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Summary

Intensity modulation and direct detection (IM/DD) is used in nearly all optical

communication applications, such as wireless infrared communication links, inter-satellite

links, and fiber-optic communications. IM/DD can be implemented using cheap and

simple components. Pulse position-based modulation is a power efficient scheme that is

used with IM/DD.

The objective of this thesis is to develop and analyze new bandwidth efficient turbo-

coded modulation schemes that are well-suited to those applications that use pulse

position modulation (PPM). For this purpose, the study begins with the development of a

new modulation scheme that offer higher spectral efficiency than traditional PPM and

multiple PPM (MPPM) schemes. The new modulation scheme is called two-level two-

PPM (2L2PPM) and it is a modified version of the existing MPPM modulation. The

primary modification is to allow the pulses to have more than one amplitude level. Then

two different serial-concatenated trellis-coded modulation (SCTCM) schemes with

iterative decoding at the receiver will be presented. The first system is a serial

concatenation of two convolutional encoders and a spread-random bit-interleaver
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combined with 2L2PPM. The second system has a rate-one inner code and is combined

with overlapping PPM. Both SCTCM systems outperform previously reported coded

modulation schemes by offering up to a 57% increase in spectral efficiency for the same

power efficiency and decoding complexity.

In designing the new SCTCM codes, we started with the derivation of performance

bounds of serial-concatenated convolutional codes (SCCC) developed in [1], [2], and

modified them for the case of trellis-coded modulation (TCM) inner codes and spread-

random bit-interleavers. Our modified design criteria will produce an increase in the

effective Euclidean distance of the SCTCM codes for very large interleaver sizes

compared with original SCTCM codes presented in [3]. Depending on the design criteria,

we used a random search to find good inner codes that suit the two SCTCM schemes. Both

Monte Carlo simulation results and upper bounds on the bit-error probability were used to

evaluate the proposed turbo-coded modulation techniques. The proposed systems offer

high spectral and power efficiency with low complexity decoding. The spectral efficiency,

power efficiency, and decoding complexity of the proposed turbo-coded modulation

schemes are addressed and compared to some previous trellis-coded modulations systems.
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Chapter  1

Introduction

The widespread use of and demand for personal computers and portable

communications terminals have created a strong interest in high-speed wireless links to

connect portable devices and to establish local-area networks (LANs). Wireless links need

to be compact and robust against background noise and interference from other users.

Infrared is a strong candidate as a transmission medium for indoor wireless

communications. It offers several benefits over radio. First, it has an enormous amount of

unregulated bandwidth, and no interference occurs between links that operate in rooms

separated by barriers. Moreover, when the link uses intensity modulation and direct

detection, the nature of the wave carrier and the area of the detection devices make the link

immune to multipath fading [4], [5], [6].

The most practical modulation technique in a wireless optical system is intensity

modulation and direct detection (IM/DD). In this modulation technique, the information is

modulated using the instantaneous power of the carrier and special detection devices such
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as photocurrent diodes are used to convert the instantaneous power of the signal to an

electrical current. This detection technique is simpler than coherent detection and can be

implemented using inexpensive circuits. IM/DD is used in many optical communication

applications, including wireless infrared communications [5], [6], [7], fiber optic

communications [8], [9], deep-space communication [10], and intersatellite link (ISL)

applications [11], [12]. Simpler modulation types that are commonly used with IM/DD

channels are on-off keying (OOK), pulse position modulation (PPM) [13], and multiple-

pulse position modulation (MPPM). OOK is the simplest modulation that can be used with

IM/DD. Pulse position-based modulation (PPM and MPPM) schemes are well suited to

IM/DD because they have lower duty cycles leading to higher peak to average power

ratios than the other conventional modulation schemes. PPM is known for its power

efficiency, but it requires more bandwidth than OOK modulation scheme. MPPM,

suggested by Sugiyama and Nosu in [14], is a generalization of PPM and requires less

bandwidth than PPM.

To improve the power efficiency of optical links, several trellis-coded modulation

(TCM) schemes have been proposed. In [15], Lee and Kahn introduced the use of TCM

[16] with PPM. They achieved good power efficiencies for different constraint lengths.

However, the spectral efficiency was less than 0.25 bits/s/Hz. Trying to improve the

spectral efficiency of infrared links, Park and Barry proposed a TCM-MPPM system that

achieves improved power efficiency with 0.35 bits/s/Hz spectral efficiency [17], [18]. 
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The class of parallel concatenated recursive systematic convolutional codes, or turbo

codes, was first introduced by Berrou et al. [19]. The original idea of turbo coding is to

combine two elements: parallel concatenation of two or more codes separated by a

random interleaver at the transmitter side, and iterative decoding at the receiver side. The

use of turbo codes with iterative decoding schemes achieved reliable data communications

at low signal-to-noise ratios (SNRs), very close to the Shannon limit, on the additive white

Gaussian noise (AWGN) channel and the interleaved Rayleigh fading channels. Motivated

by the great performance results of this new class of codes, many researchers started

analyzing these codes to extract and understand their power sources. Among these

researchers are Benedetto and Montorsi [20]-[24], Perez et al. [25], Robertson [26], and

Hagenauer et al. [27]. An equally important new class of serial concatenation codes was

introduced by Benedetto et al. in [2]. This new serial concatenation scheme uses a random

interleaver between the inner and outer codes and is decoded with an iterative decoder.

Parallel and serial-concatenated turbo codes were initially developed for binary

modulation schemes, binary phase shift keying (BPSK) and on-off keying (OOK).

Because many communication applications need spectrally-efficient modulations schemes

(nonbinary modulations), the extension of turbo codes began to expand to nonbinary

modulation. The first approach to utilize the substantial gain of turbo codes in the

spectrally-efficient modulation schemes was presented by Le Goff et al. in [28]. With this
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method, high coding gains were achieved over other conventional TCM schemes for both

AWGN and fading channels. 

Additionally, TCM [16], known to be a bandwidth-efficient modulation scheme, was

combined with parallel concatenation scheme to form three types of parallel concatenated

TCM schemes; namely, turbo TCM (TTCM), parallel concatenated TCM (PCTCM), and

turbo-coded pragmatic TCM (TCPTCM). The TTCM scheme, which has been reported in

[26], [29], [30], [31], [32], uses two TCM encoders and a symbol interleaver. Some

improvements on the TTCM were reported in [33] and [34]. The PCTCM scheme was

reported in [35], [36] and it achieves higher interleaver gains, hence more performance

gains, but it is more complex to implement than TTCM. A modification of the above

scheme was presented in [37], [38]. This scheme is called symbol interleaved parallel

concatenated TCM (SIPCTCM). As the name implies, the modification is to have symbol

interleaving instead of bit interleaving, which will increase the accuracy of the iterative

decoder because it does not have to convert from symbol probabilities to bit probabilities.

TCPTCM is the least complex of the three scheme types and it was introduced in [39]. The

idea of TCPTCM is to apply turbo codes to pragmatic TCM. TCPTCM has a simpler

design and shorter interleaver than PCTCM [35], [36]. However, all of the above turbo

TCM schemes, which are based on parallel concatenation, have two disadvantages. These

schemes do not utilize all the available interleaver length, which will result in sacrificing

some interleaver gain. Secondly, the constituent codes need large constraint length to
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avoid parallel transitions in the trellis, and this disadvantage increases the decoding

complexity.

In addition to the previous studies, Benedetto et al. suggested a serial-concatenated

trellis-coded modulation (SCTCM) with iterative decoding [3]. The rate of the proposed

code is . The proposed system is a serial concatenation of a convolutional

outer code, followed by an interleaver, which is followed by a TCM inner code. Another

serially concatenated punctured TCM, with a rate of , has been suggested by

Ogiwara and Bajo in [40]. To achieve this rate with two TCM codes, the parity bits are

alternatively punctured. In this method, symbol interleavers were used instead of bit

interleavers. Two problems are associated with using symbol interleavers. The first is the

restriction of avoiding parallel transitions, which increase the decoding complexity to at

least . The second problem is the limitation of the interleaver gain because the size

of the symbol interleavers is  the size of bit interleavers. 

This thesis considers the application of SCTCM with iterative decoding to improve the

power and bandwidth efficiencies of optical communications and all other communication

systems that use IM/DD. Chapter 2 covers necessary background material on optical

communications. Chapter 3 discusses issues related to turbo codes, iterative decoding, and

turbo-coded modulation schemes. Chapter 4 studies a new modulation scheme that is

suitable for optical communications. The uncoded BER performance of this modulation

2b 2b 2+( )⁄

b b 1+( )⁄

22 b 1–( )

1 b 1–( )⁄
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technique is compared with OOK, PPM and MPPM modulation schemes that are already

used in this field. The cutoff rate is employed to evaluate the power efficiency of this

modulation when combined with coded modulation techniques. In Chapter 5, a SCTCM is

constructed. Both the coding and iterative decoding of this system are described. The

performance error bounds for serial-concatenated convolutional codes was modified for

TCM inner codes to derive the design criteria for the SCTCM encoder. Monte Carlo

simulations and performance error bounds were used to evaluate the performance of this

system. The complexity of the iterative decoding of SCTCM is compared to that of

previous TCM techniques. In Chapter 6, a less complex SCTCM encoder, with rate one

inner code, is presented. The performance of this technique is studied using Monte Carlo

simulations and performance error bounds. Finally, Chapter 7 summarizes the key results

of this thesis and suggests directions for future research on this topic.

The contributions of this work include:

• Introduction of two-level two-pulse position modulation (2L2PPM), a new

modulation scheme which has better bandwidth efficiencies than PPM and

MPPM modulations. Also, the new modulation scheme is found to outperform

OOK in terms of power efficiency.

• Introduction of a SCTCM combined with 2L2PPM and iterative decoding that

is well-suited to optical communication systems. This scheme outperforms
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previously reported coded modulation by up to a 57% increase in the spectral

efficiency, and offers the same power efficiency.

• Introduction of a low-complexity SCTCM, with rate-one inner code combined

with overlapping pulse position modulation. This SCTCM scheme offers the

same spectral efficiency as the previous one, but has better power efficiency

performance in the low range signal to noise ratio.

• Development of new design criteria for SCTCM systems with S-random

interleavers are presented. These design criteria offer up to a 100% increase in

the effective minimum Euclidean distance of SCTCM schemes.
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Chapter  2

Coded Modulation for Optical 
Communication Systems

Intensity modulation with direct modulation (IM/DD) favors low-duty cycle

modulation schemes such as pulse position modulation (PPM) and multiple PPM

(MPPM). In the following, the channel model over IM/DD is introduced. Then, a brief

summary is given about some of the modulation techniques used in this area. Finally,

some of the coded modulation techniques are reviewed.

2.1  Channel Model

The most practical modulation technique in wireless and nonwireless optical

communication systems is intensity modulation and direct detection (IM/DD). The

 modulation systems are simpler and cheaper than coherent modulation

techniques. The idea of IM/DD stems from transmitting the information on the

instantaneous power of the carrier signals. The receiver has a photo-diode that responses

IM/DD
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to the received signal by generating an electrical current that is proportional to the

instantaneous power of the received signal.

The appropriate channel model for optical communication systems depends on the

intensity of the background noise. For the case of low background noise the received

signal is modeled as a Poisson Process with rate , where  is

proportional to the instantaneous optical power of the received signal, and  is

proportional to the background light. The channel is called quantum limited if  is zero.

If  is very large and the receiver exploits a wideband photodetector, or if the

background light is very intense even after using narrowband optical filters, then the

optical communication channel, with intensity modulation (IM/DD), can be accurately

modeled by a baseband additive white Gaussian noise (AWGN) model [5]

, (1)

where  represents the instantaneous current of the receiving photodetector, 

represents the instantaneous optical power of the transmitter, and  depicts the additive

white Gaussian noise with  power spectral density. In this model, the instantaneous

transmitted power  is constrained by

, (2)

λr t( ) λs t( ) λn+= λs t( )

λn

λn

λn

y t( ) x t( ) n t( )+=

y t( ) x t( )

n t( )

No 2⁄

x t( )

Pt
1

2T
------

T ∞→
lim x t( ) td

T–

T�
=
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where Pt is the average optical power at the transmitter. From the above equation, we can

see that the amplitude of  is constrained, while the energy of  determines the

performance of the system. By allowing  in the modulation scheme to have a very

small duty cycle we can produce high energy modulation schemes that will definitively

outperform conventional modulation schemes such as QAM that are appropriate for radio

or wireless channels. Hence, special kinds of modulation schemes are introduced under

the constraints of IM/DD.

2.2  Modulation Schemes

The common and simple modulation scheme that can be used with IM/DD channels is

on-off keying (OOK) modulation. OOK works as follows: for the average optical power

 and bit rate of , the OOK transmitter emits a rectangular pulse of duration  and

of intensity  to convey a one bit and no pulse to convey a zero bit. The rough estimate

of the OOK spectral efficiency is 1.0 bits/s/Hz.

For high SNR, the minimum Euclidean distance ( ) between any pair of valid

signals is

. (3)

x t( ) x t( )

x t( )

P Rb 1 Rb⁄

2P

dmin

dmin
2 min

i j≠
xi t( ) xj t( )–( )2 td

�
=
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The minimum Euclidean distance ( ) could be used to estimate the bit-error

probability of OOK as follows:

. (4)

PPM [13] is another modulation scheme that is common with IM/DD modulation

systems. PPM is known for its good power efficiency, however, it has less spectral

efficiency than OOK. In the PPM format, there are  symbols, each of duration . Each

symbol is divided into  chips (with duration ). The PPM duty cycle is

. The transmitter sends an optical pulse in only one of these chips at a time.

The intensity of each pulse is . The spectral efficiency of PPM modulation is 

(5)

Multiple-pulse position modulation (MPPM), suggested by Sugiyama and Nosu [14],

is a generalization of PPM and has a higher spectral efficiency than the PPM. In MPPM,

each symbol is divided into  chips and the transmitter sends  pulses every symbol

duration. The number of possible signals is

(6)

dmin

Pr bit error[ ] Q
dmin

2N0

--------------� �
� �
� �

Q
P

RbN0 2⁄
------------------------� �
� �

=≈

L T

L Tc T L⁄=

αPPM 1 L⁄=

LP

ηPPM log2 L( ) L⁄   bit/s/Hz.=

n w

L n
w
���
���

 signals.=
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The duty cycle of MPPM is . The spectral efficiency of MPPM

modulation is

(7)

Furthermore, overlapping PPM (OPPM), suggested in [14] and used in [41], is another

form of pulse modulation scheme. For this modulation, each  bits are mapped into one of

 symbols and transmitted to the channel. The symbol interval of duration  is

partitioned into  chips. Each chip has a duration . The transmitter sends a

rectangular optical pulse that spans  chips beginning from any of the first

 chips to convey one of the  symbols. The reason for using w consecutive

chips for every symbol is to increase the spectral efficiency. As we can see, information is

conveyed by the positions of the chips, and the symbols are allowed to overlap; this is why

this modulation format is called overlapping PPM. The most important parameters of

modulation scheme are , , and , and only two of them completely define the

modulation scheme. The three parameters are related by

. (8)

The duty cycle of this modulation scheme is . For an information rate of 

bits/second, the bandwidth requirement of the uncoded modulation is , where

. So, the bandwidth requirement of the noncoded OPPM compared with

αMPPM w n⁄=

ηMPPM log2 L( ) n⁄   bit/s/Hz.=

b

L 2b= T

n T n⁄

w

L n w– 1+= L

L n w

L n w– 1+=

α w n⁄= Rb

n wT( )⁄

T log2 L( ) Rb⁄=
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the bandwidth of the on-off keying (OOK) modulation scheme could approximated by

[42]

. (9)

which results in a spectral efficiency of

(10)

2.3  Coded Modulation Schemes

To improve the power and spectral efficiencies of infrared links, trellis-coded

modulation schemes [16] were used. In [15], Lee and Kahn introduced the use of trellis-

coded modulation (TCM) [16] with PPM. By using 8-TCM-PPM, a range of 7.0-8.2 dB

power efficiency was achieved with a spectral efficiency of 0.25 . In this thesis

the power efficiency is always computed with respect to the power required by OOK

modulation schemes to achieve the same bit-error rate (BER) of . In addition, 8.2-9.4

dB power efficiency was achieved by 16-TCM-PPM; but, the normalized spectral

efficiency of 16-TCM-PPM is 0.19 . Searching for better spectral efficiency TCM

codes, Park proposed the use of MPPM instead of PPM modulations [17]. By using 128-

TCM-MPPM, high power efficiencies of 7.0-8.5 dB were achieved with spectral

efficiency of 0.35 .

BWOPPM Rb⁄ n w⁄
log2 n w– 1+( )
-------------------------------------=

ηOPPM

log2 n w– 1+( )
n w⁄

-------------------------------------  bit/s/Hz.=

bit/s/Hz

10 6–

bit/s/Hz

bit/s/Hz
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2.4  Summary

In this chapter, we have seen several types of pulse position-based modulation

techniques: PPM, MPPM and OPPM. We have also shown some of the coded modulation

schemes in this area. In the following, Fig. 1 shows the power efficiency versus the

spectral efficiency of PPM and MPPM, for different values of . For comparison

purposes, we also showed the performance of OOK. The y-axis represents the power

efficiency compared to the OOK power requirement for BER = . The x-axis

represents the spectral efficiency in terms of bits/s/Hz. The figure shows that PPM

modulation scheme is the most power efficient modulation scheme, and that MPPM

modulation outperforms PPM in the spectral efficiency. In addition to the uncoded

modulation schemes, the figure shows the performance of 8-TCM-PPM, 16-TCM-PPM

[16], and 128-TCM-MPPM [17].

n

10 6–
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Chapter  3

Concatenated Codes

Before considering the new coded modulation schemes proposed in chapters 5 and 6,

this chapter reviews background material on concatenated codes, including binary turbo

codes and turbo coded modulation techniques. Concatenated codes were first introduced

by Forney [43]. The structure of concatenated codes consists of two encoders and an

interleaver connected in series, a nonbinary outer code, and a binary inner code. Usually,

the interleaver is implemented as a rectangle that writes row-wise and reads column-wise.

The role of the interleaver is to break up the error bursts produced by the inner decoder.

Moreover, the interleaver is seen as a device that transforms the outer channel into a

memoryless channel. The classical method of concatenation is decoded by a series of

hard-decision decoders for the inner code, followed by a hard-decision decoder for the

outer code. The performance of such a system can be improved by using a soft-output

decoding algorithm such as MAP or SOVA to decode the inner code. 
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In 1993, a new parallel concatenated code was introduced by Berrou et al. [19]. This

new parallel concatenated code with iterative decoding scheme is called a turbo code. A

brief explanation of binary turbo codes follows.

Section 3.1 reviews binary turbo codes and iterative decoding technique. Then,

different types of turbo coded modulation techniques are reviewed in Section 3.2.

3.1  Binary Turbo Codes

Berrou’s turbo code [19] is a parallel concatenation code that includes at least two

constituent codes, a random interleaver (instead of the rectangular interleaver used in

classical concatenated codes) and iterative decoding. The random interleaver and iterative

decoding elements were discovered to increase the performance of code concatenation

systems. In 1996, Benedetto et al. [2] introduced new serial concatenation codes, which

also had at least two constituent codes, a random interleaver, and iterative decoding.

Similar to the parallel concatenated codes, the strength of the serial concatenation comes

from the random interleaver and iterative decoding. The following discussion focuses on

the basics of parallel concatenated codes, serial-concatenated codes, and iterative

decoding.

3.1.1  Parallel Concatenated Codes (Turbo Codes)

Figure 2 shows the structure of a turbo encoder, which consists of two encoders and a

random interleaver. Both encoders are systematic convolutional codes. The same
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information is encoded twice in the case of two encoders, but the information bits are

interleaved by the bit-wise random interleaver before the second encoder. Although the

information bits are encoded twice, they are transmitted once to increase the code rate.

The role of the multiplexer/puncturer block (see Figure 2) is to control the code rate by

puncturing some parity bits from the encoders’  outputs. The code components do not have

to be identical. 

With recursive encoders, the length of the interleaver plays an important role in the

performance of turbo codes [21][23][24][25]. More importantly, increasing the

interleaver’s length does not add complexity to the iterative decoders of the turbo codes. A

great advantage of turbo codes is that one can increase the performance without increasing

the decoding complexity, as far as latency and cost are affordable.

Turbo codes are linear because their components are linear and they are analyzed

using the same methods used for linear codes. For recursive systematic convolutional

codes, the generator matrix is

, (11)

where  stands for the systematic part, which appears directly in the output, and the ratio

 is responsible for the recursive nature of the turbo codes. 

GRSC D( ) 1
g1 D( )
g2 D( )
---------------=

1

g1 D( ) g2 D( )⁄
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For an input data sequence  of weight , the weight of the turbo code output  is

, where  and  are the parity bit sequences of the two

encoders, respectively. The role of the interleaver is to reorder the data sequence , such

that  and  are not small simultaneously. If  produced  with small weight

and small probability, the probability that the interleaved version of  will produce 

with small weight is very small. Also, it is known that finite weight code outputs require

that the polynomial  be divisible by , which means that  is greater than

or equal to  for nontrivial . Therefore, the interleaver must be selected in a

manner that avoids generating simultaneous low weight parity outputs.

gff1 D( )
gfb1 D( )
-------------------

gff2 D( )
gfb2 D( )
-------------------

π Multiplexer
&

Puncturer

uk

pk
1

ck

pk
2

Figure 2. Turbo encoder structure.
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In addition to previous studies, Perez et al. studied the turbo code spectrum. Their

analysis shows that for any code word of Hamming distance , there is an effective

multiplicity number , which is the number of possible code words of Hamming

distance . The smaller the effective multiplicity, the better the performance of the code

becomes because the number of errors that correspond to the code word of weight  will

be less. Perez et al. states that turbo codes have thin code spectrum in contrast to

convolutional codes, which have a dense code spectrum [25].

The bit-error rate (BER) of turbo codes might be upper bounded, if we assume the use

of maximum likelihood (ML) decoders. The BER for a BPSK modulation and a block

code of length , in the presence of additive white Gaussian noise (AWGN) [20][22] is

shown as

, (12)

where  is the number of code words of weight , and  is the average weight of

information sequences corresponding to code words of weight . The union bound

approximation of BER is valid in moderate and high SNR, because the above sum is

dominated by code words with weight equal to the minimum free distance of the code.

d
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d

d
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The union bound was also used to approximate the BER of turbo codes in moderate

and high SNR [24]:

, (13)

where  is the effective free distance, defined as , where 

is the weight of the lowest weight parity sequence of one of the recursive systematic

convolutional (RSC) encoders, caused by an input sequence of weight 2.

3.1.2  Serial-Concatenated Codes

Serial-concatenated codes, with iterative decoding, were introduced by Benedetto et

al. [2]. These new serial concatenation schemes use a random interleaver between the

inner and the outer codes, and it is decoded with an iterative decoder. The information bits

are encoded by the outer encoder. The output of the outer encoder is interleaved by the bit-

wise random interleaver and then encoded by the inner encoder. With the assumption of

maximum likelihood receiver and uniform interleavers, the analysis of the BER reveals

the following upper bound [2]

, (14)

Pb Adfree
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when the inner code is nonrecursive. However, for recursive inner codes, the BER upper

bound becomes

, (15)

where  is the size of the interleaver,  is the free distance of the outer code,  is the

minimum weight of sequence of the input code corresponding to weight ,  is a

positive constant, and , , and  are positive constants that depend on

codes. Serial-concatenated codes are reported to not have error floor compared to parallel

concatenated codes [2]. When the inner code is nonrecursive, equation (14), the exponent

of  is always positive, which means there is no interleaving gain. However, when

recursive inner codes are used, equation (15), the exponent of  is always negative.

Hence, the inner component code should be recursive. Also, we can see that the

interleaving gain is affected by the free Hamming distance of the outer code.

3.1.3  Iterative Decoding

Both parallel and serial-concatenated codes use iterative decoders. The performance of

these suboptimal decoders approaches the bound of maximum likelihood (ML) decoders

for the moderate and high SNRs. Berrou et al. used the symbol-by-symbol maximum a

Pb

BevenN
df

o–
2

--------
exp

df
o
df eff,

2
–

2
--------------------RcEb Nb⁄� �
� �
� �

                        , for df
o
 even

BoddN
df

o 1+
2

--------------–
exp

df
o

3–( )df eff,
2

2
------------------------------- hm

3( )
+– RcEb Nb⁄� �

� �
� �

, for df
o
 odd���

�
� ��

�
�

≤

N df
o

hm
3( )

3 αm

Bnon-recursive Beven Bodd

N

N



23

posteriori (MAP) algorithm reported by Bahl et al. in [44]. The algorithm is known as the

BCJR algorithm. Most of the current turbo decoders use a modified version of the BCJR

algorithm. Many researchers have studied the iterative decoding algorithms for turbo

codes [45], [46].

A modification of the BCJR algorithm is utilized in building soft-input soft-output

(SISO) maximum a posteriori (MAP) modules to decode parallel and serial-concatenated

codes [46], [47], [48], [49]. The SISO algorithm can be implemented in both

multiplicative and additive forms. Figure 3 shows the structure of the SISO module, a

four-port device that is built on a certain code. The module accepts two sequences of

probabilities about the input and output of the code, and it produces two sequences of

probability distributions about the input and output of the code. The inputs are 

and . The outputs are , and . The two inputs,  and

, represent a priori information about the input and output, respectively. The

device uses its input information, which is called extrinsic information, and knowledge

about the code to produce its outputs, which represent the a posteriori information about

the input and output. The SISO module, which is used in decoding parallel and serial-

concatenated codes, is general for binary and nonbinary codes.

Pk u I;( )

Pk c I;( ) Pk u O;( ) Pk c O;( ) Pk u I;( )

Pk c I;( )



24

3.2  Turbo-Coded Modulation Techniques

Parallel and serial-concatenated turbo codes were designed for binary modulation

schemes. The need in many communication applications for bandwidth efficient

modulations schemes (non-binary modulation), led to extensions of turbo codes to non-

binary modulation. This section of research provides a detailed overview of the structure

and operation of the extensions of turbo coding schemes for non-binary modulation. We

will start with a simple combination of turbo codes and mapping of bandwidth efficient

modulation schemes. Then, we will discuss turbo TCM (TTCM), parallel concatenated

TCM (PCTCM), and serial-concatenated TCM (SCTCM). Finally, we will address the

multilevel coding (MLC) strategy and various research done to use turbo codes as

component codes in MLC.

3.2.1  Turbo Codes Combined With Gray Mapping

Le Goff et al. presented the first approach to utilize the substantial gain of turbo codes

in bandwidth-efficient modulation schemes [28]. They proposed the utilization of binary

SISO
ModuleP u I;( )

P c O;( )P c I;( )

P u O;( )

Figure 3. The SISO device.
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turbo codes as component codes of a multilevel code, with higher order modulation (8-

PSK, 16-QAM, 64-QAM) and Gray mapping. The systematic outputs form the higher-

order bits and the parity code outputs form the lower-order bits of a symbol vector. The

system has an interleaver between the code and the Gray mapper to obtain symbols that

are affected by uncorrelated noises. The spectral efficiency of this system is

 bits/s/Hz, where  is the rate of the turbo code and  is the size of the

modulation signal constellation. With this method, higher coding gains over conventional

TCM schemes for both AWGN and fading channels are achieved. The following data

show the simulation results of this scheme, see Table1.

Table 1. Coding gain at a BER equal to 10-6 for a turbo code over a 
Gaussian Channel [28].

Turbo Rate 1/2 2/3 3/4 2/3

Modulation 16-
QAM

8-PSK 16-
QAM

64-
QAM

Spectral Efficiency 
(bits/s/Hz)

2.0 2.0 3.0 4.0

Coding gain at 

 over uncoded 
modulation

6.0 dB 5.5 dB 7.8 dB 5.8 dB

Coding gain at 

 over 64 state 
TCM

2.4 dB 1.9 dB 2.6 dB 2.2 dB

Γ R M2log= R M

10 6–

10 6–
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3.2.2  Turbo Trellis-Coded Modulation (TTCM)

Turbo codes provide significant coding gains over AWGN and fully interleaved

Rayleigh fading channels. However, this coding gain is achieved only through use of more

bandwidth (extra parity bits have to be transmitted). In this section, we discuss the use of

turbo codes in conjunction with trellis-coded modulation (TCM), which is known as a

bandwidth-efficient modulation scheme [16], [50]. The addition of such a combination is

that coding gains can be achieved without bandwidth expansion. 

3.2.2.1  Parallel Concatenated TCM

The first coded modulation scheme, called turbo TCM (TTCM), is reported in [29],

[32]. In [30] Ungerboeck codes are employed as constituent codes in a turbo code. The

idea of this structure stems from two incentives. First, Ungerboeck codes combine

modulation and coding by optimizing the Euclidean distance and achieve high spectral

efficiency through signal set expansion [16]. Second, soft-output decoding algorithms

exist for decoding these codes [50]. When Ungerboeck codes are used as constituent codes

in a turbo coding scheme, the coding gain of the turbo coding scheme can be combined

with the spectral efficiency of the TCM scheme. The encoder structure is shown in

Figure 4.

The decoder structure is similar to the one used for the binary case, with a few changes

to make it fit the nonbinary encoder. The first difference is that the interleaver has to work

on the input symbols and not on the input bits themselves. Because the systematic
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component and the parity are not transmitted separately, the systematic part of the second

encoder is deinterleaved to retain the order of the systematic outputs as they are in the

output of the first encoder, which is another constraint on the interleaver. So, for the two-

bit symbols (8-PSK and 2 bits/s/Hz), the interleaver has to map symbols in odd positions

to odd positions and symbols in even positions to even positions. Also, a deinterleaver has

to be introduced after the second encoder to ensure the correct order in which the symbols

are transmitted. For the  TTCM, there are  transitions from each state of

the encoders. As a result, the soft-outputs generated and passed between the component

decoders are vectors of length , of the form , where  and

. 

Pairwise
Deinterleaver

8 PSK
Mapper

Pairwise
Interleaver

TT T

8 PSK
Mapper

TT T

Information pairs
(d1, d2, d3, d4, d5, d6) =
00,01,11,10,00,11

00,01,11,10,00,11

11,11,00,01,00,10

6, 7, 0, 3, 0, 4

0, 2, 7, 5, 1, 6

0, 3, 6, 4, 0, 7

 = (d3, d6, d5, d2, d1, d4)

even positions to even positions
odd position to odd positions

Selector

Output

8PSK symbols

8PSK symbols

Figure 4. T-TCM encoder, shown with an example of 8-PSK 
modulation and N = 12 [32]. 

b b 1+( )⁄ 2b 1–

2b λ0 λ1 λ2 ...... λK, , , ,[ ] K 2b=

λi Pr dk i=( )log=
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Furthermore, we note that the symbols are punctured before transmission, which

means that the systematic information for these punctured symbols is not available to the

two decoders. The solution for this is to obtain the systematic information of the punctured

symbols in the first decoder from the second decoder, and vise versa. By passing the

systematic information from one decoder to another, two pieces of information are passed

from one decoder to another: extrinsic information and systematic information (channel

information). For the first stage, the first decoder estimates the systematic information of

its punctured symbols, because they are not available yet. This estimation takes place with

the assumption that the parity bits are equally likely. The calculation takes place in the

block called “metric”  in Figure 5. As reported in [29], a coding gain of about 1.7 dB can

be achieved over Ungerboeck’s TCM codes at a BER of . Also, it achieved about a

0.5 dB over the results of [28], in which a Gray mapping is used.

In the scheme of [29], parallel transitions occur, because one of the data lines  or

 is not encoded. The occurrence of parallel transitions causes one error event to start

appearing in both encoders simultaneously, which limits the minimum free distance of the

turbo encoder. One solution is to prevent parallel transitions, but doing so will result in

avoiding the best-known TCM codes, which are know to have parallel transitions with

small constraint lengths. An alternative solution is to use a mapper after the interleaver, as

suggested in [33], to change the order of the bits in every symbol. Hence, parallel

transition in one encoder results in a multistep error in the other encoder. This idea

10 4–

D1

D2
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Dec1

Dec2

Symbol

Metric

Interleaver

Deinterleaver
Hard-Decision

Deinterleaver

Interleaver
Metric

Metric
Noisy channel outputs (a, b, c, e, f)

(1-m)log2

subsequent

first decoding

(c, f, e, b, a, d)
0

vector of 2m-1 LLR’s

refers to passing 2m-1 length vectors

stages

Figure 5. Turbo trellis-coded modulation - decoder structure [32].
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involves using the best-known small constraint length codes with parallel transitions. This

modification improves the performance of the turbo-TCM scheme for the first few

iterations of the decoding. However, the performance of both schemes becomes identical

as the number of iterations increases.

In [34], an improvement of Robertson’s system has been introduced through removal

of two obstacles. The first obstacle is the odd and even constraint on the interleaver.

Second, in Robertson’s system, the extrinsic and channel parts are transferred from one

branch of the decoder to the other, although the extrinsic information is the only part that

needs to be transferred between the two branches of the decoder of the modified system.

Removing the first constraint on the interleaver cuts the delay to half, and removing the

second constraint simplifies the decoding process. The simulation of this new system

shows that a BER of  is obtained at 0.4 dB from the Shannon limit for the case of a

two-bits/symbol transmission with 8PSK modulation.

Another scheme, called parallel concatenated TCM, is reported in [35], [36]. The

encoder consists of two TCM encoders, two interleavers, and the modulation mapper. In

this new scheme, the data sequence  is split to two sequences,  and . The

complete data sequence is fed to both encoders. The first TCM encoder takes the two data

sequences and produces a parity bit per symbol. Then, the two data sequences are

interleaved separately by the two interleavers. The output of the interleavers is fed to the

second TCM encoder to produce the second parity bit per symbol. The first data sequence,

10 6–

D D1 D2
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together with the output of the first encoder, is fed to the I-channel. The second data

sequence, together with the output of the second encoder, is fed to the Q-channel. 

To improve the scheme’s performance, the effective free Euclidean distance, which is

a fundamental parameter of turbo codes, of the complete encoder is maximized. In the

same reference, two additional mappings were used with the Ungerboeck mapping. The

iterative decoder deals with bit log-likelihoods instead of symbol log-likelihoods. To

achieve that, an algorithm was implemented to convert from symbol log-likelihoods to bit

log-likelihoods. This method takes advantage of the attributes of turbo codes more than

the other schemes. The new scheme is studied over 8-PSK and 16-QAM signal

constellations with a rate of two-bits/s/Hz. The result shows a 1.0 dB from the Shannon

limit for a BER of .

A modification of the above scheme, which is presented in [37], is called symbol

interleaved parallel concatenated TCM (SIPCTCM). As the name implies, the

modification is to have symbol interleaving instead of bit interleaving, which will increase

the accuracy of the iterative decoder because it does not have to convert from symbol

probabilities to bit probabilities. The simulation shows that this scheme converges at a

lower SNR. However, it has a higher error floor than the above schemes. This indicates

that schemes with bit interleaving have a higher effective distance than those with symbol

interleaving.

10 6–
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A less complex scheme than those presented above was introduced in [39]. The idea is

to apply turbo codes to pragmatic TCM. This scheme, called turbo-coded pragmatic TCM

(TCPTCM), has a simpler design and shorter interleaver than PCTCM [35], [36]. It is

worth mentioning that the performance achieved by this scheme is only 1.0 db from the

performance reported by [35], [36] at a BER of .

3.2.2.2  Serially Concatenated TCM

Benedetto et al. suggested a serial concatenated TCM scheme with iterative decoding

[3]. The rate of the proposed code is . The proposed system is a serial

concatenation of a convolutional outer code, followed by an interleaver, which is followed

by a TCM inner code. The outer code is a nonrecursive convolutional code and the inner

code is a recursive TCM code. The TCM code is optimized such that the minimum

Euclidean distance is maximized for the input sequences of weight two. The resultant

minimum Euclidean distance is called the effective free Euclidean distance of the TCM

code and is denoted by . If the free distance of the outer code is denoted by and

the minimum Euclidean distance of the inner (TCM) code resulting from the weight three

10 6–

2b 2b 2+( )⁄

df eff, df
o
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input sequence by , the authors expect the bit-error rate of the serial-concatenated

TCM system to be

, (16)

where Es/No is the M-ary symbol signal-to-noise ratio. The above system has a

performance of 1.1 dB from the Shannon limit, for 8-PSK modulation, 2 bits/s/Hz spectral

efficiency, and interleaver size of 16384.

A serially concatenated punctured trellis-coded modulation, with a rate of 

is presented in [40]. To achieve this rate with two TCM codes, the parity bits are

alternatively punctured. The structure of the system is shown in Figure6. A simulation of

this scheme indicates an improvement on the parallel concatenated system because there

is no flattening effect associated with it, up to BER of . In the simulation, a BER of

 can be realized at Eb/N0 = 4.43 dB.

3.2.3  Multilevel Coded (MLC) Modulation

Multilevel coding (MLC), introduced by Hirakawa et al. in [51], is considered to be an

efficient way to separate error correction and multilevel coding problems. The idea behind
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TCM and MLC is to optimize the code in Euclidean space instead of dealing with the

Hamming distance, which is used in the classical coding techniques.

3.2.3.1  MLC Principles

MLC, as the name implies, is a combination of several error correction codes applied

to subsets of a signal constellation. MLC depends on set partitioning as the TCM. It starts

with partitioning a signal constellation  into  steps, thereby producing a partitioning

chain / / /.../ . The structure of the MLC encoder is shown in Figure7. 

In [51], the multilevel code is decoded suboptimally using a multistage decoder.

Multistage decoders are discussed in [52], [53], [54], [55], [56]. The decoding process

starts with Decoder 1 of  based on the received signal. Then, based on the received

signal and the estimated code word of , Decoder 2 starts decoding . Thus, Decoder

 decodes the code  for i = 2, 3,..., L based on the received signal and the estimated

Enc1
Enc2

Interleaver 8PSK
mapperP1k

dk
dn

P2k Pn

P1n

Figure 6. Serial-concatenated TCM proposed by [40].

S L
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code words of , ,..., , and does not use the higher level codes , ,...,

. Multistage decoders are suboptimal because the decoding at stage  does not depend

on the information from higher level decoders. However, they lower the complexity of

decoding, see Figure 8.

Capacity of MLC systems: Huber et al., in [57], [58], [59], [60], and Kofmann et al.,

in [61], [62], showed that multilevel codes combined with multistage decoding can

achieve the capacity of the modulation schemes.

Design Rules: To design the different code rates of various code branches of the MLC

system, many design rules have been suggested, [63], [64]. Setting the code rates to the

C1 C2 Ci 1– Ci 1+ Ci 2+

CL i

Partition
of

information

C1

u(1) v(1)

.

C2

u(2) v(2)

C3

u(3) v(3)

CK

u(L) v(L)

.

.

AWGN

Optimal
Oru rs û2L-Signal

Mapping Non-

Decoding
Optimal

Figure 7. Multilevel encoder.
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capacity of the levels is called the capacity design rule. Other design rules were reported,

namely, balanced distance rule, coding exponent rule, cut-off rate rule, and equal error

probability or bounds. For the lower levels of the MLC scheme, the number of nearest

points is more than for high levels. As a result, the balanced distance design method is not

appropriate because it does not account for this fact [59], [60]. Also, it is reported that the

best way to design MLC codes is through the use of random coding exponents or the

capacity of the equivalent channels.

3.2.3.2  Set Partitioning

Set partitioning for a signal set  of  elements, where , is done in  steps.

In the first step, the set  is divided into two subsets. In the division process, a certain

Decoder D1

Decoder DK

Decoder D2

.

.

.

.. .

y

x̂K

x̂2

x̂1

Figure 8. Multistage decoding.
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criterion related to the Euclidean distance between the elements of the subset is used. For

example, the intrasubset Euclidean distance is maximized in the case of Ungerboeck’s

partitioning, although it is minimized in the case of block partitioning. Then, in the second

step, every resultant subset is divided. For Ungerboeck’s partitioning, see Figure9.

In studying the power efficiency of MLC, with different set partitioning strategies,

multiple information theory measures are conducted in [60]. First, the sum of the cut-off

rate of the equivalent channels is compared in the case of two different set partitionings:

Ungerboeck’s partitioning and block partitioning. The sum of cut-off rates of the

equivalent channels of MLC system with Ungerboeck’s partitioning excels over MLC

system with block partitioning. Also, the two systems are tested for the case of different

code word lengths. The results of [60] explain that both systems’  capacities do not differ

for infinite block lengths. However, in the case of finite code word lengths, the system

with Ungerboeck’s partitioning reveals more capacity than the system with block

partitioning. 

With the use of multistage decoding, block partitioning offers no error propagation

from the lower levels of MLC to the higher levels. So, this partitioning technique is used

in some applications, which need to have different amounts of error protection. For

example, consider the case of 8-ASK modulation where the three levels are coded with the

same rate of 0.5, and block partitioning and multistage decoding technique are used. Then,

over a 10.0 dB range, the degree of reliability of all levels varies as the SNR increases. At
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high SNR, a 1.5 bit/symbol could be received reliably. For medium SNR, a 1.0 bit/symbol

could be received. At the same time, the transmission on the highest bit becomes

impossible. At low SNR, only 0.5 bit/symbol could be received reliably at the lowest

level, whereas the transmission becomes impossible at high levels. This example supports

the theory that MLC systems are the best candidates for applications for which the

transmitted data could be classified to sensitive and nonsensitive. Broadcasting systems

and mobile communications, which require transmission of video and audio information

are considered examples of such applications. 

S 0( ) δ1,

S 1( ) δ2, 2δ1=

S 2( ) δ3, 2δ1=

S 3( ) δ4, 2 2δ1=

v(1)(n) = 0 v(1)(n) = 1

v(2)(n) = 1v(2)(n) = 0 v(2)(n) = 0v(1)(n) = 0

v(3)(n) = 0 v(3)(n) = 0 v(3)(n) = 0v(3)(n) = 0 v(3)(n) = 1 v(3)(n) = 1v(3)(n) = 1v(3)(n) = 1

Figure 9. Set partitioning for 16-QAM signaling.
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3.2.3.3  Turbo coding with MLC

In [65], it is shown that achieving capacity of a modulation scheme via MLC could be

done without going through specific set partitioning; capacity could be received with any

set partitioning. In that paper, two set partitionings have been used, namely, Ungerboeck’s

partitioning and block partitioning. As presented earlier, the intrasubset minimum

Euclidean distance is maximum in the case of the first, and it is minimum in the second.

Because turbo codes depend on the whole spectrum of the code, [64] reports that

balancing the error rates for the multilevel coding component codes is more practical than

the other design rules. The turbo codes were applied to multilevel coding in [63], [66],

[67]. In [66], the code rates of the turbo codes were designed using the random coding

bound, which is considered more practical than using the capacity. The results provide up

to 1.6 dB from the Shannon limit for the case 8-PSK modulation and up to 1.9 dB for the

case of 32-QAM, with an interleaver length of 20,000. A modified block interleaver was

used, in [67], to improve the performance of turbo codes with short interleavers. These

new interleavers outperforms the random interleavers at bit-error rates greater than .

3.3  Summary

In this chapter, we reviewed binary turbo codes, iterative decoding and turbo coded

modulation techniques. We have seen that TTCM and PCTCM schemes do not utilize all

the available interleaving gain. In addition to that, both schemes are constrained by

10 7–
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parallel transitions leading to higher decoding complexity. MLC schemes with turbo codes

components are not good candidates to utilize the available interleaving gain because of

the error propagation problem in low SNR range. On the other hand, SCTCM schemes

with bit-interleaving utilize all the available interleaving gain and do not have constraints

from parallel transitions.
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Chapter  4

Two-Level Two-Pulse Position 
Modulation Scheme

To achieve good power and spectral efficiencies with a coded modulation system, the

underlying modulation must be selected carefully. For IM/DD, PPM and MPPM have

good power efficiencies but low spectral efficiencies. On the other hand, PAM achieves

excellent spectral efficiencies but with poor power efficiency. In the following discussion,

we will introduce a new modulation scheme that combines multiple-level and multiple-

pulse position. We will begin with the description of the modulation scheme, then we

present its performance in terms of uncoded BER and cutoff rate.

4.1  Two-Level Two-Pulse Position Modulation 

Multi-level modulation techniques are powerful in terms of spectral efficiency,

whereas pulse position modulation is strong in terms of power efficiency. To benefit from

the strength of two modulation categories, we introduced a modulation scheme that has
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two pulses for every symbol time period and each pulse can take two amplitude levels

instead of one amplitude level, as in PPM and MPPM. We call this modulation two-level

two-pulse position modulation (2L2PPM).

In this modulation format, each word of  bits is mapped into one of 

waveforms and transmitted to the channel. The symbol interval of duration  is

partitioned into  chips. Each chip has a duration . Of the , only two contain pulses,

each of which can take one of two levels  to convey one of the  symbols. The

two levels are introduced to increase the spectral efficiency. In the conventional pulse

position modulation (PPM), only one amplitude level and one position is used. In

conventional multiple pulse position modulation (MPPM), two or more pulses are used,

but each pulse takes only one amplitude level. The new modulation scheme achieves more

spectral efficiency than conventional PPM and MPPM modulation schemes because we

allow pulses to have two amplitude levels. The two amplitude levels,  and , are

chosen so that the average optical power is , and the relationship between the two levels

is a design parameter. In addition to that, the number of the signal waveforms in the

2L2PPM signal set is

, (17)
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where  is the number of pulse positions.  is usually not a power of two, so we generally

must discard some of the resulting signals to achieve . 

In this research, two different cases are explored. In the first case,  is chosen to be 9,

producing 144 possible signals, and  is chosen to be 12 for the second case producing

264 possible signals. The two cases are denoted by 9-2L2PPM and 12-2L2PPM,

respectively.

4.2  Performance of 2L2PPM

To evaluate the effectiveness of this modulation scheme we use two different

performance measures: uncoded bit-error rate and cutoff rate.

4.2.1  Uncoded bit-error rate

In determining error probability, we assume maximum-likelihood (ML) detection. The

transmitter sends information at a rate of  bits/s by transmitting one of its  available

signals  every  seconds. The channel adds white

Gaussian noise with power spectrum . The signal set satisfies the constraint of

power limitation , where  is the average optical power. We also assume

high SNR, which allows us to approximate the BER from the Euclidean distance between

the nearest two signals , where

n L

L 2b=

n

n

Rb L

x1 t( ) x2 t( ) … xL t( ), , ,{ } T log2L Rb⁄=

No 2⁄

1
T
--- x t( ) td

0

T�
P= P

dmin
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. (18)

and the BER is roughly bounded by

. (19)

For the uncoded 2L2PPM the ratio between the 2nd amplitude level to the first is

 . (20)

Using the power constraint we can find that 

, (21)

. (22)

Looking to the signal constellation of 2L2PPM modulation scheme, it is not difficult to

show that the minimum Euclidean distance square of this modulation scheme is going to

be:

(23)
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Similar to the discussion in [41], we can write the ratio between the power needed for

2L2PPM to the power needed for OOK for the same BER as the inverse ratio between the

minimum Euclidean distance of the two modulations,

. (24)

Figure 10 shows the power efficiency versus the spectral efficiency of 2L2PPM for

different values of . For comparison purposes, we also showed the performance of OOK,

L-PPM, (n,2)-MPPM and (n,3)-MPPM modulation schemes. The y-axis represents the

normalized power requirement for BER = . The x-axis represents the spectral

efficiency in terms of bits/s/Hz. The figure shows that 2L2PPM modulation scheme is

more spectrally efficient than PPM and MPPM modulation schemes. It also shows that the

power efficiency of 2L2PPM is still better than OOK for . The curve shows that the

power efficiencies of 9-2L2PPM and 12-2L2PPM are  and  dB, respectively.

4.2.2  Spectral Efficiency

There are several ways to define the bandwidth of signals in communications [68].

One of the simplest estimates of the bandwidth requirement of 2L2PPM is the inverse of

the shortest pulse width, and the estimate is equivalent to the width of the main spectral

lobe of the modulation scheme [41]. More accurate measures of the bandwidth

requirement come after specifying the power spectral density (PSD) of the modulation

P2L2PPM POOK⁄ dOOK d2L2PPM⁄≈ 2 2 2+( )
2nlog2 2n n 1–( )( )

-------------------------------------------------=

n
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scheme, and the bandwidth that includes an -percentage of the signal power is called 

[69]. If the input symbols to the modulator are assumed to be chosen independently and

with equal probability, then a general expression for the PSD of any L-ary modulation

scheme is given in [42] as

, (25)

where  is the Fourier transform of the signal corresponding to the  symbol, and

 is the symbol period. The first term is discrete and represents the spectral lines. The

second term represents the continuous part of the spectrum.

For rectangular pulses, Figure 11 shows the continuous part of the PSD of 9-2L2PPM

and 12-2L2PPM. In each curve, the first null of the spectrum corresponds to the inverse of

the shortest pulse-width, which is used as an approximation for the bandwidth requirement

of the modulation scheme. According to this approximation, the normalized bandwidth

requirements of the two cases are 1.26 and 1.49, and they contain 91.4% and 91.1% of the

signal power, respectively. Since more than 90% of the signal power is contained in main

spectral lobe, the above approximation of the bandwidth requirement is justified. 

In addition to that, the spectral density is defined as the inverse of the bandwidth

requirement. When the above approximation is used, we can show that the spectral

efficiency of 2L2PPM modulation scheme is
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. (26)

Out of the 144 possible signals in 9-2L2PPM modulation scheme, 128 signals are used

with a serial concatenated encoder as we see in chapter 5 to get 128-SCTCM-2L2PPM

system. Similarly, only 256 of 264 signals in 12-2L2PPM modulation scheme are used

with serial concatenated encoder to form 256-SCTCM-2L2PPM system. 

4.2.3  Cutoff rate

According to [70], the cutoff rate is believed to be a figure of merit for all modulation

schemes. For an arbitrary L-ary modulation scheme, the cutoff rate  is defined when the

input code words are i.i.d. with a uniform distribution  as

(27)

where .

The cutoff rate is used to evaluate efficiency of the above modulation scheme. From

Figure 12, we can see that when  we have  at  dB normalized power

efficiency. For ,  at a normalized power efficiency of  dB. Later on in

the simulation results of SCTCM-2L2PPM, we can see that these power efficiencies are
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approachable with the use of 128-SCTCM and 256-SCTCM for medium size interleavers

.

4.3  Summary

In this chapter, we introduced a new modulation scheme that is suitable for optical

communications. The new modulation is a combination of MPPM and multilevel

modulation techniques. The uncoded BER performance of this modulation technique

shows it is more spectrally efficient than PPM and MPPM. The cutoff rate curves of the

new modulation scheme indicate that up to 6.7-7.1 dB of power efficiencies and 0.55-0.5

bits/sec./Hz spectral efficiencies could be obtained by using 128 and 256 symbols

2L2PPM modulation. This modulation scheme is utilized in chapter 5 with serial-

concatenated trellis-coded modulation systems.

N 10000=( )
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Chapter  5

Serial-Concatenated Trellis-
Coded Modulation with 
2L2PPM Modulation

As we have seen in chapter 3, serial-concatenated trellis-coded modulation (SCTCM)

schemes with bit-wise interleavers achieve excellent performance and they outperform

both turbo trellis-coded modulation (TTCM) and parallel-concatenated trellis-coded

modulation (PCTCM) techniques in utilizing the interleaver gain. For the same reason,

they outperform SCTCM schemes with symbol-wise interleavers. Additionally,

constituent codes of symbol interleaved SCTCM have to meet the conditions of not

allowing parallel transitions to occur, which increase the constraint length of both the

outer and inner codes and, hence, increase the complexity of the decoding. Moreover,

SCTCM are found to have lower error floor bounds compared with TTCM and PCTCM. 

In this chapter, we present a SCTCM with spread-random (S-random) bit interleavers

and two-level two-pulse position modulation (2L2PPM). A description of the system and



53

the performance error bounds of serial-concatenated convolutional codes (SCTCM) [2]

are rederived, with the difference of having a trellis-coded modulation (TCM) inner code,

to find the design criteria for the system. The mapping and code search results are given.

Finally, Monte Carlo simulations and performance error bounds are presented for the

proposed SCTCM.

5.1  System Description

The structure of this proposed system is shown in Figure 13. The proposed transmitter

of the system consists of a serial concatenation of an outer code, interleaver, an inner code,

and a 2L2PPM modulator. As we saw in chapter 4, the 2L2PPM modulation scheme has

excellent uncoded power and spectral efficiencies. The outer code is chosen to be a

convolutional code of rate . We used both systematic and non-systematic

convolutional codes for the implementation of the outer code. The interleaver is a bit

spread-random interleaver [71]. The inner code is a recursive systematic convolutional

code of rate  and is combined with the modulation mapper. The modulation

scheme is two-level two-pulse position modulation (2L2PPM). The signal constellation

has a size of  signals. Because the rate of the outer code is  and

the rate of the inner code is , the total coding rate becomes . From the

spectral efficiency point of view, the rate of the 2L2PPM modulation scheme is  and

b 2–( ) b 1–( )⁄

b 1–( ) b⁄

M 2b= b 2–( ) b 1–( )⁄

b 1–( ) b⁄ b 2–( ) b⁄

b n⁄
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when combined with the total coding rate it produces a total spectral efficiency of

 bits/s/Hz for the SCTCM-2L2PPM system.

The following presentation is a brief explanation of the type of interleaver used. Then,

the structure of the outer and the inner codes, and the types of mapping to the modulation

signal space are described. 

5.1.1  Interleaver

S-random interleavers are used to improve the performance of parallel or serial

concatenated systems. Through the use of S-random interleavers, the effective Euclidean

distance of the serial concatenated encoder will increase to at least the product of the

Hamming distance of the outer code and the minimum Euclidean distance of the inner

TCM code as in the following theorem:

b 2–( ) n⁄

Bit- 2L2PPM
MapperS-Interleaver

Outer Inner
RSC
Code

Ri=(b-1)/bRo=(b-2)/(b-1)

Figure 13. First SCTCM encoder.

Code
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Theorem: With the use of very long spread-bit-interleavers in the serial concatenated

trellis-coded modulation encoder, which consists of non-systematic convolutional outer

code and a recursive inner code, the effective minimum Euclidean distance of the system

will be bounded by:

, (28)

where  is the outer code free Hamming distance and  is the minimum Euclidean

distance of the inner code. 

Proof: In the serial concatenated TCM encoders, we have an outer code of rate , an

inner code of rate , and an interleaver. If the information block length is  then the

interleaver length  is

. (29)

According to [71] S-random interleavers could be found easily for the parameter 

. (30)

If two information bits are located at positions  and  such that  before

interleaving, they will be mapped to two positions  and , such that .

One of the properties of convolutional codes is that the first  ones of the output of a

codeword is within a limited depth relative to the constraint length of the code [72]. This
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property is used frequently by the algorithms that find the minimum Hamming distance of

convolutional codes. So, for the considered outer code and large S-interleavers, at least

 ones will fall in a span less than . This will result in an interleaver output that has at

least  ones, each of them is at least  away from the other ( -1) ones. If  is very

large, then the minimum Euclidean distance of such sequences is . This result is also

applicable to the case of recursive outer codes.

5.1.2  Inner Code

The inner code structure and its mapping to the modulation space are critical to the

performance of SCTCM schemes. As will be seen in the design of SCTCM, the inner code

has to be recursive. Thus, for the proposed SCTCM-2L2PPM scheme, we selected the

inner code to be a systematic recursive convolutional code. We used two methods to map

the outputs of the inner code to the signal space: natural mapping and Gray mapping

techniques. More details about the structure and the output mappings of the inner code, are

given below.
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5.1.2.1  Inner Code Structure

Figure 14 shows the minimal systematic encoder structure with feedback. This

convolutional encoder is uniquely specified by the parity-check matrix .

According to [16], we have to set  and

 . (31)

In this case, we have an excessive number of parallel transitions, and the minimum

Euclidean intra-distance does not always increase between the successive partitionings.

Hence, we decided to change the conditions of Ungerboeck on the code polynomials. For

natural mapping (see the next section), we will set  and leave  and ,

for , free. This will decrease the maximum number of parallel transitions

by one half. For Gray mapping (next section), we set  and  for

, to facilitate the mapping process. Moreover, to ensure the minimization of

the parallel transitions, we require  to be of maximum rank. Since the trellis codes are

linear, the minimum Euclidean distance of the all-zero path is not necessarily the

minimum distance to any other trellis path. For this reason, in looking for the minimum

Euclidean distance, we used an algorithm presented in [73], but modified to keep record of

the Hamming weight of the path that has the minimum Euclidean distance.
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T

Figure 14. Minimal systematic convolutional encoder with 
feedback. The code has a rate of , parity check 

coefficients , and memory .
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5.1.2.2  Mapping of the Inner Code

In this study, the outputs of the inner code to the signal space are mapped using two

methods: natural mapping and Gray mapping. In TCM, natural mapping is always

guaranteed to maximize the minimum Euclidean distance. However, Gray mapping

produces lower bit-error rate (BER) if it has the same minimum Euclidean distance [74],

[75].

Natural Mapping. Natural mapping is based on successively partitioning the signal set

into subsets with increasing Euclidean distance [16]. In natural mapping, output labels are

decided by the set partitioning of the signal set and the classical way of selecting the

output labels of the code, but they affect the realization of the inner code. In this system,

recursive systematic convolutional encoders are used, so for every selection of arbitrary

forward and feedback polynomials we need to do a linear transformation of the output

labels to match the set partitioning result. For input mapping, it is essential that any two

input sequences that have a difference of one between their Hamming weights result in

two output sequences of symbols that are separated with infinite Euclidean distance. This

objective can be assured by using non-zero forward polynomials. 

Gray Mapping. Natural mapping guarantees minimization of event error rate (EER). In

most applications BER is more important than the EER. For this reason, the authors of

[74], [75] found that using Gray mapping with trellis-coded modulation produces lower

BER than the TCM codes that use natural mapping on the same signal sets. They



60

concluded that both mappings will result in the same probability of error event, but the

average number of information bit-errors is less with Gray mapping than with natural

mapping when the Euclidean distance is small. Also, when the Euclidean distance is large,

the average number of information bit-errors is less with natural mapping than with Gray

mapping. They concluded that it is necessary to encode all of the information-bits in Gray

mapping, yet some of the information-bits could be left uncoded in natural mapping. In

our system, Gray mapping will further decrease the BER because of the nature of the

iterative decoding technique.

5.1.3  Outer Code

In this research, we proposed both recursive and nonrecursive convolutional codes as

an outer code. The nonrecursive are punctured codes [76]. The recursive codes are chosen

to be a minimal systematic encoder with feedback, shown in Figure 14.

5.1.4  Iterative Decoder

Optimum maximum likelihood (ML) decoding algorithms for serial concatenation

TCM codes are complex, due to the presence of the interleaver, but iterative decoding of

such codes is feasible and often leads to or approaches ML decoding. Iterative decoding

involves iterations between constituent decoders, with an exchange of soft information

between iterations. The constituent decoders are a posteriori probability (APP) decoders

which compute the posterior probability.
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The receiver uses a unit-energy filter , which is matched to the pulse shape, and

samples the output at the chip rate  producing  samples for each symbol. Each 

samples are grouped in one block. The soft de-mapper will receive the samples to produce

 vectors of soft information, where  represents the number of symbols in every

codeword. Then, these  vectors of soft information will be used by the soft decoder.

The soft decoder is composed of four blocks: the inner decoder, the bit de-interleaver, the

outer decoder, and the bit interleaver. A block diagram of the iterative decoder is shown in

Figure 15. Each decoder is a symbol-APP detector, which operates on the probability of

the symbols rather than the bit probabilities. The interleaver works on the bits. Hence, the

iterative decoder needs to perform symbol-to-bit probability conversion before the

interleaver and deinterleaver and, it needs bit-to-symbol probability conversion after

them. These conversions are not shown on the block diagram of the iterative decoder, but

they are included in the block diagram of the constituent decoders. 

The most complex receiver blocks are the inner and the outer decoders; their

complexity reflects the complexity of the whole receiver. Hence, for the calculation of

decoder complexity we will depend on the total number of branches per bit in the trellises

of the outer and the inner codes.

Iterative decoders are suboptimal but their performance approach the bound of ML

decoders for the moderate and high SNR. Symbol by symbol a posteriori decoder reported

f t( )

n T⁄ n n

Ns Ns
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by Bahl et al. [44] and known as the BCJR algorithm, is used in both the outer and inner

decoders. 

5.2  SCTCM Design

In the design of SCTCM we rely on error performance bounds. We begin the

derivation of performance bounds for the SCTCM exactly as the performance bounds of

the serial-concatenated convolutional codes (SCCC) [1][2]. The only difference appears in

the enumeration of the inner code because the inner code is connected to a nonbinary

channel. Hence, Euclidean distances are enumerated instead of enumerating the Hamming

distances, as is the case with binary modulation schemes. Because we are using binary

Figure 15. Iterative decoder of the proposed SCTCM-2L2PPM system.
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interleavers and binary outer encoders we can still enumerate the outer code using

Hamming distances. 

The inner codes utilized in this research are non-regular because of the signal space

[77]. In non-regular codes, every correct path in the trellis has a different enumerating

function. This fact makes it impossible to use the all-zeros codeword as a reference.

Therefore, in enumerating the inner code between any two points in the trellis, we will

randomly pick a finite number of correct trellis paths between these two points and

consider the average enumeration function between the two points as the average of the

enumerating functions with respect to each selected path,

. (32)

For the inner codes in this research, we use the average distance spectrum, which

shows the average number of codewords that have specific input Hamming distance and

Euclidean distance for any possible combination of Hamming distance and Euclidean

distance. The distance spectrum for the SCTCM codes can be determined using the code

spectrums of both the outer code and the inner code, with a uniform interleaver.

Consider the concatenation of two linear convolutional constituent codes,  and ,

connected by a bit-wise random interleaver . The outer code  has a rate

Aaverage
1
M
----- Ai

i 1=

M
�

=

Co Ci

π Co
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 and the inner code  has rate , which gives rise

in an overall SCTCM rate . The interleaver length is  and it is an

integer multiple of . Every  bits that come out of the inner code constitute one of

the  waveforms that are mapped to the signal space. If the code termination is

neglected, the block size is  and the spectral efficiency is  information bits per

symbol. In deriving the bounds, the assumption of uniform interleaver is used. The

uniform interleaver is a probabilistic device that permutes an input word of Hamming

distance , randomly to every possible permutation with the same probability. The

Hamming distance of the output is , which makes the number of possibilities equal to

 for an interleaver of length . Every possibility is equi-probable with a uniform

probability

. (33)

By averaging over the ensemble of all interleavers, we can obtain a good bound on the

performance of the serial-concatenated TCM. The performance bounds obtained using the

uniform interleaver technique are useful because at least one real interleaver is guaranteed

to exist that meets these bounds [24]. It is also assumed that both the outer and inner codes

start from state zero for every block and terminate to the same state at the end of the block.

Ro b 2–( ) b 1–( )⁄= Ci Ri b 1–( ) b⁄=
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This assumption helps calculate the weight enumerating functions of the codes from the

constituent codes.

For the outer code, the weight enumerating function is 

, (34)

which is a polynomial in the dummy variables  and , where  is the number of

codewords of the code with input Hamming weight , and output Hamming weight .

The inner code has a distance spectrum

, (35)

It is also a polynomial in the dummy variables  and , where  is the average

number of codewords of  with input Hamming weight  and squared Euclidean

distance . The summation with respect to  covers all the possible values of . From the

above polynomial, we can derive the spectral lines for all codewords with input Hamming

weight  

. (36)
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With the assistance of the uniform interleaver, any code word of  with output Hamming

weight  will result in a code word of , of input Hamming weight  with probability

.

Considering a total of  such codewords, with input Hamming weight  and

output Hamming weight  in , will result in an average of  codewords with

squared Euclidean distance  in . Hence, the multiplicity of codewords of the SCTCM

 with input Hamming weight  and squared Euclidean distance  becomes

. (37)

The upper bound to the BER of the SCTCM is

. (38)

By concatenating the error events of the convolutional codes , we can write

, (39)
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where  represents all the errors that rejoin the zero-code path j times

, (40)

where  represents the total number of error possibilities that have  depth

and result from concatenating  single event errors for a block length . Whereas,

 represents the total number of error events that have an input Hamming weight

, an output Hamming weight one, a depth of  and consists of  single error events. For

large ,  can be approximated by 

. (41)

When the block length  is large, only the small values of  determine the performance

of the convolutional codes, which makes the following approximation valid

. (42)

By the same discussion for the inner codes, (37) could be rewritten as

, (43)
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where  is the free Hamming distance of the outer code. If the asymptotic approximation

of the binomial function is used, the equation (43) becomes

, (44)

from which  can be written as 

. (45)

In the above equation, the maximum exponent of N decides the interleaver gain of the

SCTCM. 

(46)

So the objective should minimize this parameter .

By allowing the inner code to have codewords with input Hamming weight one, the

maximum of  becomes  which makes 

, (47)
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which is always positive (no interleaver gain). In this case, the performance of SCTCM

does not benefit from the interleaver gain. This result is also applicable for nonrecursive

inner codes. By designing the inner codes to have infinite Euclidean distance for input

sequences with input Hamming weight one, the maximum of  becomes , which

results in

. (48)

Moreover, since the free Hamming distance of the outer code is , then

. (49)

If S-interleavers are used, then the single error events, that have small output Hamming

weights, of the outer code will have depths less the parameter  of the interleaver. This

idea will increase the minimum  to . Now, for  the minimum of  becomes

, so

. (50)

The minimum squared Euclidean distance of the SCTCM will increase to

, (51)
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where  is the minimum squared Euclidean distance of the inner code.

The previous analysis of the bit-error bound of SCTCM encoders gives rise to the

following design criteria for SCTCM systems:

• The outer code can be a recursive or nonrecursive convolutional code.

However, it should have a maximum free Hamming distance.

• The interleaver should be a bit-wise S-interleaver to utilize full interleaving

gain and maximize the effective Euclidean distance of the SCTCM.

• The inner TCM code should use recursive convolutional codes rather than

nonrecursive ones, which do not offer any interleaving gain.

• The inner TCM code should have an infinite squared Euclidean distance for

any input sequence of Hamming weight one. This criterion is specially

important when the TCM code has parallel transitions. If there are no parallel

transitions in the inner TCM, it is enough to restrict the inner code to be

recursive.

• In searching for the inner TCM code, the minimum squared Euclidean distance

should be maximized for any input sequence that has Hamming weight greater

than one.

dmin
i
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5.3  Mapping and Code Search Results

In this section, we will give a brief explanation for the set partitioning process used in

natural mapping. Furthermore, mapping and code search results are listed in tables.

5.3.1  Set Partitioning For Natural Mapping

In our system we used the 2L2PPM modulation scheme. The signal constellation of

this case can be visualized in many ways. First, we can visualize the modulation in four-

dimensional space, where the first two axes are reserved for the two pulse positions and

the other two axes are assigned for two amplitudes of the two pulses. However, set

partitioning on four-dimensional space is a very difficult operation. Hence, we used an

enhanced visualization technique, in which each four signals that share the same positions

are grouped together. On the group level, the four signals are represented by a two-

dimensional plane, see Figure16. The first axis represents the amplitude of the first pulse

and the second axis is reserved for the amplitude of the second pulse. Next, every group of

four signals sharing the same two positions are presented as one point on a two-

dimensional plane called the plane of positions, see Figure 17. In the plane of positions,

the horizontal depicts the position of the first pulse and the vertical axis represents the

position of the second pulse.

The set partitioning of the whole signal constellation is done in three steps. In the first

step, each group of four signals that share the same positions is partitioned using the usual

set partitioning technique (similar to QAM signals). In the second step, which is totally
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independent from the first, a special set partitioning is done on the plane of positions of the

groups. This special set partitioning of the arbitrary groups is similar to the set partitioning

mentioned in [78]. In the third step, we use the result of the first partitioning step to form

four different subsets A00, A01, A10 and A11, such that if we use the second partitioning

on each subset, we form a resultant partitioning that maximizes the Euclidean distance for

the last two levels. After doing the set partitioning, we decide the output labels of the inner

code accordingly. According to natural mapping technique, Tables 1 and 2 show the signal

labels of the two modulation schemes of 128-2L2PPM and 256-2L2PPM. In each row of

the table we can see two positions and the output labels of the four signals that share two

positions.
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Figure 16. Amplitude representation of four signals that share the 
same two positions.
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Figure 18. Set partitioning of 32-MPPM.
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At high optical SNR most erroneous symbols are within the minimum Euclidean

distance from the correct ones. The objective of Gray mapping is to minimize the

information bit error rate for the case of small Euclidean distance between the correct and

erroneous symbols. In TCM applications Gray mapped TCM is better than Naturally

mapped TCM in terms of BER. For 2L2PPM modulation, every four signals share the

same two positions and they have different amplitude level combinations. Hence, we

assigned two bits to the amplitude variations and we mapped them as we map QAM

Table 1. 128-SCTCM natural mapping signal labels.

Positions Amplitudes Positions Amplitudes

1st 
Pos. 

2nd 
Pos. 1,1 1,2 2, 2 2, 1

1st
Pos.

2nd 
Pos. 1, 1 1, 2 2, 1 2, 2

1 5 0 1 2 3 2 4 64 65 66 67

1 4 4 5 6 7 2 3 68 69 70 71

1 7 8 9 10 11 2 6 72 73 74 75

1 6 12 13 14 15 2 5 76 77 78 79

2 9 16 17 18 19 3 8 80 81 82 83

1 8 20 21 22 23 2 7 84 85 86 87

1 3 24 25 26 27 4 9 88 89 90 91

1 2 28 29 30 31 3 9 92 93 94 95

6 9 32 33 34 35 7 8 96 97 98 99

5 9 36 37 38 39 6 8 100 101 102 103

3 5 40 41 42 43 8 9 104 105 106 107

3 4 44 45 46 47 7 9 108 109 110 111

4 7 48 49 50 51 5 6 112 113 114 115

3 6 52 53 54 55 4 5 116 117 118 119

5 8 56 57 58 59 6 7 120 121 122 123

4 8 60 61 62 63 5 7 124 125 126 127
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Table 2. 256-SCTCM natural mapping signal labels

Positions Amplitudes Positions Amplitudes

Pos 1 Pos 2 1,1 1,2 2, 1 2, 2 Pos 1 Pos 2 1, 1 1, 2 2, 1 2, 2

11 12 0 1 2 3 1 6 128 129 130 131

10 12 4 5 6 7 6 8 132 133 134 135

9 12 8 9 10 11 10 11 136 137 138 139

1 7 12 13 14 15 2 6 140 141 142 143

7 12 16 17 18 19 8 11 144 145 146 147

2 12 20 21 22 23 3 11 148 149 150 151

5 12 24 25 26 27 6 11 152 153 154 155

1 3 28 29 30 31 2 10 156 157 158 159

4 11 32 33 34 35 5 10 160 161 162 163

6 12 36 37 38 39 7 11 164 165 166 167

1 12 40 41 42 43 2 11 168 169 170 171

3 10 44 45 46 47 5 11 172 173 174 175

2 9 48 49 50 51 3 8 176 177 178 179

1 9 52 53 54 55 2 8 180 181 182 183

1 8 56 57 58 59 2 7 184 185 186 187

1 11 60 61 62 63 3 9 188 189 190 191

2 5 64 65 66 67 3 4 192 193 194 195

1 5 68 69 70 71 2 4 196 197 198 199

1 4 72 73 74 75 2 3 200 201 202 203

3 5 76 77 78 79 4 8 204 205 206 207

9 10 80 81 82 83 1 2 208 209 210 211

4 10 84 85 86 87 5 9 212 213 214 215

7 10 88 89 90 91 8 9 216 217 218 219

4 12 92 93 94 95 9 11 220 221 222 223

6 9 96 97 98 99 7 8 224 225 226 227

8 10 100 101 102 103 4 9 228 229 230 231

5 8 104 105 106 107 6 7 232 233 234 235

7 9 108 109 110 111 8 12 236 237 238 239

4 7 112 113 114 115 5 6 240 241 242 243

3 7 116 117 118 119 4 6 244 245 246 247

3 6 120 121 122 123 4 5 248 249 250 251

5 7 124 125 126 127 6 8 252 253 254 255
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constellations. The remaining bits are used to map the position domain. In Gray mapping

the position domain, we exploited the Manhattan distance instead of the Euclidean

distance. Gray mapping signal labels for 128-SCTCM are shown in Table 3 and Gray

mapping signal labels for 256-SCTCM are shown in Table4.

5.3.2  Search for Good Inner Code

The number of polynomials in the inner code are between seven and eight, which

makes the exhaustive search time consuming. Hence, a random search is done to find

Table 3. 128-SCTCM Gray mapping signal labels.

Positions Amplitudes Positions Amplitudes

Pos. 
1 

Pos. 
2 1,1 1,2 2, 1 2, 2

Pos. 
1

Pos. 
2 1, 1 1, 2 2, 1 2, 2

2 9 104 105 106 107 4 5 20 21 22 23

3 4 40 41 42 43 3 5 52 53 54 55

1 4 8 9 10 11 1 5 80 81 82 83

2 4 24 25 26 27 2 5 84 85 86 87

3 9 56 57 58 59 8 9 92 93 94 95

3 8 120 121 122 123 3 6 16 17 18 19

1 3 88 89 90 91 1 6 64 65 66 67

2 3 48 49 50 51 2 6 68 69 70 71

5 9 44 45 46 47 6 9 76 77 78 79

5 8 12 13 14 15 6 8 72 73 74 75

5 6 28 29 30 31 1 8 96 97 98 99

5 7 60 61 62 63 6 7 100 101 102 103

4 9 124 125 126 127 7 9 108 109 110 111

4 8 112 113 114 115 7 8 32 33 34 35

1 2 116 117 118 119 1 7 36 37 38 39

4 7 4 5 6 7 2 7 0 1 2 3



78

Table 4. 256-SCTCM Gray mapping signal labels

Positions Amplitudes Positions Amplitudes

Pos 1 Pos 2 1,1 1,2 2, 1 2, 2 Pos 1 Pos 2 1, 1 1, 2 2, 1 2, 2

1 12 0 1 2 3 1 5 128 129 130 131

2 12 4 5 6 7 2 5 132 133 134 135

4 12 8 9 10 11 4 5 136 137 138 139

3 12 12 13 14 15 3 5 140 141 142 143

8 12 16 17 18 19 10 12 144 145 146 147

7 12 20 21 22 23 2 4 148 149 150 151

5 12 24 25 26 27 11 12 152 153 154 155

6 12 28 29 30 31 3 4 156 157 158 159

1 11 32 33 34 35 1 6 160 161 162 163

2 11 36 37 38 39 2 6 164 165 166 167

4 11 40 41 42 43 4 6 168 169 170 171

3 11 44 45 46 47 3 6 172 173 174 175

8 11 48 49 50 51 9 11 176 177 178 179

7 11 52 53 54 55 1 3 180 181 182 183

5 11 56 57 58 59 5 6 184 185 186 187

6 11 60 61 62 63 1 2 188 189 190 191

1 9 64 65 66 67 1 8 192 193 194 195

2 9 68 69 70 71 2 8 196 197 198 199

4 9 72 73 74 75 4 8 200 201 202 203

3 9 76 77 78 79 3 8 204 205 206 207

8 9 80 81 82 83 10 11 208 209 210 211

7 9 84 85 86 87 7 8 212 213 214 215

5 9 88 89 90 91 5 8 216 217 218 219

6 9 92 93 94 95 6 8 220 221 222 223

1 10 96 97 98 99 1 7 224 225 226 227

2 10 100 101 102 103 2 7 228 229 230 231

4 10 104 105 106 107 4 7 232 233 234 235

3 10 108 109 110 111 3 7 236 237 238 239

8 10 112 113 114 115 9 10 240 241 242 243

7 10 116 117 118 119 2 3 244 245 246 247

5 10 120 121 122 123 5 7 248 249 250 251

6 10 124 125 126 127 6 7 252 253 254 255
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good inner codes with maximum minimum Euclidean distance. Moreover, in the random

search, we kept all forward polynomials non-zeros, to assure infinite Euclidean distances

for input sequences of weight one.

The inner codes are not regular; thus it is not enough to check the all-zero path for the

minimum squared Euclidean distance. For this reason, we used two phases in the search

for good codes. First, the minimum squared Euclidean distance of the all-zero path is

found. For all codes that pass the first test, we use a more complex algorithm, which was

reported in [73], to check the minimum squared Euclidean distance of every possible path.

For natural mapping, the code search results are listed in Tables 5 and 6. The code search

results for Gray mapping are listed in Tables 7 and 8. For example, the actual encoder of

128-SCTCM natural-mapping inner code of constraint length  is shown in

Figure 19. 

Table 5. 128-SCTCM natural mapping inner code polynomials.

Constraint 
Length (v)

Min. Euclidean 
Distance

3 7 2 3 3 3 4 1 2.0

4 13 04 01 15 13 13 04 2.0

5 37 10 36 35 23 24 35 4.0

6 45 36 27 32 74 55 61 4.0

h0 h1 h2 h3 h4 h5 h6

v 3=
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Table 6. 256-SCTCM natural mapping inner code polynomials.

Constraint 
Length (v)

Min. Euclidean 
Distance

3 7 2 3 3 3 3 4 1 2.0

4 17 04 03 11 12 11 02 16 2.0

5 37 04 21 13 26 22 21 01 2.0

6 55 20 12 11 02 52 10 37 4.0

h0 h1 h2 h3 h4 h5 h6 h7

Table 7. 128-SCTCM Gray mapping inner code polynomials.

Constraint 
Length (v)

Min. Euclidean 
Distance

3 7 2 3 3 3 4 1 2.0

4 13 04 01 15 13 13 04 2.0

5 37 10 36 35 23 24 35 3.0

6 45 36 27 32 74 55 61 4.0

h0 h1 h2 h3 h4 h5 h6

Table 8. 256-SCTCM Gray mapping inner code polynomials.

Constraint 
Length (v)

Min. Euclidean 
Distance

3 7 2 3 3 3 3 4 1 2.0

4 17 04 03 11 12 11 02 16 2.0

5 37 04 21 13 26 22 21 01 2.0

6 55 20 12 11 02 52 10 73 3.0

h0 h1 h2 h3 h4 h5 h6 h7
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5.3.3  Search for Good Outer Codes

One of the design criteria of SCTCM is to choose outer codes with maximum free

Hamming distance. The non-systematic outer codes are produced by puncturing rate 1/2

binary convolutional codes, and hence, their free Hamming distances are not guaranteed

to be the maximum possible for the specified rate [76]. For the recursive outer codes, we

performed a random search to find good codes with maximum free Hamming distance.

The results of the random search are shown on the following two tables: Table 9 and

Table10.

T T

d6

d5

d4

d2

d3

d1

Parity

Figure 19. 128-SCTCM natural mapping inner code of 
constraint length .v 3=

{ 7}

{ 2}

{ 3}

{ 3}

{ 3}

{ 4}

{ 1}
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5.4  Error Bounds and Simulation Results

In this research, two systems are proposed: 128-SCTCM-2L2PPM and 256-SCTCM-

2L2PPM. Both modulation schemes are two-pulse and two-level. The first modulation

scheme has 9 positions and the second has 12 positions. The spectral efficiencies are 0.56

and 0.5 bits/s/Hz, respectively. Unless it is stated otherwise, the x-axis, in the following

Table 9. Polynomials of rate 5/6 recursive systematic codes.

Constraint 

Length ( )

Free Hamming 
Distance

3 5 5 5 6 7 7 2

4 15 05 07 17 11 13 3

5 25 33 36 23 35 31 4

6 51 43 75 66 57 71 4

7 107 101 125 177 163 151 4

v
h0 h1 h2 h3 h4 h5

Table 10. Polynomials of rate 6/7 recursive systematic codes.

Constraint 

Length ( )

Free Hamming 
Distance

3 7 3 5 5 7 3 3 2

4 15 13 16 14 17 12 11 3

5 35 33 17 27 25 23 31 4

6 51 45 55 47 37 61 63 4

7 131 061 105 167 137 127 173 4

v
h0 h1 h2 h3 h4 h5 h6
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figures represents the normalized power requirement with respect to the power

requirement of the un-coded on-off keying (OOK) to achieve a BER of , the y-axis

represents the BER, and Gray mapping is used. The nonrecursive outer codes are taken

from [76] and the recursive ones are found in Tables 9 and 10.

Figure 20 shows the difference between Gray mapping and natural mapping for 128-

SCTCM-2L2PPM with 8 states outer code, 4 states inner code and an interleaver of length

2400. In this figure, it is clear that Gray mapping is better than natural mapping by 0.1 dB.

The constraint length of the inner or outer codes increases this difference. Gray mapping is

designed to minimize the BER in the inner decoder, which explains the improved BER we

have seen. 

In Figure21, the BER is shown versus the normalized power requirement for both an

upper bound on the performance of Gray-mapped 128-SCTCM-2L2PPM and the 20th

iteration of simulation of the same system. In evaluating the error bounds we used the

equations derived before, see Section “SCTCM Design”  on page 62. We only consider the

terms that had Euclidean distance in this range

. (52)

It is found that the terms with greater Euclidean distances do not effect the bound at high

optical SNR.

10 6–

dSCTCM eff, d 3dSCTCM eff,≤ ≤



84

10 -6

10 -5

10
-4

10 -3

10 -2

10 -1

10
0

-7 -6.9 -6.8 -6.7 -6.6 -6.5 -6.4 -6.3 -6.2

Natural Mapping

Gray Mapping

B
E

R

Normalized  Power Requirement

Figure 20. Gray mapping versus natural mapping for SCTCM.
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Figure 21. Verification of the simulation (Both the outer and inner codes 
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Figure 22 shows the simulation of 128-SCTCM-2L2PPM for two types of outer codes:

nonrecursive and systematic recursive. In both cases we have 4 states inner code s-

interleaver of length 2400, and Gray mapping. Both the outer codes are of maximum free

Hamming distance. The figure shows that the nonrecursive outer codes are slightly better

than the recursive systematic ones in the high range SNR, while the recursive systematic

outer codes are better in the low range SNR.   

Figure 23 shows the first nine iterations from the simulation of 128-SCTCM-2L2PPM

for the case of 8 states outer code, 4 states inner code, 2000 block length (2400 interleaver

length), and Gray mapping. As we can see from the figure, most of the gain comes in the

first six iterations, then the gain decreases as the number of iterations goes up.

In Figure24, the error bonds of the 128-SCTCM-2L2PPM are used to show the effect

of increasing the information block length on power efficiency. In this figure, both the

outer code and the inner code have four states and Gray mapping is used. This increase in

the interleaver length will increase the latency of the system.

Figure 25 and Figure26 show the effect of increasing the outer code constraint length

and the inner code constraint length, respectively. This figure illustrates that the power

efficiency of SCTCM could be increased by increasing the memory of the outer code,

increasing the memory of the inner code, or increasing both.
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Figure 27 shows simulation results for different outer code constraint lengths. For low

BERs, the performance is better with low memory outer codes. For high BERs, the

performance of the large memory outer codes becomes superior. This figure suggests two

modes of operation depending on the received power. Figure 28 shows the simulation

results of different inner code constraint lengths. Similarly, this figure suggests two modes

of operation. The performance error bounds of 128-SCTCM and 256-SCTCM for 8 states

outer code and 4 states inner code are shown on Figure29.

Table11 presents the normalized power requirement, the spectral efficiency, and the

complexity of our proposed systems with input block length of 10,000 information bits,

compared to 8-TCM-PPM, 16-TCM-PPM, and 128-TCM-MPPM systems [15][17]. We

can see from the table that 128-SCTCM-2L2PPM and 256-SCTCM-2L2PPM have

achieved both power and spectral efficiencies with low decoding complexity. In the table,

we considered the complexity of both the outer and inner codes. For higher block lengths

(higher than 10000), the power efficiency will even exceed what is shown in the table. In

the following, Figure 30 shows the normalized power requirement versus the spectral

density of the proposed 128-SCTCM-2L2PPM and 256-SCTCM-2L2PPM with other

previously coded modulation schemes, uncoded PPM and uncoded MPPM modulation

schemes. 
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5.5  Summary

In this chapter, we developed a SCTCM combined with 2L2PPM modulation. The

system was decoded with an iterative decoder. The performance error bounds for SCTCM

were rederived for the case of TCM inner codes. Assuming large S-random interleavers,

the effective minimum Euclidean distance of the SCTCM is found to be the product of the

free Hamming distance of the outer code and the minimum Euclidean distance of the inner

code. This result is at least double the effective minimum Euclidean distance of SCTCM

encoder with just random interleavers. Random searches were conducted to find good

inner codes that satisfy the derived design criteria. Using Monte Carlo simulation, Gray

mapping is found to be better than natural mapping by 0.1 dB for the case of 8 states outer

Table 11. Normalized power requirement, spectral efficiency, and complexity 
of 128-SCTCM and 256-SCTCM. 

Normalized 
power

requirement

Spectral effi-
ciency

Complexity 
(edges per 

bit)

Cut-off 
rate

Gain from cut-
off rate

8-TCM-PPM 
[15]

7.0-8.2 dB 0.25 bits/s/
Hz

16-1024 8.35 dB 1.35-0.15 dB

16-TCM-PPM 
[15]

8.2-9.4 dB 0.19 bits/s/
Hz

21-682 11.25 dB 3.05-1.85 dB

128-TCM-
MPPM [17]

7.0-8.5 dB 0.35 bits/s/
Hz

85-21,845 9.15 dB 2.15-0.65 dB

128-SCTCM-
2L2PPM

6.3 dB 0.56 bits/s/
Hz

512 6.75 dB 2.0-0 dB

256-SCTCM-
2L2PPM

6.8 dB 0.5 bits/s/Hz 853 7.05 dB 2.0-0 dB
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code and 4 states inner code. Moreover, short constraint length outer and inner codes

outperform the ones with larger constraint lengths in small and medium optical SNRs. We

also employed the performance error bounds to gauge SCTCM’s performance at very low

BER that is not feasible by Monte Carlo simulations. Finally, a comparison was made

between the performance of the proposed SCTCM and some previous trellis-coded

modulations in the area of infrared communications. The comparison was done in terms of

normalized power requirement, spectral efficiency, decoding complexity, and distance to

the cut-off rates.
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Chapter  6

Serial-Concatenated Trellis-
Coded Modulation Based on 

OPPM

The previous chapter proposed coded modulation on 2L2PPM. In this chapter we

propose serial concatenated trellis-coded modulation based on a different modulation

scheme, namely overlapping pulse position modulation (OPPM). One of the desirable

properties of OPPM is the low bandwidth requirement compared to MPPM. The change in

modulation scheme calls for different inner and outer codes. We propose two variations of

OPPM with this simplified SCTCM, because of their good normalized power requirement

in the required range of spectral efficiency. In the second section, SCTCM with inner code

of rate-1, combined with OPPM modulation scheme, is presented with some simulation

results of that system.

The following section presents a basic description of this coded modulation, followed

by inner code search and simulation results.
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6.1  System Description

The proposed system includes a serial concatenation of an outer code, an interleaver,

and an inner code of rate-1 and one memory element, combined with an OPPM

modulation. The outer code is chosen to be a non-systematic convolutional code. The

inner code is recursive convolutional code of rate-one and is combined with the

modulation mapper. A bit spread-random interleaver [71] is used. The modulation scheme

is overlapping pulse position modulation (OPPM). The signal constellation has a size of

 signals. The rate of the outer code is  and the rate of the inner code is

1.0, which will result in a system of total rate . Even though the outer code is

selected to be non-systematic convolutional code, the results of this research still apply for

other kinds of convolutional outer codes as far as its free Hamming distance is maximized

for the given rate and constraint length.

The encoder shown in Figure31 is composed of an outer code, S-interleaver, and

inner code connected to the OPPM signal mapper. The outer code is non-recursive

M 2b= b 1–( ) b⁄

b 1–( ) b⁄

Bit- OPPM
MapperS-Intlvr

Outer Inner
RSC
Code

Ri = 1Ro= (b - 1)/b

Figure 31. Proposed SCTCM encoder with rate-1 inner code.

Code
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convolutional code; the inner code is a recursive convolutional code. The interleaver

works on the stream of bits coming out of the outer code. 

The following presentation sheds light on the description of the modulation scheme

and the structure of the inner code presented in this case.

6.1.1  Modulation Scheme

With this serial concatenation scheme, OPPM modulation scheme is selected. The first

objective is to look for modulation schemes that result in a total spectral efficiency of

greater than 0.5 bits/s/Hz. With this specification, we used two OPPM cases which have

high minimum Euclidean and spectral efficiency of 0.56 and 0.5 bits/s/Hz, respectively.

The first case resulted from choosing the parameters of OPPM to be ,  and

. For this case, the output of the inner code is mapped to two-symbol durations to

give 64 symbols and an effective spectral efficiency of 0.56 bits/s/Hz. In the second case,

the parameters of OPPM are chosen to be ,  and . The inner code

is connected to one symbol duration to produce 64 symbols and with 0.5 bits/s/Hz spectral

efficiency.

6.1.2  Outer Codes

One of the design criteria of SCTCM is to choose outer codes with maximum free

Hamming distance. The outer codes are chosen to be non-systematic convolutional codes,

which are generated from puncturing rate 1/2 binary convolutional codes [76]. The

L 8= n 9=

w 2=

L 64= n 70= w 7=
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Hamming distances of these codes are not guaranteed to be the maximum possible for the

specified rate.

6.1.3  Inner Code Structure

For good performance of serial concatenation encoders, the inner code has to be

recursive; therefore, a general structure of recursive convolutional codes is used. A

general convolutional encoder with  inputs,  outputs, and  memory elements can be

described by state space equations over GF(2):

, (53)

where  is the state vector of dimension ,  is the output vector of dimension

,  is the input vector of dimension , matrix  has dimension , matrix

 has dimension , and matrix  has dimension . Matrix  determines the

way the  memory elements are connected. If the encoder is with a feedback,  is the

companion matrix of the encoder’s feedback polynomial. For instance, the memory

elements in Figure 32 can be described by the following feedback polynomial 

, (54)

and can also be described by the following companion matrix [80]

p n m

sj 1+ sjA ujB+=

yj sjC ujD+=

sj 1 m× yj

1 m× uj 1 k× B k m×

C m n× D k n× A

m A

f D( ) D
3

D 1+ +=
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. (55)

6.1.4  Iterative Decoder

Optimum maximum likelihood (ML) decoding algorithms for serial concatenation

TCM codes are complex, due to the presence of the interleaver, but iterative decoding of

such codes is feasible and often leads to or approaches ML decoding. Iterative decoding

involves iterations between constituent decoders, with an exchange of soft information

between iterations. The constituent decoders are a posteriori probability (APP) decoders

which compute the posterior probability.

The receiver uses a unit-energy filter , which is matched to the pulse shape, and

samples the output at the chip rate  producing  samples for each symbol. Each 

samples are grouped in one block. The OPPM soft demodulator will receive the samples

to produce  vectors of soft information, where  represents the number of symbols in

every codeword. Then, these  vectors of soft information will be used by the soft

A
0 1 0

0 0 1

1 1 0

=

m2m1 m3

Figure 32. Memory elements governed by 
f(D)=D3+D+1.

f t( )

n T⁄ n n

Ns Ns

Ns
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decoder. The soft decoder is composed of four blocks: the inner decoder, the bit

deinterleaver, the outer decoder, and the bit interleaver. A block diagram of the iterative

decoder is shown in Figure 33. Each decoder is a symbol-APP detector, which operates on

the probability of the symbols rather than the bit probabilities. The interleaver works on

the bits. Hence, the iterative decoder needs to perform symbol-to-bit probability

conversion before the interleaver and deinterleaver and, it needs bit-to-symbol probability

conversion after them. These conversions are not shown on the block diagram of the

iterative decoder, but they are included in the block diagram of the constituent decoders. 

Inner
Decoder

Outer
Decoder

Decision

Figure 33. Iterative decoder of SCTCM-OPPM system.

OPPM
Soft

Demodulator

Bit
Deinterleaver

Bit
Interleaver
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Iterative decoders are suboptimal but their performance approach the bound of ML

decoders for the moderate and high SNR. Symbol by symbol a posteriori decoder reported

by Bahl et al. [44] and known as the BCJR algorithm, is used in both the outer and inner

decoders.

6.2  Inner Code Search

The error probability of the SCTCM scheme depends on the Euclidean distance

spectrum (EDS) of the inner code. In the search for optimum or good inner codes, we have

to evaluate the inner code’s EDS with respect to every possible codeword. Zehavi and

Wolf [81] observed that it is enough to evaluate the code’s EDS with respect to the all-zero

codeword if the signal constellation is symmetric. The symmetry condition requires that

every level of partitioning results in two subsets with identical Euclidean distance profiles.

More detailed works on the performance evaluation of TCM schemes, with different

degrees of symmetry, are provided by Benedetto in [82]. 

The output of the inner code is naturally mapped to the OPPM signal constellation.

Figure 34 shows the mapping of one symbol of 64-OPPM scheme, where the axis shows

the time index of the first pulse in the symbol. Figure35 shows the mapping of two-

symbols of 8-OPPM. In the figure, the starting time of the first symbol is assigned to the

x-axis and the starting time of the second symbol is assigned to the y-axis. A close look to
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the two mappings shows that we have symmetric signal constellation. Hence, it is enough

to check the all-zero path to find the Euclidean distance spectrum of the inner code.

In this research, we are using inner codes of single-memory (2-states) and

. First of all, since the code memory is one, we have the matrix .

Moreover, one of the design criteria of SCTCM in the previous chapter is to avoid

codewords that have input Hamming weight equals to one. This design criterion is

satisfied here, by forcing the matrix B to have non-zero rows. Since the size  is , it

is not difficult to show that the only B that satisfies this criterion is .

The two matrices  and  have 6 and 36 entries, respectively, and to do an exhaustive

search to find them will be time consuming. Hence, a random search is done to find  and

 that have good Euclidean distance spectrum. After conducting a limited random search,

the found inner codes for SCTCM-8-OPPM and SCTCM-64-OPPM are shown in

Figure 36 and Figure37, respectively.

0 1 2 3 4 5 62 63

index = mapping

61605958

Figure 34. Natural mapping of one symbol of 64-OPPM.

rate 6 6⁄= A 1[ ]=

B 6 1×

B 1 1 1 1 1 1, , , , ,[ ]T
=

C D

C

D
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6.3  Simulation Results

Figure 38 illustrates the simulation of SCTCM-8-OPPM with two cases of outer

codes: 4 states and 8 states. As you can see from the figure, the normalized power

requirement is about 6.22 dB. For this simulation, the information block length is 2000,
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Figure 35. Two symbols of 8-OPPM natural mapping.
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T

Figure 36. The inner code of SCTCM-8-OPPM scheme.

T

Figure 37. The inner code of SCTCM-64-OPPM scheme.
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which makes the interleaver length equal 2400, because the outer code rate is .

Using an outer code of 8 states ( ) is better for high SNR (more than 6.25

normalized power requirement). 

Figure 39 shows the simulation of SCTCM-64-OPPM for 2-states inner code and two

cases of outer code. For this simulation, the information block length is 2000 and the

interleaver length equals 2400. The figure points out that using an outer code of 8 states

( ), is better for high SNR (more than 8.1 normalized power requirement). A

normalized power requirement of 7.2 dB could be extrapolated from the figure. Higher

power efficiencies are expected if we increase the information block length.

Figure 40 shows the normalized power requirement versus the spectral efficiency of

the proposed SCTCM-8-OPPM and SCTCM-64-OPPM with other previously coded

modulation schemes [18], and uncoded PPM modulation schemes. The figure shows that

the proposed schemes outperform the previous coded system by a 42% to 57% increase in

the spectral efficiency for a comparable normalized power requirement. The figure also

shows the performance of 128-SCTCM-2L2PPM and 256-SCTCM-2L2PPM schemes,

which are discussed in chapter 5. It is clear from the figure that the proposed 64-OPPM-

based SCTM scheme outperforms the 256-SCTCM-2L2PPM scheme by about 0.9 dB in

the power requirement and 64% decrease in the decoding complexity.

5 6⁄( )

m
o
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m
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If we consider the total number of edges in the trellises of the inner and outer decoders

as the decoding complexity, we can compare the decoding complexity of the proposed

SCTCM schemes with the previous SCTCM schemes, which are proposed in chapter 5 in

the following table, Table12. The table shows that we gain up to a 64% decrease in

decoding complexity.

6.4  Summary

This chapter proposed a low-complexity SCTCM scheme to achieve high spectral

efficiency. In this SCTCM scheme, two cases of OPPM modulation scheme are combined

with a rate-1 inner code. Monte Carlo simulations show performance comparable to more

complex systems. At spectral efficiency of 0.5 bits/s/Hz, the proposed OPPM-based coded

modulation scheme outperforms those of chapter 5 by up to 0.9 dB in the power

requirement, while decreasing the decoding complexity by a factor of 64%.

Table 12. Decoding Complexity Comparison.

SCTCM scheme Complexity (trellis-edges/bit)

128-SCTCM-2L2PPM 512

256-SCTCM-2L2PPM 853

SCTCM-8-OPPM 312

SCTCM-64-OPPM 312
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Chapter  7

Concluding Remarks

7.1  Summary of Results

To increase the power and spectral efficiencies of optical communication systems,

both modulation and coding are critical. Pulse position modulation and related

modulations schemes have been adopted in optical communications because of their high

peak-to-average power ratios. Turbo-coded modulation schemes and iterative decoding

are found to be effective in spectrally efficient communication systems. This research has

explored many aspects of turbo-coded modulation schemes for optical communications.

We began, in chapter 2, by providing the necessary background on optical

communications. In chapter 3, we reviewed turbo codes, iterative decoding, and several

types of turbo-coded modulations for spectral efficient communication systems.

In chapter 4, we introduced a new modulation scheme that is suitable for optical

communications. The new modulation is two-level two-pulse position modulation

(2L2PPM), which is a combination of MPPM and multilevel modulation techniques. The
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uncoded BER performance of this modulation technique is compared with OOK, PPM

and MPPM schemes that are already used in this field. We also used the cut-off rate to

evaluate the power efficiency of this modulation when combined with coded modulation

techniques. These results show that up to 6.7 to 7.1 dB of normalized power requirements

and between 0.55 and 0.5 bits/s/Hz spectral efficiencies could be obtained by using 128

and 256 symbols 2L2PPM modulation. At 7.0 dB normalized power requirement, this

outperforms a previously proposed scheme [18] by 42% increase in the spectral efficiency.

In chapter 5, we developed a serial-concatenated trellis-coded modulation combined

with 2L2PPM modulation. The system was decoded with an iterative decoder. We

modified the performance error bounds for serial-concatenated convolutional codes,

introduced by Benedetto et al. [1], [2] for the case of TCM inner codes. Assuming large S-

random interleavers, convolutional outer and inner codes, and high optical SNRs, we

derived the design criteria for the SCTCM encoder. For this case the effective minimum

Euclidean distance of the SCTCM is found to be the product of the free Hamming distance

of the outer code and the minimum Euclidean distance of the inner code, which is at least

double the effective minimum Euclidean distance of SCTCM encoder with just random

interleavers. We found that Gray mapping is better than natural mapping, because it

minimizes the number bit errors in the inner decoding process.

Then we conducted a random search and used the design criteria to find good inner

codes for the two cases of signal mappings for constraint lengths from 2 to 5. The results
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of the random search are tabulated. Using Monte Carlo simulation, we found that Gray

mapping is better than natural mapping by 0.1 dB for the case of 4 states outer code and 4

states inner code. The improvement increases with increasing the constraint length of the

outer code or inner code.

Simulations of the SCTCM encoders with iterative decoding were found. In

conclusion, short constraint length outer and inner codes outperform the ones with larger

constraint lengths in small and medium optical SNRs. We also employed the performance

error bounds to gauge SCTCM’s performance at very low BER that is not feasible by

Monte Carlo simulations. Finally, a comparison was made between the performance of the

proposed SCTCM and some previous trellis-coded modulations in the area of infrared

communications. The comparison was done in terms of power efficiency, spectral

efficiency, decoding complexity, and distance to the cut-off rates. The proposed SCTCM

schemes offer up to a 42% increase in the spectral efficiency for the same range of power

requirement and decoding complexity.

Because overlapping pulse position modulation (OPPM) scheme is more bandwidth

efficient than multiple PPM scheme, we introduced a new SCTCM based on OPPM. An

inner code of rate-one is utilized to increase the spectral efficiency. Two OPPM cases were

proposed with this new SCTCM because of their good power efficiency in the required

range of spectral efficiency. In the first case, the inner code was combined with one period

of symbol duration of 64-OPPM with duty cycle . The resultant spectralα 0.1=
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efficiency is 0.5 bits/s/Hz. For the second case, we combined the inner code with two

symbol durations of 8-OPPM and , which produced a spectral efficiency of 0.55

bit/sec./Hz. The inner code in this system does not offer a coding gain by itself, but the

Monte Carlo simulations of the resulting SCTCM encoder with iterative decoding

indicates that the proposed schemes offer normalized power requirements of 6.3 to 7.7 dB.

The general structure of recursive convolutional codes was used for the inner code in this

system. Although the minimum Euclidean distance of the inner code can not be increased,

we still used the other design criteria, which are introduced in chapter 5, to obtain the

polynomials of the inner codes. Simulation results show that these SCTCM schemes

outperform the schemes in chapter 5 by up to 0.9 dB and a 64% decrease in the decoding

complexity.

7.2  Future Research Recommendations

The following is a list of recommended areas of future work in this field.

• We based our beginning assumptions on designing codes on very long block

lengths, S-random interleavers, convolutional codes for both outer and inner

codes, and working at high optical SNR range. For short interleavers and for

low range SNR some of these design criteria need to be improved or replaced

with better ones. For example, if the interleaver is short and the SNR is high,

the bit error performance is still decided by the effective minimum Euclidean

α 0.22=
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distance (MED) of the SCTCM, but the use of S-random interleavers does not

guarantee the MED to be the product of the outer code’s free Hamming

distance and the inner code’s minimum Euclidean distance.

• New design criteria have to be found for the low and medium range of optical

SNR and for the case of short block lengths.

• Low density parity check (LDPC) codes are the best known codes in

approaching the capacity of additive white Gaussian noise channels. Using

LDPC codes as component codes in multilevel coding technique should be

investigated for good coded modulation schemes. 

• The Monte Carlo simulation of SCTCM codes is time consuming, mainly with

very long block lengths or large memory constituent codes. Additionally, it is

not feasible to use Monte Carlo simulations for very low BER in order of

. Therefore, a need for ways of speeding theses simulation methods is

essential. One way to address this issue is to develop importance sampling

techniques for turbo codes and turbo-coded modulation systems.

• We have seen that using S-random interleavers increases the effective

minimum Euclidean distance of the SCTCM. More advanced S-interleavers,

suggested by Fargouli and Wesel [38], could be used to increase the effective

minimum Euclidean distance even more. However, one question that remains

10 9–
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to be asked is what is the effect of S-interleavers on the spectrum thickness of

SCTCM codes.
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