.66, 400 0.10, 20 8×10–2, 5×10–4

30.0 0.66, 700 0.10, 20 8×10–2, 5×10–4

32.0 0.66, 1000 0.10, 20 

34.0 – 42.0 0.66, 1000 0.10, 20 10–1, 10–3

TABLE  3-5:  Optimal Parameters for a 5 × 3 Gaussian Channel with 16-QAM input alphabet.
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and the trade-off must be carefully balanced. These experiments demonstrate th

MPLL provides such a balance and is therefore an excellent algorithm.

3.7.4 Trained MPLL versus Decision-Directed MPLL

In this chapter, we have focused our attention solely on the decision-directed M

However, it is possible to use it also when a training sequence is available. The algo

for a trained MPLL is the same as that of the decision-directed MPLL, except tha

decision k is replaced with the training sequence. In the following experiment, we co

Fig. 3-29. Comparison of computational complexity of MPLL, JADE, and EASI.
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the
pare the performance of a decision-directed MPLL with that of a trained MPLL, where

training sequence is the channel input vectorxk.

Experiment 3-21. Consider a2 × 2 noiseless channel model described by (3-

85), whereyk = Uxk andU is a2 × 2 random unitary channel. We assume that

each user draws symbols independently and uniformly from a 16-QAM input

alphabet. The step sizes for the trained MPLL and the decision-directed

MPLL were the same:λ = 0.8. In Fig. 3-30, we plot the MSE1 versus time for

the DD MPLL and the trained MPLL. Each curve is an ensemble average over

Fig. 3-30. Comparison of a trained MPLL and a decision-directed MPLL in terms of
MSE1 versus time.
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10,000 random channels. We observe that the trained MPLL converges much

more quickly than the decision-directed MPLL. We also see that both MPLLs

can open the eye diagram within 100 symbols.

As expected, the performance of the trained MPLL is much better than that of the

sion-directed MPLL, which is inherently a blind algorithm. Despite the fact that the d

sion-directed MPLL does not have access to a training sequence, it is still ab

successfully open the eye diagram.

3.8 SUMMARY

In this chapter, we have reviewed the basic structure of a first-order and second-

phase-locked loop. In particular, we have analyzed the dynamics of these PLLs and

demonstrated that when the SNR is high and the step size is small, it is possible for a

to false lock,i.e., to converge to an undesirable stable point. In that same analysis, we

showed that in a practical implementation of the PLL, there is a minimum step size

guarantees convergence to a desirable stable point. Unfortunately, the structure of th

ventional PLL does not extend to multiple dimensions. However, we were able to man

late the update equations and develop an alternative model for the PLL whose struc

shown in Fig. 3-7.

We have generalized the structure of the alternative-model PLL and develope

multidimensional phase-locked loop (MPLL), which is illustrated in Fig. 3-9. The MP

is a decision-directed adaptive algorithm which exploits the discrete nature of digital c

munication signals. The key component of the MPLL is the rotation detector, which m

sures the rotation between two vectors. Using the rotation detector and extending th
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filter to multiple dimensions, we are able to derive the update equations for both a

order and a second-order MPLL. The computational complexity of the update equa

for the MPLL can be rather large, because it requires raising a matrix to a fractional p

which inherently demands an eigendecomposition. This computational burden

reduced by combining the operations of the rotation detector and the loop filter. Thes

components could be combined into two unique ways, one of which leads to an altern

structure for the MPLL.

Finally, we have analyzed the dynamics of both a first-order and a second-o

MPLL. Since the MPLL is a generalization of the single-user PLL, it also subject to fa

lock when the SNR is high and the step size is small. But just as in the single-user cas

probability of false lock can be minimized through a careful choice of the step size

have shown, through computer simulations, that the MPLL compares favorably, in t

of both performance and complexity, to both JADE and EASI. It was concluded tha

MPLL offers fast convergence, excellent steady-state performance, and low complex
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A P P E N D I X 3 . 1

P R O O F O F T H E O R E M 3 - 5

For a givenλ, the conventional-model MPLL rotatesu to vλ = Rλ(u → v)u, where

Rλ(u → v) is defined by (3-55) and (3-56). If each component of then × 1 channel input

vectorx draw symbols from areal discrete-input alphabet, thenRλ(u → v) reduces to:

Rλ( k → zk) = In + , (3-88)

wherep = uTv = cos(∆) andw = (v – cos(∆)u)/sin(∆). (This analysis implicitly assumes

that|p| < 1.) Using (3-88), we find thatvλ simplifies as follows:

zλ = u + u, (3-89)

= u + , (3-90)

= cos(λ∆)u + sin(λ∆)w, (3-91)

x̂ u w
cos λ∆( ) 1– sin– λ∆( )

sin λ∆( ) cos λ∆( ) 1–

uT

wT

u w
cos λ∆( ) 1– sin– λ∆( )

sin λ∆( ) cos λ∆( ) 1–

uT

wT

u w
cos λ∆( ) 1– sin– λ∆( )

sin λ∆( ) cos λ∆( ) 1–

1
0
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= u + v, (3-92)

where the second equality arises from the fact thatw is orthogonal tou.

Similarly, for a givenµ, the alternative-model MPLL rotatesu to a fixed intermediate

point vµ = , where µ is defined by (3-65). We can expandvµ as:

vµ = u + v. (3-93)

Subtracting (3-93) from (3-92), we obtain:

vλ – vµ =  – u +

 – v. (3-94)

One way that the two intermediate pointsvλ andvµ can be the same is if both terms insid

the square brackets are zero, or in other words, if both of the following equations are

fied:

The only way that the two intermediate points can be the same is if both terms insid

square brackets are zero; in other words, if both of the following equations are satis

 = , (3-95)

sin 1 λ–( )∆( )
sin ∆( )

----------------------------------- sin λ∆( )
sin ∆( )

--------------------

ṽµ
ṽµ

----------- ṽ

1 µ–

µ2 1 µ–( )2 2µ 1 µ–( ) p+ +
------------------------------------------------------------------------- µ

µ2 1 µ–( )2 2µ 1 µ–( ) p+ +
-------------------------------------------------------------------------

sin 1 λ–( )∆( )
sin ∆( )

----------------------------------- 1 µ–

µ2 1 µ–( )2 2µ 1 µ–( ) p+ +
-------------------------------------------------------------------------

sin λ∆( )
sin ∆( )

-------------------- µ

µ2 1 µ–( )2 2µ 1 µ–( ) p+ +
-------------------------------------------------------------------------

sin 1 λ–( )∆( )
sin ∆( )

----------------------------------- 1 µ–

µ2 1 µ–( )2 2µ 1 µ–( ) p+ +
-------------------------------------------------------------------------
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 = . (3-96)

Dividing (3-96) by (3-95) and solving forµ, we find that, for a givenλ, µ must satisfy the

following equation in order for the two intermediate points to be the same:

µ = . (3-97)

The only way that the two intermediate points can be the same is if the partial rota

matrix for the conventional-model and alternative-model MPLL are the same.❏

sin λ∆( )
sin ∆( )

-------------------- µ

µ2 1 µ–( )2 2µ 1 µ–( ) p+ +
-------------------------------------------------------------------------

sin λ∆( )
sin λ∆( ) sin 1 λ–( )∆( )+
--------------------------------------------------------------
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SP A T I A L V E C T O R C M A

The constant-modulus algorithm (CMA) is the most commonly implemented

studied blind equalization algorithm for single-user communication systems [79]. Se

generalizations of CMA to the multiuser framework have been proposed over the las

teen years. To our knowledge, the most common extension is the pointwise constant

ulus algorithm, which forces each component of the detector output vector to ha

constant modulus. The primary drawback of this algorithm is its susceptibility to the

to-many problem, whereby, the detector recovers the same user more than once

modifications of pointwise CMA that have been proposed to eliminate the one-to-m

problem add an additional term to pointwise CMA cost function [100-102].

In contrast, we propose a new generalization of CMA to the multiuser framew

Instead of imposing the constant modulus constraint on each component of the de

output, we suggest a new cost function that imposes a constant modulus constraint

entire vector-valued detector output. We will show that this cost function has prope

similar to that of the scalar CMA cost function and that the resulting algorithm fits in w

the general whiten-rotate structure described in Chapter 1.
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In this chapter, we limit the focus of the research to a memoryless channel. The in

gained for a memoryless channel will prove valuable when extending the results

channel with memory in Chapter 5. The results presented in this chapter are also imp

in their own right, because many real-world applications, such as a synchronous C

system and a narrowband array-processing system, can be modeled by a mem

channel. In the following chapter, we extend the concepts and algorithms presented

chapter to channels with memory.

In Section 4.1, we introduce the channel model and assumptions that will be

throughout the remainder of this chapter. In Section 4.2, we introduce the vector con

modulus algorithm cost function. In Section 4.3, we determine the local minima of

cost function in the absence of noise. We show that for certain input alphabets, the

function is minimized only by desirable local minima, while for other input alphabets,

cost function is minimized by both desirable and undesirable local minima. In Section

we consider the effects of noise on local minima of the cost function. In Section 4.5

propose a modification to the vector CMA cost function, which can eliminate the und

able local minima for all input alphabets. We derive a stochastic gradient-descent

rithm for both cost functions in Section 4.6. Finally, in Section 4.7, we present sev

simulation results which demonstrate the effectiveness, in terms of speed of conver

and complexity, of the two proposed algorithms.
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4.1 CHANNEL M ODEL AND ASSUMPTIONS

Consider the memoryless channel model depicted in Fig. 4-1:

rk = Hxk + nk, (4-1)

whereH is anm × n memoryless channel matrix. This memoryless channel arises

wide-variety of real-world applications, including a narrowbandm-sensor uniform linear-

array application, where the columns of theH represents the steering vectors for then

users, and in a synchronous CDMA application, where the columns ofH represent them-

chip length signature sequences of then users. The transmitted vectorxk is ann × 1 vector

consisting of the symbols sent by then independent users. The received vectorrk is anm

× 1 vector composed of the receiver observations, whilenk represents anm × 1 noise

vector with power spectral densityE[nknk
*] = σ2I, with σ2 > 0.

We assume that channelH has full-column rank (rank(H) = n), which implies that the

channel is either square or tall (m ≥ n), and that the channel input vectorxk can be recov-

ered using a linear detector (see Section 2.1.2). We further assume that the sign

Hxk

nk

rk

m × n
Channel

n × 1 m × 1

Fig. 4-1. A block diagram of an m × n noisy memoryless channel model.



128

ompo-

ed
noise components are independent and have zero mean. Finally, we assume that c

nents of the channel input vectorxk are stationary, independent, and uniformly select

from a complex discrete-input alphabet. Define to bei-th component of the vectorxk.

The second and fourth moments of thei-th input alphabet can be defined as follows:

 = E[| |2], (4-2)

 = E[| |4]. (4-3)

An intrinsic property of thei-th input alphabet is the kurtosis, which is defined as:

κi = . (4-4)

A lower bound for the kurtosis is given by the following theorem:

Theorem 4-1. For any given input alphabet,κ ≥ 1.

Proof: This result is a direct consequence of Jensen’s inequality [107], which

states thatm4 ≥ (m2)2.

Property 4-1. The kurtosis, as defined in (4-4), is invariant to an arbitrary

scaling of the input alphabet,i.e., multiplying each point in the input alphabet

by a constant does not change the value of the kurtosis.

xk
i( )

m2
i( ) xk

i( )

m4
i( ) xk

i( )

m4
i( )

m2
i( )( )

2
------------------
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We have calculated the kurtosis for a few of the most common discrete-input al

bets.

Example 4-1. The kurtosis forM phase-shift keying (M-PSK) constellations

is one,i.e., κ = 1. This result is due to the fact that all of the symbols in anM-

PSK constellation lie on a single circle of radiusm2.

Example 4-2. The kurtosis for theM pulse-amplitude modulation (M-PAM)

alphabet {±1, ±3, …, ±(M–1)} is given by:

κ =  – (M2 – 1)–1. (4-5)

Using (4-5), we see thatκ = 1 for a 2-PAM constellation,κ = 1.64 for a 4-

PAM constellation, andκ = 1.7314 for a 6-PAM constellation. In the limit, as

M → ∞, κ → 1.8.

Example 4-3. For the M2 quadrature-amplitude modulation (M2-QAM)

alphabet {±1, ±3, …, ±(M–1)} × { ±j, ±3j, …, ±(M–1)j}, where ‘×’ denotes

the two-dimensional Cartesian product, the kurtosis is given by:

κ =  – (M2 – 1)–1. (4-6)

9
5
--- 12

5
------

7
5
--- 6

5
---
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Using (4-6), we see thatκ = 1 for a 4-QAM constellation,κ = 1.32 for a 16-

QAM constellation, andκ = 1.381 for a 64-QAM constellation. In the limit, as

M → ∞, κ → 1.4.

From these examples, we observe that the kurtosis can be used to subdivide the se

discrete-input alphabets into two distinct and disjoint subsets.

Definition 4-1. An input alphabet is said to beconstant modulus(CM) if κ =

1; in other words, all of the symbols in the discrete-input alphabet lie on a

single circle of radiusm2.

Definition 4-2. An input alphabet is said to benon-constant modulus(non-

CM) if κ > 1.

The importance of these two definitions will become evident later in this chapter.

4.2 VECTOR CMA C OST FUNCTION

Since we have assumed that the channel has full-column rank, the transmitted v

xk is linearly detectable and it can therefore be recovered by passing them × 1 received

vectorrk through ann × m adaptive memoryless linear detectorC as illustrated in Fig. 4-

2. It can be seen from this figure that the number of outputs for the linear detector is

than the number of inputs. This detector, often referred to as a short linear detector,

“smallest” possible detector that can be used to recover the transmitted data. The de

output is expressed as:
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yk = Fxk + Cnk, (4-7)

whereF = CH is then × n overall transfer function matrix. It should be emphasized th

the dimension of the detector output is the same as the dimension of the channel in

We choose to adapt the memoryless linear detectorC using a multi-dimensional gener

alization of the constant modulus-algorithm. The reason for choosing CMA is that

adaptive and has low complexity. Another important advantage of CMA is that it can m

gate intersymbol interference on both minimum and non-minimum phase channe

implicitly using higher-order statistics. Further, we can build on the great deal of kno

edge about the cost function in the literature.

We now propose thevector constant-modulus algorithm(vector CMA) cost function

[20]:

Jv = E yk  – Mv , (4-8)

Fig. 4-2. A block diagram of an m × n memoryless channel followed by an n × m
memoryless linear detector.

H Cxk

nk

rk yk

m × n n × m
Channel Linear Detector

n × 1 n × 1


  

2

 2
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whereyk = Crk, and whereMv is some a constant to be specified later in this section. T

cost function given by (4-8) is a special case of the combination CMA cost function w

A = 0 andB = 1. Also, (4-8) reduces to the conventional single-user CMA cost funct

whenn = 1.

The vector CMA cost function is a unique extension of the single-user CMA c

function to vector-valued signals. In fact, when compared to the pointwise CMA

function, the vector CMA cost function is a natural generalization because it inherits

most important property, the invariance to an arbitrary (unitary) rotation, from the sc

CMA cost function. This is a direct consequence of the fact that the vector CMA

function attempts to restore the modulus of theentire vector-valued detector output; in

other words, thel2-norm in (4-8) is invariant to an arbitrary unitary transformation. On t

other hand, the pointwise CMA cost function attempts to restore the modulus of each

vidual component and is therefore only invariant to an arbitrarydiagonal(unitary) rotation

(see Section 2.3).

We selectMv so that in the absence of noise, the gradient is equal to the zero m

whenyk = xk, or equivalently, when at perfect equalization. By selecting this particu

Mv, we ensure thatF = I is a local minimum of the cost function and that the detec

stops updating (on average) when the transmitted data have been recovered. Expand

8), the noiseless vector CMA cost function can be written in terms of the received ve

rk and the linear detectorC as follows:

Jv = E tr[(Crr*C*)2] – 2Mvtr(Crr*C*) + Mv
2 . (4-9)
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The dependence on time has been suppressed to simplify the notation. The comple

dient of (4-9) with respect toC is

∇C Jv = 4E( y yx*)H* – 4MvCHE(yx*)H*. (4-10)

Substitutingy = x into (4-10) and setting the gradient equal to the zero matrix, we find

Mv must satisfy:

E( x xx*) – MvE(xx*) H* = 0. (4-11)

Since the channel matrixH has full-column rank, (4-11) reduces to:

E( x xx*) = MvE(xx*). (4-12)

For anMv to exist, it must simultaneously satisfy all of the equations described in (4-

The following theorem described the conditions for which anMv can exist.

Theorem 4-2. There exists anMv which satisfies (4-12) if and only if

(κi – 1) = K, ∀ i (4-13)

whereK is some positive constant.

 
2

 
2

 
2

m2
i( )
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Proof: Assuming that all of the users are independent, it is easy to show that

the left- and right-hand sides of (4-12) are both diagonal. Hence, we can write

thei-th equation for (4-12) as:

Mv  =  + . (4-14)

Dividing (4-14) by and rearranging some of the terms, we find that

Mv = (κi – 1) + . (4-15)

The last term in (4-15) is the same for alln users. Therefore, (4-15) holds if

and only if (κi – 1) is a constant for alln users.❏

Corollary 4-1. If (4-13) holds, thenMv is given by

Mv = . (4-16)

Proof: Since the condition stated in (4-13) holds, we observe that (4-14) rep-

resents a consistent set of equations. Taking the trace of both sides of (4-12),

we arrive at

MvE[ x ] = E[ x ]. (4-17)

m2
i( ) m4

i( ) m2
i( )

j i≠
∑ m2

j( )

m2
i( )

m2
i( )

j
∑ m2

j( )

m2
i( )

E x 4[ ]

E x 2[ ]
---------------------

 
2

 
4
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Thus, the optimal choice forMv is Mv = . ❏

It can be seen from (4-13) that if the input alphabet is CM for any one user (κi = 1 for

any i), thenK = 0 for all n users. This result implies that alln users must draw symbols

from either a CM input alphabet or a non-CM input alphabet, but not both; in other wo

there is no way to mix CM input alphabets with non-CM input alphabets. Hence,K =

(κi – 1) for all n users only ifn users draw symbols from an arbitrary set of CM inp

alphabets (κi = 1, ∀ i), or if all n users draw symbols from an arbitrary set of non-C

input alphabets that have a kurtosisκi = K / + 1, ∀ i, or if all n users are independen

and identically distributed. We should also emphasize that if (4-13) does not hold,

there does not exist anMv that satisfies (4-11). To see this result, we look at the followi

example:

Example 4-4. Consider a two-user system where the first user selects data

from a normalized 16-QAM constellation ( =1 andκ1 = 1.32) and the

second user selects data from a normalized 4-QAM constellation ( =1,

κ2 = 1). In this case, (4-12) simplifies to the following:

 = . (4-18)

Clearly, there does not exist anMv that satisfies this equation.

E x 4[ ]

E x 2[ ]
---------------------

m2
i( )

m2
i( )

m2
1( )

m2
2( )

Mv 0

0 Mv

2.32 0
0 2
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For discussion throughout the rest of this chapter, we will assume that all user

independent and identically distributed,i.e., m2 = , m4 = , andκ = κi ∀ i. Note

thatMv is related to the kurtosisκ by:

Mv = m2 (n + κ – 1). (4-19)

This assumption will simplify the analysis of the cost function later in this chapter.

4.3 LOCAL M INIMA IN THE ABSENCE OF NOISE

The usefulness of the vector CMA cost function is directly related to the answe

the following two questions:

• What are the local minima of the vector CMA cost function?

• How many local minima are there?

Initially, we will assume that the noise term in (4-1) is zero. This assumption is mad

simplify the analysis of the cost function. Later in this chapter, we will analyze the c

function when the noise term is nonzero. In the previous section, we designed the v

CMA cost function such thatF = I is a local minimum. This local minimum is desirabl

because it implies thatyk = xk and that the transmitted vector can be completely rec

ered. Since the vector CMA cost function is invariant to an arbitrary unitary transfor

tion, F = U, whereU is any unitary matrix. Therefore,U is also a local minimum of the

cost function. Thus, the vector CMA cost function may be minimized byany unitary

matrix, and so there exists an infinite number of local minima! We should emphasize t

unitary matrix is actually a desirable minimum because we have already designed an

m2
i( ) m4

i( )
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rithm that can estimate and resolve the unitary ambiguity; this algorithm is the MP

which is described in detail in Chapter 3.

Definition 4-3. A unitary matrix is adesirable minimumof the vector CMA

cost function.

One questions remains: are there any other local minima of the vector CMA cost f

tion? The answer to this question depends upon the subset in which the input alphab

The following two theorems summarize the local minima of the vector CMA cost fu

tion; the first theorem applies only to non-CM input alphabets and the second applies

to CM input alphabets.

Theorem 4-3. If the input alphabet is non-CM (κ > 1), thenJv is minimized if

and only ifF is unitary.

Proof: See Appendix 4.1.

If the input alphabet is non-CM and the linear detector is a local minima of vector CM

then the detector output vector is related to the channel input vector by an unknown

tary matrix (an unknown arbitrary rotation),i.e., yk = Uxk, for an arbitrary unitary matrix

U.

Property 4-2. For a non-CM input alphabet, vector CMA can resolve a

channel up to a unitary ambiguity.
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This particular detector is referred to as awhitener, because the covariance of the detect

output vectoryk is the identity matrix, E[ykyk
*] = I.

Definition 4-4. An n × m linear detectorC is said to be a whitener if the auto-

correlation ofyk = Crk is the identity matrix,i.e., CE[rkrk
*]C* = I.

In order to recover the transmitted signals, the detector must be followed by a blind

tary estimator, which identifies and eliminates this unitary ambiguity. Possible solutio

this problem include the MPLL (see Chapter 3), JADE, and EASI algorithms.

It is important to emphasize that Theorem 4-3 holds forall non-CM input alphabets,

including a complex Gaussian input alphabet. This result seems to contradict the w

held intuition that CMA does not work for a Gaussian input. To better understand

conundrum, we begin by considering the single-user system depicted in Fig. 4-3, whexk

is a normalized complex Gaussian input signal withm2 = 1 andf(z) is the overall transfer

function. The noise term is assumed to be zero. The single-user CMA algorithm atte

to restore the modulus of the equalizer outputyk; in other words, the algorithm tries to

match the modulus of the equalizer output with the modulus of the channel input. In

yk =

Mx = 2 My = 2

xk

j∑ |fj|
2

j∑ fj xk−j

Fig. 4-3. A noiseless single-user system with a complex Gaussian input signal.

f(z)
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example, the modulus of the input isMx = 2, while the modulus of the equalizer output i

My = 2 |fj|
2. The moduli of the two signals will match if and only if the power of th

overall transfer function is unity: |fj|
2 = 1. For a Gaussian input alphabet, the singl

user CMA ensures that the channel does not amplify the power of the input signal. U

tunately, the CMA cannot equalize a channel with memory. However, if we restrict

attention to a memoryless channel, we see that the CMA can resolve it up to an arb

rotation,i.e.,

|f0|2 = |c0h0|2 = 1 ⇒ c0 = ejθh0, (4-20)

for someθ ∈ [0, 2π). Thus, a single-user CMA can be used to equalize a memory

channel when the input alphabet is Gaussian. An analogous interpretation exists f

vector CMA utilizing a Gaussian input alphabet. The important lesson derived from

argument is that the vector CMA is compatible with capacity achieving systems

employ highly-shaped or near-Gaussian inputs.

Property 4-3. The vector CMA works for highly-shaped or near Gaussian

input alphabets.

Theorem 4-4. If the input alphabet is CM (κ = 1), thenJv is minimized if and

only if F has the following form:

F = UD1/2, (4-21)

j∑

j∑
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whereU is a unitary matrix andD is a non-negative real diagonal matrix satis-

fying tr(D) = n.

Proof: See Appendix 4.4.

If the input alphabet is CM, the detector output vectoryk is related to the channel inpu

vector xk by the following relationship:yk = UD1/2xk, whereU is an arbitrary unitary

matrix andD is a non-negative real diagonal matrix satisfyingtr(D) = n. We see that the

overall transfer function matrix given by (4-21) isonlyunitary for the special case whenD

= I. For all otherD, the overall transfer function matrix is non-unitary. A non-unita

overall transfer function matrix is undesirable because a blind unitary estimator, su

the MPLL, cannot resolve the ambiguity present in the detector output vector and t

fore more processing would be needed in order to recover the transmitted data.

Definition 4-5. A non-unitary matrix is anundesirable minimumof the vector

CMA cost function.

The implications of Theorem 4-4 can be best understood by looking at the follow

example.

Example 4-5. A non-unitary matrix that satisfies (4-21) is given by

F = , (4-22)

whereU =  andD = .

1 0
1 0

1
2

------- 1 1–

1 1
2 0

0 0
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The overall transfer function given by (4-22) is an undesirable minimum becaus

implies that both detector outputs lock on to the first user and therefore the inform

from the second user is completely lost. In this case, because it is impossible to re

information from the second user, appending a blind unitary estimator serves no pur

In fact, no amount of processing would be able to recover the lost information from

second user.

Other examples of undesirable minima satisfying (4-21) include:

F = , F = . (4-23)

Even though these minima recover information for all of the users, they are undesi

because of the incorrect gain for each user, which may lead to incorrect decisions

decision device.

Property 4-4. For a CM input alphabet, the vector CMA cost function is min-

imized by both unitary and non-unitary matrices.

We should emphasize that the vector CMA cost function relies onboth second-order

and fourth-order statistics in order to invert the channel. Unfortunately, a CM in

alphabet is completely described by its second-order statistics, and therefore, th

function does not have enough information to correctly invert the channel. Thus, it is

sible that the cost function can be minimized by non-unitary matrices, such as (4-22

(4-23) given in Example 4-5.

3 2⁄ 0

0 1 2⁄

6 5⁄ 0 0

0 2 5⁄ 0

0 0 7 5⁄
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4.4 LOCAL M INIMA IN THE PRESENCE OF NOISE

In the previous section, we determined the local minima of the vector CMA cost fu

tion assuming no noise. While this analysis is valid and informative, it is only of acade

interest since in any real-world application, noise is always present. Therefore, in this

tion, we derive the local minima of the cost function in the presence of noise and com

the performance against the well-known minimum mean-squared error (MMSE) dete

Recently, many authors [108-111] have demonstrated that in the presence of nois

single-user CMA exhibits near MMSE-like performance; in other words, the performa

of the CMA is similar to that of the MMSE equalizer. Unfortunately, in most cases,

analysis is based on high SNR approximations, and as a result, this analysis is only v

high SNR. The exact behavior of the cost function at low to medium SNR is also

important, because, we can determine from it some of the intrinsic properties of the

function, such as the valid SNR operating range. The reason that many authors us

SNR approximations is that it simplifies the analysis, which otherwise becomes in

table when there is memory in either the channel or the equalizer. However, if the atte

is restricted to memoryless channels, then the analysis becomes straightforward. In

is then possible to derive a closed-form expression for the behavior of the cost funct

all SNR. For a single-user system, this result is uninteresting, but at higher dimensio

becomes much more important.

Consider the noisy memoryless channel and detector model illustrated in Fig. 4-

yk = Fxk + Cnk, (4-24)
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whereF = CH is ann × n overall transfer function matrix,C is ann × m linear detector,

andxk is then × 1 channel input vector. We assume thatnk is anm × 1 zero-mean white

Gaussian noise vector with power spectral densityE[nknk
*] = σ2I. Substituting (4-24)

into (4-8), we find that the cost function can be written as follows:

Jv = E (x*F*Fx)2 + (n*C*Cn)2 + 2(x*F*Fx)(n*C*Cn) + 2(x*F*Cnn*C*Fx)

– 2MvE x*F*Fx + n*C*Cn  + Mv
2. (4-25)

We refer to (4-25) as the “noisy” vector CMA cost function.

The goal of this section is to determine the overall transfer function matrixF and the

corresponding linear detectorC that minimizes the noisy vector CMA cost function. W

restrict our attention to non-CM input alphabets because convergence to a des

minima is guaranteed in the absence of noise. Before we state the results, we give t

lowing definition which will be used to simplify the notation.

Definition 4-6. Let U: n×n → be a function that unwraps ann × n

matrix onto ann2 × 1 column vector. The unwrapping of the matrix amounts

to stacking of the columns; in other words,

U(G) = [g1
T g2

T … gn
T]T, (4-26)

whereG = [g1 g2 … gn]. We see that the inverse of this functionU–1: →

n×n also exists.

CI CI
n2

CI
n2

CI
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The local minima for the noisy vector CMA cost function for a non-CM input alphabet

summarized by the following theorem:

Theorem 4-5. If the channel matrixH has the following truncated singular-

value decomposition:Hm×n = Um×nΣm×n[Qm×n]*, and if the input alphabet is

non-CM, then the noisy vector CMA cost function is minimized if and only if

F = UD1/2V*, (4-27)

whereU is an arbitraryn × n unitary matrix. Then × n unitary matrixV and

the n × n diagonal matrixD are found by taking the eigendecomposition of

QΣU–1(g)ΣQ*, i.e.,

VDV*= QΣU–1(g)ΣQ*. (4-28)

Then2 × 1 vectorg is given by:

g = Mv (m2)2U(Σ2)U(Σ2)T + (m2)2  + (m2)2(κ–2)W*W + σ4U(In)U(In)T

+ σ4I + m2σ2U(Σ2)U(In)T + m2σ2U(In)U(Σ2)T + 2m2σ2

m2U(Σ2) + σ2U(In) , (4-29)

where,

Σσ
2

n2 ΣB
2

1–
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Then × n2 matrixW is defined as follows1:

W = [σ1
2q1

*⊗q1, …, σ1σnq1
*⊗qn, …, σ1σnqn

*⊗q1, …, σn
2qn

*⊗qn], (4-31)

whereσi is thei-th diagonal element ofΣ, qi is thei-th column ofQ, and ‘⊗’

represents the Hadamard product (component-by-component product) [106].

The corresponding linear detector that minimizes the noisy vector CMA cost

function is given byC = FH†, whereH† = (H*H)–1H*.

Proof: See Appendix 4.6.

Unfortunately, the results of this theorem are not intuitively obvious, but we can g

some insight as to how the linear detector combats the noise:

F = UD1/2V* = UV* + U(D1/2 – I)V*. (4-32)

By resolving the unitary ambiguity in the overall transfer function matrix, (4-32) redu

to:

1. For this particular equation, ‘*’ represents a complex conjugate.

Σσ
2

σ1
2Σ2

σ2
2Σ2

σn
2Σ2

…

0

0

ΣB
2

Σ2

Σ2

Σ2

…

0

0



146

are

tion

-

MA

esir-

ent of

quiv-

when

.

 = VU*F = I + V(D1/2 – I)V*. (4-33)

We see from (4-33) that the local minimum of the noisy vector CMA cost function

related to the local minimum of the noiseless vector CMA cost function by a perturba

matrix. This perturbation matrix isnon-diagonal, indicating that a certain amount of mul

tiuser interference is required to combat the effects of noise.

By using (4-27) through (4-31), we can compare the performance of the vector C

to that of the MMSE detector. We choose the MMSE detector because it exhibits a d

able balance between the suppression of multiuser interference and the enhancem

noise. Let MSEi = E[|yk
(i) - xk

(i)|2] denote the mean-squared error (MSE) for thei-th user.

The MMSE detector that minimizes the MSE for each user, can be expressed in two e

alent ways:

C = H*(HH* + I)−1, (4-34)

= (H*H + I)−1H*. (4-35)

We should emphasize that both (4-34) and (4-35) produce the same result, except

the noise is zero (σ2 = 0) and the channel is tall (m > n), in which case (4-34) is not valid

The MSE for thei-th user of the vector CMA detector can be expressed as:

MSEi = m2 Ji(F – I)  + σ2 JiC , (4-36)

F̃

σ2

m2
--------

σ2

m2
--------

2 2
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where Ji is a 1 × n row vector with a one in thei-th position and zeros elsewhere

Assuming that an ideal rotator resolves the remaining unitary ambiguity, then × n overall

transfer function and then × n linear detector that minimize the noisy vector CMA co

function areF = VD1/2V*, whereV andD are specified by (4-28), andC = F(H*H)–1H*,

respectively. The MSE for thei-th user of the MMSE detector, expressed in terms of a s

gular-value decomposition of the channel matrix:H = USV*, whereU is anm × m unitary

matrix,V is ann × n unitary matrix, andΣ is ann × n non-negative real diagonal matrix, i

MSEi = σ2vi
*(S*S + I)−1vi, (4-37)

wherevi is thei-th column ofV.

In the following experiment, we compare the theoretical performance of the ve

CMA using (4-36) to that of the MMSE detector using (4-37).

Experiment 4-1. Consider a receiver withm = 6 sensors. In Fig. 4-4, we plot

MSE1 versus SNR1 = |hj,1|2/σ2 for two different cases:n = 2 andn =

6 users. The curves are generated by averaging the mean-squared error ove

500 different random 6× n channels, where the coefficients are drawn inde-

pendently from a zero-mean, unit-variance complex Gaussian distribution.

The columns are scaled so that all of the odd-numbered users have energy 10

dB below that of the even-numbered users. The input alphabet is assumed to

be 16-QAM. For the two-user case, the curves demonstrate that both the

vector CMA detector and the MMSE detector achieve similar performance for

σ2

m2
--------

j 1=

m∑
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SNR1 > 0 dB. Even at a low SNR1 of –15 dB, the vector CMA detector only

suffers a modest 2 dB penalty when compared to the MMSE detector. For the

six-user case, the gap in performance between the two detectors widens only

slightly.

This experiment suggests that the MSE performance of the vector CMA detector is e

tially similar to that of the MMSE detector.

n = 2 users

n = 6 users

MMSE

Vector CMA

m = 6 sensors
500 trials

Fig. 4-4. A comparison of the mean-squared error versus SNR of the vector CMA
detector and the minimum-MSE detector.

16-QAM constellation
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Property 4-5. Vector CMA exhibits near MMSE-like performance.

This result is reassuring because achieving performance similar to that of the M

detector is the goal of all blind algorithms.

4.5 VECTOR CMA WITH GRAM -SCHMIDT CONSTRAINT

In Section 4.3, we showed that the local minima for the noiseless vector CMA

function is always desirable if the input alphabet is non-CM. If the input alphabet is C

the cost function is minimized by both desirable and undesirable local minima. We

make the vector CMA cost function more compatible with CM input alphabets by m

fying the cost function to penalize the non-unitary matrices. The non-unitary matr

described by (4-21) do not satisfy the following property:E[ykyk
*] = m2I. Hence, the

undesirable minima can be eliminated by modifying the vector CMA cost function

penalize those solutions for whichE[ykyk
*] ≠ m2I:

JGS = Jv + E[ykyk
*] – m2I , (4-38)

where ⋅ is the Frobenius norm for matrices and whereJv is the vector CMA cost

function described by (4-8). We refer to (4-38) as thevector CMA cost function with

Gram-Schmidt constraint(GSC), because the additional term in (4-38) is minimized wh

the rows of the linear detector are orthonormal with respect to the autocorrelation o

received vector, a condition that is equivalent to a Gram-Schmidt constraint on the ro

the linear detectorC.

F
2

F
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The vector CMA cost function with GSC can be thought of as a multi-dimensio

generalization of the CRIMNO (criterion with memory non-linearity) algorithm [Nikias

We have extended their concept of decorrelation in time to decorrelation in space

should also point out that the second term in (4-38) is closely related to the second te

the decorrelation CMA cost function (see (2-32)). The difference between these two

tional terms is that while the former penalizes cross-correlations in space among the

as well as restores the modulus for each user, the latter only penalizes for cross-co

tions in space among the users. Whereas both terms of (4-38) help to restore the m

for each user, the decorrelation CMA cost function leaves the restoration of the mod

the pointwise CMA cost function. From this argument, it is clear that the additional t

in (4-38) accomplishes more, and in fact, as we will show later, it helps to speed the

vergence of the algorithm.

Now consider the case when the noise term in (4-1) is zero. It is easy to show tha

vector CMA cost function is zero at its local minima when the input alphabet is C

Recall from Theorem 4-4 that the local minima for a CM input alphabet are given byF =

UD1/2, whereU is an arbitrary unitary matrix andD is a non-negative diagonal matrix sa

isfying tr(D) = n. Using the relationshipy = Fx, the cost function at the local minima sim

plifies to the following:

Jv = E D1/2x  – nm2 , (4-39)

where we have used the fact thatMv = nm2 for a CM input alphabet. Expanding (4-39)

we obtain:


  

2

 2



151

able

esir-

ce it

erty:

n-

m in

38).

cost

with

a for
Jv = E D1/2x  – 2nm2E D1/2x  + (nm2)2. (4-40)

Since the input alphabet is CM andtr(D) = n, E D1/2x  andE D1/2x  reduce to:

E D1/2x  = (nm2)2, (4-41)

E D1/2x  = nm2. (4-42)

Substituting (4-41) and (4-42) into (4-40), we see thatJv = 0 at the local minima.

We can show that the vector CMA cost function with GSC eliminates the undesir

local minima by looking at the value of the cost function at both the desirable and und

able local minima. For a desirable local minimum, the first term in (4-38) is zero, sin

is a local minimum, and the second term in (4-38) is zero, since it satisfies the prop

E[ykyk
*] = m2I. Thus,JGS = 0 for all desirable minima. For an undesirable local mi

imum, the first term in (4-38) is zero, since it is a local minimum, and the second ter

(4-38) is non-zero, because it does not satisfy the property:E[ykyk
*] = m2I. Thus,JGS > 0

for all undesirable minima. Clearly, the undesirable local minima do not minimize (4-

Therefore, the undesirable local minima cannot be local minima of the vector CMA

function with GSC.

The question remains: does the additional term in the vector CMA cost function

GSC introduce any new local minima? Fortunately, the answer is no. The local minim

this cost function can be summarized by the following theorem:
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Theorem 4-6. For all input alphabets (κ ≥ 1), JGS is minimized if and only if

F is unitary.

Proof: See Appendix 4.8.

Thus, the detector output vector is related to the channel input vector by an unknown

tary matrix (an unknown arbitrary rotation),i.e., yk = Uxk, for an arbitrary unitary matrix

U.

Property 4-6. Vector CMA with GSC can resolve a channel up to a unitary

ambiguity for all input alphabets.

This particular detector is also referred to as awhitener. The transmitted vector can be

recovered by using a blind unitary estimator, such as the MPLL described in Chapter

identify and eliminate the remaining unitary ambiguity.

4.6 ADAPTIVE STOCHASTIC ALGORITHM

The main focus of this research is to design an adaptive linear detector. There ar

eral methods for adaptively minimizing a cost function, including the classical steep

descent algorithm, the Newton-Raphson algorithm, and the recursive-least squares

rithm. We intend to focus here on the classical steepest-descent algorithm, becau

technique has low-complexity and it provides reasonable performance. In this algor

the detector tap weights are adjusted according to the following algorithm:

Ck+1 = Ck – Jv, (4-43)
µ
4
--- ∇C
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where is the complex gradient of the cost function with respect to the detecto

weights and whereµ is the step size.

4.6.1 Vector CMA

The vector CMA cost function (see Section 4.2) is defined as follows:

Jv = E yk  – Mv , (4-44)

whereyk = Crk andMv = E[ xk ] / E[ xk ]. This cost function can be written in term

of the linear detectorC and the detector input vectorrk as follows:

Jv = E tr (Crkrk
*C*)2  – 2Mvtr Crkrk

*C*  + Mv
2 . (4-45)

The complex gradient of (4-45) with respect toCk is given by:

Jv = 4E[ekrk
*], (4-46)

where the “error signal”ek is defined by

ek = yk yk  – Mv . (4-47)

Substituting4ekrk
* as a stochastic approximation of the gradient in the steep

descent algorithm, we arrive at the following update equation for the linear detector:

∇C


  

2

 2
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Ck+1 = Ck – µekrk
*, (4-48)

whereµ is the step size. We refer to this algorithm as the vector CMA. We see that

algorithm reduces to the familiar single-user CMA whenn = 1. It is also important to

point out that the update equation described by (4-48) is the same as the one for

LMS (see Section 2.2), except that the error signalek is defined differently.

In summary, the vector constant-modulus algorithm is defined by (4-47), (4-48),

Mv = E[ xk ] / E[ xk ].

4.6.2 Vector CMA with Gram-Schmidt Constraint

The vector CMA cost function with Gram-Schmidt constraint (see Section 4.5

defined as follows:

JGS = Jv + E[ykyk
*] – m2I , (4-49)

whereyk = Crk. The cost function can be written in terms of the linear detectorC and the

detector input vectorrk as follows:

Jmv = Jv + tr (CΦ0C*)2 – 2m2(CΦ0C*) + (m2)2I , (4-50)

whereΦ0 = E[rkrk
*]. The complex gradient of (4-50) with respect toC is given by:

JGS = 4E[ekrk
*] + 4(E[ykyk

*] – m2I)E[ykrk
*]. (4-51)
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Substituting a stochastic approximation of (4-51) in the classical steepest-descent

rithm, we arrive at the following update for the linear detector:

Ck+1 = Ck – µ krk
*, (4-52)

where k = ek + (E[ykyk
*] – m2I)yk andµ is the step size.

The update for linear detector given by (4-52) requires an estimate ofE[ykyk
*]. Since

yk is a non-stationary vector random process, it is difficult to obtain an accurate esti

of E[ykyk
*]. By substitutingE[ykyk

*] = CkΦ0Ck
* in (4-52), we arrive at an alternative

update equation for the linear detector:

Ck+1 = Ck – µ krk
*. (4-53)

where k = ek + (CkΦ0Ck
* – m2I)yk. An estimate ofΦ0 = E[rkrk

*] is now required

instead of an estimate ofE[ykyk
*]. Since we have assumed that both the input vectorxk

and the channelH are stationary, it is easy to obtain an accurate estimate ofΦ0. In fact,

this estimate can be generated by using a simple running average:

0 = rlrl
*. (4-54)

As k gets larger, this sum approachesΦ0. Since we can estimateΦ0 fairly accurately, we

expect the update equation specified by (4-53) to converge more quickly. In a pra

implementation 0 should be substituted forΦ0 in (4-53).

ẽ

ẽ

e

e

Φ̂ 1
k 1–
------------

l 1=

k

∑

Φ̂
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An advantage of usingCk 0Ck
* instead of an estimate ofE[ykyk

*] is that since

Ck 0Ck
* is determined more accurately, the algorithm should converge more quickl

disadvantage of usingCk 0Ck
* is that, because this term is a product of three matric

there is an increase in computational complexity. The computational burden for this

tional term can be quite large even for moderate values ofn andm. However, a redeeming

feature is that this additional term that is based solely on second-order statistics s

converge quickly and require less symbols than the original vector CMA to invert

channel. A comparison between the computational complexity of vector CMA and ve

CMA with GSC will be given in the next section.

Finally, even though the vector CMA with GSC was designed especially for CM in

alphabets, it can also be used for non-CM input alphabets. If computational complex

not an issue and the speed of convergence is important, then the vector CMA with

would be preferred.

In summary, the vector constant-modulus algorithm with Gram-Schmidt constrai

defined by (4-47), (4-53), (4-54), andMv = E[ xk ] / E[ xk ].

4.7 EXPERIMENTAL RESULTS

We conclude this chapter with several computer experiments. In the first three ex

ments, we consider a uniform linear array with half-wavelength spacing and a non

(16-QAM) input alphabet. For this channel, we compare the performance, in term

mean-squared error, speed of convergence, and complexity, of the vector CMA de

with that of the decorrelation CMA detector [100,101], the combination CMA detec

[102], and the project-whiten-rotate (PWR) detector [54]. In the next three experim

Φ̂

Φ̂

Φ̂

 
4

 
2
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we consider a synchronous CDMA application with a CM input alphabet. Since the i

alphabet is CM, we compare the performance of the vector CMA with GSC detector

that of the decorrelation CMA detector and the PWR detector. The seventh exper

demonstrates that the vector CMA detector is compatible with a shaped input alph

Finally, in the last experiment, we compare the computational complexity of all the de

tors used in the previous experiments.

4.7.1 Rotational Ambiguity and Performance Measure

As mentioned previously in this chapter, the vector CMA detector and the vector C

with GSC detector are both invariant to an arbitrary unitary ambiguity. Causey has sh

in [54] that the PWR detector is also invariant to a unitary ambiguity. The remaining

tary ambiguity can be resolved by filtering the detector output through an appropriate

tary matrix Q, as shown in Fig. 4-5. If the overall transfer function matrixF = CH is

known, then the unitary matrixQ that minimizes the MSE is given by:

Q = UV*, (4-55)

Fig. 4-5. A block diagram of a memoryless channel followed by a memoryless
linear detector and a memoryless unitary rotator.

H Cxk
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where then × n unitary matricesU andV are specified by the singular-value decompo

tion of F = UDV*. The derivation of (4-55) can be found in Appendix 4.9. In a practic

implementation, the appropriate unitary matrixQ can be determined by using any one o

the following blind unitary estimators: JADE [47-49], EASI [50], or the MPLL (se

Chapter 3).

The pointwise CMA-based detectors, described in Chapter 2, do not realize an

inverse of the channel, because of their invariance to an arbitrary diagonal unitary a

guity. This type of ambiguity can be resolved by filtering the detector output through

appropriate diagonal unitary matrixQd, as shown in Fig. 4-5. If the overall transfer func

tion matrix F = CH is known, then the diagonal unitary matrixQd that minimizes the

MSE is given by:

[Qd]ii = exp(j∠[FPF
*]ii), (4-56)

wherePF removes both the ambiguity in assigning labels to each user and the ambi

inherent in all QAM constellation from the overall transfer function matrixF. The deriva-

tion of (4-56) can be found in Appendix 4.10. In a practical implementation, the prope

properQd can be determined by using a bank of independent single-user phase-lo

loops (PLLs).

Even after filtering the detector output through eitherQ or Qd, there still remains two

sources of ambiguities: an ambiguity in assigning labels to each user and a 90° ambiguity

inherent to all QAM constellations. The first ambiguity can be resolved at a higher la

while the second ambiguity can be resolved by using differential encoding. These
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ambiguities typically lead to the relationQ*F = P (or Qd
*F = P), whereP is a complex

permutation matrix,i.e., a matrix consisting of only one nonzero value from the set {1, j, –

1, –j} in each row and each column. The matrixP is an inherent problem of blind mul-

tiuser detection and must be taken into account when calculating the MSE.

For each of the detectors in the following experiments, we use the MSE as a me

of its performance. The MSE for thei-th user is defined as follows:

MSEi = E[| k
(i) – zk

(i)|2], (4-57)

where k = Pxk is a reordered and rotated version of the channel input vector andzk =

Q*yk (or zk = Qd
*yk) is the filtered detector output vector.

4.7.2 Uniform Linear Array

In the following three experiments, we consider an 16-user, 3-sensor uniform li

array withλ/2-spacing. We assume that each users draws symbols independently an

formly from a 16-QAM input alphabet and that the angle of arrival for each user is g

by: θ1 = 65°, θ2 = –35°, andθ3 = 0°, respectively. All angles were measured from broa

side. Given these parameters, the channel model is given by (4-1) with

H16 × 3 = VA, (4-58)

where [V]ij = exp[j (i–1)sin(θj)], A3 × 3 = diag(A1, A2, A3), andAi
2 is the received power

of the i-th user. The received powers were chosen such that the second and the third

x

x

1
16

----------

π
λ
---
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are 6 dB and 12 dB stronger than the first user, respectively. We also assume that the

vectornk in (4-1) is a complex Gaussian random variable with covariance matrixσ2I.

In the first experiment, we demonstrate the convergence of the vector CMA dete

decorrelation detector, combination CMA detector [102], and PWR detector [54] in

absence of noise.

Experiment 4-2. In Fig. 4-6, we plot the MSE1 versus time for these four

detectors, assuming no noise. Each curve is an ensemble average of 500 dif-

ferent random input sequences. For each detector, two curves are displayed in

the figure: the lower curve corresponds to a fictitious system employing the

minimum-MSE (MMSE) PLL or MPLL, while the upper curve corresponds

to an actual PLL or MPLL implementation. The parameters for each detector

were optimized to provide the fastest rate of convergence to achieve an open-

eye diagram, or equivalently an MSE1 = –18 dB. The step size for the vector

CMA detector, decorrelation CMA detector (A = 1, B = 1), and combination

CMA detector (A = 1, B = 1.5), wereµk,vec = 0.075/(1 + k/2200),µk,dec=

0.15/(1 + k/1000), andµk,com= 0.045/(1 + k/6000), respectively. We used a

15-point causal rectangular window to estimate the cross-correlation terms in

decorrelation CMA. The step size wasµk,pwr = 0.06/(1 + k/500) for the PWR

detector, it wasβk,agc= 0.06/(1 + k/500) for the AGC, and it wasλk = 0.80/

2(k/500) for the subspace projector. The step size for the MPLL was decreased

with time according toλk = 0.6/2(k/2000). The bank of scalar PLLs parame-

ters, used by the two extensions of pointwise CMA, wereα1 = 0.08 andα2 =

10–5. From the curves, we see that the PWR detector is fastest to converge,
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Fig. 4-6. Comparison of the vector CMA detector, decorrelation CMA detector,
combination CMA detector, and the PWR detector, in terms of MSE1
versus time, for a noiseless 16 × 3 uniform linear-array with half-
wavelength spacing application with 16-QAM input alphabet, assuming
both actual rotators and MMSE rotators.
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followed closely by the vector CMA and the decorrelation CMA detector. The

combination CMA fails to converge to an open-eye within 10,000 symbols.

Even though the initial convergence of the decorrelation CMA detector is

faster than that of the vector CMA detector, the vector CMA detector actually

opens the eye faster than the decorrelation CMA detector. Both the vector

CMA detector and the PWR detector curves show that the actual MPLL ini-

tially suffers a 4 dBpenalty relative to the MMSE MPLL, which is due to the

fact that the initial decisions made by the MPLL are incorrect. Once these

detectors converge, the discrepancy between them disappears. A similar deg-

radation also appears when the actual bank of PLLs is compared to the MMSE

bank of PLLs, but as the detectors converge, the discrepancy in this case also

disappears.

In the next experiment given below, we examine the effect of noise on the converg

time for each detector.

Experiment 4-3. We define theconvergence timeto be the average number of

symbols it takes for each detector to reach an MSE1 = –18 dB. The conver-

gence time is a measure of how many symbols it takes to open the eye dia-

gram. In Fig. 4-7, the convergence time for the detectors, with the exception of

the combination CMA detector, versus SNR1 = |hj,1|2/σ2 is plotted.

The combination CMA detector does not appear on this plot, because its con-

vergence time is greater than 10,000 symbols for all values of SNR. Each

curve was generated by averaging over 500 different random input and noise

j 1=

m∑
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realizations at each SNR. The step size for the vector CMA detector and deco-

rrelation CMA detector (A = 1, B = 1) wereµk,vec = µ0,vec/(1 + k/kµ) and

µk,dec= µ0,dec/(1 + k/kµ), respectively. We used a 15-point causal rectangular

window to estimate the cross-correlation terms in decorrelation CMA. The

step size wasµ0,pwr/(1 + k/kµ) for the PWR detector, it wasβk,agc= β0,agc/(1

+ k/kβ) for the AGC, and it was given byλk = 0.80/2(k/500) for the subspace

projector. The step size for the MPLL was decreased with time according to

λk = 0.6/2(k/2000). The bank of scalar PLLs parameters, used by the two

extensions of pointwise CMA, wereα1 = 0.08 andα2 = 10–5. The parameters

Fig. 4-7. Comparison of the convergence time of the three detector versus SNR1
for a 16 × 3 uniform linear-array with half-wavelength spacing application
with 16-QAM input alphabet. The optimal parameters for each detector
can be found in Table 4-1.
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-

tional
for each detector were optimized to provide the fastest rate of convergence so

as to achieve an open-eye diagram at each SNR; the values for the optimal

parameters are listed in Table 4-1. These curves show that the PWR detector

provides the fastest convergence time, followed by the vector CMA detector

and the decorrelation CMA detector. We also observe that as the SNR

increases, the convergence time for each detector becomes a constant, sug

gesting that there is a fundamental limit to the speed of convergence.

In this next experiment, we examine both the convergence time and the computa

complexity of the detectors.

Experiment 4-4. We define thetotal complexityto be the product of the

average convergence time and the number of floating point operations

(FLOPS) required per symbol. It is a measure of how many FLOPS it takes to

open the eye diagram. In Fig. 4-8, we plot the total complexity for each

SNR1 (dB) Vector CMA PWR Decorrelation CMA

19.0 µ0 = 0.070,kµ = 1800 µ0 = 0.06,kµ = 300
β0 = 0.06,kβ = 300



19.5 0.070, 1800  µ0 = 0.13,kµ = 1000

20.0 0.072, 1800 0.06, 300; 0.06, 300 0.13, 1000

21.0 – 24.0 0.077, 1800 0.06, 400; 0.06, 400 0.13, 1000

28.0 0.077, 1800 0.06, 500; 0.06, 500 0.15, 1000

32.0 – 40.0 0.075, 2200 0.06, 500; 0.06, 500 0.15, 1000

TABLE  4-1:  Optimized Parameters for a Noisy Uniform Linear-Array Application.
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time

but at
detector versus SNR1. We see that the total complexity of the vector CMA

detector is actually the smallest, followed by the decorrelation CMA detector,

and the PWR detector, which has the largest total complexity. Even though the

PWR detector converges more quickly than vector CMA detector, it needs

three times as many FLOPS to open the eye diagram.

From Experiment 4-3 and Experiment 4-4, we can infer that, for a 16× 3 ULA with λ/2-

spacing, the vector CMA detector provides the best trade-off between convergence

and computational complexity. The PWR detector provides the fastest convergence,

Fig. 4-8. Comparison of the total complexity of the three detector versus SNR1 for
a 16 × 3 uniform linear-array with half-wavelength spacing application
with 16-QAM input alphabet. The optimal parameters for each detector
can be found in Table 4-1.
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the expense of high computational complexity. Finally, the decorrelation CMA dete

has the worst performance and the highest computational complexity.

4.7.3 Synchronous CDMA

In the following three experiments, we consider a two-user synchronous di

sequence CDMA application. We assume that each user draws symbols independen

uniformly from a 4-QAM input alphabet. We further assume that the transmit pulse-s

filters are Nyquist and that the received uses a chip-rate sampled-match filter followe

a serial-to-parallel (S/P) converter. Letci ∈ { ±1} 16 denote the 16-chip binary signatur

sequence for thei-th user. Given this definition, the channel model is given by (4-1) w

H16 × 2 = [c1 c2]A, (4-59)

whereA2 × 2 = diag(A1, A2) andAi
2 is the received power of thei-th user. The correlation

between the two binary signature sequences is given byρ = c1
Tc2 = – . The received

powers were chosen such that SIR1 = –10 dB. Finally, we assume that the noise vectornk

in (4-1) is a complex Gaussian random variable with covariance matrixσ2I.

In the first experiment, we demonstrate the convergence of the vector CMA with G

detector, decorrelation detector, and PWR detector when the noise is zero.

Experiment 4-5. In Fig. 4-9, we plot the MSE1 versus time for each detector,

assuming no noise. Each curve is an ensemble average of 500 different

random input sequences. There are two curves for each detector: the lower

curve corresponds to a fictitious system employing the minimum-MSE

1
16

----------

1
16
------ 3

8
---
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Fig. 4-9. Comparison of the vector CMA detector, decorrelation CMA detector, and
the PWR detector, in terms of MSE1 versus time, for a noiseless
synchronous CDMA application with 4-QAM input alphabet, assuming
both actual rotators and MMSE rotators.
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,

e for
(MMSE) PLL or MPLL, while the upper curve corresponds to an actual PLL

or MPLL implementation. The parameters for each detector were optimized to

provide the fastest rate of convergence so as to achieve an open-eye diagram

or equivalently an MSE1 = –12 dB. The step size for the vector CMA with

GSC detector and decorrelation CMA detector (A = 1, B = 1) wereµk,vec =

0.38/ (1 + k/200) andµk,dec= 0.24/ (1 + k/800), respectively. We used a

10-point causal rectangular window to estimate the cross-correlation terms in

decorrelation CMA. The step size wasµk,pwr = 0.20 / (1 + k/500) for the

PWR detector, it wasβk,agc= 0.1/ (1 + k/200) for the AGC, and it wasλk =

0.4 / 2(k/200) for the subspace projector. The step size for the MPLL was

decreased with time according toλk = 0.4 / 2(k/2000). The bank of scalar

PLLs parameters used by decorrelation CMA wereα1 = 0.05 andα2 = 10–5.

From the curves, we see that the speed of convergence for both the vector

CMA with GSC detector and the PWR detector are nearly identical. On the

other hand, the speed of convergence of the decorrelation CMA detector is

quite large when compared to the other detectors. We also observe that there

exists a small initial discrepancy between the actual MPLL and the MMSE

MPLL; it is less than 2 dB and it quickly disappears.

In the second experiment, we examine the effect of noise on the convergence tim

each detector.

Experiment 4-6. We define theconvergence timeto be the average number of

symbols it takes for each detector to reach an MSE1 = –12 dB. In Fig. 4-10,
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we plot the convergence time for each detector versus SNR1 = |hj,1|2/

σ2. Each curve was generated by averaging over 500 different random input

and noise realizations at each SNR. The step size for the vector CMA detector

and decorrelation CMA detector (A = 1, B = 1) wereµk,vec = µ0,vec/(1 + k/

kµ) and µk,dec = µ0,dec/(1 + k/kµ), respectively. We used a 10-point causal

rectangular window to estimate the cross-correlation terms in decorrelation

CMA. The step size wasµ0,pwr/(1 + k/kµ) for the PWR detector, it wasβk,agc

= β0,agc/(1 + k/kβ) for the AGC, and it wasλk = λ0,sp/2(k/ ) for the sub-

Fig. 4-10. Comparison of the convergence time of the three detector versus SNR1
for a synchronous CDMA application. The optimal parameters for each
detector can be found in Table 4-2.
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space projector. The step size for the MPLL was decreased with time

according toλk = 0.4/2(k/2000). The bank of scalar PLLs parameters, used by

the two extensions of pointwise CMA, wereα1 = 0.05 andα2 = 10–5. The

parameters for each detector were optimized to provide the fastest rate of con-

vergence so as to achieve an open-eye diagram at each SNR; the values of the

optimal parameters are listed in Table 4-2. The figure shows that the conver-

gence time of the PWR detector is slightly less than that of vector CMA with

GSC detector. The convergence of the decorrelation CMA detector is by far

the worst of the three detectors. We also observe that as the SNR increases, the

convergence time for each detector becomes a constant, suggesting that there

is a fundamental limit to the speed of convergence.

SNR1 (dB) Vector CMA PWR Decorrelation CMA

12.5 µ0 = 0.30,kµ = 100 µ0 = 0.08,kµ = 100
β0 = 0.05,kβ = 100
λ0 = 0.40,kλ = 75

µ0 = 0.10,kµ = 800

13.0 0.32, 100 0.1, 100; 0.08, 100;
0.40, 75

0.12, 800

14.0 0.38, 100 0.1, 200; 0.1, 200;
0.40, 100

0.16, 800

16.0 0.38, 200 0.1, 200; 0.1, 200;
0.40, 200

0.20, 800

20.0 – 32.0 0.38, 200 0.2, 500; 0.1, 200;
0.40, 200

0.24, 800

TABLE  4-2:  Optimized Parameters for a Noisy Synchronous CDMA Application.
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e next
This experiment suggests that either the PWR detector or the vector CMA with G

detector can be used, since both provide reasonably fast convergence times. In th

experiment, we examine the computational complexity of each detector.

Experiment 4-7. In Fig. 4-11, we plot the total complexity for each detector

versus SNR1. It is seen that even though the total complexity of all three

detectors is nearly identical, the PWR detector has the least total complexity,

Fig. 4-11. Comparison of the total complexity of the three detector versus SNR1 for
a synchronous CDMA application.The optimal parameters for each
detector can be found in Table 4-2.
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followed by the decorrelation CMA detector and then by the vector CMA with

GSC detector.

From Experiments 4-6 and 4-7, we can infer that, for a 16× 2 synchronous CDMA appli-

cation, both the PWR detector and the vector CMA with GSC detector provide a rea

able trade-off between convergence time and computational complexity. We should

out that the computational complexity of the vector CMA with GSC detector is sligh

higher than that of the PWR detector because the former algorithm requires an estim

the autocorrelation of the received vector.

4.7.4 Shaped Constellation

In the previous experiments, we assumed that each user selects symbols unif

from a QAM input alphabet. Thus, the probability distribution for the symbols is unifo

It is a well-known fact that it is possible to approach the Shannon capacity on an add

white-Gaussian noise (AWGN) channel by using a near-Gaussian input alphabet. On

to generate a near-Gaussian input alphabet is to shape the signal constellation such

symbols closer to the origin have a greater probability of being transmitted than sym

farther away [112]. In the following example, we demonstrate that the vector C

detector converges when the input constellation is shaped.

Experiment 4-8. Consider the channel described by (4-58) except withm = 4

sensors. We assume that each user draws symbols independently from a

shaped 16-QAM constellation, which is defined as follows:
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 = . (4-60)

It is easily verified that the kurtosis of this constellation isκ = 1.89, which is

very close to the kurtosis of a complex Gaussian distribution. In Fig. 4-12(a),

we plot the MSE1 versus time for the vector CMA detector. The curves are an

ensemble average of 500 different random input and noise sequences, with

SNR1 = 28 dB. Again, there are two curves for this detector: the lower curve

corresponds to a fictitious system employing the MMSE MPLL, while the

upper curve corresponds to an actual MPLL implementation. The parameter

for the vector CMA detector was optimized to provide the fastest rate of con-

vergence so as to achieve an open-eye diagram, or equivalently an MSE1 = –

18 dB. The step size for the vector CMA detector was given byµk,vec= 0.030

/ (1 + k/1200). The step size for the MPLL was decreased with time

according toλk = 0.6 / 2(k/2000). From the curves, we see that the vector

CMA detector converges quickly and is able to successfully open the eye dia-

gram after only 2000 symbols. Fig. 4-12(b) shows the constellations of the last

1000 symbols from the last trial. We see that the eye diagram is indeed open

and that the transmitted symbols can be recovered using a simple decision

device.

xk
i( )

{±3 ± 3j} each with probabilityp(xk) = 1/32

{±1 ± j} each with probabilityp(xk) = 5/32













{±3 ± j, ±1 ± 3j} each with probabilityp(xk) = 1/32
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Fig. 4-12. The vector CMA detector applied to a uniform linear-array with half-
wavelength spacing and a shaped 16-QAM input alphabet: (a) learning
curves, assuming both an actual MPLL and an MMSE MPLL; (b)
constellations from the last trial, baud 9000 to 10,000.
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the
This example clearly demonstrated that the vector CMA detector is compatible

capacity-achieving systems.

4.7.5 Computational Complexity

In the following example, we compare the computational complexity for all of

detectors.

Experiment 4-9. Consider a receiver withm = 20 sensors. In Fig. 4-13, we

plot the number of FLOPS required per symbol for each detector with the

appropriate blind unitary estimator (either the MPLL or a bank of single-user

Fig. 4-13. Comparison of the computational complexity of the various detectors
versus the number of users n for a fixed number of sensors m = 20.
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PLLs) versus the number of users (n). This figure shows that the combination

CMA detector with a scalar PLL bank has the lowest complexity of any

detector. The vector CMA detector by itself has a lower complexity than com-

bination CMA detector, but the MPLL, which is somewhat more complex

algorithm, raises the overall complexity of this detector. The PWR detector

has a nearly constant computational complexity for all values ofn, because

the dimension of the subspace projector also dependsonly on the number of

sensorsm, which is fixed in this experiment. Forn < 9, the decorrelation

CMA detector has the third lowest complexity, while forn > 12, it has the

second highest complexity. The vector CMA with GSC detector has the

largest computational complexity whenn ≥ 5. The reason that these two

detectors have the highest computational complexity is because each detector

requires an estimation of a system parameter.

Both computational complexity and performance of the detector are important cons

ations when selecting a detector. As mentioned earlier in Experiments 4-4 and 4-7, th

an inherent trade-off between performance and complexity. This trade-off must be

fully balanced when selecting a detector.

4.8 SUMMARY

We began this chapter by defining the vector CMA detector which is based on a un

multidimensional generalization of the constant-modulus algorithm. This detector inh

the most important property, the invariance to an arbitrary unitary rotation, from CMA
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uses a linear detector with the smallest possible dimensions to recover the trans

data. We have also included a detailed implementation of this blind detector.

One of the main results of this chapter is determination of the local minima of

vector CMA cost function. We have shown that, in the absence of noise, this cost fun

is minimized by only unitary matrices when the input alphabet is non-CM (see Theo

4-3), and by both unitary and non-unitary matrices when the input alphabet is CM

Theorem 4-4). The unitary matrices are indeed desirable because we have already

oped an algorithm that can estimate and resolve the unitary ambiguity. A consequen

Theorem 4-3 is that the vector CMA detector is compatible with both nearly-Gaussian

highly shaped input alphabets and therefore it can be used on capacity-achieving sy

We have also determined the local minima of the cost function in the presence of n

Using the noisy local minima, we were able to demonstrate that the vector CMA has

MMSE like performance in the presence of noise.

By exploiting the properties of the desirable minima, we were able to add an addit

term to the vector CMA cost function that penalized the undesirable local minima.

modified cost function was referred to as the vector CMA cost function with Gra

Schmidt constraint (GSC). We have shown that this cost function is minimized by

unitary matrices for all input alphabets, including CM input alphabets. The eliminatio

the undesirable local minima, however, is accompanied by an increase in complexity

tunately, the additional term in this cost function, which is based solely on second-o

statistics, assists in reducing the convergence time. We have also included a de

implementation for the vector CMA with GSC detector. This detector is certainly imp
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nnels

MA

rfor-
tant because, as will be shown in the next chapter, it extends quite naturally to cha

with memory.

Finally, we have shown, through computer simulations, that both the vector C

detector and the vector CMA with GSC detector compare favorably in terms of pe

mance and complexity to other blind multiuser detectors.
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PR O O F O F T H E O R E M 4 - 3

The noiseless vector CMA cost function can be written in terms of the channel i

vectorx and the overall transfer function matrixF as follows2:

Jv(F) = E (x*F*Fx)2 – 2Mv(x
*F*Fx) + Mv

2 . (4-61)

Sincex is a random vector sequence, (4-61) is completely parameterized by the ov

transfer function matrixF. The matrix F*F is Hermitian3 and positive-semidefinite4

matrix [106]; therefore, it has a unique eigendecomposition:F*F = VDV*, whereV is a

unitary matrix andD is a diagonal matrix with non-negative real entries.

Let u = V*x and letw denote ann × 1 vector whosei-th component is given by

wi = |ui|
2 = |vi

*x|2, (4-62)

2. The dependence on time has been suppressed to simplify the notation.

3. The matrixG is Hermitian matrix if and only ifG = G*.

4. An Hermitian matrixG is positive semi-definite if and only ifr*Gr ≥ 0 for all r ∈ n.CI
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wherevi is thei-th column ofV. Using these definitions, it is easy to show thatE[x*F*Fx]

= dTE[w], whered is ann × 1 vector composed of the diagonal elements ofD. The expec-

tation of thei-th term ofw is given by:

E[wi] = E[|vi
*x|2] = vi

*E[xx*]vi = m2|vi|
2 = m2, (4-63)

where the third equality is due to the assumption that all users are independent and

cally distributed. Hence,E[w] = m21n, where then × 1 vector1n = [1 … 1]T. We can sim-

plify (4-61) to:

Jv(V, d) = dTRwwd – 2m2MvdT1n + Mv
2, (4-64)

whereRww = E[wwT] is a function ofV.

We observe that (4-64) is completely parameterized byV andd. Since the variables

are independent, the local minima can be determined by first minimizing the cost fun

with respect tod and then with respect toV. The gradient ofJv with respect tod:

∇dJv = 2Rwwd – 2m2Mv1n. (4-65)

The optimald occurs when (4-65) is equal to the zero vector:

Rwwd = m2Mv1n. (4-66)

Adding then equations of (4-66) yields:
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E[ u |ui|
2di] = nm2Mv . (4-67)

SinceE[ u ] = E[ x ] = nm2 andMv = E[ x ] / E[ x ], we can rewrite (4-67) as:

E[ u |ui|
2di] = E[ u ]. (4-68)

Clearly,d = 1n satisfies (4-68). SinceJv(F) ≥ 0 and (4-64) is quadratic ind, d = 1n is a

global minimum for the vector CMA cost function. If the matrixRww is full rank, then the

global minimumd = 1n is also unique (independent of the choice ofV).

Lemma 4-1: The matrixRww can be written as a linear combination of three

matrices:

Rww = (m2)2 1n1n
T + (I – BTB) + (κ–1)BTB , (4-69)

where [B]ij = |vij|
2.

Proof: See Appendix 4.2.

Lemma 4-2: If κ > 1, then the matrixRww is a positive definite.

Proof: See Appendix 4.3.
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the
SinceRww is positive definite, it must also be full rank.Therefore,d = 1n is the only

solution to (4-66) when the input alphabet is non-CM. In fact, this solution is also

unique global minimum. It is seen that whend = 1n, F*F = I. Thus, the vector CMA cost

function is minimized if and only ifF is unitary.❏
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Recall that thei-th component ofw is given by:

wi = |vi
*x|2 = vli

*xl . (4-70)

Thus, the (i,j)-th component ofRww can be written as:

[Rww]ij = E[wiwj
*], (4-71)

= E vli
*xl vpj

*xp , (4-72)

= vli
*vmivpj

*vqjE[xlxm
*xpxq

*]. (4-73)

We can use the following identity: E[xkxm*xpxq*] = (m2)2[δkmδpq+δkqδmp+(κ–2)δkmpq],

to simplify (4-73):

l 1=

n

∑
2

l 1=

n

∑
2

p 1=

n

∑
2

l 1=

n

∑
m 1=

n

∑
p 1=

n

∑
q 1=

n

∑
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[Rww]ij = (m2)2 |vli|
2 |vpj|

2 + vljvli
* vpivpj

*

+ (κ–2) |vli|
2|vlj|

2 , (4-74)

= (m2)2 1 + δij + (κ–2) |vli|
2|vlj|

2 , (4-75)

= (m2)2 [1n1n
T]ij + [I]ij + (κ–2)[BTB]ij , (4-76)

= (m2)2 [1n1n
T]ij + [I – BTB]ij + (κ–1)[BTB]ij , (4-77)

where we have defined [B]ij = |vij|
2.

Hence,Rww can be expressed in terms of its elemental component as follows:

Rww = (m2)2 1n1n
T + (I – BTB) + (κ–1)BTB , (4-78)

where [B]ij = |vij|
2. ❏

l 1=

n

∑
p 1=

n

∑
l 1=

n

∑
p 1=

n

∑

l 1=

n
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l 1=

n
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First, we show thatRww is a positive-semidefinite matrix. Recall from (4-69) thatRww

can be written in terms of its elemental components as follows:

Rww = (m2)2 1n1n
T + (I – BTB) + (κ–1)BTB , (4-79)

where [B]ij = |vij|
2. Clearly, the matrix1n1n

T is positive semidefinite because its eige

values are zero, with multiplicityn–1, and n. The matrix (κ–1)BTB is also positive

semidefinite becauser*BTBr = Br ≥ 0 for all r ∈ n and (κ–1) > 0 for a non-CM

input alphabets.

The matrix (I – BTB) is positive semidefinite ifr*(I – BTB)r = r – Br ≥ 0 for all

r ∈ n. Observe that:

Br = |vij|
2rj . (4-80)

Definepj = |vij|
2 and observe that pj = 1. We can view the sum pjrj as an

expectationE[R], whereR is a random variable over the set {rj} with probability mass
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function {pj}. From Jensen’s inequality [Cover & Thomas], the square of the mean ca

exceed the second moment:

|vij|
2rj = |E[R]|2 ≤ E[|R|2] = |vij|

2|rj|
2. (4-81)

Hence, (4-80) is upper-bounded by:

Br ≤ |vij|
2|rj|

2 = |rj|
2 |vij|

2 = |rj|
2 = r , (4-82)

where |vij|
2 = 1 because the columns ofV have unit length. This equation implie

that r – Br ≥ 0 for all r ∈ n and so (I – BTB) is a positive-semidefinite matrix.

Since the sum of positive-semidefinite matrices is positive semidefinite [106],Rww is a

positive-semidefinite matrix.

The matrixRww can be either singular or positive definite. If we assume this matrix

be singular, then there exists a nonzero vectorr such that:

r*Rwwr  = 0 ⇔ (m2)2r* 1n1n
T + (I – BTB) + (κ–1)BTB r = 0, (4-83)

⇔ (m2)2 |1n
Tr|2 + ( r – Br ) + (κ–1) Br  = 0, (4-84)

⇔ |1n
Tr|2 = 0 and r  = Br and Br  = 0, (4-85)
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where the third implication is due to the fact that each term in (4-84) is non-negative. F

(4-85), we see that the last two conditions imply thatr = 0, which is impossible since

we assumed thatr is nonzero. Therefore,Rww is never singular and thus, must be positiv

definite.❏
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For a CM input alphabet (κ = 1), (4-69) reduces to:

Rww = (m2)2 1n1n
T + (I – BTB) . (4-86)

In Appendix 4.3, we saw that1n1n
T and (I – BTB) are both positive-semidefinite

matrices; hence,Rww is also a positive-semidefinite matrix. The matrixRww can either be

singular or full rank, depending on the exact value ofV. If Rww is full rank, thend = 1n is

the only solution that satisfies (4-66). (It is independent of the choice ofV.) However, if

Rww is singular, then the solution to (4-66) depends upon the choice ofV. The rank of

Rww is summarized in the following lemma.

Lemma 4-3: If κ = 1, thenRww is singular if

V = PL PR, (4-87)

Q1

Q2

QP

…
0

0



189

k

where Qi is a ki × ki unitary matrix with ki ∈ { 1, …, n–1} satisfying

ki = n, and wherePL and PR are real permutation matrices; other-

wise,Rww is nonsingular.

Proof: See Appendix 4.5.

In Appendix 4.1, we showed thatd = 1n is a solution to (4-66) regardless of the ran

of Rww. If Rww is singular, then any vector in the nullspace of this matrix added tod = 1n

is also a solution. In Appendix 4.5, we show that the nullspace ofRww must have the

form:

r = PR
T , (4-88)

whereαi is a nonzero constant andki ∈ { 1, …, n–1} satisfying the relations ki =

n, and αiki = 0. Thus, whenRww is singular, the solution to (4-66) is given by:

d = 1n + PR
T . (4-89)

Observe that this vector satisfies the following property:

i 1=

P∑

α11k1

α21k2

αP1kP

…

i 1=

P∑

i 1=

P∑

α11k1

α21k2

αP1kP

…
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di = n, (4-90)

or equivalently,tr(D) = n.

In summary, whenRww is singular, the vector CMA cost function is minimized if an

only if F*F = VDV*, whereV is given by (4-87) and whereD is a non-negative diagona

matrix satisfyingtr(D) = n. By expanding the productF*F, it easy to show thatF*F = ,

where is a diagonal matrix, whose diagonal entries are a possibly reordered vers

the diagonal entries ofD. Hence, the vector CMA cost function is minimized if and only

F*F = , where  is a positive diagonal matrix satisfyingtr( ) = n.

In both cases, whetherRww is either singular or nonsingular, the vector CMA co

function is minimized whenF*F = D, whereD is a positive diagonal matrix satisfying

tr(D) = n. Therefore, the optimal overall transfer function matrix is given byF = UD1/2,

whereU is a unitary matrix andD is a positive diagonal matrix satisfyingtr(D) = n. ❏

i 1=

n

∑

D̃

D̃

D̃ D̃ D̃
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SinceRww is a positive-semidefinite matrix for a CM input alphabet, it can either

singular or nonsingular. The matrixRww is singular if and only if there exists a nonzer

vectorr ∈ n such that:

r*Rwwr = 0 ⇔ (m2)2r* 1n1n
T + (I – BTB) r = 0, (4-91)

⇔ (m2)2 |1n
Tr|2 + ( r – Br )  = 0, (4-92)

⇔ 1n
Tr = 0 and Br  = r . (4-93)

In Appendix 4.3, we showed that

Br  = |vij|
2rj ≤ |vij|

2|rj|
2 = r . (4-94)

Equality in (4-94) is achieved when the random variableR is no longer random; but is

deterministic. This random variable becomes deterministic when the components ofr are
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equal to a constant for all nonzero entries on thei-th row ofV. For example,R is determin-

istic whenr = α1n for some nonzero constantα. Unfortunately,r = α1n violates the first

condition of (4-93), and therefore this vector does not lie in the nullspace ofRww.

If V is a block-diagonal matrix, then the vectorr can be subdivided into disjoint sub

vectors corresponding to the nonzero blocks ofV. In this case, the random variableR is

deterministic if the components of each subvector are equal to some nonzero const

there are at least two subvectors, then we can choose the constant for each subve

such a way that1n
Tr = 0. SinceR is deterministic and the vectorr sums to zero, (4-93) is

satisfied and thereforeRww is singular.

With this information, we see thatRww is singular if and only if the matrixV has the

form:

V = PL PR, (4-95)

whereQi is a ki × ki unitary matrix withki ∈ { 1, …, n–1} satisfying ki = n and

where PL and PR are (M+N+1)n × (M+N+1)n and n × n real permutation matrices

respectively. The vectorr that lies in the nullspace ofRww has the form:

r = PR
T , (4-96)

Q1

Q2

QP

…
0

0

i 1=

P∑

α11k1

α21k2

αP1kP
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whereαi is a nonzero constant satisfying the constraint that αiki = 0.

In summary,Rww is singular if and only ifV is given by (4-95).❏

i 1=

P∑
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The noisy vector CMA cost function can be expressed in terms of then × 1 channel

input vectorx, then × 1 noise vectorn, then × n overall transfer function matrixF, and

then × m linear detectorC as follows:

Jv = E (x*F*Fx)2 + (n*C*Cn)2 + 2(x*F*Fx)(n*C*Cn) + 2(x*F*Cnn*C*Fx)

– 2MvE x*F*Fx + n*C*Cn  + Mv
2. (4-97)

Recall from (4-24) that the overall transfer function matrixF is related to the linear

detectorC by the following relationship:F = CH, whereH is them × n channel matrix.

Both the channel matrix and the linear detector can be expressed in terms of a unique

cated singular-value decomposition:H = UΣQ* andC = QΛW*, whereU andW arem × n

truncated unitary matrices,Q is ann × n unitary matrix, andΣ andΛ aren × n real non-

negative diagonal matrices. Using these definitions, we find thatF*F = QΣGΣQ* and that

C*C = UGU* , where then × n matrixG = U*WΛW*U.

Let s = ΣQ*x andw = U*n. Using these definitions, we can rewrite (4-97) as:
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ta-
Jv = E (s*Gs)2 + (w*Gw)2 + 2(s*Gs)(w*Gw) + 2(s*Gww*Gs)

– 2MvE s*Gs + w*Gw  + Mv
2. (4-98)

This equation is seen to be completely parameterized by the matrixG. By unwrapping the

matrix G into a column vectorg = U(G), expanding the products, and taking the expec

tion, we find that (4-98) reduces to:

Jv = g* (m2)2U(Σ2)U(Σ2)T + (m2)2  + (m2)2(κ–2)W*W + σ4U(In)U(In)T + σ4I

+ 2m2σ2U(Σ2)U(In)T + 2m2σ2 g – 2Mvg* m2U(Σ2) + σ2U(In)  + Mv
2, (4-99)

where

 = and  = . (4-100)

Then × n2 matrixW is defined as follows5:

W = [σ1
2q1

*⊗q1, …, σ1σnq1
*⊗qn, …, σ1σnqn

*⊗q1, …, σn
2qn

*⊗qn], (4-101)

5. For this particular equation, ‘*’ represents a complex conjugate.

Σσ
2

n2

ΣB
2

Σσ
2

σ1
2Σ2

σ2
2Σ2

σn
2Σ2

…

0

0

ΣB
2

Σ2

Σ2

Σ2

…

0

0
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zero
whereσi is thei-th diagonal element ofΣ, qi is thei-th column ofQ, and ‘⊗’ represents

the Hadamard product (component-by-component product) [HJ]. The derivation of (4

can be found in Appendix 4.7. As before, this cost function is completely paramete

by the vectorg.

The local minima of the noisy vector CMA cost function can be found by taking

gradient of (4-99) with respect tog:

∇gJv = 2(m2)2U(Σ2)U(Σ2)T + 2(m2)2  + 2(m2)2(κ–2)W*W + 2σ4U(In)U(In)T

+ 2σ4I  + 2m2σ2U(Σ2)U(In)T + 2m2σ2U(In)U(Σ2)T + 4m2σ2 g

– 2Mv m2U(Σ2) + σ2U(In) . (4-102)

The inflection points of the cost function occur when the gradient is equal to the

vector; or equivalently when,

g = Mv (m2)2U(Σ2)U(Σ2)T + (m2)2  + (m2)2(κ–2)W*W + σ4U(In)U(In)T + σ4I

+ m2σ2U(Σ2)U(In)T + m2σ2U(In)U(Σ2)T + 2m2σ2 m2U(Σ2) + σ2U(In) .(4-103)

If we map the column vectorg back onto the matrixG, we find that the noisy vector CMA

cost function is minimized if and only ifF*F = QΣU–1(g)ΣQ* , whereg is defined by (4-

100), (4-101), and (4-103).

Σσ
2

n2 ΣB
2

Σσ
2

n2

ΣB
2

1–
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Recall from Appendix 4.1 thatF*F has a unique eigendecomposition:F*F = VDV*,

whereV is ann × n unitary matrix andD is ann × n non-negative real diagonal matrix

Relating the two forms ofF*F, we find that

VDV*= QΣU–1(g)ΣQ* . (4-104)

The overall transfer function matrix that minimizes the noisy vector CMA cost funct

can be found by taking the square-root of the eigendecomposition:F = UD1/2V*, whereU

is an arbitraryn × n unitary matrix. The corresponding linear detector that minimizes

noisy vector CMA cost function is given byC = FH†, whereH† = (H*H)–1H*. ❏
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The noisy vector CMA cost function is written as follows (see (4-98)):

Jv = E (s*Gs)2 + (w*Gw)2 + 2(s*Gs)(w*Gw) + 2(s*Gww*Gs)

– 2MvE s*Gs + w*Gw  + Mv
2, (4-105)

wheres = ΣQ*x, w = U*n, U is anm × n truncated unitary matrix,Q is ann × n unitary

matrix, andΣ is ann × n non-negative real diagonal matrix. The first term of (4-105) c

be expanded as follows:

E (s*Gs)2  = gijglpE[si
*sjsl

*sp], (4-106)

where

E[si
*sjsl

*sp] = σiσjσlσp qaiqbj
*qclqdp

*E[xa
*xbxc

*xd]. (4-107)

i 1=

n

∑
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n

∑
l 1=

n
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n
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n
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n
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n
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Using the fact thatE[xa
*xbxc

*xd] = (m2)2[δabδcd + δadδbc + (κ–2)δabcd], we simplify (4-

107) as follows:

E[si
*sjsl

*sp]= (m2)2σiσjσlσp qaiqaj
* qclqcp

* + qaiqap
* qclqcj

*

+ (κ–2) qaiqaj
*qalqap

* . (4-108)

=(m2)2 σi
2σl

2δijδlp+σi
2σl

2δipδjl+σiσjσlσp(κ–2) qaiqaj
*qalqap

* .(4-109)

Substituting (4-109) into (4-106), we obtain:

E (s*Gs)2 = (m2)2 σi
2σl

2giigjj + σi
2σl

2|gij|
2

+ (κ–2) gijglpσiσjσlσpqaiqaj
*qalqap

* . (4-110)

This equation can be expressed in terms of the column vectorg = U(G) as follows:

E (s*Gs)2 = (m2)2g* U(Σ2)U(Σ2)T +  + (κ–2)W*W g, (4-111)

where
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and then × n2 matrixW is defined as follows6:

W = [σ1
2q1

*⊗q1, …, σ1σnq1
*⊗qn, …, σ1σnqn

*⊗q1, …, σn
2qn

*⊗qn], (4-113)

whereσi is thei-th diagonal element ofΣ, qi is thei-th column ofQ, and ‘⊗’ represents

the Hadamard product (component-by-component product) [106].

Expanding the second term of (4-105), we find that:

E (w*Gw)2  = gijglpE[wi
*wjwl

*wp]. (4-114)

We have assumed thatn is a zero-mean white Gaussian noise vector with power spec

densityσ2I. Therefore,w is also a zero-mean white Gaussian noise vector with pow

spectral densityσ2I. Using this information, we obtainE[wa
*wbwc

*wd] = σ4δabδcd +

σ4δadδbc. Hence, (4-114) can be simplified to:

E (w*Gw)2  = σ4 giigjj + σ4 |gij|
2. (4-115)

6. Again, ‘*’ represents a complex conjugate.
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We express this equation in terms of the column vectorg = U(G):

E (w*Gw)2  = σ4g* U(In)U(In)T + I g. (4-116)

The third term of (4-105) can be expanded as follows:

E (s*Gs)(w*Gw)  = gijE[si
*sj] glpE[wl

*wp] , (4-117)

where

E[si
*sj] = σiσj qaiqbj

*E[xa
*xb] = m2σiσj qaiqaj

* = m2σi
2δij. (4-118)

Sincew is a zero-mean Gaussian noise vector with power spectral densityσ2I, E[wi
*wj] =

σ2. Hence, (4-117) reduces to:

E (s*Gs)(w*Gw)  = m2 σigii σ2gll . (4-119)

We express this equation also in terms of the column vectorg = U(G):

E (s*Gs)(w*Gw)  = g* m2σ2U(Σ2)U(In)T g. (4-120)

n2
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Expanding the fourth term of (4-105), we obtain:

E s*Gww*Gs  = gijglp
*E[si

*sl]E[wjwp
*]. (4-121)

From (4-118), we see thatE[si
*sl] = m2σi

2δil. Using the fact thatw is a zero-mean Gaus-

sian noise vector with power spectral densityσ2I, we find thatE[wjwp
*] = σ2. Therefore,

(4-121) reduces to:

E s*Gww*Gs  = m2σ2 σi
2|gij|

2. (4-122)

We express this equation also in terms of the column vectorg = U(G):

E s*Gww*Gs  = m2σ2g* g, (4-123)

where

 = . (4-124)

Finally, the last two terms of (4-105) can be expanded as follows:
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9).
E s*Gs  = gijE[si
*sj] = m2 σi

2gij = m2g*U(Σ2), (4-125)

E w*Gw  = gijE[wi
*wj] = σ2 gij = σ2g*U(In). (4-126)

Substituting each of the expanded terms back into the cost function, we arrive at (4-9❏
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The vector CMA cost function with Gram-Schmidt constraint can be written in ter

of the channel input vectorx and the overall transfer function matrixF as follows7:

JGS(F) = E x*F*Fx 2 – 2Mv x*F*Fx  + Mv
2  + (m2)2 FF* – I . (4-127)

Sincex is random vector sequence, (4-127) is completely parameterized by the ov

transfer function matrixF. Both F*F andFF* are positive semi-definite (PSD)8 and Her-

mitian9 matrices; therefore, both matrices have a unique eigendecomposition:F*F =

VDV* andFF* = UDU*, whereV andU are unitary matrices andD is a diagonal matrix

with non-negative real entries.

In Appendix 4.1, we showed that the first term in (4-127) can be expressed as fo

Jv(V, d) = dTRwwd – 2m2MvdT1n + Mv
2, (4-128)

7. The dependence on time has been suppressed to simplify the notation.

8. A matrixG is positive semi-definite if and only ifr*Gr ≥ 0 for all complex vectorsr.

9. The matrixG is Hermitian matrix if and only ifG = G*.


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whered is ann × 1 vector composed of the diagonal elements ofD and whereRww =

E[wwT]. Thei-th component of then × 1 vectorw is given by:

wi = |vi
*x|2, (4-129)

wherevi is thei-th column ofV.

We can express the second term in (4-127) in a similar form. The second term c

expanded as follows:

(m2)2 FF* – I  = (m2)2 UDU* – I  = (m2)2tr D – I , (4-130)

where the second equality is a result of the fact that the Frobenius norm is invarian

unitary transformation. We can express (4-130) in terms of the vectord as follows:

(m2)2 FF* – I  = (m2)2(dTd – 2dT1n + n). (4-131)

Therefore, the vector CMA cost function with GSC can be simplified to:

JGS(V, d) = dT Rww + (m2)2I d – 2 m2Mv + (m2)2 dT1n + Mv
2 + (m2)2n . (4-132)

We see that (4-132) is completely parameterized byV andd. Since the variablesV and

d are independent, the local minima can be determined by first minimizing the cost f

tion with respect tod and then with respect toV. The gradient ofJGS with respect tod is

given by:

F
2

F
2

F
2

F
2
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

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put
∇d JGS = 2 Rww + (m2)2I d – 2 m2Mv + (m2)2 1n. (4-133)

The optimald occurs when (4-133) is equal to the zero vector, or equivalently whend sat-

isfies the following equation:

Rww + (m2)2I d = m2Mv + (m2)2 1n. (4-134)

In Appendix 4.1, we showed thatRww1n = m2Mv1n. Using this relationship, it easy to

show thatd = 1n satisfies (4-134). SinceJGS(F) ≥ 0 and (4-132) is quadratic ind, d = 1n

is a global minimum for the vector CMA cost function with GSC. If (Rww + (m2)2I) is a

full rank matrix, thend = 1n is also a unique global minimum (independent ofV).

We know that if a matrix is positive definite, then it also full rank. In Appendix 4.1, w

showed thatRww is positive definite for non-CM input alphabets (κ > 1), and in Appendix

4.4, we showed thatRww is positive semi-definite for CM input alphabets (κ = 1). In either

case, the matrix (Rww + (m2)2I) is positive definite because(m2)2I is positive definite and

the sum of a positive definite matrix with either a positive definite or positive semi-defi

matrix is always positive definite matrix [106]. Hence, the matrix (Rww + (m2)2I) is full

rank, and therefore,d = 1n is the only solution to (4-134). In fact, this solution is also th

unique global minimum for any input alphabet. We observe that whend = 1n, F*F = I and

FF* = I and therefore, the vector CMA cost function with GSC is minimized for any in

alphabet if and only ifF is unitary.❏
























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D E R I VA T I O N O F ( 4 - 5 5 )

Recall that the output of the linear detector is given byyk = Fxk + Cnk. Then × n uni-

tary matrixQ that minimizes the total (and individual) mean-squared error can be fo

by minimizing:

MSE = E[ Q*(Fxk + Cnk) – xk ], (4-135)

with respect toQ. Expanding (4-135) and taking the expectation, we find it reduces to

MSE = E[ (Q*F – I)xk + Q*Cnk ], (4-136)

= m2 Q*F – I  + Q*C , (4-137)

= m2 Q*F – I  + C , (4-138)

where the third equality is due to the fact that the Frobenius norm is invariant to a un

matrix. We observe that last term in (4-138) is independent of the unitary matrixQ.

Hence, minimizing the MSE is equivalent to minimizingQ*F – I with respect toQ.

2

2

F
2

F
2

F
2

F
2

F
2
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This minimization problem is a classical problem in factor analysis [106]. The uni

matrix that minimizes the MSE is given byQ = UV*, where then × n unitary matricesU

andV are specified by the singular-value decompositionF = UDV*. ❏
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D E R I VA T I O N O F ( 4 - 5 6 )

Recall that the output of the linear detector is given byyk = Fxk + Cnk. The n × n

diagonal unitary matrixQd that minimizes the total (and individual) mean-squared er

can be found by minimizing:

MSE = E[ Qd
*(Fxk + Cnk) – PFxk ], (4-139)

wherePF is a complex permutation matrix that accounts for the inherent ambiguities a

ciated with a blind detection problem, with respect toQd. Expanding (4-139) and taking

the expectation, we find it reduces to:

MSE = E[ (Qd
*F – PF)xk + Qd

*Cnk ], (4-140)

= m2 Qd
*F – PF  + Qd

*C , (4-141)

= m2 Qd
*F – PF  + C , (4-142)

2

2

F
2

F
2

F
2

F
2
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where the third equality is due to the fact that the Frobenius norm is invariant to a un

matrix. We observe that last term in (4-142) is independent of the unitary matrixQd.

Hence, minimizing the MSE is equivalent to minimizingQd
*F – PF with respect to

Qd.

Expanding the first term in (4-142), we find that it reduces to:

MSE = Qd
*F – PF , (4-143)

=  – Qd , (4-144)

= |fii|
2 + 1 – 2|fii|cos(φii – θi) + |fij|

2, (4-145)

where we have defined =FPF
*, [ ] ij = |fij|exp(jφij), and [Qd]ij = exp(jθi). Clearly, (4-

145) is minimized if and only ifφii = θi. Hence, the diagonal unitary matrixQd that mini-

mizes the total MSE is given by:

[Qd]ii = exp(j∠[FPF
*]ii), (4-146)

wherePF removes both the ambiguity in assigning labels to each user and the ambi

inherent in all QAM constellation from the overall transfer function matrixF. ❏

F
2

F
2

F̃ F
2

i 1=

n

∑
i j≠
∑

F̃ F̃
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SP A T I O - T E M P O R A L

V E C T O R C M A

The original constant-modulus algorithm (CMA) cost function was designed

blindly mitigate intersymbol interference (ISI) for channels with memory [85]. God

showed that, in the absence of noise, the global minimum of the cost function corresp

to the case of zero ISI [85]. Later, Foschini demonstrated that this minimum is the

minima of the cost function when the equalizer has infinite length [86]. These result

valid for both minimum-phase and non-minimum phase channels. The CMA cost fun

can thus mitigate ISI for all types of channels. This result is a consequence of the fac

the cost function uses both second-order statistics and higher-order statistics

inverting a channel.

In Chapter 2, we showed that almost all square channels with memory are non

imum phase and that almost all tall channels with memory are minimum-phase. One

reasons that we proposed a generalization of the CMA to vector-valued signals is be

of its ability to mitigate interference on both minimum-phase and non-minimum ph

channels. In this chapter, the vector CMA-based algorithms and results from the pre

chapter are extended to channels with memory. We show that the resulting cost fun
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can mitigate intersymbol interference and multiuser interference on both square an

channels with memory. We also show that the resulting algorithms fit in with the gen

whiten-rotate structure described in Chapter 1.

In Section 5.1, we introduce the channel model and assumptions that will be

throughout the remainder of this chapter. In Section 5.2, we show that tall channels

memory have some astonishing properties: they are almost always minimum-phas

more importantly, they can always be inverted by an FIR linear detector. In Section

we introduce the vector constant-modulus algorithm cost function and we derive its c

sponding stochastic gradient-descent algorithm. In Section 5.4, we determine the

minima of the cost function in the absence of noise. We show that for certain input a

bets, the cost function is minimized only by desirable local minima, while for other in

alphabets, it is minimized by both desirable and undesirable local minima. In Section

we propose a modification to the vector CMA cost function, which can eliminate the u

sirable local minima for all input alphabets. We also determine the local minima of

modified vector CMA cost function in the absence of noise, and derive the correspon

stochastic gradient-descent algorithm. In Section 5.6, we quantify the performance o

algorithm in the presence of noise. Finally, in Section 5.7, we present several simul

results which demonstrate the effectiveness, in terms of speed of convergence and

plexity, of the proposed algorithm.

5.1 CHANNEL M ODEL AND ASSUMPTIONS

Consider the multiuser channel model depicted in Fig. 5-1:
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rk = Hixk–i + nk, (5-1)

whereH(z) = H0 + H1z–1 + … + HMz–M is anm × n causal and finite-impulse respons

(FIR) channel transfer function matrix with memoryM. This type of channel arises in a

wide variety of real-world applications, such as anm-sensor,n-user uniform linear array

with multipath and ann-user asynchronous CDMA system. The transmitted vectorxk is

an n × 1 vector consisting of the symbols sent by then independent users. The receive

vectorrk is anm × 1 vector composed of the receiver observations, whilenk represents an

m × 1 noise vector with power spectral densityE[nknk
*] = σ2I, with σ2 > 0.

We make the following assumptions: first, the channelH(z) has full-column rank on

the unit circle (|z| = 1), which implies that the channel input vectorxk can be recovered

using a linear detector (see Section 2.1.2). Second, the signal and noise compone

independent and have zero mean. Third, the components of the channel input vectorxk are

stationary, independent, and uniformly selected from a finite input-alphabet.

Fig. 5-1. A block diagram of an m × n noisy channel with memory.

H(z)xk

nk

rk

m × n
Channel

n × 1 m × 1

i 0=

M

∑
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As in Section 4.1, we can use the kurtosis to subdivide the set of all input alpha

into three distinct and disjoint subsets. The following three definitions summarize the

ferent subsets.

Definition 5-1. If κ < 2, then the input alphabet is said to besub-Gaussian.

Almost all well-known input alphabets, such phase-shift keying (PSK) and quadra

amplitude modulation (QAM) constellations, are sub-Gaussian (see Section 4.1).

reason these input alphabets are called sub-Gaussian is because their kurtosis is le

the kurtosis for a complex Gaussian input alphabet.

Definition 5-2. An input alphabet is said to bemeso-Gaussian if κ = 2.

Clearly, a complex Gaussian input alphabet is meso-Gaussian. However, not all m

Gaussian input alphabets have a complex Gaussian distribution. For example, th

lowing input alphabet does not have a complex Gaussian distribution:

 =  , (5-2)

but it is a meso-Gaussian input alphabet. Finally, the last subset is defined as follow

Definition 5-3. If κ > 2, then the input alphabet is said to besuper-Gaussian.

xk
i( )

{±3 ± 3j} each with probabilityp(xk) =

{±1 ± j} each with probabilityp(xk) =





 13 7–

6
--------------------

3 7+
64

-----------------
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A super-Gaussian input alphabet can be created by heavily shaping the inner symb

an input alphabet. For example, the following input alphabet:

 = , (5-3)

has a kurtosis ofκ = 2.5148.

We focus our attention primarily on the sub-Gaussian input alphabets, since the

used in most real-world applications.

5.2 TALL CHANNELS

In this chapter, we consider both square (m = n) and tall (m > n) channels with

memory in (5-1). Tall channels have some surprising properties: they are almost a

minimum-phase and they can be inverted by an finite-impulse response (FIR) l

detector. However, these results do not apply to square channels.

In the following discussion, we show that a tall channel with memoryM is inverted by

an FIR linear detector. A zero-forcing linear detector can be defined as follows:

Definition 5-4. A zero-forcing linear detector is anyn × m stable LTI filter

C(z) satisfying C(z)H(z) = D(z), whereD(z) is an n × n diagonal matrix

whosei-th diagonal element has the form  andDi is an arbitrary integer.

Consider anm × n tall channel with memoryM: H(z) = H0 + H1z–1 + … + HMz–M, and

an n × m linear detector with memoryN: C(z) = C0 + C1z–1 + … + CNz–N. We can

xk
i( )

{±3 ± 3j} each with probabilityp(xk) = 0.05

{±1 ± j} each with probabilityp(xk) = 0.20







z
Di–
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express the relationshipC(z)H(z) = D(z) = D0 + D1z–1 + … + DM+Nz–(M+N) in block-

matrix notation as:

[C0 C1 … CN]H = [D0 D1 … DM+N], (5-4)

whereH is the (N+1)m × (M+N+1)n block-Toeplitz matrix:

H = . (5-5)

A solution to (5-4) exists if there are at least as many unknowns as the number of e

tions. We observe that the linear detector coefficients {C0, C1, …, CN} represent

(N+1)mn unknowns, while each block column of (5-4) definesn2 equations; yielding a

total of (M+N+1)n2 equations. Hence, a solution (5-4) exists when (N+1)mn ≥

(M+N+1)n2, or equivalently when [39,53,54,113],

N ≥  – 1. (5-6)

In other words, a solution to (5-4) exists if the total number of taps in the linear dete

equals .

H0 H1 HM 0 0

0 H0 H1 HM 0 0

0 0 H0 H1 HM

…
…

…

…
…

…

… …

Mn
m n–
---------------

Mn
m n–
---------------
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Example 5-1. Consider an8 × 2 channel with memoryM = 2. There exists a

zero-forcing linear detectorC(z) with memoryN = = = 1

that inverts the channel.

If is an integer, thenH is a square matrix and so the zero-forcing line

detector satisfying (5-4) is unique and is given by

[C0 C1 … CN] = [D0 D1 … DM+N]H–1. (5-7)

On the other hand, if is not an integer, thenH is a tall matrix (it has more rows

than columns). For this case, the zero-forcing linear detector coefficients are not u

because any vector in the nullspace ofH* can be added to any row of (5-4) to yield anoth

linear detector.

A surprising by-product of the above discussion is that both the intersymbol inte

ence and the multiuser interference can often be mitigated with amemorylessdetector,

which is a linear detector consisting of a single tap. A memoryless detector is suffi

when  =1, or equivalently when

m ≥ (N+1)n. (5-8)

This result is due to Falconeret al. [113].

If we solve forn instead ofm in (5-8), we find that the number of users that can be l

early separated by a memoryless detector is given by [39,53,54,113]:

Mn
m n–
--------------- 4

8 2–
------------

Mn
m n–
---------------

Mn
m n–
---------------

Mn
m n–
---------------
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n ≤ . (5-9)

The number of users that can be separated is therefore a fraction of the number of se

If we allow memory in the linear detector and fix the value atN, then the number of users

that can be linearly separated is given by [53,113]:

n ≤ . (5-10)

As the memoryN of the linear detector increases and approaches infinity, the numbe

usersn that can be linearly separated approaches the number of sensorsm, which is the

dimension of the channel output.

5.3 VECTOR CMA

Since we have assumed that the channelH(z) has full-column rank on the unit circle

the transmitted vectorxk can be recovered by passing them × 1 received vectorrk through

ann × m adaptive linear detectorC(z), as illustrated in Fig. 5-2. We assume that the line

detector is causal and FIR with memoryN: C(z) = C0 + C1z–1 + … + CNz–N. This

detector, often referred to as a short linear detector, has fewer outputs than inputs. W

express the detector output vector as follows:

yk = Cirk–i. (5-11)

m
M 1+
---------------

N 1+( )m
M N 1+ +
---------------------------

i 0=

N

∑



219

s the

f-

.

It should be emphasized that the dimension of the detector output is the same a

dimension for the channel input.

Using block-matrix notation, (5-11) reduces to:

yk = CRk, (5-12)

whereC = [C0 C1 … CN] is n × (N+1)m matrix composed of the multiuser detector coe

ficients andRk
T = [rk

T rk–1
T … rk–N

T] is an (N+1)m × 1 stacked-observation vector

Finally, we can relate the detector output vectoryk to the channel input vectorxk again

using the block-matrix notation:

yk = CHXk + CNk, (5-13)

whereXk
T = [xk

T xk–1
T … xk–(M+N)

T] is an (M+N+1)n × 1 stacked-input vector,Nk
T =

[nk
T nk–1

T … nk–N
T] is an (N+1)m × 1 stacked-noise vector, andH is the (N+1)m ×

(M+N+1)n block-Toeplitz matrix of (5-5). Then × n overall transfer function matrixF(z)

Fig. 5-2. A block diagram of an m × n channel with followed by an n × m linear
detector with memory.

H(z) C(z)xk

nk

rk yk

m × n n × m
Channel Linear Detector

n × 1 n × 1
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= C(z)H(z) (or equivalentlyF = CH) represents the cascade of the channel matrix and

linear detector.

As in Chapter 4, we propose to adapt the linear detectorC(z) using a multidimensional

generalization of the constant modulus-algorithm. The reason for choosing CMA is th

is adaptive and has low complexity. Another important advantage of CMA is that it

mitigate intersymbol interference on both minimum and non-minimum phase channe

implicitly using higher-order statistics.

5.3.1 Cost Function

The cost function for vector CMA is defined in (4-8). For convenience, the equatio

reproduced below

Jv = E yk  – Mv , (5-14)

whereyk = CRk. Following the approach presented in Section 4.2, we can determine

value for the constantMv. The noiseless vector CMA cost function can be expressed

terms of the stacked-received vectorRk and the linear detectorC as:

Jv = E tr[(CRR*C*)2] – 2Mvtr(CRR*C*) + Mv
2 . (5-15)

We observe that (5-15) is a generalization of (4-9) to channels with memory. The de

dence on time has been suppressed in order to simplify the notation. The complex gr

of (5-15) with respect toC is given by:


  

2

 2
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∇C Jv = 4E( y yX*)H* – 4MvE(yX*)H*. (5-16)

Substitutingy = x into (5-16) and setting the gradient equal to the zero matrix, we find

Mv must satisfy:

E( x xX*) – MvE(xX*) H* = 0. (5-17)

Since the block-Toeplitz channel matrixH has full rank, the only solution to (5-17) occur

when:

E( x xX*) = MvE(xX*). (5-18)

Assuming that all users are independent in both space and time, (5-18) reduces to:

E( x xx*) = MvE(xx*), (5-19)

which is identical to (4-12).

We now restate the theorem and corollary given in Chapter 4 that describes the c

tions for which anMv can exist and its corresponding value.

Theorem 5-1. There exists anMv which satisfies (5-19) if and only if

(κi – 1) = K, ∀ i (5-20)

2

2

2

2

m2
i( )
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whereK is some positive constant.

Corollary 5-1. If (5-20) holds, thenMv is given by

Mv = . (5-21)

As in Section 4.2, we will assume that all users are independent and identically dis

uted,i.e., m2 = , m4 = , andκ = κi ∀ i, for the remainder of this chapter. Not

thatMv is related to the kurtosisκ by the following relationship:

Mv = m2 (n + κ – 1). (5-22)

This assumption will simplify the analysis of the cost function later in this chapter.

5.3.2 Stochastic Algorithm

The main focus of this research is to design an adaptive linear detector. A

Section 4.6.1, we adjust the detector tap weights according to the classical ste

descent algorithm:

Ck+1 = Ck – ∇CJv, (5-23)

where∇C is the complex gradient of the cost function with respect to the detector

weights and whereµ is the step size. The complex gradient of (5-14) with respect toC is

given by:

E x 4[ ]

E x 2[ ]
---------------------

m2
i( ) m4

i( )

µ
4
---
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∇C Jv = 4E[ekRk
*], (5-24)

where the “error signal”ek is the same as that of Section 4.6.1, namely,

ek = yk( yk  – Mv). (5-25)

Substituting4ekRk
* as a stochastic approximation of the gradient in the steep

descent algorithm, we arrive at the following update equation for the linear detector:

Ck+1 = Ck – µekRk
*. (5-26)

We refer to this algorithm as the vector CMA. Observe that this algorithm reduces to

of Section 4.6.1 for memoryless channels and it reduces to the familiar single-user

whenn = 1.

In summary, the vector CMA, for channels with memory, is defined by (5-25), (5-2

andMv = E[ xk ] / E[ xk ].

5.4 LOCAL M INIMA IN THE ABSENCE OF NOISE

In this section, we determine the local minima for the vector CMA cost function in

absence of noise for a channel with memory. As shown in Section 4.3, this cost funct

minimized by any unitary matrix,F(z) = U. Hence, there exists an infinite number of loc

minima. One question remains: are there any other local minima of the vector CMA

function? The answer to this question depends on the subset in which the input alp

 
2

 
4

 
2
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lies. The following four theorems summarize the local minima of the vector CMA c

function for all input alphabets.

Theorem 5-2. If the input alphabet is sub-Gaussian and non-CM (1 < κ < 2)

and the linear detector has infinite length, then the vector CMA cost function

is minimized if and only if

F(z) = UP(z), (5-27)

whereU is an arbitrary unitary matrix andP(z) is ann × n matrix which has

only one nonzero entry of the formz–D whereD is an arbitrary delay value,

per row. If there is more than one nonzero entry in any column, then the delay

values in that column must all be different.

Proof: See Appendix 5.1.

Theorem 5-3. If the input alphabet is CM (κ = 1) and the linear detector has

infinite length, then the vector CMA cost function is minimized if and only if

F(z) = UD1/2P(z), (5-28)

where U is an arbitrary unitary matrix,D is a non-negative real diagonal

matrix satisfyingtr(D) = n, andP(z) is ann × n matrix which has only one

nonzero entry of the formz–D whereD is an arbitrary delay value, per row. If

there is more than one nonzero entry in any column, then the delay values in

that column must all be different.
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Proof: See Appendix 5.3.

Some examples of validP(z) are given below:

P(z) = P1, P2, P3, (5-29)

whereDi is any integer such thatD1 ≠ D2 ≠ D3, andPi any real permutation matrix. An

example of a matrix that does not satisfy the conditions forP(z) stated in either Theorem

5-2 or Theorem 5-3 is given by .

From Theorem 5-2 and Theorem 5-3, we observe that the vector CMA cost fun

for a sub-Gaussian input alphabet has both desirable and undesirable local minima.

Property 5-1. For a sub-Gaussian input alphabet, the vector CMA cost func-

tion is minimized by both desirable and undesirable local minima.

The desirable minima occur when the detector output vector is related to the channel

vector by an unknown unitary ambiguity and by an unknown delay for each users.

Definition 5-5. A desirable localminima of the vector CMA cost function

has the form:F(z) = UD(z), whereU is an arbitrary unitary matrix andD(z) is

a diagonal matrix whose diagonal entries are of the formz–D, whereD is an

arbitrary delay value.

z
D1–

0

0 z
D2–

z
D1–

0

z
D2–

0

z
D1–

0 0

0 z
D2–

0

0 z
D3–

0

z 1– 0

z 1– 0
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If F(z) = UD(z), then detector output vector takes on the form:

yk = U[ , , …, ]T, (5-30)

whereDi is an arbitrary integer value. In the general, the delay values {Di} are unknown.

Unfortunately, delay in the detector output vector is an inherent problem of blind de

tion, but fortunately, the delay does not interfere with the reconstruction of the orig

input sequence {xk}.

When the vector CMA cost function is minimized by a desirable local minimum,

autocorrelation of the detector output vectoryk is given by:

E[ykyk–l
*] = δlI, ∀ l, (5-31)

whereδl is the Kronecker delta function. The corresponding linear detector that resu

this desirable local minimum is referred to as awhitener.

Definition 5-6. An n × m linear detectorC(z) is said to be a whitener if the

autocorrelation ofyk is given by:E[ykyk–l
*] = δlI, ∀ l.

For a desirable local minimum, the transmitted data can be recovered by appending a

unitary estimator to the output of the linear detector. Possible solutions to this pro

include the MPLL (see Chapter 3), JADE, and EASI algorithms.

xk D1–
1( ) xk D2–

2( ) xk Dn–
n( )
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From Theorem 5-2 and Theorem 5-3, we also see that the vector CMA cost fun

for a sub-Gaussian input alphabet has many undesirable local minima. For exampl

following matrix

F(z) = , (5-32)

is an undesirable local minimum for both non-CM and CM input alphabets, becaus

information from the second user is completely lost; the first two detector outputs loc

to the first user, while the third detector output locks on to the third user. Another exa

of an undesirable local minimum is given by the matrix

F(z) = . (5-33)

We see that thisF(z) only minimizes the vector CMA cost function when the inpu

alphabet is CM. Even though it recovers information from both users, this local minim

is undesirable because the gain for each user is incorrect, which in turn may lead

incorrect decision at the decision device.

Definition 5-7. A matrix, where information from one or more of the users is

lost or where the gain for each user is incorrect, is anundesirable minimumof

the vector CMA cost function.

z 2– 0 0

z 5– 0 0

0 0 z2

3
2
---z 1– 0

0 1
2
---z3
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In Section 4.3, we showed that the local minima for a memoryless channel and a

CM input alphabet are always desirable. However, when we extend this result to cha

with memory, we observe that the cost function is minimized by both desirable and u

sirable local minima. The reason that the vector CMA cost function is not just minim

by desirable minima is because the cost function is memoryless; (5-14) is only a fun

of the detector output at timek. The cost function can prevent the detector outputs fro

being correlated if all the detector outputs have the same delay, but if the delays ar

ferent, then it is possible for the detector to recover the same user more than once a

as the delays are different, because to the detector, the same user with different

appears to be uncorrelated users. For example, this latter case is described by

where the detector recovers the first user twice, but with different delays. This result

gests that if we add memory to the cost function, then it might be possible to eliminat

undesirable local minima. We will explore this possibility in the next section.

There occur even more undesirable local minima for a CM input alphabet becau

the implicit reliance of the vector CMA cost function on both second-order and fou

order statistics to invert a channel. Unfortunately, a CM input alphabet is comple

described by its second-order statistics, and therefore, the cost function does no

enough information to correctly invert the channel.

Before we can state the local minima results for a meso-Gaussian input alphabe

need the following definition:

Definition 5-8. A multiuser filter F(z) = F0 + F1z–1 + … + FKz–K is an

energy-preserving filter if and only if
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|[Fk]ij|
2 = 1, (5-34)

where [Fk]ij is the (i, j)-th component of thek-th tap ofF(z).

Theorem 5-4. If the input alphabet is meso-Gaussian (κ = 2) and the linear

detector has infinite length, then the vector CMA cost function is minimized if

and only ifF(z) is an energy-preserving filter.

Proof: See Appendix 5.5.

If the transfer function matrixF(z) is viewed in terms of a block-matrix notationF, then

the constraint specified by (5-34) is equivalent to the condition that each row ofF has unit

length; in other words, the rows ofF must lie on an (M+N+1)n-dimensional unit hyper-

sphere. It is observed thatalmost allof the points on the unit hypersphere are undesira

local minima. Assuming that all points on the unit hypershpere are equally likely,

probability that the linear detector will converge to a desirable local minima is infini

imal. Hence, the vector CMA cost function is useless for a meso-Gaussian input alp

Property 5-2. The vector CMA cost function is useless for a meso-Gaussian

input alphabet.

As with a sub-Gaussian input alphabet, the local minima of the cost function are des

for a memoryless channel, but are both desirable and undesirable for a channe

memory.

j 1=

n

∑
k 0=

K

∑
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We have seen that the vector CMA cost function relies on both second-order

fourth-order statistics to invert a channel. Since second-order statistics comp

describe a meso-Gaussian input alphabet, the vector CMA cost function can only re

the amplitude of the input signal that is completely described by second-order stati

This results can also be seen by examining (5-34) more closely. If we assume that

the users are independent and identically distributed and there is no source corre

then (5-34) ensures that the amplitude of the detector output is the same as the am

of the channel input. The phase information of the input signal can never be res

unless more information is known.

Theorem 5-5. If the input alphabet is super-Gaussian (κ > 2) and the linear

detector has infinite length, then the vector CMA cost function is minimized if

and only ifF(z) has maximal multiuser and intersymbol interference.

Proof: See Appendix 5.6.

From this theorem, we observe that the local minima of the vector CMA cost func

for a super-Gaussian input alphabet results in maximal multiuser and intersymbol inte

ence. Therefore, the vector CMA cost function is useless for this input alphabet.

Property 5-3. The vector CMA cost function is useless for a super-Gaussian

input alphabet.

Unlike with a sub-Gaussian and a meso-Gaussian input alphabet, the vector CMA

function for a super-Gaussian input is minimized only by undesirable local minima f
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channel with memory. In contrast, we have shown in Section 4.3, that for a memor

channel, the vector CMA cost function for a super-Gaussian input alphabet is minim

only by desirable local minima.

We should emphasize that the results described by Theorem 5-2 through Theore

reduce to the familiar results for a single-user CAM cost function whenn = 1. Also, the

results obtained in this chapter are consistent with those of Chapter 4.

5.5 VECTOR CMA WITH GRAM -SCHMIDT CONSTRAINT

In the previous section, we showed that the vector CMA cost function only has d

able local minima for a sub-Gaussian input alphabet. Unfortunately, this cost functi

also minimized by undesirable local minima for this input alphabet. We also showed

this cost function is useless for meso-Gaussian and super-Gaussian input alphabets.

fore, in the remainder of this chapter, we will focus exclusively on sub-Gaussian i

alphabets.

5.5.1 Cost Function

The desirable local minima of the vector CMA cost function have the form:F(z) =

UD(z), whereU is an arbitrary unitary matrix andD(z) = diag( , …, ). The corre-

sponding detector output vectoryk from (5-30) is given by:

yk = U[ , , …, ]T, (5-35)

whereDi is an arbitrary integer value. We see that the autocorrelation of (5-35) is g

by:

z
D1–

z
Dn–

xk D1–
1( ) xk D2–

2( ) xk Dn–
n( )
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E[ykyk–l
*] = m2δlI, ∀ l. (5-36)

We should point out that the undesirable local minima do not satisfy (5-36). We can th

fore eliminate them by modifying the vector CMA cost function to penalize the soluti

for which E[ykyk–l
*] ≠ m2δlI, ∀ l. Since both the channel and the linear detector ha

finite memory, we only need to consider the autocorrelation for the range –(M+N) to

(M+N), becauseE[ykyk–l
*] = 0 for |l| > (M+N). The modified cost function is given by:

JGS = Jv + E[ykyk–l
*] – m2Iδl , (5-37)

where ⋅ is the Frobenius norm for matrices, andJv is the vector CMA cost function

described by (5-14). We refer to (5-37) as thevector CMA cost function with Gram-

Schmidt constraint(GSC). Observe that (5-37) is a generalization of (4-38) to chann

with memory. We should point out that this cost function penalizes cross-correlatio

both time and space.

5.5.2 Local Minima in the Absence of Noise

As in Section 4.5, the second term in the vector CMA cost function is minimized o

by the desirable local minima. The value of the cost function is larger when the tran

function matrix is equal to an undesirable local minima. Thus, the additional term in

cost function eliminates the undesirable local minima. The question remains: doe

additional term introduce any new local minima? Fortunately, the answer is no. The

l M N+( )–=

M N+

∑ F
2

F
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minima for the cost function described by (5-37) are summarized by Theorem P

given below:

Theorem 5-6. For all sub-Gaussian input alphabets (1 ≤ κ < 2), JGS is mini-

mized if and only ifF(z) = UD(z), whereU is an arbitrary unitary matrix and

D(z) is a diagonal matrix whose diagonal entries are of the formz–D, whereD

is an arbitrary delay value.

Proof: See Appendix 5.7.

WhenF(z) = UD(z), the detector output vector is related to the channel input vecto

an unknown unitary ambiguity and an unknown delay for each user; in other words,

yk = U[ , , …, ]T, (5-38)

whereDi is an arbitrary integer value. The corresponding linear detector is given byC(z) =

UD(z)H(z)–1. We see that the cost function inverts the entire channel. As with a z

forcing detector, this result can lead to noise enhancement if any of the zeros o

channel are near the unit circle.

Property 5-4. For all sub-Gaussian input alphabets, the vector CMA with

GSC can resolve a channel up to an unknown unitary ambiguity and an

unknown set of delays.

xk D1–
1( ) xk D2–

2( ) xk Dn–
n( )
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The transmitted vector can be recovered by appending a blind unitary estimator, that

tifies and eliminates the unitary ambiguity, to the linear detector. Possible solutions fo

blind unitary estimator include the MPLL (see Chapter 3), JADE, and EASI algorithms

general, the delay valuesDi are unknown, but they do not interfere with the reconstructi

of the original input vector sequence {xk}.

5.5.3 Stochastic Algorithm

Recall that the vector CMA cost function with Gram-Schmidt constraint is given

(5-37):

JGS = Jv + E[ykyk–l
*] – m2Iδl , (5-39)

whereyk = CRk. The cost function can be expressed in terms of the stacked-rece

vectorRk and the linear detectorC as follows:

JGS = Jv + tr (CΦR,lC
*CΦR,–lC

*) – m2δlC(ΦR,l+ΦR,–l)C
* + (m2)2δlI ,(5-40)

whereΦR,l = E[RkRk–l
*]. The complex gradient of (5-40) with respect toC is given by:

JGS = 4E[ekRk
*] + 4 E[ykyk–l

*]E[ykRk+l
*] – m2E[ykRk

*]. (5-41)

l M N+( )–=

M N+

∑ F
2

l M N+( )–=

M N+

∑

∇C
l M N+( )–=

M N+

∑
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Substituting a stochastic approximation of (5-41) in the classical steepest-descent

rithm, we arrive at the following update equation for the linear detector:

Ck+1 = Ck – µ ekRk
* + E[ykyk–l

*]ykRk+l
* – m2ykRk

* , (5-42)

whereµ is the step size. The first term in the square brackets of (5-42) is the orig

update term for the vector constant-modulus algorithm, while the remaining terms in

square brackets penalize any undesirable local minima.

We observe that (5-42) requires an estimate ofE[ykyk–l
*] for |l| ≤ M+N. Sinceyk is a

non-stationary vector random process, it is difficult to obtain an accurate estima

E[ykyk–l
*] for |l| ≤ M+N. By substitutingE[ykyk–l

*] = CkΦR,lCk
* into (5-42), we arrive

at an alternative update equation for the linear detector:

Ck+1 = Ck – µ ekRk
* + (CkΦR,lCk

*)ykRk+l
* – m2ykRk

* . (5-43)

An estimate ofΦR,l for |l| ≤ M+N is now required instead of an estimate ofE[ykyk–l
*]

for |l| ≤ M+N. Since we have assumed that the input vectorxk and the channelH(z) are

both stationary, it is easy to obtain an accurate estimate ofΦR,l for |l| ≤ M+N. In fact, the

estimates can obtained by using a simple running average:

R,l = RiRi–l
*. (5-44)





l M N+( )–=

M N+

∑ 







l M N+( )–=

M N+

∑ 



Φ̂ 1
k l–
-----------

i l 1+=

k

∑



236

tion,

n

-

fore,

, this
As k gets large, this sum approachesΦR,l. Since we can estimateΦR,l fairly accurately we

expect the update equation (5-43) to converge more quickly. In a practical implementa

R,l should be substituted forΦR,l in (5-43).

As stated earlier in Section 4.6,CkΦR,lCk
* can be estimated more accurately tha

E[ykyk–l
*]. Although determiningCk R,lCk

* results in an increase in computational com

plexity, this additional term is based solely on second-order statistics, and there

should converge quickly and require less symbols to invert the channel. Furthermore

complexity in (5-43) can be reduced by exploiting the redundancy inCΦR,l. The best way

to see this redundancy is to look at the following example:

Example 5-2. If the channelH(z) has memoryM = 1 and the linear detector

C(z) has memoryN = 2, then

CkΦR,l = ,(5-45)

whereΦj = E[rkrk–j
*] and Ck = [C0 C1 C2]. We see thatCkΦR,l is a left-

shifted version ofCkΦR,l–1 where a new term is inserted on the right. Because

of this structure, there is appreciable redundancy in (5-45). In fact, there are
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only five non-redundant terms, excluding the zero matrices. DefineA to be the

matrix that contains the non-redundant terms:

A = [C0Φ–1, C0Φ0 + C1Φ–1, C0Φ1 + C1Φ0 + C2Φ–1, C1Φ1 + C2Φ0, C2Φ1]. (5-46)

Notice thatA can also be formed by taking the block-matrix convolution of

the linear detectorCk with the stacked-correlation matrixΦr = [Φ–1 Φ0 Φ1],

i.e.,

A = Ck * Φr. (5-47)

We should emphasize that (5-47) is an efficient method for calculating the

non-redundant terms in (5-45). Also the matrixA can used to efficiently

construct all of the matrices given by (5-45).

Using this example, we can develop an algorithm to efficiently computeCkΦR,l for |l| ≤

M+N. Before, we can state the algorithm, we need the following definition:

Definition 5-9. Let Z = [Z0 Z1 … ZN] whereZi is ann × m matrix and let

ZN+1 also be ann × m matrix. Define the block-shifting functionL:

n×(N+1)m, n×m → n×(N+1)m as follows:

L(Z, ZN+1) = [Z1 … ZN ZN+1]. (5-48)

The algorithm for computingCkΦR,l for |l| ≤ M+N is given by the following steps:

CI CI CI
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Step 1. Compute the block-matrix convolution of the linear detectorCk = [C0 … CN]

with the stacked-correlation matrixΦr = [Φ–M … Φ0 … ΦM]. The augmented matrix

A is formed by appending the block-matrix convolution withN n × m zero matrices,

i.e.,

A = [A–(M+N) … A0 … AM+N] = [Ck*Φr 0n×m 0n×m … 0n×m]. (5-49)

Step 2. Initialize CkΦR,–(M+N)–1 to be ann × (N+1)m zero matrix.

Step 3. The matrixCkΦR,l for |l| ≤ M+N is given by the following recursive update

CkΦR,l = L(CkΦR,l–1, Al), (5-50)

whereAl is defined in Step 1.

This method for computingCkΦR,l is very efficient because it only requires the comput

tion of one block-matrix convolution.

In general, the stacked-correlation matrix is unknown, but since we have assume

both input vectorxk and the channelH(z) are stationary,Φr can be estimated using a

simple running average:

r = [ri–Mri
* … ri–1ri

* riri
* riri–1

* … riri–M
*]. (5-51)

As k gets large, this sum approachesΦr. In a practical implementation, r should be used

instead ofΦr in (5-49).

Φ̂ 1
k M–
---------------

i M 1+=

k

∑

Φ̂
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In summary, the vector constant-modulus algorithm with GSC is defined by (5-25)

43), Steps 1–3, and (5-51).

5.6 PERFORMANCE IN NOISE

In the previous section, we determined the local minima of the vector CMA cost fu

tion with GSC in the absence of noise. This analysis, though valid and informative, is

of academic interest since in any real-world application, noise is always present and

be included in the analysis. The analysis of the noisy vector CMA cost function, prese

in the previous chapter, when extended to channels with memory unfortunately bec

intractable. We could use high SNR approximations in order to obtain a closed-

expression for the noisy local minima, but these results would not describe the cost

tion for all SNR.

Since it is difficult to obtain a closed-form expression of the noisy local minima,

have chosen to quantify the performance of the vector CMA with GSC detector ex

mentally. We can determine the minimum mean-squared error (MMSE) performan

this detector by implementing the stochastic algorithm for a large number of symbols

a very small step size. Unfortunately, the update algorithm may affect the performan

the detector. To minimize this effect, we initialized the linear detector with the ze

forcing solution, averaged the steady-state MSE over a large number of symbols, and

an ideal rotator to resolve the unitary ambiguity in the detector output. Initializing

linear detector at the zero-forcing solution allows the update algorithm to converge

quickly and more accurately to the noisy local minimum. By averaging the steady-

MSE over a large number of symbols, we reduce the effects of the update algorithm
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54].
dering about the local minimum. Finally, using an ideal rotator instead of an adaptive a

rithm, such as the MPLL, ensures that the only contribution to the MSE comes from

vector CMA with GSC detector. In spite of these measures to reduce the effects of th

chastic algorithm, the measured MMSE will still be higher than the true MMSE. Howe

by correctly choosing the number of symbols and the step size, the difference bet

these two values can be minimized.

In the following experiment, we quantify the performance of the vector CMA w

GSC detector in the presence of noise and compare it with the theoretical performan

both the MMSE detector and the forward-backward LP detector [54]. We restrict the f

of this experiment to tall channels with memory, because in other cases the LP doe

exist. To ensure that comparison among these detectors is fair, we assume that al

linear detectors have the same length and that the delay for each detector is optima

To facilitate the comparison between the vector CMA with GSC detector and the

ward-backward linear predictor, we use an example similar to the one presented in [

Experiment 5-1. Consider an8 × 2 random channel with memoryM = 2. The

coefficients of the channel are drawn independently from a zero-mean unit-

variance complex Gaussian distribution. The columns of the channel are

scaled so that the energy of user1 is 10 dB below that of user2; in other

words, SIR1 = –10 dB. The input alphabet is assumed to be 16-QAM. For

each channel, we determined the optimal 3-tap vector CMA with GSC

detector, the optimal 3-tap MMSE detector, and the optimal minimum-order

forward-backward LP detector, which had at most 3 taps. The optimal vector
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CMA with GSC detector was found by implementing the stochastic algorithm

for all possible delays. For each delay, the stochastic algorithm was initialized

with the zero-forcing solution and implemented for 200,000 symbols. The

step size for each implementation decreased with time according toµk =

0.001 ⁄ (1 +k ⁄ 20000). The MMSE for each delay was calculated by aver-

aging the MSE over the last 20,000 symbols. The optimal vector CMA with

GSC detector was the one which produced the smallest MMSE. In Fig. 5-3,

we plot the best MMSE1 versus SNR1 = / σ2, where

Fig. 5-3. A comparison of the mean-squared error versus SNR of the optimal
vector CMA with GSC detector, the optimal minimum-MSE detector, and
optimal forward-backward LP detector.
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denotes the first column of thej-th channel tap, for each detector. The curves

are the ensemble average of 1000 random channels. From these curves, we

observe that the performance of the vector CMA with GSC detector is essen-

tially similar to that of the MMSE detector, except at extremely low SNR

values where the vector CMA with GSC detector starts to break down. We

also see from the horizontal gap between the curves that the LP detector suf-

fers an SNR penalty relative to both the MMSE detector and the vector CMA

with GSC detector. The size of this penalty is roughly equivalent to the

amount of energy discarded by the LP. In this particular example, the LP dis-

carded an average of 39% of the total channel energy, which is equivalent to a

gap of 1/ 0.39 = 4.09 dB.

An important result of this experiment is that whereas the optimal MMSE detector an

optimal vector CMA with GSC detector achieve nearly identical performance, the opt

LP detector suffers a 4.09 dB penalty at high SNR. The relatively low performance o

LP detector is due to the fact that it inverts only a single tap of the channel, the

throwing away the energy from the remaining (M – 1) taps. It was stated in [54] that the

performance of the LP detector suffers when the energy of the chosen tap is small a

noise is nonzero or when the channel energy is evenly distributed across all taps. In

cases an under-utilization of the channel energy occurs. In contrast, both the MMSE

the vector CMA with GSC detectors invert the entire channel, thereby using all of

channel energy.
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5.7 EXPERIMENTAL RESULTS

We conclude this chapter with several computer experiments. In the first experim

we consider a two-user, two-sensor uniform linear array with half-wavelength spa

multipath, and a 16-QAM input alphabet. Since this channel is square, we compar

performance of the vector CMA with GSC detector with that of the decorrelation C

based detector [101,102]. In the next experiment, we consider a 16× 2 asynchronous

CDMA application with a 16-QAM input alphabet. For this channel, we compare the

formance of the vector CMA with GSC detector with that of the decorrelation CM

detector and of the forward linear predictor (LP) detector [54]. Finally, in the last

experiments, specific channels where the vector CMA with GSC detector outperform

LP detector are considered.

5.7.1 Uniform Linear Array with Multipath

In the following experiment, we consider a 2-user, 2-sensor, uniform linear array

λ/2-spacing and multipath. This channel is a generalization of the memoryless ch

presented in Section 4.7.2. We assume that each user draws symbols independen

uniformly from a 16-QAM input alphabet. The energy from each user is received a

linear array along two paths: a direct line-of-sight (LOS) path and a reflected path.

path is characterized by its amplitudeA, its propagation delayτ, and its angle of incidence

θ. For user 1, the parameters are (A, τ, θ) = (0.5, 0.4, –35°) and (A, τ, θ) = (0.4, 1.1, 80°)

for the LOS path and reflected path, respectively. For user 2, the parameters are (A, τ, θ) =

(0.8, 0.2, 10°) and (A, τ, θ) = (0.1, 1.3, –65°) for the LOS path and reflected path, respe

tively. The transmit pulse for both users is a raised-cosine pulse with 100% excess

width. In general, this channel has an infinite memory, but since more than 99% o
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energy is contained in first three taps, we can truncate the channel to have a memorM

= 2, without losing any significant amount of energy. We set SNR1 = 30 dB and SNR2 =

33 dB for this channel, so that SIR1 = –3 dB.

Experiment 5-2. In Fig. 5-4, we plot MSE1 versus time, for the optimal

delay, of both the vector CMA with GSC detector and the decorrelation CMA

detector. Each curve is an ensemble average of 500 different random input and

noise sequences. The parameters for each were optimized to provide the

fastest rate of convergence so as to achieve an open-eye diagram, or equiva

Fig. 5-4. Comparison of the vector CMA with GSC detector and decorrelation CMA
detector, in terms of MSE1 versus time, for a 2 × 2 uniform linear with
multipath.

0 5000 10000 15000

-20

-15

-10

-5

0

5

Time (k)

M
S

E
1 

(d
B

)

Decorrelation CMA

Vector CMA with GSC

MSE1 = –18 dB

Vector CMA with GSC:

Decorrelation CMA:

MPLL:

PLLs:

A = 1.5, B = 0.7

µk = 0.012/(1+k/1500)

µk = 0.010/(1+k/5000)

λk = 0.40/2(k/2000)

α1 = 0.05, α2 = 10–5



245

MA

can be

uires

usu-

ectors

ector

nal-

ds the

ddi-

ions

unc-

i-
lently an MSE1 = –18dB. The step size for the vector CMA with GSC detector

and the decorrelation CMA detector (A = 1.5 andB = 0.7) wereµk,vec =

0.012/(1+k/1500) andµk,dec = 0.010/(1+k/5000), respectively. We used a

100-point causal rectangular window to estimate the cross-correlation terms

for the decorrelation CMA detector. The MPLL step size was decreased with

time according toλk = 0.40/2(–k/2000). The bank of scalar PLLs parameters

used by the decorrelation CMA detector wereα1 = 0.05 andα2 = 10–5. From

these curves, we observe that both of these detector can open the eye diagram

for this square channel, but the vector CMA with GSC detector needed only

half as many symbols as did the decorrelation CMA detector.

The vector CMA with GSC detector converges much faster than the decorrelation C

detector because the former detector requires an estimate of a stationary signal that

determined fairly quickly and reasonably accurately, whereas the latter detector req

an estimate of a non-stationary signal that is somewhat difficult to obtain and which is

ally not very accurate. The better the estimate, the more quickly each of these det

converge. Another reason for the fast convergence of the vector CMA with GSC det

is due to the additional term in the cost function, which makes two contributions: it pe

izes any cross-correlation among the users in both time and space, and it also ai

vector CMA cost function in restoring the modulus for each user. In contrast, the a

tional term in the decorrelation CMA cost function only penalizes the cross-correlat

among the users, but the restoration of the moduli is left to the pointwise CMA cost f

tion. Thus, the additional term in the vector CMA cost function with GSC not only elim

nates the undesirable local minima, but also aids in reducing the convergence time.
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5.7.2 Asynchronous CDMA

In the following experiment, we consider a two-user asynchronous direct-sequ

CDMA application as shown in Fig. 5-5. This channel [54] is a generalization of the m

oryless channel presented in Section 4.7.3. We assume that each users draws s

independently and uniformly from a 16-QAM input alphabet. The spreading sequenc

thei-th users is given by

Fig. 5-5. Models for a two-user asynchronous CDMA application: (a) continuous-
time model with a chip-rate receiver; (b) equivalent discrete-time model.
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⇔
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si(t) = p(t – j ), (5-52)

where the chip-pulse shapep(t) = is an ideal sinc function with bandwidth

equal to half the chip ratem/T and is the binary chip sequence for thei-th user. Each

chip sequence has a lengthm = 16 and a period equal to one baud intervalT. For this

channel, the two binary chip sequences were generated randomly:

{ }  = { 1, 1, 1, 1, 1, –1, –1, 1, 1, –1, –1, 1, –1, –1, 1, –1} (5-53)

{ }  = { 1, –1, –1, 1, 1, 1, –1, 1, 1, 1, –1, –1, –1, –1, –1, 1} (5-54)

The normalized correlation between the two binary chip sequences is given byρ = –0.125.

Each CDMA signal is then passed through a channel with severe dispersion.

channel is modeled by a first-order low pass filterh(t) that has a 3 dBbandwidth equal to

one-fourth the chip rate,i.e., W = 1/4Tc, whereTc = T/m is the period of each chip. To

generate an asynchronous model, we delay the first user byτ1 = 0.7Tc and the second use

by τ2 = 5.2Tc. The front-end of the receiver consists of an anti-aliasing filter followed

a chip-rate sampler and a serial-to-parallel (S/P) converter. Since the transmit filters

zero-excess bandwidth, the anti-aliasing filter is matched to the transmit filter. The s

to-parallel converter groups the chip-rate samples into blocks ofm = 16 to generate the

baud-rate received vectorrk. The resulting discrete-time channel transfer function mat

j 0=

m 1–

∑ c j
i( ) T

m
-----

sin πtm T⁄( )
πtm T⁄( )

---------------------------------

c j
i( )

c j
1( )

c j
2( )
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H(z) is a 16× 2 channel with memoryM = 1. The amplitudes for each userA1 andA2 and

the noise varianceσ2 were selected in such a way that SNR1 = 25 dB and SNR2 = 35 dB.

Experiment 5-3. In Fig. 5-6, we plot MSE1 versus time, for the optimal delay

of the vector CMA with GSC detector, the decorrelation CMA detector, and

the forward LP detector. Each curve is an ensemble average of 500 different

random input and noise sequences. The parameters for each detector were

optimized to provide the fastest rate of convergence so as to achieve an open-

eye diagram, or equivalently an MSE1 = –18dB. The step size for the vector

CMA with GSC and the decorrelation CMA detector (A = 1.0 andB = 1.0)

wereµk,vec = 0.11/(1+k/1600) andµk,dec = 0.12/(1+k/4500), respectively.

We used a 100-point causal rectangular window to estimate the cross-correla-

tion terms for the decorrelation CMA detector. The step size for the forward

LP detector was given byµk,lp = 0.06/(1+k/500) and the step size for the

AGC was given byµk,agc= 0.01/ (1 + k/500). The step size for the MPLL

was decreased with time according toλk = 0.40/2(–k/2000). The bank of scalar

PLLs parameters used by the decorrelation CMA detector wereα1 = 0.05 and

α2 = 10–5. From the curves in Fig. 5-6, we observe that all three detector can

open the eye diagram for this tall channel. The forward LP detector is the

fastest to converge, followed by the vector CMA with GSC detector and the

decorrelation CMA detector in that order. Both the forward LP detector and

the vector CMA with GSC detector can open the eye diagram in less than

4000 symbols, while the decorrelation CMA detector needs almost twice as

many symbols.
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Fig. 5-6. Comparison of the vector CMA with GSC detector, decorrelation CMA
detector, and a zero-delay forward LP detector, in terms of MSE1 versus
time, for a two-user asynchronous CDMA application.
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The forward LP detector is designed to isolate and invert the first tap of the cha

This detector works well when channel energy is concentrated primarily in the first ta

the channel, as is the case for this particular two-tap channel in the above experi

However, if the channel energy were concentrated primarily in the second tap an

energy of the first tap were significant relative to the noise power (tr(H0H0
*) ≈ σ2), then

the performance of a forward LP detector would be unacceptable. (We will demons

this case in the next experiment.) We should point out that the vector CMA with G

detector should have acceptable performance for either channel configuration.

5.7.3 Small First Tap

In the following experiment, we consider a two-tap 4× 2 channelH(z) such that the

channel energy is concentrated primarily in the second tap and the energy of the first

significant relative to the noise power (tr(H0H0
*) ≈ σ2). This channel is given as follows:

H(z) =

 + z–1. (5-55)

For this channel, we compare the performance of the vector CMA with GSC detector

that of the forward LP detector. The amplitudes for each userA1 andA2 and the noise vari-

anceσ2 were selected in such a way that SNR1 = SNR2 = 24 dB, so that SIR1 = 0 dB.

0.031 j0.082– 0.057 j0.024+

0.027 j0.002– 0.058– j0.082+

0.049 j0.038– 0.001– j0.029+

0.025 j0.023+ 0.008– j0.031–

0.606– j0.144+ 0.310– j0.00+

0.097 j0.381– 0.204 j0.124–

0.399– j0.007– 0.085 j0.422+

0.534 j0.018– 0.355– j0.722–
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Experiment 5-4. In Fig. 5-7, we plot MSE1 versus time, for the optimal

delay, of the vector CMA with GSC detector and the forward LP detector.

Each curve is an ensemble average of 500 different random input and noise

sequences. The parameters for each detector were optimized to provide the

fastest rate of convergence so as to achieve an open-eye diagram, or equiva

lently an MSE1 = –18 dB. The step size wasµk,vec= 0.01/(1+k/500) for the

vector CMA with GSC detector, it wasµk,lp = 0.05/(1+k/500) for the for-

ward LP detector, and it wasµk,agc= 0.02/(1+k/100) for the AGC. The step

size for the MPLL was decreased with time according toλk = 0.40/2(–k/2000).

From the curves in Fig. 5-7, we see that only the vector CMA with GSC

detector was able to open the eye diagram. In fact, to open the eye diagram,

this detector needed slightly more than 500 symbols. We also observe that the

forward LP detector reaches a steady-state MSE of –13 dB. This value of the

MSE implies that the eye diagram is not open and therefore the forward LP

detector cannot recover the transmitted data.

This experiment demonstrates that the forward LP detector is not a viable option

channel where the energy of the first tap is significant relative to the noise po

(tr(H0H0
*) ≈ σ2). In fact, this result also extends to the forward-backward LP; the per

mance of this detector will also be unacceptable if the channel energy of the selected

significant relative to the noise power. Ideally, the forward-backward LP detector m

choose the channel tap with the greatest energy. Since the channel is unknown, the c

energy distribution is also unknown. Hence, it is impossible choosea priori the channel

tap with the greatest energy and as a result, the performance of any forward-bac
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Fig. 5-7. Comparison of the vector CMA with GSC detector and the forward LP, in
terms of MSE1 versus time, for a channel with a small first tap.
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linear predictor will suffer when compared to the MMSE detector and the vector C

with GSC detector, both of which work well on all channels irrespective of the chan

energy distribution.

5.7.4 Non-Minimum Square Right Factor

A linear prediction detector is based on the concept that a tall channel is almost a

minimum-phase. It is possible for a channelH(z) to be physically tall (m > n) and still not

be minimum-phase. In this case, the channel is said to bereducible, which implies that

there exists a square right-factor that is non-minimum phase,i.e.,

H(z) = (z)G(z), (5-56)

where (z) is anm × n minimum-phase channel andG(z) is an × n non-minimum phase

channel. For the channel described by (5-56), the LP detector will only be able to re

the minimum-phase portion of this channel (z), thus leaving the non-minimum phas

portion of the channel unresolved. Hence, the output of the LP detector would still be

rupted by both intersymbol interference and multiuser interference. Thus, the LP det

is unable to resolve a reducible tall channel. In contrast, the vector CMA with G

detector should still be able to invert this particular channel and recover the transm

data.

To demonstrate this point, we consider the following three-tap 4× 2 channelH(z),

which is a cascade of a two-tap 4× 2 minimum-phase channel and a two-tap 2× 2 non-

minimum-phase channel:

H̃

H̃

H̃
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t tap.

with
H(z) =  + z–1 +

z–2. (5-57)

We observe that the majority of the energy in this channel is concentrated in the firs

For this channel, we compare the performance of the vector CMA with GSC detector

that of the forward LP detector. The amplitudes for each user,A1 andA2 were selected in

such a way that SIR1 = –3 dB.

Experiment 5-5. In Fig. 5-8, we plot MSE1 versus time, for the optimal

delay, of the vector CMA with GSC detector and the forward LP detector,

assuming no noise. Each curve is an ensemble average of 500 different

random input sequences. The parameters for each detector were optimized as

to provide the fastest rate of convergence to achieve an open-eye diagram, or

equivalently an MSE1 = –18dB. The step size wasµk,vec = 0.01/(1+k/4000)

for the vector CMA with GSC detector, it wasµk,lp = 0.05/(1+k/2000) for the

vector CMA with GSC detector, and it wasβk,agc= 0.01/(1+k/500) for the

step size for the AGC. The step size for the MPLL was decreased with time

according toλk = 0.40/2(–k/2000). From these curves, we see that only the

vector CMA with GSC detector was able to open the eye diagram. In fact, this

detector can open the eye diagram in less than 5000 symbols. We also observe

0.071 j0.070– 0.090– j0.088+

0.058 j0.039+ 0.088– j0.045–

0.253– j0.272– 0.244 j0.301+

0.019– j0.554+ 0.041– j0.602–

0.093– j0.232+ 0.024 j0.238–

0.086– j0.210– 0.170 j0.257+

0.072 j0.230+ 0.200 j0.180+

0.006 j0.075+ 0.191 j0.391–

0.023 j0.170+ 0.002– j0.017–

0.147– j0.042– 0.031 j0.027+

0.253 j0.119+ 0.089 j0.018–

0.386 j0.288– 0.001 j0.191–
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Fig. 5-8. Comparison of the vector CMA with GSC detector and the forward LP, in
terms of MSE1 versus time, for a reducible tall channel.
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that MSE of the forward LP detector approaches –4 dB in steady state. This

value of the MSE implies that the transmitted data can never be recovered and

therefore the forward LP detector is unacceptable.

These experiments demonstrate that the vector CMA with GSC detector can re

the transmitted data for a wide variety of channels: square, tall, minimum-phase, and

minimum phase, so long as these channels are linearly separable and the input alph

sub-Gaussian. As shown in [114], the error surface for the CMA cost function beco

progressively “flatter” as the input alphabet approaches Gaussianity. Hence, on

expect prolonged convergence times. This result also extends to the vector CMA

function with GSC. In contrast, a forward-backward LP detector can recover the tr

mitted dataonly for a specific class of channels: tall and minimum-phase, and it can d

irrespective of the distribution of the input alphabet.

5.8 SUMMARY

In this chapter, we have extended the definition for the vector CMA detector to c

nels with memory and have provided a detailed implementation of this blind detector

have shown in Theorems 5-2 and 5-3 that, in the absence of noise, the vector CMA

function is minimized by both unitary and non-unitary matrices when the input alphab

sub-Gaussian. The unitary matrices are desirable because the unitary ambiguity c

estimated and resolved by the MPLL, which we have already developed. The non-un

matrices, unfortunately, limit the usefulness of the vector CMA detector in the case of

Gaussian input alphabets. For a meso-Gaussian and super-Gaussian input alpha

shown in Theorems 5-4 and 5-5, the vector CMA cost function proved to be useless
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By exploiting the properties of the desirable minima, we were able to add an addit

term to the vector CMA cost function that penalized the undesirable local minima.

modified cost function was referred to as the vector CMA cost function with Gra

Schmidt constraint (GSC). This cost function for a sub-Gaussian input alphabet is

mized by only unitary matrices. The additional term in this cost function, which is ba

solely on second-order statistics, assists in reducing the convergence time. The elimi

of the undesirable local minima, unfortunately, is accompanied by an increase in com

tional complexity. We have shown that this computational burden can be reduce

exploiting the redundancy in the update equation. We have included a detailed imple

tation of the reduced-complexity vector CMA with GSC detector.

The local minima of the vector CMA cost function with GSC in the presence of no

could not be theoretically determined. Instead, we chose to experimentally quantif

performance. We have shown that the performance of the optimal vector CMA with G

detector is nearly identical to that of the optimal MMSE detector.

Finally, we have shown through computer simulations that the vector CMA with G

detector compares favorably in terms of performance and complexity to other kn

CMA-based blind multiuser detectors. Specific cases where this detector outperforms

detector were identified.
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The noiseless vector CMA cost function can be expressed in terms of the sta

channel input vectorX and the block-matrix transfer functionF as follows1:

Jv(F) = E (X*F*FX)2 – 2Mv(X
*F*FX) + Mv

2 . (5-58)

SinceF*F is an Hermitian2 matrix and therank(F*F) ≤ n, this matrix has a unique trun-

cated eigendecomposition:F*F = VDV*, whereV is an (M+N+1)n × n truncated unitary

matrix andD is ann × n diagonal matrix. We see thatF*F is also a positive-semidefinite3

matrix, and hence the diagonal elements ofD must be real and non-negative.

Let u = V*X and letw denote ann × 1 vector whosei-th component is given by

wi = |ui|
2 = |vi

*X|2, (5-59)

wherevi is the i-th column ofV. The first and second terms of (5-58) can be simplifi

using the previous two definitions:

1. The dependence on time has been suppressed to simplify the notation.

2. The matrixG is Hermitian matrix if and only ifG = G*.

3. An Hermitian matrixG is positive semi-definite if and only ifr*Gr ≥ 0 for all r ∈ n.CI
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identi-
E[X*F*FX] = E[u*Du] = dTE[w], (5-60)

E[(X*F*FX)2] = E[(u*Du)2] = dTE[wwT]d, (5-61)

whered is ann × 1 vector composed of the diagonal elements ofD. The expectation ofwi

is given by:

E[wi] = E[|vi
*X|2] = vi

*E[XX*]vi = m2|vi|
2 = m2, (5-62)

where the third equality is due to the assumption that all users are independent and

cally distributed withE[xx*] = m2I. Therefore,E[w] = m21n, where then × 1 vector1n =

[1 … 1]T. Using the previous three equations, (5-58) can be written as:

Jv(V, d) = dTRwwd – 2m2MvdT1n + Mv
2, (5-63)

whereRww = E[wwT]. The exact structure and rank ofRww are summarized by the fol-

lowing two lemmas.

Lemma 5-1: The matrixRww can be written as a linear combination of three

matrices:

Rww = (m2)2 1n1n
T + I+ (κ–2)BTB , (5-64)

where the (i, j)-th component ofB is given by [B]ij = |vij|
2.
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Proof: See Appendix 5.2.

Lemma 5-2: If κ > 1, thenRww is a positive-definite matrix.

Proof: See Appendix 5.3.

We see that (5-63) is completely parameterized byV andd. Since these two variables

are independent, the local minima of (5-63) can be determined by first minimizing the

function with respect tod, and then with respect toV. The gradient of (5-63) with respec

to d is given by:

∇dJv = 2Rwwd – 2m2Mv1n. (5-65)

The inflection points of the cost function occur when the gradient is equal to the

vector, or equivalently when:

d = m2MvRww
–11n, (5-66)

where the inverse ofRww exists because the matrix is positive definite, and therefore

rank. The solution to this equation depends upon the exact value ofRww. The matrixRww

that minimizes the cost function can be determined by substituting (5-66) into (5-

After rearranging some of terms, we find that the vector CMA cost function reduces 

Jv(V) = Mv
2 1 – (m2)

21n
TRww

–11n . (5-67)
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This equation is only a function ofRww, which in turn is a function ofV. Therefore, mini-

mizing the cost function is equivalent to maximizing (m2)21n
TRww

–11n with respect toV.

Using the matrix inversion lemma4, the quantity (m2)21n
TRww

–11n can be written as:

(m2)
21n

TRww
–11n = (1 + )–1, (5-68)

where γ = 1n
T[I + (κ–2)BTB]–11n. We observe that maximizing (m2)

21n
TRww

–11n is

equivalent to maximizingγ. SinceBTB is an Hermitian and a positive-semidefinite matri

it has a unique eigendecomposition:BTB = QΣQT, whereQ is ann × n unitary matrix and

Σ is an n × n diagonal matrix with non-negative real entries. The quantityγ can be

expressed in terms of this eigendecomposition as follows:

γ = (1n
Tqj)

2, (5-69)

whereσjj is the j-th diagonal element ofΣ and whereqj is the j-th column ofQ. Notice

that maximizingγ is equivalent to simultaneously maximizing1n
Tqj and simultaneously

minimizing [1 + (κ–2)σjj] ∀ j. Clearly,q1 = 1n maximizes the numerator, and sinc

the columns ofQ are orthogonal, (5-69) reduces to:

γ = . (5-70)

4. The matrix inversion lemma is (A+BCD)–1 = A–1 – A–1(DA–1B + C–1)–1DA–1.

1
γ
---

j 1=

n

∑ 1
1 κ 2–( )σ jj+
------------------------------------

1
n

-------

n
1 κ 2–( )σ11+
-------------------------------------
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For a non-CM sub-Gaussian input alphabet (1 < κ < 2), the denominator is minimized by

choosingσ11 as large as possible; the largest eigenvalue corresponding to this eigenv

occurs whenσ11 = 1. Thus,γ is maximized when

BTB1n = 1n. (5-71)

The question remains: for what values ofV does (5-71) hold?

Multiplying (5-71) on the right-hand side by1n
T, we find that

B1n  = n ⇔ |vij|
2  = n, (5-72)

whereT = (M+N+1)n. A property of the matrixB is that all of the components sum ton:

|vij|
2 = n. (5-73)

Subtracting (5-73) from (5-72), and rearranging some of the terms, we obtain:

|vij|
2 |vij|

2 – 1 = 0, (5-74)

which holds if and only if thei-th row ofB sums to zero or thei-th row sums to one. From

(5-73), we deduce that onlyn rows ofB can sum to one, while the remaining rows mu

sum to zero; in other words,

 
2

i 1=

T

∑
j 1=

n

∑
2

i 1=

T

∑
j 1=

n

∑

i 1=

T

∑
j 1=

n

∑ 



j 1=

n

∑ 


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| |2 = . (5-75)

Thus, the matrixV, which satisfies (5-75) and equivalently (5-71), is given by:

V = P Q, (5-76)

whereQ is an arbitraryn × n unitary matrix andP is a (M+N+1)n × (M+N+1)n real per-

mutation matrix. Substituting (5-76) into (5-66), we find that the optimald is given byd =

1n, or equivalentD = I. This inflection point is a local minima because the Hessian of

65) with respect tod, which is given by

∇ddJv = 2Rww, (5-77)

is positive definite for a non-CM sub-Gaussian input alphabet (see Lemma 5-2).

Using the fact thatF*F = VDV*, we find that the vector CMA cost function for a non

CM sub-Gaussian input alphabet is minimized if and only if

F = U PT, (5-78)

whereU is an arbitraryn × n unitary matrix. Finally, mapping the block-matrix notatio

back to thez-domain, we see that the vector CMA cost function for a non-CM sub-Ga

sian input alphabet is minimized if and only if

j 1=

n

∑ vip j


 1

0

wherep = 1,…, n, andip∈{ 1,…,T} s.t. ip ≠ iq whenp ≠ q

otherwise

In n×

0 T n–( ) n×

In n× 0n T n–( )×
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umn,
F(z) = UP(z), (5-79)

whereP(z) is ann × n matrix which has only one nonzero entry of the formz–D, whereD

is an arbitrary delay value per row. If there is more than one nonzero entry in any col

then the delay values in that column must all be different.❏
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We recall from (5-59) that thei-th component ofw is given by:

wi = |vi
*X|2 = vli

*xl , (5-80)

whereT = (M+N+1)n is the total number of elements in the vectorX. Thus, the (i,j)-th

component ofRww can be written as:

[Rww]ij = E[wiwj
*], (5-81)

= E vli
*xl vpj

*xp , (5-82)

= vli
*vmivpj

*vqjE[xlxm
*xpxq

*]. (5-83)

We can use the following identity: E[xkxm*xpxq*] = (m2)2[δkmδpq+δkqδmp+(κ–2)δkmpq],

to simplify (5-83):

l 1=

T

∑
2

l 1=

T

∑
2

p 1=

T

∑
2

l 1=

T

∑
m 1=

T

∑
p 1=

T

∑
q 1=

T

∑
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[Rww]ij = (m2)2 |vli|
2 |vpj|

2 + vljvli
* vpivpj

*

+ (κ–2) |vli|
2|vlj|

2 , (5-84)

= (m2)2 1 + δij + (κ–2) |vli|
2|vlj|

2 , (5-85)

= (m2)2 [1n1n
T]ij + [I]ij + (κ–2)[BTB]ij , (5-86)

where we have defined [B]ij = |vij|
2.

Hence,Rww can be expressed as a linear combination of three matrices:

Rww = (m2)2 1n1n
T + I + (κ–2)BTB , (5-87)

where [B]ij = |vij|
2. ❏

l 1=

T

∑
p 1=

T

∑
l 1=

T

∑
p 1=

T

∑

l 1=

T

∑





l 1=

T

∑ 


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We recall from (5-64) that the matrixRww can be written as follows:

Rww = (m2)2 1n1n
T + (I – BTB) + (κ–1)BTB , (5-88)

where [B]ij = |vij|
2. The matrix1n1n

T is clearly positive semidefinite, because its eige

values are zero, with multiplicityn–1, and n. The matrix (κ–1)BTB is also positive

semidefinite, becauser*BTBr = Br ≥ 0 for all r ∈ n and (κ–1) > 0 for a non-CM

input alphabets.

The third matrix in (5-88) is positive semidefinite ifr*(I – BTB)r = r – Br ≥ 0

for all r ∈ n. We observe that:

Br = |vij|
2rj . (5-89)

Definepj = |vij|
2, whereαi = |vij|

2, so that pj = 1. SinceV is a trun-

cated unitary matrix,0 < αi ≤ 1. We can view the sum pjrj as an expectationE[R],

whereR is a random variable over the set {rj} with probability mass function {pj}. From

Jensen’s inequality [107], the square of the mean cannot exceed the second momen

 
2

CI

 
2

 
2

CI

 
2

i 1=

T

∑
j 1=

n

∑
2

1
αi
-----

j 1=

n∑ j 1=

n∑

j 1=

n∑



268

d

s

-

pjrj = |E[R]|2 ≤ E[|R|2] = pj|rj|
2. (5-90)

Using the fact thatpj = |vij|
2 and thatαi is positive, we simplify the inequality given

by (5-90) to the following:

|vij|
2rj ≤ αi |vij|

2|rj|
2 ≤ |vij|

2|rj|
2, (5-91)

where the last inequality is due to the fact that0 < αi ≤ 1. Hence, (5-89) is upper-bounde

by:

Br ≤ |vij|
2|rj|

2 = |rj|
2 |vij|

2 = |rj|
2 = r , (5-92)

where |vij|
2 = 1 because the columns ofV have unit length. This equation implie

that r – Br ≥ 0 for all r ∈ n and so (I – BTB) is a positive-semidefinite matrix.

Since the sum of positive-semidefinite matrices is positive semidefinite [106],Rww is a

positive-semidefinite matrix. The matrixRww therefore can be either singular or nonsin

gular. If this matrix is assumed to be singular, then there exists a nonzero vectorr such

that:

r*Rwwr  = 0 ⇔ (m2)2r* 1n1n
T + (I – BTB) + (κ–1)BTB r = 0, (5-93)
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⇔ (m2)2 |1n
Tr|2 + ( r – Br ) + (κ–1) Br  = 0, (5-94)

⇔ 1n
Tr = 0 and r  = Br and Br  = 0, (5-95)

where the third implication is due to the fact that each term in (5-94) is non-negative. F

(5-95), we see that the last two conditions imply thatr = 0, which is impossible since

we have assumed thatr to be nonzero. Hence,Rww can never be singular. The matrixRww

must therefore be nonsingular and also positive definite forκ > 1. ❏
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In Appendix 5.1, we showed that minimizing the vector CMA cost function is equi

lent to maximizing (5-69). For a CM input alphabet (κ = 1), γ is maximized if and only if

(I – BTB) is singular. We observe that (I – BTB) is singular if and only if there exists a

nonzero vectorr ∈ n such that:

r*(I – BTB)r = 0 ⇔ Br  = r . (5-96)

The question remains: for what values ofV does (5-96) hold?

In Appendix 5.3, we showed that

Br = |vij|
2rj ≤ |vij|

2|rj|
2 = r . (5-97)

Equality in (5-97) is achieved when the random variableR is no longer random, but is

deterministic. This random variable becomes deterministic if the components ofr are

equal to a constant for all nonzero entries on thei-th row ofV. For example,R is determin-

istic whenr = α1n for some nonzero constantα. This vector achieves equality in (5-97

only when each row ofB sums to either one or zero. Because of the wayB is constructed,

CI
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this type of matrix can never exists, and hencer = α1n cannot lie in the nullspace of (I –

BTB).

If V is a partial block-diagonal matrix, then the vectorr can be subdivided into disjoint

subvectors corresponding to the nonzero blocks ofV. In this case, the random variableR is

deterministic if the components of each subvector are equal to a constant. By choosi

constant for each subvector carefully, we can achieve equality in (5-97). If a row ofV has

unit length, then the constant for the subvector corresponding to the nonzero entri

that row should be nonzero. However, if the row does not have unit length, then the

stant for the subvector corresponding to the nonzero entries on that row must be

Using this insight, we see that (I – BTB) is singular if and only if the matrixV has the

form:

V = PL PR, (5-98)

whereQi is aki × ki unitary matrix withki ∈ { 1, …, n} satisfying1 ≤ k = ki ≤ n, W

is an ((M+N+1)n–k) × (n–k) truncated unitary matrix, andPL andPR are (M+N+1)n ×

(M+N+1)n andn × n real permutation matrices, respectively. The vectorr that lies in the

nullspace of (I – BTB) has the form:

Q1

Q2

0
QP

0 W

i 1=

P∑
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r = PR
T , (5-99)

whereαi is some nonzero constant.

Substituting (5-98) into (5-65), we find that the optimald is given by:

d = PR
T , (5-100)

whereαi is a nonzero constant satisfying αiki = 0 anddi ≥ 0. We observe that all

solutions ford satisfy the following property: di = n, or equivalently,tr(D) = n.

Thus, the vector CMA for a CM input alphabet is minimized if and only ifF*F = VDV*,

whereV is given by (5-98) and whereD is a non-negative diagonal matrix satisfyingtr(D)

= n. By expanding the productF*F, it easy to show thatF*F = , where is a diagonal

matrix, whose diagonal entries are a permutation of the diagonal entries ofD.

Finally, the vector CMA cost function for a CM input alphabet is minimized if a

only if

α11k1

α21k2

αP1kP

0n k–

…

1k

0n k–

α11k1

α21k2

αP1kP

0n k–

+

 
 
 
 
 
 
 
 
 
 
 

…
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P∑

i 1=

n∑
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F = UD1/2 PT, (5-101)

whereU is an arbitraryn × n unitary matrix,D is a non-negative real diagonal matrix sa

isfying tr(D) = n, andP is an (M+N+1)n × (M+N+1)n real permutation matrix. Mapping

the block-matrix notation back to thez-domain, we then see that the vector CMA co

function is minimized if and only if

F(z) = UD1/2P(z), (5-102)

whereP(z) is ann × n matrix which has only one nonzero entry of the formz–D, whereD

is an arbitrary delay value per row. If there is more than one nonzero entry in any col

then the delay values in that column must all be different.❏

In n× 0n T n–( )×
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If the input alphabet is meso-Gaussian (κ = 2), thenRww given in (5-64) reduces to:

Rww = (m2)2 1n1n
T + I . (5-103)

Observe thatRww is independent ofV, and therefore, the solution to (5-66) is also ind

pendent ofV. Substituting (5-103) into (5-66), we find that the optimald is given byd =

1n, or equivalentlyD = I. This inflection is a local minima because the Hessian of (5-6

with respect tod, which is given by

∇ddJv = 2Rww, (5-104)

is positive definite for a meso-Gaussian input alphabet (see Lemma 5-2).

Using the fact thatF*F = VDV*, we find that the vector CMA cost function for a

meso-Gaussian input alphabet is minimized if and only if

F = U, (5-105)
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whereU is an (M+N+1)n × n truncated unitary matrix. Observe that each row ofF has

unit length, and therefore,F is an energy-preserving filter. Mapping the block-matrix not

tion back to thez-domain, we see that the vector CMA cost function for a meso-Gaus

input alphabet is minimized if and onlyF(z) is a energy-preserving filter.❏
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In Appendix 5.1, we showed that minimizing the vector CMA cost function is equi

lent to maximizing (5-69). Notice that maximizingγ is equivalent to simultaneously maxi

mizing 1n
Tqj and minimizing [1 + (κ–2)σjj] ∀ j. Clearly, q1 = 1n maximizes the

numerator, and since the columns ofQ are orthogonal, (5-69) reduces to:

γ = . (5-106)

For a super-Gaussian input alphabet (κ > 2), the denominator is minimized by choosin

σ11 as small as possible; the smallest eigenvalue corresponding to this eigenvector o

whenσ11 = . Thus,γ is maximized when

BTB1n = 1n. (5-107)

The question remains: for what values ofV does (5-107) hold?

Multiplying (5-107) on the right-hand side by1n
T, we find that

1
n

-------

n
1 κ 2–( )σ11+
-------------------------------------

1
M N 1+ +
---------------------------

1
M N 1+ +
---------------------------
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B1n  = ⇔ |vij|
2  = , (5-108)

whereT = (M+N+1)n. Recall that all of the components ofB must sum ton:

|vij|
2 = n. (5-109)

Subtracting (5-109) from (5-108), and rearranging some of the terms, we obtain:

|vij|
2 (M+N+1) |vij|

2 – 1 = 0, (5-110)

which holds if and only if thei-th row of B sums to zero or thei-th row sums to

. From (5-109), we deduce that all of the rows ofB must have length

. Thus, the matrixV, which satisfies (5-110) and equivalently (5-107), is give

by:

V = , (5-111)

whereQi is an n × n unitary matrix. Substituting (5-111) into (5-66), we find that th

optimald is given byd = α1n, or equivalentD = αI, where
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α = = . (5-112)

This inflection point is a local minima because the Hessian of (5-65) with respect td,

which is given by

∇ddJv = 2Rww, (5-113)

is positive definite for a super-Gaussian input alphabet (see Lemma 5-2).

Using the fact thatF*F = VDV*, we find that the vector CMA cost function for a

super-Gaussian input alphabet is minimized if and only if

F = , (5-114)

whereUi is an arbitraryn × n unitary matrix. Mapping the block-matrix notation back t

thez-domain, (5-114) can be written as:

F(z) = (U0 + U1z–1 + … + UM+Nz–M–N). (5-115)

This transfer function, which has maximal multiuser and intersymbol interference, m

mizes the vector CMA cost function for a super-Gaussian input alphabet.❏

Mv
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We recall from (5-39) that the noiseless vector CMA cost function with Gram-Schm

constraint is given by:

JGS = Jv + E[ykyk–l
*] – m2Iδl , (5-116)

whereyk = FXk. Using the fact thatE[ykyk–l
*] = m2FJlF

*, whereJl is a block-diagonal

matrix with a block-identity matrix on thel-th diagonal, and thatFJlF
* = FJ–lF

* ,

we can express (5-116) as follows:

JGS = Jv + (m2)2 FF* – I  + 2(m2)2 FJlF
* . (5-117)

Sincerank(F) ≤ n, the matrixF has a unique truncated singular-value decomposition:F =

UD1/2V*, whereU is ann × n unitary matrix,D is ann × n non-negative diagonal matrix

andV is an (M+N+1)n × n truncated unitary matrix. In Appendix 5.1, we showed that t

first term of (5-117) can be written as follows:

l M– N–=

M N+

∑ F
2

F
2

F
2

F
2

l 1=

M N+

∑ F
2
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Jv(V, d) = dTRwwd – 2m2MvdT1n + Mv
2, (5-118)

whered is ann × 1 vector composed of the diagonal elements ofD and whereRww =

E[wwT]. Thei-th component of then × 1 vectorw is given by:

wi = |vi
*X|2, (5-119)

wherevi is thei-th column ofV.

We can express the second term of (5-117) in terms of the vectord as follows:

FF* – I  = UDU* – I  = D – I  = dTd – 2dT1n + n, (5-120)

where the second equality is due to the fact that the Frobenius norm is invariant to a

tary transformation. LetWl denote ann × n matrix whose (i, j)-th component is given by:

[Wl]ij = |[V*JlV]ij|
2. (5-121)

Using this definition, the third term of (5-117) can be written compactly as:

FJlF
*  = UD1/2V*JlVD1/2U*  = D1/2V*JlVD1/2  = dTWld. (5-122)

Again, the second equality is due to the fact that the Frobenius norm is invariant to a

tary transformation. Now, we can rewrite (5-117) as follows:

F
2

F
2

F
2

F
2

F
2

F
2
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JGS = dTRwwd – 2m2MvdT1n + Mv
2 + (m2)2(dTd – 2dT1n + n)

+ 2(m2)2 (dTWld). (5-123)

Observe that this equation is completely parameterized byV andd. Since these two vari-

ables are independent, the local minima can be determined by first minimizing the

function with respect tod and then with respect toV. The gradient of (5-123) with respec

to d is given by:

∇dJGS = Rwwd – 2m2Mv1n + 2(m2)2(d – 1n) + 2(m2)2Ad, (5-124)

where

A = Wl + Wl
T, (5-125)

is a real non-negative symmetric matrix.

The inflection points of the cost function occur when the gradient is equal to the

vector, or equivalently whend satisfies the following equation:

[Rww + (m2)2I + (m2)2A]d = [m2Mv + (m2)2]1n. (5-126)

Substituting (5-126) into (5-123), we find that the vector CMA cost function with G

reduces to:

l 1=

M N+

∑

l 1=

M N+

∑
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JGS = [Mv
2 + n(m2)2 – (m2Mv + (m2)2)dT1n] + (m2)2dT (Wl – Wl

T) d. (5-127)

Since (Wl – Wl
T) is a real skew-symmetric matrix, the last term in (5-127) is ide

tically zero for alld. Therefore, minimizing the vector CMA cost function with GSC

equivalent to maximizingdT1n = di = n.

The question remains: for what values ofV is dT1n maximized? In Appendix 5.1, we

showed that the vector CMA cost function for a non-CM sub-Gaussian input alphab

minimized if and only if

V = P Q, (5-128)

whereQ is an arbitraryn × n unitary matrix andP is an (M+N+1)n × (M+N+1)n real per-

mutation matrix. Substituting (5-128) into (5-126) and multiplying (5-126) on the rig

hand side by1n
T, we find that (5-126) reduces to:

(Mv + 1) di + aijdj = (Mv + 1)n, (5-129)

whereaij is the (i, j)-th component ofA and where we have used the fact that, for theV

specified by (5-128), the columns ofRww sum toMv. Rearranging (5-129), we find that

l 1=

M N+

∑

l 1=

M N+∑

i 1=

n∑

In n×

0 T n–( ) n×

i 1=

n
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i 1=

n
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n
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(Mv + 1) n – di  = aijdj ≥ 0, (5-130)

where the right-hand side is non-negative because bothA andd are non-negative. Sinced

≠ 0, di is maximized whenA = 0.

If we view V in term of its taps,i.e., VT = [V0
T V1

T … VM+N
T], whereVi is ann × n

matrix, then the condition thatA = 0 implies that

Vi
*Vj = 0. (5-131)

This condition in turn implies that there cannot be any correlation between the users

detector output. Substituting,A = 0 in (5-126), we find that the optimald is given byd =

1n, or equivalentD = I. The Hessian of (5-124) with respect tod is given by

∇ddJv = 2Rww + 2(m2)2I. (5-132)

This matrix is clearly positive definite, because the identity matrix is positive definite

the sum of a positive-definite matrix and a positive-semidefinite matrix is always pos

definite. Therefore, this inflection point is a local minima for all sub-Gaussian input alp

bets, including the CM input alphabet.

Using the fact thatF*F = VDV*, we find that the vector CMA cost function with GSC

for a sub-Gaussian input alphabet is minimized if and only if

i 1=

n

∑
i 1=

n

∑
j 1=

n
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i 1=

n∑

i 0=

M N 1–+

∑
j i 1+=

M N+

∑
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F = [F0 F1 … FM+N] = U PT, (5-133)

whereU is an arbitraryn × n unitary matrix,P is an (M+N+1)n × (M+N+1)n real permu-

tation matrix, andF satisfies the following constraint:

Fi
*Fj = 0. (5-134)

Finally, mapping the block-matrix notation back to thez-domain, we see that the vecto

CMA cost function with GSC for a sub-Gaussian input alphabet is minimized if and o

if

F(z) = UD(z)P, (5-135)

whereU is an arbitraryn × n unitary matrix,D(z) is ann × n diagonal matrix with ele-

ments of the formz–D whereD is an arbitrary delay value, andP is ann × n real permuta-

tion matrix.❏

In n× 0n T n–( )×

i 0=

M N 1–+

∑
j i 1+=

M N+
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C H A P T E R 6

C O N C L U S I O N S A N D

F U T U R E R E S E A R C H

6.1 CONCLUSIONS

We have proposed several new algorithms for blind multiuser detection. The ins

tion for these algorithms is drawn from two time-tested single-user blind algorithms

constant-modulus algorithm (CMA) and the decision-directed phase-locked loop (P

The proposed detectors have good performance, low complexity, and fast converg

We have demonstrated the effectiveness of these algorithms in a wide variety of co

including a uniform linear array application and a code-division multiple-access syst

In Chapter 3, we have reviewed the basic structure of a first-order and a second

phase-locked loop. We have analyzed the dynamics, both theoretically and experime

of these PLLs. We have shown that there exists a minimum step size that guarantee

vergence of the PLL within a finite number of symbols. Unfortunately, the structure of

conventional PLL does not extend to multiple dimensions, so we have manipulate

update equations to develop an alternative model for the PLL, which is shown in Fig.

Using this alternative model, we have proposed the multidimensional phase-locked



286

at

ate

oth a

se for

ols.

own

com-

on a

ter-

hown

hen

itary

4-3 is

can,

ise, we

CM

con-

ha-

se of

these

ector
(MPLL), which is illustrated in Fig. 3-9. The MPLL is a decision-directed algorithm th

exploits the discrete nature of digital communication signals in order to blindly estim

and resolve a unitary ambiguity. We have experimentally analyzed the dynamics of b

first-order and second-order MPLL. There exists a minimum step size, as was the ca

the PLL, that guarantees convergence of the MPLL within a finite number of symb

Finally, when compared to JADE and EASI, for various unitary channels, we have sh

that the MPLL offers fast convergence, excellent steady-state performance, and low

plexity.

In Chapter 4, we have proposed the vector CMA cost function, which is based

unique generalization of the CMA cost function. For this cost function, we have de

mined the local minima both in the absence and in the presence of noise. We have s

that in the absence of noise, this cost function is minimized only by unitary matrices w

the input alphabet is non-CM (Theorem 4-3), and by both unitary and non-un

matrices when the input alphabet is CM (Theorem 4-4). A consequence of Theorem

that the vector CMA detector is compatible with highly shaped input alphabets and

therefore, be used on system that approach Shannon capacity. In the presence of no

have demonstrated that the vector CMA has near-MMSE like performance. For a

input alphabet, we have proposed the vector CMA cost function with Gram-Schmidt

straint (GSC). This cost function is minimized only by unitary matrices for all input alp

bets. Unfortunately, the elimination of the undesirable minima comes at the expen

higher complexity. We have also presented detailed implementations of both of

detectors. Finally, we have compared the performance and complexity of both the v
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CMA and vector CMA with GSC detectors to other known CMA-based blind multiu

detectors for a multisensor receiver and a synchronous CDMA application.

In Chapter 5, we have extended the vector CMA cost function to channels

memory. In the absence of noise, we have shown that the vector CMA cost functi

minimized by both unitary and non-unitary matrices when the input alphabet is sub-G

sian. For non-sub-Gaussian input alphabets, this cost function proves to be usele

expected. In order to eliminate the undesirable local minima, we have also extende

vector CMA cost function with GSC to channels with memory. In the absence of no

this cost function is minimized only by unitary matrices for a sub-Gaussian input alpha

As with memoryless channels, the elimination of the undesirable local minima com

the expense of increased computational complexity. We have included a detailed i

mentation of a reduced-complexity vector CMA with GSC detector. We have also sh

that in the presence of noise, the performance of optimal vector with GSC detec

nearly identical to that of the optimal MMSE detector. Finally, using a multisen

receiver with multipath and an asynchronous CDMA application, we have compare

performance of the vector CMA with GSC detector to that of a forward-backward LP

decorrelation CMA detector.

6.2 FUTURE RESEARCH

6.2.1 MPLL Convergence

The computer simulations in Chapter 3 suggest that the first-order MPLL does in

converge to the desired stable point for an appropriately chosen step size. We cur

lack a rigorous mathematical proof of convergence for this first-order MPLL, which m
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have provided us insight into the nonlinear behavior of higher order systems, such a

second-order MPLL. It may be possible to derive it by using a multidimensional gene

zation of the Fokker-Planck equation, which has been used to provide convergence

first-order PLL [32].

6.2.2 Fading Channels

Throughout this dissertation, we assumed that the channel transfer function is

tionary. We have, in fact, exploited this property in the implementation of the vector C

with GSC detector. While this assumption is valid in some cases, it does not always r

all real-world applications. In fact, many applications are described by either fading c

nels or rapidly time-varying channels. For these channels, there is a need to speed

convergence of the proposed detectors. All of the adaptive algorithm described in thi

sertation are designed in the spirit of the LMS algorithm; the instantaneous estima

the gradient are used in place of their true values. One possible approach to increa

rate of convergence is to design algorithms similar to the recursive least-squares

rithm. The resulting algorithms would be relatively more complex, but the greater spe

convergence would enable them to work well on both fading channels and rapidly t

varying channels.

6.2.3 Undesirable Local Minima for FIR Linear Detectors

The fundamental work of Benvenisteet al., Godard, Foschini, and Shalviet al. on the

convergence characteristics of the constant-modulus algorithm for infinite-length e

izers has recently been examined and extended to finite-length equalizers by Ding

[89,90] and Johnson [91]. Ding and colleagues have shown that for a QAM input alph
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and a broad class of non-pathological (minimum-phase channels) channels, there

undesirable local minima, which do not correspond to an open eye diagram. The C

therefore suffers from undesirable local minima when the channel has memory an

equalizer is FIR.

An open area of research is to extend the analysis presented by Ding and hi

leagues to the vector constant-modulus algorithm. These results would apply on

square multiuser channels and finite-length linear detectors. In the analysis, it may b

sible to determine the class of channels for which vector CMA fails to converge to

desired local minima and also to develop techniques which can prevent misconverg

For a tall multiuser channel, as we have shown in Chapter 5, we do not expect that

will exist undesirable local minima because it can be inverted by a FIR linear dete

This conclusion still needs to be confirmed.
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