
Equalization

John Barry

October 5, 2015

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250
barry@ece.gatech.edu

Contents

1 Motivation 2

2 Models and Metrics 2
2.1 Discrete-Time Intersymbol Interference Model 3
2.2 Arithmetic, Harmonic, and Geometric Means 5
2.3 Shannon Capacity . 6
2.4 SNR Benchmarks: The Matched Filter Bound and Shannon SNR 7

3 Optimum Trellis-Based Detectors 10
3.1 The Trellis Diagram . 10
3.2 MAP or ML Sequence Detection: The Viterbi Algorithm 13
3.3 APP Detection: The BCJR algorithm 21

4 Linear Equalization 24
4.1 The Matched Filter . 26
4.2 Zero-Forcing Linear Equalization 26
4.3 MMSE Linear Equalization . 28

5 Decision-Feedback Equalization 31
5.1 The Zero-Forcing DFE . 32
5.2 Error Propagation . 33
5.3 The Minimum-MSE DFE . 35
5.4 DFE via Noise Prediction . 38

6 Tomlinson-Harashima Precoding 40

7 Comparing Performance: A Case Study 42

1

8 Summary 50

1 Motivation

In Chapter 4 there was only one impediment to reliable communication: ad-
ditive noise. Here we consider the more realistic case where, in addition to
adding noise, the channel �lters the transmitted signal. Such �ltering arises in
nearly every practical scenario: A wireless channel �lters because the transmit-
ted signal bounces o� of di�erent re�ectors with di�erent path lengths before
arriving at the receiver; an electronic cable �lters because di�erent frequencies
are attenuated by di�erent amounts; a �ber-optic cable �lters because di�erent
wavelengths propagate at di�erent speeds. This seemingly modest change to the
channel model has profound implications on how communications systems are
designed and implemented. Equalization is broadly de�ned as any signal pro-
cessing aimed at counteracting the dispersive e�ects of such a �ltering channel.
As we will see, the equalization process can range from a simple linear �lter to
a sophisticated signal processing algorithm, and it can be performed in advance
(at the transmitter) or after the fact (at the receiver).

Equalization plays a central role in most communications applications, rang-
ing from wireless to wired to storage devices. Equalization is thus a fundamental
and important topic in its own right. Moreover, the problem of equalization is
at its core the problem of mitigating interference, namely interference between
one information symbol and another. As such, the concepts developed in this
chapter readily extend to a much broader class of interference problems, many
of which at a glance have no obvious connection to the linear �lter model con-
sidered here, including co-channel interference, multiuser interference, intercell
interference, and multiple-input multiple-output (MIMO) communications.

2 Models and Metrics

The nature of the equalization problem is strongly impacted by the type of
modulation scheme being used. In this chapter we will limit our discussion to
a communication system that uses a single-carrier passband version of pulse-
amplitude modulation such as quadrature-amplitude modulation (QAM) and
phase-shift keying (PSK), as opposed to nonlinear alternatives such continuous-
phase frequency-shift keying or pulse-position modulation. Our motivation for
this restriction is three-fold: 1) A wide variety of applications use QAM and its
variations; 2) the mere presence of a dispersive channel suggests that a spectrally
e�cient modulation scheme like QAM is an appropriate design choice; and 3)
linear modulation schemes like QAM are more amenable to equalization through
signal processing.

In a QAM or PSK system, the transmitter conveys a sequence of L informa-
tion or message symbols {a0 · · · aL−1} by transmitting a signal whose complex
envelope (see Chap. 4) has the form:

2

x(t) =

L−1∑
k=0

akg(t− kT), (1)

where g(t) is the transmit pulse shape, ak is the k-th information symbol cho-
sen from a complex alphabet A (typically QAM or PSK), and where T is the
signaling period. This equation describes a pulse train, where a new pulse is
sent every T seconds, and the amplitude of the k-th pulse is modulated by the
k-th symbol ak.

The impact of a dispersive channel is to �lter the transmitted signal. Filter-
ing a PAM signal yields another PAM signal, where the pulse shape after the
�lter is simply a �ltered version of the pulse shape before the �lter. Therefore,
the complex envelope of the received waveform after a channel that �rst �lters
and then adds noise can be written as:

y(t) =

L−1∑
k=0

akh(t− kT) + v(t), (2)

where the received pulse shape h(t) is the �ltered version of the transmit pulse
shape g(t), and where v(t) is the complex envelope of the additive noise, as-
sumed to have independent real and imaginary parts, each of which is white
and Gaussian with power-spectral density (PSD) N0/2.

2.1 Discrete-Time Intersymbol Interference Model

The change in pulse shape is more problematic than it may at �rst seem, be-
cause it generally leads to interference between neighboring symbols, a phe-
nomenon known as intersymbol interference (ISI). Even when the transmitter
carefully chooses its transmit pulse shape g(t) so that the set of translated pulses
{g(t−kT)} in (1) are mutually orthogonal, the dispersive channel destroys that
orthogonality, so that the set of translated pulses {h(t−kT)} seen at the receiver
are not orthogonal.

Were {h(t−kT)} orthogonal, the detection problem would simplify dramat-
ically: The receiver could apply the received waveform to a �lter matched to
h(t), and sample the matched �lter (MF) output at the symbol rate; the k-th
sample would be a su�cient statistic for optimal detection of the k-th symbol,
and could be passed to a simple memoryless quantizer to arrive at the cor-
responding symbol decision. In other words, if {h(t − kT)} were orthogonal,
the optimal receiver could make symbol-by-symbol decisions, considering each
symbol in isolation.

It can be shown that a �lter matched to h(t) followed by a symbol-rate
sampler is an optimal front-end (providing su�cient statistics) even when the
received pulses {h(t−kT)} are not orthogonal [2]. The cascade of this sampled-
matched �lter and a subsequent discrete-time noise-whitening �lter is known
as the whitened-matched �lter, and is a common starting point for front-end
processing for the general case [5]. However, in this chapter we opt for a simpler

3

presentation based on an assumption that the transmitter pulse shape is the
minimum-bandwidth Nyquist pulse shape, i.e., that g(t) = sin(πt/T)/(πt/T).
Our motivation for this choice is based on two observations:

• A practical transmitter will often either aim to implement this pulse shape
exactly, or will implement a close approximation (such as a square-root-
raised-cosine pulse shape with a modest amount of excess bandwidth).

• Using the ideal minimum-bandwidth pulse simpli�es our exposition with-
out obscuring the main conceptual problem of equalization. Extensions to
handle arbitrary pulse shapes are more cumbersome but straightforward.

Since the received pulse shape is a �ltered version of the transmitted pulse
shape, the bandwidth of the received pulse will match that of the transmit pulse.
Therefore, our assumption that the transmitter uses a minimum-bandwidth
pulse, whose bandwidth is 1/(2T), implies that the bandwidth of the received
pulse h(t) will also be 1/(2T). Furthermore, this implies that the received signal
(before noise) will similarly be bandlimited to 1/(2T). We can thus pass the
noisy received signal r(t) through an ideal low-pass �lter with cuto� frequency
1/(2T) without losing any information about the transmitted symbols; the low-
pass �lter will only reject out-of-band noise that is irrelevant to the detection
problem. Further, the fact that the �lter output is bandlimited enables us to
sample it at the symbol rate 1/T without losing any information. Applying (2)
to such a low-pass �lter that is scaled to have unit energy, and then sampling
at the symbol rate 1/T leads to the following equivalent discrete-time model for
the channel:

rk =

L−1∑
i=0

aihk−i + nk, (3)

or more compactly rk = ak ∗ hk + nk, where hk =
√
Th(kT) is a scaled and

sampled version of the received pulse shape, and where {nk} is a complex-valued
circularly symmetric white-Gaussian noise process with PSD N0, so that its real
and imaginary parts are mutually independent, each being white and Gaussian
with PSD N0/2. A block diagram is shown in Fig. 1.

The discrete-time model of (3) and Fig. 1(c) will be our starting point for the
remainder of the chapter. The discrete-time impulse response hk captures the
severity of the ISI, and will be referred to as the ISI response. To be concrete
we will assume that the impulse response is causal, starting at time zero, and
has memory µ, so that the only nonzero coe�cients are h0 through hµ. We will
at times require that the memory be �nite, µ <∞.

To recap, here are the key assumptions that we make in this chapter, limiting
its scope:

• single-carrier passband linear modulation (such as QAM or PSK)

• minimum-bandwidth pulse shape

4

g(t) UP
CONVERT

b(t) DOWN
CONVERT LPF ADC

AWGN

h(t) LPF ADC

ak

CAWGN

ak

y(t)

y(t)

rk

rk

hk

rkak

nk

sk

x(t)

Figure 1: Three equivalent views of the channel model: (a) passband model;
(b) baseband continous-time model; (c) baseband discrete-time model.

• linear time-invariant ISI response with additive white Gaussian noise

• perfect channel knowledge available at transmitter (for precoding schemes
only) and at receiver (for all schemes)

• perfect synchronization

See Sect. 8 for further reading on the situation where one or more of these
assumptions is violated.

2.2 Arithmetic, Harmonic, and Geometric Means

For any real and nonnegative function S(ejθ) over θ ∈ [−π, π), including for
example any valid power spectral density, let us de�ne three mean operators as
follows:

arithmetic mean : A
{
S(ejθ)

}
=

1

2π

π̂

−π

S(ejθ)dθ,

harmonic mean : H{S(ejθ)} =
1

1
2π

´ π
−π

1
S(ejθ)

dθ
,

geometric mean : G{S(ejθ)} = exp{ 1

2π

π̂

−π

logS(ejθ)dθ}.

These will prove to be useful throughout the chapter. A few comments:

• In all three cases, the mean of a constant is that same constant.

• All three means can be seen as a special case of the transformation
f−1(1

2π

´ π
−π f(S(ejθ))dθ), or equivalently f−1(A{f(·)}), where either

f(x) = x, f(x) = 1/x, or f(x) = log(x).

5

• As written the logarithm in the geometric mean is base e, although any
other base will yield the same result, as long as the outer exponential
operator is changed to be its inverse.

• All three can be seen as the limiting case (as N → ∞) of �rst taking
N equally spaced samples Sk = S(ejk2π/N) for k ∈ 0, . . . , N − 1, and
second applying the corresponding means to the resulting �nite set of real
numbers. For example, when N = 2 the arithmetic mean is (S0 + S1)/2,
the harmonic mean is 2/(1/S0 +1/S1), and the geometric mean is

√
S0S1.

• The three means satisfy

H{S} ≤ G{S} ≤ A{S}, (4)

for any real and nonnegative function S = S(ejθ). Equalities are met if
and only if S(ejθ) is a constant, independent of θ.

• When S(ejθ) is the PSD of a random sequence xk, the arithmetic mean
reduces to A{S(ejθ)} = E(|xk|2), the power in the random sequence.

• When S(ejθ) is the PSD of a random sequence xk, the geometric mean
reduces to the mean-squared error of an optimal linear predictor x̂k =∑∞
i=1 pixk−i whose predictor coe�cients {pi} are chosen to minimize the

mean-squared error [9], i.e., G{S(ejθ)} = min{pi}E(|x̂k − xk|2).

• The arithmetic mean operator is linear, so thatA{a1S1+a2S2} = a1A{S1}+
a2A{S2}. In contrast, neither of the harmonic and geometric mean oper-
ators is linear.

• The geometric mean involving a product or ratio satis�es G{aS1S2

S3
} =

aG{S1}G{S2}
G{S3} .

• It can be shown that G{|1+be−jθ|2} = 1 for any constant b satisfying |b| ≤
1. Combined with the previous fact, this implies that G{|M(ejθ)|2} = 1
for any rational, monic, and minimum phase �lter of the form M(z) =
1 +m1z

−1 +m2z
−2 +

2.3 Shannon Capacity

The Shannon capacity is an upper bound on how fast one can communicate
reliably. The Shannon capacity of the ISI channel with AWGN of (3), subject
to a power constraint on the input of E(|ak|2) ≤ Ea, can be expressed in terms
of the discrete-time Fourier transform H(ejθ) =

∑
k hke

−jkθ of the ISI response,
according to [8]:

C =
1

2π

π̂

−π

log2(1 +
Sa(ejθ)|H(ejθ)|2

N0
)dθ (5)

6

=
1

2π

π̂

−π

log2(1 + SNR(θ))dθ (6)

= log2 G{1 + SNR(θ)} bits/symbol, (7)

where for convenience we have introduced the SNR spectral density, de�ned by:

SNR(θ) =
Sa(ejθ)|H(ejθ)|2

N0
,

which can be interpreted as the SNR per unit frequency. The capacity formula
(5) is not complete until the PSD Sa(ejθ) of the transmitted symbols is speci�ed:
The capacity-achieving PSD can be found via a procedure with a geometrical
interpretation known as waterpouring, according to:

Sa(ejθ) = max[0, λ−N0|H(ejθ)|−2], (8)

where the water-level parameter λ is adjusted until the power constraint is met
with equality, 1

2π

´ π
−π Sa(ejθ)dθ = Ea.

Example: The waterpouring procedure is illustrated in Fig. 2 for the case when
the channel ISI response is H(z) = 1+(0.6+0.6j)z−1 +0.6jz−2, the
transmit power constraint is Ea = 1, and the noise PSD isN0 = 0.25,
which corresponds to a channel SNR of 9.2 dB. As the �gure shows,
the optimal PSD concentrates its power at those frequencies for
which the channel gain is large, while avoiding those frequencies
for which the channel gain is small.

Rather than adopting the optimal waterpouring spectrum, if the transmitted
symbols are instead chosen independently and identically distributed (i.i.d.)
with a uniform distribution from an alphabet with energy Ea, so that Sa(ejθ) =
Ea, then the formula (5) would no longer be the capacity of the channel, but
it would nevertheless represent an upper bound on the achievable rate for any
input meeting the i.i.d. constraint.

In the special case of a channel with no ISI, both the channel magnitude
response and the optimal waterpouring spectrum are �at, namely |H(ejθ)| =
|h0| and Sa(ejθ) = Ea, so that the SNR spectral density reduces to the constant
SNR0 = Ea|h0|2/N0, independent of θ; in this case, the capacity formula of (5)
reduces to the familiar form C = log2(1 + SNR0) .

2.4 SNR Benchmarks: The Matched Filter Bound and

Shannon SNR

We will encounter two types of SNR's in this chapter, and it will be important
to not confuse the two:

• Channel SNR � This is the SNR of the underlying ISI channel, and is by
de�nition the ratio of the power in the received signal (the �rst term in

7

- 0 0

1

2

3

4

5

6

- 0 0

1

2

|H(e j)|2

N|H(e j)|2

Sa(e
j)

NORMALIZED FREQUENCY

NORMALIZED FREQUENCY

Sa(e
j)

Figure 2: Geometric interpretation of the waterpouring procedure (8) for de-
termining the capacity-achieving transmit spectrum: Water is poured into the
�bowl� N0|H(ejθ)|−2 until the average water depth matches the power con-
straint; the depth of the water at each frequency is then the optimal PSD,
illustrated separately in the bottom �gure.

8

(3)) divided by the power in the received noise (the second term in (3)),
namely:

SNR =
E(|

∑
i aihk−i|2)

E(|nk|2)
=

1
2π

´ π
−π Sa(ejθ)|H(ejθ)|2dθ

N0
= A{SNR(θ)},

(9)
where SNR(θ) = Sa(ejθ)|H(ejθ)|2/N0. This is the SNR of the ISI channel
itself, before any attempts at equalization are made.

• Post-Equalization SNR � Also referred to as the equalizer SNR, this is the
SNR after equalization. Importantly, this generally applies only to the
class of equalizers that strive to transform the ISI channel into an ISI-
free channel ; these include the linear equalizers of Sect. 4, the decision-
feedback equalizers of Sect. 5, and precoding strategies of Sect. 6. The
performance of any such equalizer is then easily and e�ectively quanti�ed
by the SNR of the resulting ISI-free channel.

The post-equalization SNR is an e�ective metric for comparing equalizer al-
ternatives. The higher the post-equalization SNR, the better the equalizer. A
particuarly useful bound for the post-equalization SNR of any practical equal-
ization strategy is the so-called matched-�lter bound on the post-equalization
SNR, which is based on the unrealistic assumption that receiver has (genie-
aided) knowledge of all of the interfering symbols. In other words, when making
a decision about the i-th symbol ai, the receiver somehow knows all of the inter-
fering symbols {ak 6=i}. A receiver with this knowledge can do no better than to
reconstruct the ISI from the known interfering symbols and subtract it from the
channel output (3), yielding the ISI-free channel zk = aihk−i + nk. Subtracting
the ISI in this way clearly transforms the ISI channel into an ISI-free channel
whose SNR is:

SNRMFB =
Ea
∑
k |hk|2

N0
. (10)

When the transmit PSD is �at (Sa(ejθ) = Ea), which is often the case, this
SNR is identical to the SNR of the underlying channel in (9). Otherwise, in the
general case, we use Ea = A{Sa(ejθ)} in (10). The reason that the MFB is a
bound for the post-equalization SNR is because it arises from optimal processing
with genie-aided knowledge of the interfering symbols; optimal (or suboptimal)
processing without such knowledge can only perform worse.

An alternative upper bound on the post-equalization SNR of any prac-
tical equalization strategy is the �e�ective SNR� SNRShannon achieved by a
capacity-achieving system, which can be found by setting (5) equal to log2(1 +
SNRShannon) and solving for SNRShannon, yielding:

SNRShannon = G{1 + SNR(θ)} − 1.

9

The inequality in (4) directly leads to the conclusion that the e�ective SNR of
a capacity-achieving system cannot exceed the SNR of the underlying channel:

SNRShannon ≤ SNR,

with equality reached only when SNR(θ) is a constant, independent of θ, which
can happen only when the channel has no ISI.

3 Optimum Trellis-Based Detectors

3.1 The Trellis Diagram

Before adding noise, the channel model in (3) applies the sequence of information
symbols ak to a linear �lter with impulse response hk, producing the �lter output
sk = ak ∗ hk. For the case when the channel memory is �nite (µ < ∞), it will
be convenient to view this �lter as a �nite-state machine (FSM). In particular,
let θk = [ak−1, ak−2, . . . ak−µ] denote the �lter state at time k. Because each
symbol ak ∈ A is chosen from a �nite alphabet, the number of such states is
clearly �nite, namely Q = |A|µ. More than just having a �nite number of states,
the �lter is a FSM because it further satis�es two additional properties. First,
the current output sk is uniquely determined by the pair (ak,θk), a fact that
becomes clear when we rewrite the convolution sk = ak ∗ hk as:

sk = h0ak + [h1, h2, . . . , hµ]θTk . (11)

Second, the next state θk+1 is also uniquely determined by the pair (ak,θk); this
is also clearly true, since the next state θk+1 can be formed by concatenating
the current input ak with the �rst µ− 1 entries of the current state θk. Key to
the FSM formulation is that the state sequence satis�es the Markov property
P (θk+1|θ0,θ1, . . . ,θk) = P (θk+1|θk). Intuitively this means that knowledge of
the state at time k tells us everything we need to know about what the next
state at time k+ 1 might be; the history of how we got there is irrelevant. Two
tapped-delay line models for the �nite-state machine are shown in Fig. 3.

So far we have assumed that the transmitter sends a symbol sequence of
length L, starting with a0 and ending with aL−1. To proceed further we need
to clarify what happens before a0 and after aL−1. While it might seem natural
to assume that nothing is transmitted before and after, namely to assume that
ak = 0 for all k /∈ {0, . . . , L−1}, this can be problematic when 0 /∈ A, because it
would require that an augmented alphabet A∪ {0} be used to de�ne the states
during the transients at the beginning and ending of the message. Besides, in
practice it is more common to use preambles or postambles of non-information-
bearing symbols for tasks such as frame synchronization and channel estimation.
To better capture this reality we will identify one symbol from the alphabet as
the idle symbol, denoted a0 ∈ A, and we will assume that the transmitter
uses both a preamble and a postamble, each consisting of a block of µ idle
symbols. In other words, we assume that ak = a0 for k ∈ {−µ, . . . − 1} and

10

ak–1

h0 h1 h2 h

ak ak–2 ak–

 sk

 k

bk–1

h0 h1 h2 h

bk bk–2 bk–

 sk

A A A A
ak–1ak ak–2 ak–

 k

(a)

(b)

A
bk

BITS

Figure 3: Two equivalent views of the ISI �lter as a �nite-state machine. In
both cases the state of the �lter is the contents of its memory elements. In (a)
the memory stores the information symbols, while in (b) the memory stores the
corresponding message bit blocks, where bk denotes the unique block of log2 |A|
bits associated with the symbol ak ∈ A. The model of (b) is preferred when
computing probabilities for the message bits using the BCJR algorithm.

11

a– ... a–1 aL ...aL+–1a0 a1 a2 aL–1

L INFORMATION SYMBOLS IDLE SYMBOLS IDLE SYMBOLS

PREAMBLE POSTAMBLE

Figure 4: We assume that the L information symbols are sandwiched between
a preamble and postamble, both consisting of a block of µ idle symbols.

k ∈ {L, . . . L+ µ− 1}. The preamble and postamble are illustrated in (4). The
preamble ensures that the state is in the all-idle state at time zero, namely
θ0 = [a0, . . . a0], while the postamble ensures that the state is in the all-idle
state at time L+ µ, namely θL+µ = [a0, . . . a0].

In what follows we associate an integer label p ∈ 0, . . . , Q− 1 with each state,
and we will will reserve the zero label for the all-ide state; with this notation, the
preamble and postamble ensure that both θ0 = 0 and θL+µ = 0. The symbols
in the postamble are sometimes referred to as termination symbols, since their
purpose is to terminate the trellis to a known state (namely, state zero).

The trellis diagram is de�ned simply as a plot of all possible states versus
time.

Example: Suppose a block of L = 5 binary symbols A = {±1} are transmitted
across an ISI channel with memory µ = 2, sandwiched between a
preamble and postamble of two idle symbols a0 = −1. There are
four possibilities for the state θk = [ak−1, ak−2]: it can be [−1,−1],
[+1,−1], [−1,+1], or [+1,+1], which are assigned the integer labels
0, 1, 2, and 3, respectively. The corresponding trellis diagram is
shown in Fig. 5(a). The preamble ensures that the state begins at
state zero at time 0. The state at time 1 is either 0 or 1, depending on
the value of a0. The trellis terminates at state zero at time 10. The
path corresponding to the message [a0, . . . a4] = [−1,+1,+1,−1,+1]
is highlighted. In all there are |A|L = 25 = 32 distinct paths through
this trellis, one for each possible message.

Longer messages, larger alphabets, and higher ISI memory can lead to a more
complicated trellis.

Example: Suppose a block of L symbols chosen from an alphabet of size M =
|A| = 4 (such as 4-QAM or 4-PSK) is transmitted across an ISI
channel with memory µ = 2. In this case the state θk = [ak−1, ak−2]
is the previous two symbols, so that the number of states is Q =
|A|µ = 16. The preamble and postamble ensure that the starting
state (at time k = 0) and the ending state (at time k = L + µ) are
both zero. The corresponding trellis diagram is shown in Fig. 5(b).
The trellis diagram has a total of L + µ stages. The �rst L stages
of the trellis correspond to the L message symbols. In these stages
there are M = |A| = 4 branches emanating from each node, one
for each possible message symbol. The last µ stages of the trellis

12

correspond to the postamble idle symbols. In these stages there
is only one branch emanating from each node, namely the branch
corresponding to the idle symbol.

3.2 MAP or ML Sequence Detection: The Viterbi Algo-

rithm

The maximum-a-posteriori (MAP) estimate of the message is the message a =
[a0, . . . , aL−1] ∈ AL that maximizes the a posteriori probability P (a|r) =
f(r|a)P (a)/f(r), or equivalently maximizes just the numerator f(r|a)P (a).
When all messages are equally likely, the MAP sequence decision reduces to
that maximum-likelihood (ML) sequence decision, which is the symbol sequence
a ∈ AL that maximizes the likelihood f(r|a). A brute-force search for either
type of decision would require that f(r|a) be computed for each of the |A|L
possible message sequences. The complexity of such an exhaustive search would
thus grow exponentially with the message length L. In this section we describe
an e�cient solution to the MAP or ML sequence detection problem whose com-
plexity grows only linearly with L.

Every message a ∈ AL uniquely determines a �path� through the trellis, as
speci�ed by the state sequence θ = [θ0, . . . θL+µ] ∈ Aµ(L+µ+1). The reverse is
true as well, i.e., every path through the trellis uniquely speci�es the correspond-
ing message sequence. Therefore, to �nd the MAP estimate of the message, we
need only �nd the MAP estimate for the path through the trellis, which is
the state sequence θ ∈ Aµ(L+µ+1) that maximizes the a posteriori probabil-
ity P (θ|r) = f(r|θ)P (θ)/f(r), or equivalently maximizes just the numerator
f(r|θ)P (θ). Because the noise components are independent, and because the
noiseless channel output sk depends only on the states at time k and time k+1,
this numerator reduces to:

f(r|θ)P (θ) =

L+µ−1∏
k=0

f(rk|sk = s(θk,θk+1))P (ak = a(θk,θk+1))

=

L+µ−1∏
k=0

γk(θk, θk+1), (12)

where γk(p, q) = f(rk|s(p,q))P (ak = a(p,q)) can be interpreted as a branch metric
for the branch in the trellis diagram from state p at time k to state q at time
k + 1. Here we use a(p,q) ∈ A to denote the unique input symbol associated
with the transition from state p ∈ {0, . . . , Q − 1} to state q ∈ {0, . . . Q − 1}.
(When such a transition is impossible, we take the corresponding probability to
be zero.) Similarly, we use s(p,q) to denote the unique FSM output associated
with a transition from state p to state q, as de�ned by (11). This means that
a FSM that starts out in state p will output s(p,q) and move to state q when
the input symbol is a(p,q). Intuitively, the branch metric for a branch from one

13

k = 0 k = k = L k = L+

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

k = 0 2

[–1, –1]: 0

[+1, –1]: 1

[–1,+1]: 2

[+1,+1]: 3

1 k = 7

(a)

(b)

Figure 5: Examples of trellis diagrams: (a) A relatively simple trellis diagram
for a message of length L = 5, alphabet size |A| = 2, and channel memory
µ = 2. There are Q = |A|µ = 4 states. (b) A more complicated trellis diagram
for alphabet size |A| = 4 and channel memory µ = 2, with Q = |A|µ = 16
states. Each message sequence a corresponds to a unique �path� through the
trellis that begins at state zero at time zero and ends at state zero at time L+µ.

14

state to another is a measure of how probable that particular transition is; the
smaller the branch metric, the less likely the state transition along the corre-
sponding branch occurred. The extreme case of a zero branch metric indicates
an impossible state transition; this generally arises because the second factor
P (ak = a(p,q)) is zero, meaning that it is impossible to make a transition from
state p to state q.

In e�ect, (12) rephrases the MAP sequence detection problem as the problem
of �nding a path through the trellis with the largest path metric, where the
metric for a path is de�ned as the product of the branch metrics in its path,
according to (12). The Viterbi algorithm is an e�cient solution to this problem
whose complexity grows only linearly with the message length L [5]. Let us
de�ne the survivor for the node (p, k) as the partial path to that node (i.e., the
partial path starting at node (0, 0) and ending at node (p, k)) with maximal
metric. Further, let α̂k(p) denote this maximal survivor metric.1 The decision
path can thus be thought of as the survivor path for ending node of the trellis,
namely the node (0, L+µ). The key to the Viterbi algorithm is the observation
that the survivors for the states at time k+ 1 will always build on the survivors
at time k. In particular, the survivors for the states q ∈ {0, 1, . . . Q− 1} at time
k+ 1 can be computed recursively from the Q survivors at time k according to:

α̂k+1(q) = maxp{α̂k(p)γk(p, q)}, (13)

with initialization α̂0(p) = δp, to account for the fact that the state is initially
p = 0 at time 0.

The Viterbi algorithm starts at the zero-th stage of the trellis, computes the
survivors for the nodes at time k = 1 based on the above recursion, then moves
on to the next stage, computes the survivors for the nodes at time k = 2, and so
on. It continues moving through the trellis from left to right and computes the
survivors recursively, according to the above recursion, and further stores for
each node the index of the previous state that was selected by the maximization
of (13). At any time k the Viterbi algorithm need only track Q survivors,
independent of k, one for each possible state at time k. This represents a
signi�cant amount of pruning, since the number of partial paths to any node
at time k grows exponentially with k. Further, observe that the complexity at
the k-th stage of the trellis is �xed, independent of the value of k; the number
of computations required to implement (13) does not depend on k. This makes
the overall complexity of the Viterbi algorithm a linear function of the sequence
length L, in stark contrast to the exponential dependence on L that would be
required by an exhaustive search for the best message.

The Viterbi algorithm described above is multiplicative because the path
metric (12) is the product of all of the branch metrics in its path; because the
logarithm is monotonic, we can equivalently maximize the logarithm of (12),
i.e. maximize

∑
k gk(θk, θk+1), which leads to an additive version of (13):

1The reason for the �hat� is that this metric can be interpreted as an estimate or approxi-
mation of a quantity that will be denoted αk(p) in the next section.

15

λk+1(q) = maxp{λk(p) + gk(p, q)}, (14)

where λk(p) = log α̂k(p) and gk(p, q) = log γk(p, q). Exploiting the fact that the
noise is Gaussian, the branch metric γk(p, q) = f(rk|s(p,q))P (a(p,q)) reduces to:

γk(p, q) =
1

πN0
e−|rk−s

(p,q)|2/N0P (ak = a(p,q)), (15)

so that a negatively scaled version µk(p, q) = −N0gk(p, q) of the additive branch
metric is:

µk(p, q) = |rk − s(p,q)|2 −N0 log
P (ak = a(p,q))

πN0
. (16)

The negative scaling factor means that, instead of maximizing the sum∑
k gk(θk, θk+1) of the original additive branch metrics, the MAP detector can

now equivalently minimize the sum
∑
k µk(θk, θk+1) of the new branch metrics.

Furthermore, when all symbols are equally likely, the subtracted term in (16)
will be independent of p and q and thus the same for every branch in the trellis,
meaning that the MAP detector (which reduces to the ML detector in the case
when all symbols are equally likely) can be based on an additive version of the
Viterbi algorithm with the simpli�ed branch metric µ̂k(p, q) = |rk − s(p,q)|2.
This last branch metric has a simple geometric interpretation as the squared
Euclidean distance between the k-th observation and what that observation
should have been, had the particular transition from state p to state q actually
occurred. The Viterbi algorithm with this branch metric is also commonly
known as the minimum-distance sequence detector, or the maximum-likelihood
sequence detector (MLSD) when the noise is white and Gaussian. The solution
is the message sequence that maximizes the likelihood f(r|a), or equivalently
minimizes the energy in the error between the observation sequence rk and the
�ltered message ak ∗ hk.

Example: Suppose a sequence a = [a0, . . . a4] of L = 5 binary symbols chosen
independently and uniformly from the BPSK alphabet A = {±1}
is transmitted across an ISI channel with real-valued impulse re-
sponse H(z) = 3 + 2z−1 + z−2, which has memory µ = 2, with a
preamble and postamble each consisting of a pair of idle symbols
a0 = −1. In this example we illustrate how to use the Viterbi algo-
rithm to �nd the ML decision sequence, given that the noisy chan-
nel output2 (after additive white Gaussian noise) is r = [r0, . . . r6]
= [1, 4, 1, 1, 5, 2,−4].

The state θk = [ak−1, ak−2] can be [−1,−1], [+1,−1], [−1,+1],
or [+1,+1], which are labeled by the integers 0, 1, 2, and 3, respec-
tively. A transition from state θk = [ak−1, ak−2] at time k to state

2In practice neither the channel ISI coe�cients nor the noisy channel outputs will be
integer-valued; nevertheless, we assume they are integers in this example to simplify the
branch metric computations.

16

θk+1 = [ak, ak−1] at time k + 1 uniquely determines the �expected�
�lter output sk = 3ak + 2ak−1 + ak−2 at time k (see (11)). The
expected �lter outputs for all possible state transitions are summa-
rized in Fig. 6(a). On the left of the �gure is a set of four nodes,
one for each possible value for the state p ∈ {0, 1, 2, 3} at time k.
On the right is another set four nodes, one for each possible state
q ∈ {0, 1, 2, 3} at time k + 1. A branch from state p to state q in-
dicates that a transition from state p to state q is possible. The
label on each such branch in Fig. 6(a) is the corresponding expected
output sk = 3ak + 2ak−1 + ak−2 at time k.

The diagram in Fig. 6(a) can be used as an alternative to convo-
lution for computing the ISI �lter output in response to an input
sequence. For example, consider the input sequence a = [a0, . . . a4]
= [−1,+1,+1,−1,+1]. The path for this sequence is highlighted in
Fig. 5(a). Each branch in this path has an expected output, as indi-
cated in Fig. 6(a), so that the expected ISI �lter output in response
to this input sequence can be read o� from the branches in Fig. 6(a)
as s =[s0, . . . s6] = [−6, 0, 4, 0, 2,−2, 4].

Each message has its own unique path, and hence from Fig. 6(a),
its own expected output sequence s. The ML sequence detection
problem for this AWGN channel boils down to �nding the message
a whose expected �lter output s is closest to the observation r =
[r0, . . . r6], in the sense that it minimizes ‖r− s‖2 =

∑6
k=0 |rk−sk|2.

Let us label the branch from state p at time k to state q at time k+1
with the additive branch metric |rk− s(p,q)|2 (which is equivalent to
(16) given our assumption that the symbol distribution is uniform),
where s(p,q) is the expected output associated with a transition from
state p to state q, as summarized in Fig. 6(a). Then the ML cost

‖r− s‖2 for a particular message can be computed by summing the
branch metrics in its corresponding path; this branch label thus re-
duces the ML sequence detection problem to the problem of �nding
a path through the trellis (from state 0 at time 0 to state 0 at time
7) whose path metric (equal to the sum of its branch metrics) is as
small as possible.

The Viterbi algorithm e�ciently �nds the path through the trellis
with minimum cost. For each node (p, k) in the trellis, the algo-
rithm keeps track of both the survivor path to that node (which is
the lowest-cost path to that node) and its corresponding cost, call
it αk(p). The algorithm is depicted in Fig. 6(b) through Fig. 6(h).
Fig. 6(b) highlights stage k = 0 of the trellis, with the correspond-
ing noisy observation r0 = 1 written below it. The two branch
metrics for this stage are computed by computing the square of the

17

di�erence between the actual observation (r0 = 1) and the expected
observation (s(p,q)) for the transition, as indicated in Fig. 6(a). In
particular, since s(0,0) = −6 in Fig. 6(a), the upper branch met-
ric in Fig. 6(b) is |rk − s(0,0)|2 = |1 − (−6)|2 = 49. Similarly,
since s(0,1) = 0 in Fig. 6(a), the lower branch metric in Fig. 6(b)
is |rk − s(0,1)|2 = |1− 0|2 = 1.

In the �gure, the number written inside each node (p, k) is the sur-
vivor metric αk(p) for that node's survivor; i.e., it is the cost of the
lowest-cost partial path to that node. The cost at the beginning of
the trellis (state 0 at time 0) is initialized to zero. At time 1 only
two of the four states are reachable, with costs 49 and 1, as shown
in Fig. 6(b).

In Fig. 6(c) we highlight stage k = 1 of the trellis, with the cor-
responding noisy observation r1 = 4 written below. As before, the
branches are labeled by the squared di�erence between the actual ob-
servation r1 = 4 and the expected observation for the corresponding
transition, as indicated in Fig. 6(a). For example, since s(0,0) = −6
in Fig. 6(a), the upper branch metric in Fig. 6(c) is |rk − s(0,0)|2 =
|4−(−6)|2 = 100, and since s(1,2) = −2 in Fig. 6(a), the correspond-
ing branch metric in Fig. 6(b) is |rk − s(1,2)|2 = |4 − (−2)|2 = 36.
The survivor metrics are then computed and stored by adding the
previous survivor metrics to the corresponding branch metrics.

It is not until stage k = 2 of the trellis, as highlighted in Fig. 6(d),
that the pruning of paths begins. The noisy observation for this
stage is r2 = 1, which is written below. The branch metrics are la-
beled as before (by computing the square of the di�erence between
r2 and the expected outputs from Fig. 6(a)). Next the survivors
for the states at time k = 3 are computed. For example, the �gure
shows that there are two ways to get to node (0, 3):

• we could start at node (0, 2), which has cost 149, and traverse
the upper branch, which has cost 49, for a total cost of 198;

• we could start at node (2, 2), which has cost 37, and traverse
the lower branch, which as cost 25, for a total cost of 62.

The Viterbi algorithm selects the second option because of its lower
cost. In the �gure we indicate this selection by crossing out the
branch that was not selected (the upper branch in this case). We
further store the new metric by writing the cost 62 into node (0, 3).
A similar add-compare-select procedure is implemented for the re-
maining three nodes at time k = 3: the lower branch is selected for
node (1, 3), since 37 + 1 = 38 < 149 + 1 = 150; the lower branch is
selected for node (2, 3), since 1 + 1 = 2 < 65 + 9 = 74; and the lower

18

branch is selected for node (3, 3), since 1 + 25 = 26 < 65 + 9 = 74.

The algorithm then moves on to stage k = 3, as shown in Fig. 6(e),
performing four add-compare-select operations, one for each possible
state, and storing the new survivor metrics. The same operations
are performed for stage 4, as shown in Fig. 6(f), and then again for
stage 5, as shown in Fig. 6(g), and then again for the last stage, as
shown in Fig. 6(h).

The decision path is the survivor path for the last node of the trel-
lis. It can be found by starting at the ending node of the trellis
and tracing backwards, at each stage choosing the branch that was
not discarded (i.e., not crossed out); the resulting decision path is
highlighted in Fig. 6(h). The decision path in turn determines the
decision message, since there is a one-to-one mapping between paths
and messages. In particular, since the states were ordered so that
the lower branch emanating from any node always corresponds to
an input of +1, the fact that the decision path transitions are lower-
lower-upper-lower-lower-upper-upper indicates that the ML decision
sequence is â = [+1,+1,−1,+1,+1]. (The last two transitions cor-
respond to the postamble and are not a part of the message decision.)

Observe that the survivor metric for the last node of the trellis is
α7(0) = 8. This is the smallest cost ‖r− s‖2 that is achieved by the
decision sequence. Indeed, we can con�rm this value by comput-
ing the expected output sequence from the decision sequence â (via
Fig. 6(a)) as s = [0, 4, 0, 2, 4, 0,−4], and verifying that the squared

distance to r = [1, 4, 1, 1, 5, 2,−4] is indeed ‖r− s‖2 = 8.

We close this section with a summary of the key properties of the Viterbi
algorithm, as described so far:

• it makes a decision about the entire sequence all at once, either the MAP
or ML decision, depending on how the branch metrics are de�ned.

• It waits until the entire message has been transmitted before making its
decision.

• it is built on a trellis diagram consisting of L+µ stages (in the horizontal
dimension) and Q = |A|µ states (in the vertical dimension).

• The storage requirements for the survivor paths is roughly QL.

• The complexity of each stage is roughly proportional to the number of
branches in each stage, namely |A|µ+1, so that it requires a constant com-
putation rate that is independent of the message length.

To reduce the storage requirements and delay, in practice the Viterbi algorithm
is typically modi�ed to operate over a window of say D stages of the trellis,

19

0 49

1

149

65

37

1

62

38

2

26

27

3

27

47

108

36

52

4

64

36

88

16

4
8

0 49

1

149

65

37

1

62

38

2

26

49

25

27
1

1
3

9

1

279

25 47

0 49

1

149

65

37

1

62

38

2

26

27

3

27

47

121

81

108

25

9
36

49

25

521

1 4

0 49

1

149

65

37

1

62

38

2

26

27

3

27

47

108

36

52

4

88

8

4

0

8

0 49 49
1

1

0 49

1

100 149
16

65
36

370

1

0 49

1

149

65

37

1

49

25

62
1

1
38

9

1

29

25 26

0

1

2

3

–6

–40

2

–2

0 4

6

r0 = 1

r1 = 4

r2 = 1

r3 = 1

r4 = 5

r5 = 2

r6 = –2

(a)

(b) k = 0

(c) k = 1

(d) k = 2

(e) k = 3

(f) k = 4

(g) k = 5

(h) k = 6

Figure 6: The Viterbi algorithm example: (a) shows the expected outputs
{s(p,q)}, while (b) through (h) show the branch metrics and add-compare-select
results for stage 0 through stage 6, respectively.

20

from time k − D to time k. At each time k, the survivor node with the best
survivor metric is traced back to determine the decision at time k − D. This
approach reduces the decoding delay from approximately L to D, and it reduces
the storage requires from approximately QL to approximately QD. The window
depth parameter D can then can then be tuned to trade-o� performance versus
complexity and delay. The optimal performance of the original Viterbi algorithm
is achieved as D grows large, but small values are often su�cient; values of D
on the order of 5µ are often su�cient to make the performance degradation
negligible.

The Viterbi algorithm is an e�ective solution to the problem of estimating
the inputs to a FSM based on a noisy observation of the FSM output, and is used
in a wide variety of applications beyond equalization of ISI channels, including
error-control decoding for convolutional and trellis codes, and demodulation of
continuous-phase modulation [5].

3.3 APP Detection: The BCJR algorithm

The MAP decision found by the Viterbi algorithm of the previous section is
optimal in the sense that it minimizes the probability that the message decision
is incorrect. What could be better? Note that the MAP decision produced
by the Viterbi algorithm is a hard decision about the entire message sequence.
Here we describe the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [1][18] that
di�ers on both fronts:

• instead of making one decision about the entire message, the BCJR algo-
rithm makes separate decisions about each bit of the message.

• instead of making hard decisions about the message bits, the BCJR algo-
rithm makes soft decisions in the form of a posteriori probabilities.

The �soft� decisions of the BCJR algorithm are the a posteriori probabilities
(APP's) P (bk,i = 1|r) for each message bit bk,i, for k ∈ {0, . . . , L − 1} and
i ∈ {0, . . . , log2 |A| − 1}. The BCJR algorithm is thus an APP computer. If we
were to quantize each bit's APP we would arrive at hard decisions that would
at times disagree with those of the Viterbi algorithm. In fact, these quantized
APP's would be optimal in the sense that they minimize the probability that
each message bit is incorrect.

The fact that the quantized APP's from BCJR minimize the bit-error prob-
ability, as opposed to the word -error probability minimized by the Viterbi de-
cision, is not what makes BCJR valuable. Indeed, in practice the performance
di�erence between the two is often negligible. In other words, the fact that
BCJR makes separate decisions about each bit is not what makes it valuable.
Instead, the value of BCJR is the soft outputs (APP's) themselves, not their
quantized versions. An equalizer that passes hard decisions to another receiver
computation block (such as synchronization, estimation, or error-control decod-
ing) is throwing away useful information. Overall performance can be improved

21

signi�cantly when the equalizer instead passes soft decisions to these other re-
ceiver blocks. For example, an error-control decoder operating on soft decisions
can signi�cantly outperform a decoder operating on hard decisions. Extraordi-
nary gains can be achieved when such blocks iteratively cooperate by sharing
soft decisions according to the turbo principle [16]. Indeed, the BCJR algorithm
is a key building block for turbo decoding of convolutional codes [3] and turbo
equalization of ISI channels [16].

We now describe the BCJR algorithm, which is built on precisely the same
trellis as the Viterbi algorithm. Let us associate with each node (p, k) in the
trellis the forward metric αk(p) = f(θk = p, rk−1

0), which is within a scaling con-
stant of being the a posteriori probability P (θk = p|rk−1

0) of being in that state
p at that time k, given all of the �past� observations rk−1

0 = {r0, r1, . . . , rk−1}.
These metrics can be computed recursively, i.e. knowledge of the Q metrics
αk(0) through αk(Q − 1) at time k can be used to compute the Q metrics
αk+1(0) through αk+1(Q− 1) at time k + 1, according to:

αk+1(q) =

Q−1∑
p=0

αk(p)γk(p, q), for q ∈ {0, 1, . . . Q− 1} (17)

where again γk(p, q) denotes the branch metric from state p at time k to state
q at time k + 1, and is precisely the same as the branch metric for the Viterbi
algorithm, namely γk(p, q) = f(rk|s(p,q))P (a(p,q)). The forward recursion of
(17) is initialized in the same way as the Viterbi algorithm, namely α0(p) = δp,
to account for the fact that the state is initially p = 0 at time 0.

Comparing the recursion (17) to the Viterbi recursion in (13) we see that
they are nearly the same; the only di�erence is that the maximum operation
maxp of (13) has been replaced by a sum operation

∑
p in (17). This di�erence

means that, while only the largest term contributes in the Viterbi recursion, all
terms contribute in the BCJR recursion. The di�erence is not always signi�cant,
however, because at high SNR it is common for one term to dominate anyway.
We can thus view the Viterbi survivor metric α̂k(p) in (13) as a high-SNR
approximation of the BCJR metric αk(p) in (17).

Similarly, let us associate with each node (p, k) in the trellis the backward

metric βk(p) = f(rL+µ−1
k |θk = p), which is a function of the �future� observa-

tions rL+µ−1
k = {rk, . . . , rL+µ−1}. These metrics can also be computed recur-

sively, using the same type of recursion as in in (17), except that it starts at the
end of the trellis and moves backwards, so that the backward metrics at time k
can be computed from those at time k + 1 according to:

βk(p) =

Q−1∑
q=0

γk(p, q)βk+1(q), for p ∈ {0, 1, . . . Q− 1} (18)

where again γk(p, q) = f(rk|s(p,q))P (a(p,q)). The backward recursion of (18) is
initialized by βL+µ(q) = δq, to account for the fact that the ending state at time
k = L+ µ is �xed at q = 0.

22

Key to the BCJR algorithm is the fact that the a posteriori probability of a
state transition, say a transition from state p at time k to state q at time k+ 1,
can be expressed in terms of the forward, backward, and branch metrics as:

P (θk = p, θk+1 = q|r) = αk(p)γk(p, q)βk+1(q)/f(r). (19)

Therefore, we can compute the a posteriori probability for a particular bit, say
the i-th bit, of the k-th symbol by summing over all state transitions for which
the i-th bit is a one:

P (bk,i = 1|r) =
1

f(r)

∑
(p,q)∈Bi

αk(p)γk(p, q)βk+1(q), (20)

where Bi denotes the subset of branches {(p, q) : p, q ∈ {0, . . . , Q−1}} for which
the i-th bit of the symbol associated with that transition is one.

Rather than compute (20) directly, it is much more convenient (and hence
much more common) to compute the so-called �L� values, which are de�ned as
the logarithm of the ratio of the a posteriori probabilities [6]:

Lk,i = log(
P (bk,i = 1|r)

P (bk,i = 0|r)
). (21)

These L values are the soft information provided by the BCJR algorithm. They
have several useful properties:

• the sign of the L values determines the optimal MAP decision (i.e., the
decision that minimizes the probability of being incorrect), according to

b̂MAP
k,i = 1Lk,i>0.

• a zero value (Lk,i = 0) indicates complete uncertainty in the value of the
corresponding bit; i.e., that bk,i is equally likely to be a 0 and a 1.

• more generally, the magnitude |Lk,i| is a measure of certainty regarding
the hard decision; small magnitudes indicate a small amount of con�dence
that the hard decision is correct, while large magnitudes indicate a high
amount of con�dence that the hard decision is correct.

• the a posteriori bit probability in (20) can be recovered from the L value
via P (bk,i = 1|r) = 1/(1 + e−Lk,i).

Substituting (20) and its complement into (21) yields the following expression
for the L values, expressed in terms of the α, β, and γ parameters:

Lk,i = log(

∑
(p,q)∈Bi αk(p)γk(p, q)βk+1(q)∑
(p,q)∈B̄i αk(p)γk(p, q)βk+1(q)

). (22)

The set B̄i in the denominator denotes the complement of Bi, i.e., the set of
branches corresponding to a zero bit. The scaling factor 1/f(r) in (19) and (20)
can be ignored because it is common to both the numerator and the denominator
in (22), so it will cancel.

23

We can now summarize the BCJR algorithm for APP computation after an
ISI channel:

1. Compute the forward metrics {αk(p)} recursively using the forward recur-
sion (17), moving through the trellis from left to right.

2. Compute the reverse metrics {βk(p)} recursively using the backward re-
cursion (18), moving through the trellis from right to left.

3. Use (22) to compute the APP values for each bit of the message.

Each pass through the trellis has complexity roughly comparable to that of the
Viterbi algorithm, making the BCJR algorithm roughly twice as complex.3 The
computation of the APP L values has a further cost in complexity.

Example: Suppose a sequence of symbols chosen from the 4-QAM alphabet
A ={±1 ± j} are transmitted over the ISI channel H(z) = h0 +
h1z
−1 + h2z

−2, where h0 = 1 + 0.3j, h1 = 0.2 + 0.7j, and h2 =
0.05 − 0.1j, and with noise power N0 = 0.18, so that SNR =
EaEh/N0 = 12.6 dB. The message bits are i.i.d. uniform over {0, 1}.
A block diagram is shown in Fig. 7, along with two empirically mea-
sured constellations: one for the output rk of the noisy channel, and
another for the outputs Lk,i of the BCJR algorithm. The ISI in this
example is severe enough to cause signi�cant overlap of neighboring
clouds. Some sort of equalization is clearly needed to reliably re-
cover the transmitted message. The trellis diagram for this example
is exactly as shown in Fig. 5(b). In particular, since the alphabet
size is |A| = 4 and the channel memory is µ = 2, the number of
states is Q = |A|µ = 16. Also shown in the �gure is a constellation
for the �ctitious signal Lk,1 + jLk,2 after the BCJR algorithm. We
see that it resembles a 4-QAM constellation with no ISI, and with
circularly symmetric Gaussian noise. The conditional distribution
after the BCJR is approximately consistent Gaussian, meaning that
the variance in each dimension is twice the conditional mean. Mea-
suring the SNR after the BCJR algorithm yields SNR = 12.6 dB,
which is approximately the same as the underlying SNR. Evidently,
in this example, the BCJR algorithm is able to eliminate the e�ects
of the ISI without an appreciable penalty in SNR. This conclusion
can be con�rmed in terms of capacity [10].

4 Linear Equalization

The trellis-based detectors of the previous section perform exceptionally well,
but their complexity can be high. In particular, the complexity of both Viterbi

3Although the traceback operation of the Viterbi algorithm can be viewed as a backward
pass through the trellis, analogous to the backward recursion of BCJR, it does not require
any computations.

24

hk

rkak
BCJR

Lk,1
Lk,2

bk,1
bk,2

BITS

4-QAM
MAPPER

nk

Figure 7: An example of equalization via BCJR for 4-QAM over the ISI channel
H(z) = (1 + 0.3j) + (0.2 + 0.7j)z−1 + (0.05− 0.1j)z−2, with SNR = 12.6 dB.

ak
H(z)

rk

nk

âkQUANTIZE
AC(z)

yk

LINEAR
EQUALIZER

Figure 8: A linear equalizer C(z) followed by a memoryless quantizer results in
decisions âk about the message symbols ak.

and BCJR algorithms is exponential in both the spectral e�ciency (log2 |A|)
and channel memory (µ), and can be prohibitive when the alphabet is large,
the channel memory is large, or both. As an alternative we consider in this
section the class of linear detectors, which feature a complexity that is nearly
independent of the alphabet size and channel memory, albeit with performance
that can at times fall signi�cantly short of the trellis-based detectors.

A linear equalizer is simply a linear time-invariant �lter applied to the chan-
nel output. In this section we assume that the linear equalizer is designed
with the expectation that the equalizer output will be applied to a memoryless
quantizer that rounds the equalizer output to the nearest element of the symbol
alphabet A. In other words, the aim of the linear equalizer is to eliminate ISI,
so that subsequent receiver processing can ignore ISI.4

A block diagram of a linear equalizer is shown in Fig. 8. In the following
three sections we describe three special cases of the linear equalizer: (1) the
matched �lter, (2) the zero-forcing (ZF) linear equalizer, and (3) the minimum-
mean-squared-error (MMSE) linear equalizer.

4This is in contrast to a partial-response equalizer, which aims not to eliminate ISI but to
mold it to match a desired target [4].

25

4.1 The Matched Filter

If the transmitter were to send only a single symbol in isolation, so that L = 1
in (1) and the channel model (3) reduces to rk = a0hk + nk, then the SNR
after equalization (at time zero) is maximized when the linear equalizer C(z)
in Fig. 8 is matched to the channel. In the time domain, the matched �lter
impulse response is a time-reversed and conjugated version of the ISI channel:

ck = h∗−k.

In the z domain5 this means that C(z) = H∗(1/z∗), while in the frequency
domain it means that C(ejθ) = H∗(ejθ). The MF equalizer gain at a particular
frequency matches that of the channel at that frequency; frequencies that are
ampli�ed by the channel will be further and similarly ampli�ed by the equalizer,
while frequencies that are attenuated by the channel will be further and similarly
attenuated by the equalizer.

In practice the transmitter will send a sequence of symbols, not a single
symbol in isolation. In this case the MF receiver may not at �rst glance appear
to be an equalization strategy at all, since the net e�ect of the matched �lter will
be to accentuate the severity of the ISI, rather than to eliminate it. However,
as we will see below, the matched �lter is an optimal linear equalizer in the
limit of low SNR. Intuitively, this can be understood by observing that the
ISI, no matter how severe, will eventually become negligible (falling below the
noise �oor) at low enough SNR. Furthermore, in a direct-sequence code-division-
multiple-access (DS-CDMA) application for which the transmit pulse shape g(t)
of (1) has a bandwidth that is orders of magnitude greater that the signaling
rate 1/T , an oversampled version6 of the matched �lter is known as the RAKE
receiver and is an e�ective method for compensating for the e�ects of a dispersive
channel, at any SNR.

4.2 Zero-Forcing Linear Equalization

The zero-forcing strategy for linear equalizer design is to choose the equalizer
to be the inverse of the channel, when it exists, which will completely eliminate
the ISI:

CZF (z) =
1

H(z)
. (23)

This is called a zero-forcing equalizer because the ISI is forced to zero. The ZF
linear equalizer is in some sense the opposite of the matched �lter: It attenuates

5The z transform of a sequence xk is a mapping from the complex z plane to X(z) =∑∞
k=−∞ xkz

−k , for those values of z for which the sum converges. Evaluating the z transform

at z = ejθ results in the Fourier transform X(ejθ), when it exists.
6The broadband nature of a DS-CDMA signal violates the minimum-bandwidth assump-

tion made in Sect. 2.1, and hence the baud-rate sampled model considered in this chapter
would need to be replaced by an oversampled model in order to accommodate the expanded
bandwidth.

26

at frequencies that are ampli�ed by the channel, and it ampli�es at frequencies
that are attenuated by the channel.

Because the ZF linear equalizer completely eliminates ISI, its output can be
written as:

yk = ak + ek,

where ek = nk ∗ ck is the noise after being �ltered by the equalizer. The PSD
of the �ltered noise is:

Se(e
jθ) = N0|C(ejθ)|2 =

N0

|H(ejθ)|2
.

The power of the �ltered noise is E(|ek|2) = A{Se(ejθ)}. Therefore, the SNR
after the ZF equalizer, as seen by the memoryless quantizer, is simply:

SNRZF =
E(|ak|2)

E(|ek|2)
=

Ea
A{Se(ejθ)}

=
1

A{ 1
SNR(θ)}

, (24)

or more compactly,

SNRZF = H{SNR(θ)}. (25)

This is the post-equalization SNR of the ZF linear equalizer. Note that this
SNR does not account for the correlation in the noise after the linear equalizer,
because the memoryless quantizer has no way of exploiting this correlation.
Thus, the SNR measure implicitly takes the memoryless constraint into account.
(In contrast, an optimal way of exploiting the noise correlation would be to
follow the equalizer by the inverse of the equalizer (!), which reverts back to to
the original channel output, and then to apply a trellis-based detector.)

The ZF linear equalizer performance is never better than the matched �lter
bound when the transmit spectrum is �at, since in this case the inequalities
in (4) imply that SNRZF = H{SNR(θ)} ≤ A{SNR(θ)} = SNRMFB. The
inequality becomes an equality if and only if there is no ISI, i.e., if and only
if SNR(θ) is independent of θ. Therefore, for any channel with ISI, the ZF
linear equalizer always falls short of the MFB. The nature of the harmonic
mean implies that the gap in performance can be signi�cant when the channel
frequency response is small at one or more frequencies.

Example: Consider the performance of the ZF linear equalizer for a sequence of
i.i.d. symbols chosen from the 4-QAM alphabet A = {±1± j} over
a channel with frequency response H(z) = 1 + bz−1 and noise PSD
N0 = 2; in this case the SNR spectral density reduces to SNR(θ) =
|1 + be−jθ|2, so that the SNR after a ZF linear equalizer is:

SNRZF = H{SNR(θ)}

=
1

1
2π

´ π
−π

1
|1+be−jθ|2 dθ

= 1− |b|2.

27

If |b| is in�nitesimal, this SNR is not much smaller than the MFB,
namely SNRMFB = 1 + |b|2. However, as |b| grows large, the SNR
decreases dramatically. In fact, as |b| approaches unity, the SNR
approaches zero! The ZF linear equalizer thus incurs an in�nite SNR
penalty when |b| = 1 . The reason can be easily understood in the
frequency domain, for the channel magnitude response |H(ejθ)| =
|1 + be−jθ| has a spectral null at some frequency θ (that depends
on the angle of b) when |b| = 1. In turn, this implies that the gain
of the equalizer |C(ejθ)| = 1

|H(ejθ)| grows to in�nity at that same

frequency. This ampli�es the noise by an in�nite amount, so that
the noise totally swamps the desired signal.

It is generally true that a ZF linear equalizer su�ers in�nite noise enhancement
whenever the channel magnitude response is zero at one or more frequencies,
and that it performs poorly whenever the channel has a near spectral null at
one or more frequencies.

4.3 MMSE Linear Equalization

The fatal �aw of the zero-forcing equalizer is its insistence on forcing ISI to zero,
regardless of what impact it has on the noise. Forcing ISI to zero is overkill. In
contrast, here we describe the minimum-mean-squared-error (MMSE) equalizer,
which chooses its coe�cients so as to minimize the mean-squared error between
the equalizer output and what we want it to be, namely to minimize MSE =
E(|ek|2), where ek = yk − ak. The Fourier transform of the solution is

CMMSE(ejθ) =
H∗(ejθ)

|H(ejθ)|2 + N0

Ea

. (26)

The numerator represents a matched �lter, which transforms the channel fre-
quency response from its original form H(ejθ) to |H(ejθ)|2. The presence of
the constant N0/Ea term in the denominator is the only thing that prevents
the remainder of the MMSE equalizer from inverting this e�ective response. As
such, this constant is the only thing that prevents the MMSE linear equalizer
from being the ZF linear equalizer. Intuitively we can think of the constant as
a way of preventing the denominator from being close to zero, even when the
channel itself is zero or near zero at certain frequencies.

Two extremes are of special interest: high SNR and low SNR. At high SNR,
high enough that the N0/Ea term in the denominator is negligible, the MMSE
equalizer reduces to the ZF equalizer CZF (ejθ) = 1/H(ejθ) of (23). This makes
intuitive sense, because at high enough SNR any residual ISI after the equalizer
will eventually dominate. At the other extreme of low SNR, so low that the
N0/Ea term in the denominator dominates, the MMSE equalizer reduces to
within a constant scaling factor of the matched �lter H∗(ejθ). This also makes
sense intuitively, because at low enough SNR the ISI will eventually fall below
the noise �oor and will become negligible.

28

The two extreme cases considered above help to clarify the tradeo� achieved
by the MMSE solution. The error after the equalizer will have two components,
one being residual ISI and the other being �ltered noise. The aim of the MMSE
equalizer is to minimize the sum of the power of both. In stark contrast, the
ZF equalizer minimizes ISI while ignoring the noise. Similarly, the matched
�lter can be thought of as an equalizer that maximizes SNR while ignoring
the ISI. Neither of these extremes achieves the optimal balance obtained by the
MMSE equalizer. One �nal intuitive view of how the MMSE equalizer compares
to the ZF equalizer: While the ZF equalizer forces ISI to zero at the expense
of a potentially large enhancement of the noise power, the MMSE equalizer
merely pushes the ISI to be roughly below the noise �oor, without as much
noise enhancement.

In order to accurately quantify the post-equalization SNR of the MMSE
equalizer, we need to account for the equalizer bias. Let βk = hk ∗ ck denote the
impulse response of the cascade of the channel and any equalizer ck. We say
that an equalizer is biased whenever the zero-th coe�cient β0 satis�es β0 6= 1,
because the conditional mean of the equalizer output satis�es E(yk|ak) = β0ak.
For example, the ZF equalizer of the previous section is unbiased, because in
that case β0 = 1. On the other hand, the MMSE equalizer is biased because
β0 6= 1, namely:

β0 =
1

1 + 1/SNRMMSE−LE
,

where SNRMMSE−LE will be de�ned shortly (see (28)). Scaling the equalizer by
1/β0 removes the bias, leading to the so-called unbiased MMSE linear equalizer:

CMMSE,U(ejθ) =
β−1

0 H∗(ejθ)

|H(ejθ)|2 + N0

Ea

. (27)

At high SNR there is not much di�erence in performance between the unbiased
and biased equalizer. However, the unbiased version makes it easy to compute
the post-equalization SNR of the MMSE equalizer, because � unlike for the
biased case � the equalizer error ek = yk − ak after the unbiased equalizer will
be independent of ak, so that the SNR after this equalizer can be computed
simply as:

SNRMMSE−LE =
E(|ak|2)

E(|ek|2)
(28)

= H{1 + SNR(θ)} − 1. (29)

Comparing this SNR to that of the ZF linear equalizer, and exploiting the
inequality (4), we conclude that:

SNRMMSE−LE ≥ SNRZF−LE,

with equality if and only if the channel has no ISI. Thus, when faced with ISI,
the MMSE linear equalizer always outperforms the ZF linear equalizer. The

29

 0
-30

-20

-10

0

10

20

30

NORMALIZED FREQUENCY

M
A

G
N

IT
U

D
E

 R
E

S
P

O
N

S
E

 (d
B

)

|H(ej)| =

|CZF(ej)|

SNR = 0 dB

 |CMF(ej)|

10 dB

20 dB

30 dB

40 dB

Figure 9: An illustration of how the magnitude response of the MMSE linear
equalizer ranges from that of a matched �lter to that of a ZF linear equalizer,
depending on the SNR.

di�erence in performance can be signi�cant at low SNR, or for channels with
severe ISI, while the di�erence can be small at high SNR, or for channels with
mild ISI.

Example: Consider a channel with transfer function H(z) = 1 + h1z
−1 +

h2z
−2 + h3z

−3, where h1 = 0.4 − 0.1j, h2 = 0.1 + 0.5j, and h3 =
0.3 + 0.8j. The magnitude response |H(ejθ)| is shown in Fig. 9,
where we see deep spectral nulls that are attenuated by as much as
32 dB relative to the peak response. Since the matched �lter and
the channel share the same magnitude response, this same curve also
depicts the magnitude response of the matched �lter. Also shown in
the �gure is the magnitude response |CZF (ejθ)| = 1/|H(ejθ)| of the
zero-forcing linear equalizer. Observe that the ZF linear equalizer
has a high gain of over 20 dB at the frequency most attenuated by
the channel. The remaining �ve curves show the magnitude response
of the unbiased MMSE linear equalizer for �ve di�erent SNR values,

30

ranging from 0 dB to 40 dB. At low SNR, the MMSE equalizer has
roughly the same shape as the matched �lter. At high SNR, the
MMSE equalizer closely approximates the ZF linear equalizer. At
moderate SNR, the MMSE linear equalizer resembles neither the MF
nor the ZF linear equalizer over the entire frequency range. Instead,
at 20 dB SNR, for example, we see that the MMSE linear equalizer
behaves like the MF at frequencies near the channel null, while it
behaves more like the ZF linear equalizer at all other frequencies.

5 Decision-Feedback Equalization

The decision-feedback equalizer is a nonlinear equalization strategy that can
signi�cantly outperform a linear equalizer, with comparable complexity. The
DFE is based on the concept of interference cancellation, where interference is
estimated at the receiver and subtracted. As a motivating example, let us begin
our discussion by supposing that the channel impulse response has most of its
energy concentrated in the zero-th coe�cient h0, so that the channel output
rk = ak ∗ hk + nk can be broken down into three terms:

rk = h0ak︸︷︷︸
desired

+

µ∑
i=1

hiak−i︸ ︷︷ ︸
ISI

+ nk︸︷︷︸
noise

.

The �rst term represents the desired signal, the second term is the ISI, and the
third term is the channel noise. Suppose further that, at time k, the receiver
has access to the prior decisions {âk−1, âk−2, . . .}. In this case, the receiver can
reconstruct an estimate

∑µ
i=1 hiâk−i of the ISI and subtract this estimate from

the channel output, and further scale by 1/h0, resulting in:

zk =
1

h0
(rk −

µ∑
i−1

hiâk−i) (30)

= ak +
1

h0

µ∑
i=1

hi(ak−i − âk−i) + nk/h0.

When the µ relevant decisions are correct, this reduces to:

zk = ak + nk/h0.

Like the zero-forcing linear equalizer, this DFE has completely eliminated ISI.
Unlike the linear equalizer, however, the noise here has not been enhanced.
Instead, the noise term nk in the above equation is the noise nk of the original
channel. This DFE thus eliminates ISI without any noise enhancement.

In the general case when h0 is not large, the receiver can �rst apply the
channel output to a linear �forward� �lter whose purpose is to transform the

31

ak
H(z)

rk

nk

âk
F(z)

yk

FORWARD
FILTER

B(z)

FEEDBACK
FILTER

zk QUANTIZE

A+
–

Figure 10: The DFE has two �lters, a forward �lter for mitigating ISI from
future symbols, and a feedback �lter for mitigating ISI from past symbols.

cascade of the channel and the equalizer into an e�ective channel whose zero-th
tap is large. This leads to the DFE structure shown in Fig. 10. The equalizer
output (or equivalently, the input to the decision device) for the DFE is:

zk = rk ∗ fk −
∞∑
i=1

biâk−i, (31)

where fk is the impulse response of the forward �lter, and where bk is the impulse
response of the feedback �lter. To be implementable, the feedback �lter must
be strictly causal, i.e., it must satisfy bk = 0 for all k ∈ {0,−1,−2, . . .}, so
that B(z) =

∑∞
k=1 bkz

−k. The motivating example of the previous paragraph
is a special case when the forward �lter is the scaling factor F (z) = 1/h0,
and the feedback �lter is the strictly causal �tail� of the normalized channel,
B(z) = (H(z)− h0)/h0 = h−1

0

∑µ
k=1 hkz

−k.

5.1 The Zero-Forcing DFE

A zero-forcing DFE is one for which the DFE output zk depends only on the
k-th symbol ak, with no residual ISI from the others. Of the many DFE's that
satisfy this ZF property, we will prefer the one that results in the highest SNR,
or equivalently that minimizes the MSE = E(|zk − ak|2). This version of the
ZF DFE is unique, and is given by [2]:

F (z) =
H∗(1/z∗)

γ2M∗(1/z∗)
, (32)

B(z) = M(z)− 1, (33)

which are de�ned in terms of the following spectral factorization ofH(z)H∗(1/z∗):

H(z)H∗(1/z∗) = γ2M(z)M∗(1/z∗), (34)

32

where M(z) = 1 +m1z
−1 +m2z

−2 . . . is monic (i.e., satisfying m0 = 1), loosely
minimum phase (i.e., all of its poles are inside the unit circle, and all of its zeros
are either inside or on the unit circle), and where:

γ2 = G{|H(ejθ)|2}

is the geometric mean of the magnitude squared of the channel frequency re-
sponse. With this choice for the forward �lter, it is easy to see that the cascade
of the channel and the forward �lter reduces to H(z)F (z) = M(z). Thus, the
forward �lter transforms the original channel with transfer functionH(z) into an
e�ective channel with transfer function M(z). Of all transfer functions having
the same magnitude response as the original channel, the minimum-phase fac-
tor γM(z) has the desirable property that its energy is maximally concentrated
at time zero. Observe further that the optimal ZF forward �lter is a scaled
all-pass �lter, which ensures that it does not enhance the noise; the noise after
the forward �lter is still white. One �nal observation: If the original channel
happens to be minimum phase from the beginning, then the minimum-phase
factor reduces to γM(z) = H(z). This means that the forward �lter reduces
to a scaling constant F (z) = 1/γ = 1/h0, and the feedback �lter reduces to
B(z) = H(z)/h0 − 1, so that the optimal ZF DFE reduces to the original moti-
vating example provided at the beginning of this section.

To compute the SNR of the ZF DFE, observe that the net e�ect of the
forward �lter F (z) from (32) is to transform the channel from H(z) to the
channel-�lter cascade H(z)F (z) = M(z). Because the forward �lter is a scaled
all-pass �lter, the noise after the forward �lter is still white and Gaussian. The
scaling constant changes the noise PSD from N0 to N0/γ

2. The feedback �lter
eliminates the ISI without any impact on this noise, so that the SNR after the
ZF DFE, assuming correct decisions, is simply:

SNRZF−DFE =
Ea

N0/γ2
=
Ea
N0
G{|H(ejθ)|2} = G{SNR(θ)}. (35)

(The last equality requires that the transmit spectrum be �at, Sa(ejθ) = Ea.)
This is the post-equalization SNR for the ZF DFE. Exploiting the inequality
(4), we conclude that:

SNRZF−DFE ≥ SNRZF−LE,

with equality if and only if the channel has no ISI. The DFE thus always out-
performs the linear equalizer for channels with ISI. One caveat to keep in mind
for the DFE is that the above SNR measure is based on an assumption that
decisions are correct; the actual SNR (that accounts for occasional errors) will
be slightly lower. The impact of errors is considered next.

5.2 Error Propagation

The DFE was designed and analyzed in the previous section with an assumption
that the receiver decisions are correct. In practice there will be occasional errors

33

that tend to increase the probability of a subsequent error, a phenomenon known
as error propagation. A single error will often lead to a burst of many errors.
Looking closer at (30), we see that any error amongst {âk−1, . . . , âk−µ} will lead
to the corresponding ISI being added (in e�ect, doubled) instead of subtracted,
which will in turn signi�cantly increase the probability of a subsequent error.
The error burst e�ect ends whenever µ consecutive correct decisions are made.
The impact of error propagation on the overall performance depends on the
value of SNR: At high SNR the impact can be negligible, while at low SNR the
impact can be more severe.

Fortunately we can analyze the impact of error propagation in a straight-
forward way, and quantify the overall performance that takes into account the
possibility of error propagation. We illustrate this analysis with a simple exam-
ple.

Example: Consider the channel rk = ak + ak−1 + nk, where the symbols
are chosen uniformly and independently from the BPSK alphabet
A = {±1}, and where the independent noise is white with variance
σ2 = N0/2. The forward �lter of the ZF DFE in this case is the
identity, F (z) = 1, while the feedback �lter is the impulse response
tail, namely B(z) = z−1. The k-th decision is then âk = sign(zk).
Let p0 = P (âk 6= ak|âk−1 = ak−1) denote the conditional probabil-
ity of error for the k-th decision, given that the previous decision was
correct. Under this condition, (31) reduces to zk = ak + nk, from
which we conclude that p0 = Q(1/σ). Similarly, let p1 = P (âk 6=
ak|âk−1 6= ak−1) denote the conditional probability of error for the
k-th decision, given that the previous decision was incorrect. Un-
der this condition, (31) reduces to zk = ak + ak−1 − âk−1 + nk =
ak + 2ak−1 + nk. The doubling of the ISI in this case is clearly
evident. From this equation we conclude that the conditional er-
ror probability for âk = sign(zk) is p1 = 1

2 (1 − Q(1/σ) + Q(3/σ)).
From the law of total probability, the overall probability of error
Pe = P (âk 6= ak) can then be written as:

Pe = P (âk 6= ak|âk−1 = ak−1)P (âk−1 = ak−1)

+P (âk 6= ak|âk−1 6= ak−1)P (âk−1 6= ak−1)

= p0(1− Pe) + p1Pe.

Solving this equation for Pe yields:

Pe =
p0

1 + p0 − p1
=

2Q(1/σ)

1 + 3Q(1/σ)−Q(3/σ)
.

The denominator quickly approaches unity as SNR increases, so
the dominant impact of error propagation can be seen from the
numerator: Error propagation approximately doubles the overall

34

error probability in this example. This result is plotted in Fig. 11
versus SNR (upper curve), along with the performance of the ideal
DFE (lower curve) that somehow has access to correct decisions
when canceling the ISI. While it is true that the error propagation
e�ectively doubles the error probability at moderate to high SNR,
which may sound severe, the actual degradation when measuring the
horizontal distance between the two curves is small. This thanks to
the fact that the Q function decays rapidly. In fact, the horizontal
distance between the two curves is only 0.17 dB at Pe = 10−7,
implying that the SNR penalty due to error propagation is only
0.17 dB at this probability.

The broad conclusions from the above example generalize to a wide range of
alphabets and ISI responses: The impact of error propagation is rarely if ever
catastrophic. Instead it results in a modest SNR penalty when compared to the
ideal DFE, a penalty generally small enough that even with error propagation
the DFE will outperform the linear equalizer. (We will see another example in
Sect. 7 where the error propagation penalty is about 0.5 dB.)

5.3 The Minimum-MSE DFE

The DFE output zk will generally contain both ISI and noise. The ZF DFE
described in the previous section forces the ISI to zero, without regard to the
impact on the noise. In this section we describe the MMSE DFE, which chooses
the forward and feedback �lters to minimize MSE instead, thus accounting for
both ISI and noise. In particular, the MMSE DFE chooses F (z) and B(z) to
minimize MSE = E(|zk − ak|2), where again the DFE output zk is given by
(31). The MMSE solution is [2]:

F (z) =
H∗(1/z∗)

γ̃2M̃∗(1/z∗)
, (36)

B(z) = M̃(z)− 1, (37)

where γ̃ and M̃(z) are de�ned by the following spectral factorization:

H(z)H∗(1/z∗) +
N0

Ea
= γ̃2M̃(z)M̃∗(1/z∗), (38)

where again M̃(z) is monic and minimum phase. Like the linear MMSE equal-
izer, this MMSE DFE is biased; removing the bias means scaling the forward
�lter by 1 + 1/SNRMMSE−DFE. The resulting SNR of the MMSE DFE is:

SNRMMSE−DFE = G{1 + SNR(θ)} − 1. (39)

In light of the inequalities in (4) we conclude that, for any channel with ISI, the
MMSE DFE will always outperform the ZF DFE, the MMSE LE, and the ZF
LE.

35

0 5 10 15
10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

1

E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

SNR (dB)

IDEAL

ACTUAL

p0 = Q(1/)

Pe =
2Q(1/)

1 + 3Q(1/) – Q(3/)

Figure 11: The impact of error propagation on the performance of the ZF DFE,
for the channel H(z) = 1 + z−1. The lower curve is the performance of the
genie-aided (ideal) DFE that somehow has access to correct decisions. The
upper curve is the performance that takes into account the impact of decision
errors in the feedback process. The SNR penalty due to error propagation is
0.17 dB at Pe = 10−7.

36

FORWARD F (z) FEEDBACK B(z) SNR

MFB A{SNR(θ)}
SHANNON G{1 + SNR(θ)} − 1

MMSE DFE
β−1
0 H∗

γ̃2M̃∗ (M̃(z)− 1)/β0 G{1 + SNR(θ)} − 1

ZF DFE H∗

γ2M∗ M(z)− 1 G{SNR(θ)}

MMSE LINEAR
β−1
0 H∗

HH∗+
N0
Ea

0 H{1 + SNR(θ)} − 1

ZF LINEAR 1
H(z) 0 H{SNR(θ)}

Table 1: Summary of structure and performance of the linear and DFE equaliz-
ers. The �rst row shows the matched-�lter bound on SNR for the case of a �at
transmit spectrum (Sa(ejθ) = Ea), for comparison. The bias coe�cient β0 of
both MMSE equalizers is related to the corresponding SNR (last column) by
β−1

0 = 1 + 1/SNR.

A summary of the linear and DFE equalizers is provided in table 1. The
rows are sorted roughly from best to worst, according to their SNR. The sorting
is rough because it is possible for an MMSE linear equalizer to outperform a ZF
DFE, if the channel ISI response and SNR are carefully chosen. But the other
rankings are universal; we always have:

SNRMFB ≥ SNRShannon = SNRMMSE−DFE ≥ SNRZF−DFE,

and

SNRMMSE−LE ≥ SNRZF−LE.

Example: Consider a 4-QAM alphabet A ={±1 ± j} over the ISI channel
H(z) = 1 + bz−1 with noise PSD N0 = 2, so that the SNR spectral
density is SNR(θ) = |1 + be−jθ|2. The severity of the ISI in this
example is captured by the value of the ISI coe�cient h1 = b. At
one extreme, b = 0 corresponds to the case of an ideal ISI-free chan-
nel. At the other extreme, b = 1 corresponds to severe ISI, where
the energy of the interfering symbol is the same as the energy of the
desired symbol. In Fig. 12 we plot the SNR after equalization versus
the channel coe�cient b, as b ranges from 0 to 1. For small values
of b we see that all equalizers perform about the same. For large
values of b, however, we see that the MMSE versions signi�cantly
outperform the ZF counterparts, and further we see that the DFE
signi�cantly outperforms the LE. Of particular note is the poor per-
formance of the ZF LE as b grows large, which is the result of noise
enhancement: As b approaches 1, the channel frequency response
develops a spectral null; an equalizer that attempts to invert this
null will end up amplifying the noise by an in�nite gain.

37

1

ISI COEFFICIENT (b)

S
N

R
 (d

B
)

MFB

ZF LE

MMSE LE
ZF DFE

MMSE DFE

0 0.2 0.4 0.6 0.8
-10

-8

-6

-4

-2

0

2

4

Figure 12: SNR after equalization versus the severity of the ISI, as captured by
the value of the ISI coe�cient h1 = b.

5.4 DFE via Noise Prediction

The DFE was introduced above as an instance of interference cancellation, where
the feedback �lter reconstructs the ISI from past decisions and subtracts it. Here
we describe an alternative viewpoint, namely that the DFE can be viewed as a
combination of linear equalization and noise prediction. To see how, let us start
with the ZF linear equalizer C(z) = 1/H(z), whose output is yk = ak + ηk,
where ηk is the �ltered (enhanced) noise:

ηk = nk ∗ ck,

which has the PSD:

Sη(z) = N0C(z)C∗(1/z∗)

=
N0

H(z)H∗(1/z∗)
.

The fact that this noise PSD is not white implies that the �ltered noise values
{ηk} are correlated, and that knowledge of the past values can be used to predict
the next value. Let η̂k =

∑∞
i=1 piηk−i be a linear predictor. In terms of the

spectral factorization H(z)H∗(1/z∗) = γ2M(z)M∗(1/z∗) of (34), the prediction
coe�cients {pi} that minimize the mean-squared error E(|η̂k−ηk|2) are de�ned
by P (z) = 1−M(z) . While the receiver does not have access to the �ltered noise
ηk directly, it does have access to the receiver decisions âk, and the di�erence

38

ak
H(z)

rk

nk

âkyk = ak + k

LINEAR EQ

zk QUANTIZE

A

+

–

P(z) (WHEN
̂k

k
DECISION

IS CORRECT)

–
+C(z)

Figure 13: An alternative interpretation of the DFE based on linear prediction
of the noise. Both the ZF and MMSE DFE have this interpretation, depending
on whether the front-end linear equalizer is the ZF or MMSE linear equalizer.

yk− âk reduces to ηk whenever the corresponding decision is correct. Therefore,
under the assumption that the past decisions are correct, the linear predictor
η̂k =

∑∞
i=1 piηk−i for the k-th �ltered noise sample can be rewritten as:

η̂k =

∞∑
i=1

pi(yk−i − âk−i).

The receiver can then subtract this predicted value for ηk from the equalizer
output, as shown in the block diagram of Fig. 13. The impact of this subtraction
changes the noise that is seen at the decision device: Instead of being ηk, which
has power E(|ηk|2) = A{N0|H(ejθ)|−2}, the noise after subtraction is ηk − η̂k,
which has power E(|ηk − η̂k|2) = G{N0|H(ejθ)|−2}, when the prediction coe�-
cients {pi} are chosen optimally, and assuming the relevant past decisions are
correct. The geometric mean is always less than the arithmetic mean whenever
there is ISI, so the use of noise prediction will always lead to a performance
improvement.

Perhaps unexpectedly, the noise prediction strategy described above and il-
lustrated in Fig. 13 is actually precisely equivalent to the ZF DFE described ear-
lier. In other words, linear prediction does not lead to a new receiver strategy, it
merely provides an alternative viewpoint for interpretation of the DFE strategy.
Indeed, looking closer at the prediction architecture in Fig. 13, we see that it can
be viewed as an instance of the DFE structure in Fig. 10, when the forward �lter
is F (z) = C(z)(1−P (z)) and the feedback �lter is B(z) = −P (z). Furthermore,
when substituting the optimal linear prediction coe�cients P (z) = 1 −M(z),
the forward and feedback �lters reduce to the optimal forward and feedback
�lters of the ZF DFE, as described by (32) and (33).

While we have restricted our attention here to the ZF DFE, the noise pre-
dictive architecture of Fig. 13 applies equally well to the MMSE DFE; the only
change is that the front-end linear equalizer is not the ZF but the MMSE lin-
ear equalizer, and the predictor is predicting the resulting error at the output,
which includes residual ISI as well as noise. When the prediction coe�cients are

39

chosen optimally, the predictive architecture is equivalent to the MMSE DFE
as de�ned by (36) and (37).

6 Tomlinson-Harashima Precoding

The theory of the previous section shows that the ideal performance of the
MMSE DFE is su�cient to achieve the Shannon capacity of the ISI channel.
This is a remarkable result because it implies that the more complicated trellis-
based detectors (such as Viterbi and BCJR) are not ideally necessary to ap-
proach capacity. However, this theoretical result is based on an assumption
that the DFE has instantaneous access to correct decisions, which is nearly im-
possible to achieve in practice. Decisions that are instantaneous cannot tolerate
the long decoding delay of powerful error-control codes, and are hence unlikely
to be correct; decisions that are likely to be correct require a signi�cant decod-
ing delay that prevents them from being instantaneous. In this sense, the DFE
is fundamentally incompatible with powerful error-control codes.

Tomlinson-Harashima precoding (THP) is an alternative to the DFE with
similar performance that is compatible with error-control coding [14][7]. In
a sense, THP can be thought of as a way of implementing the DFE at the
transmitter instead of at the receiver. Since the transmitter knows the symbols
it transmits, there is no chance for error propagation. However, as we will see,
this bene�t comes at the cost of (1) a slight increase in transmit power, which
translates to a small SNR penalty, and (2) the requirement that the channel ISI
response be known precisely at the transmitter. THP is thus not a good match
for rapidly varying channels as well as other situations where it is di�cult to
get precise channel knowledge to the transmitter.

The relationship between THP and DFE is illustrated in Fig. 14. The top
of the �gure shows the channel model followed by the DFE of Fig. 10. As a
reminder, for the ZF case, the forward �lter transforms the channel into its
monic and minimum-phase equivalent form, so that H(z)F (z) = M(z) = 1 +
m1z

−1 +m2z
−2 + ..., and the feedback �lter is the tail B(z) = M(z)− 1 of this

channel.
The Tomlinson-Harshima precoder (THP) is shown at the bottom of Fig. 14.

The THP principle requires that the message symbols {ak} be chosen from an
M -ary QAM alphabet, say Re{A} = Im{A} ={±1,±3, . . . ,±(K − 1)}, where
K =

√
M . Instead of transmitting {ak} directly, the k-th symbol αxk trans-

mitted by THP is computed recursively according to:

xk = [ak −
∞∑
i=1

mixk−i]2K , (40)

where mk is the impulse response of the monic and minimum-phase equivalent
channel M(z), and where we have introduced the complex modulo operator:

[z]2K = z + 2K(p+ jq),

40

where p and q are integers chosen so that the result [z]2K falls within the complex
square centered at the origin with sides of length 2K. Looking at it another
way: the modulo operator adds an integer multiple of 2K to both the real and
imaginary parts of its input, and it chooses these two integers so that the modulo
output is as close to the origin as possible. The modulo operator thus maps any
point in the complex plane to a point inside the 2K-by-2K square centered at
the origin.

THP is known as �DFE at the transmitter� because the mapping from ak
to xk of (40) is identical to the the second-half of the DFE, with feedback �lter
M(z)−1, except that the decision device of the DFE is replaced by the complex
modulo operation.

One way to motivate the modulo operation is to recognize that, without
the modulo operator, the mapping in (40) would be a recursive implementation
of a �lter with transfer function 1/M(z). In other words, without the modulo
operator, the mapping in (40) would be a ZF linear equalizer at the transmitter.
And just like linear equalization at the receiver su�ers from noise enhancement,
linear equalization at the transmitter su�ers from what might be called signal
enhancement: the �lter could potentially amplify the transmit signal power
by a signi�cant amount, especially when the channel ISI is severe. One way
to compensate for this signal ampli�cation is to follow the linear �lter by a
compensating attenuator. (Doing so would lead to the conclusion that linear
equalization at the transmitter performs identically to linear equalization at the
receiver; performance-wise it is neither better nor worse.) THP compensates for
the signal ampli�cation in a nonlinear way using the modulo operation, which
removes nearly all of the signal ampli�cation, while at the same time allowing
the receiver to compensate (with high probability) for the modulo operation
with another modulo operation.

For most channels the output of the THP modulo operator will be approxi-
mately uniformly distributed over the 2K-by-2K square in the complex plane,
which makes its energy Ex = E(|xk|2) = 2K2/3. In contrast, the energy be-
fore the precoder is Ea = 2(K2 − 1)/3. The THP precoder thus includes an
attenuation factor of α =

√
Ea/Ex, and transmits αxk as the k-th transmitted

symbol. This attenuation makes for a fair comparison, because it ensures that
the energy of the symbols transmitted by a THP precoder is the same as the
energy of the original alphabet A. We see that α will be a number only slightly
less than unity, and will approach unity as the size of the alphabet grows large.
For example, the value of α is 0.866, 0.968, 0.992, and 0.998 for QAM alphabets
A of size 4, 16, 64, and 256, respectively.

At the receiver, the THP uses a scaled version of the same front end as
the DFE, namely the linear �lter α−1F (z), where H(z)F (z) = M(z). The
purpose of the gain factor α−1 in the receiver is to cancel the attenuation factor
of α that was introduced at the transmitter. Since the forward �lter satis�es
H(z)F (z) = M(z), and since the precoder inverts M(z) as well as e�ectively
adding a complex integer 2K(pk+jqk) to each information symbol ak, it follows
that the output of the scaled forward �lter at the receiver will be:

41

yk = ak + 2K(pk + jqk) + nk/α. (41)

The �rst term is the desired information symbol, which lies within the 2K-
by-2K square. When the noise nk/α is small enough, the second term can
be cleanly wiped away by a modulo operator, yielding [yk]2K = ak + nk/α.
Motivated by this observation, the receiver applies the forward �lter output to
the same modulo operator that was used at the transmitter. It then follows
with a standard memoryless quantizer, which rounds each input to the nearest
element of the alphabet A.

Example: Consider a K2 = 16 QAM alphabet with Re{A} = Im{A} =
{±1,±3}, so that K = 4. Assume the ISI channel is H(z) =
1 + (0.4 − 0.1j)z−1 + (0.1 + 0.5j)z−2 + (0.3 + 0.8j)z−3, and the
SNR is 16 dB. Shown in Fig. 14 are the constellations for several
of the signals at various points in the THP system. First, the con-
stellation for the information symbols ak is shown, along with the
8-by-8 square. The output xk of the modulo operator is empirically
measured to be approximately uniform over the 8-by-8 square, so
that its constellation is represented by a shaded square. After the
forward �lter, the constellation for yk of (41) is shown. The constel-
lation clearly extends well beyond the 8-by-8 square. Applying yk to
another modulo operator yields the �nal decision variable zk, whose
constellation is strictly con�ned to the 8-by-8 square. It closely
resembles a simple 16-QAM alphabet that has been perturbed by
Gaussian noise.

7 Comparing Performance: A Case Study

There is no de�nitive ranking of the various equalization strategies described in
this chapter; they all have their merits, and it will be the speci�c details of the
application scenario that will dictate which choice is best. For example, �ber-
optic links and other high-data-rate applications will often not have enough
computational power to implement trellis-based detectors, and hence will favor
the reduced-complexity alternatives. Rapidly varying channels may not eas-
ily acquire knowledge of the channel at the transmitter, and hence will avoid
transmitter-based equalization strategies like THP. High-performance links that
operate at low SNR and use powerful error-control strategies will avoid DFE,
since the decoding delay prevents the DFE from having timely and reliable de-
cisions. The severity of the ISI also plays a major role when comparing various
strategies. For example, linear equalization is generally not a viable option
when the ISI is severe, while linear equalization is generally a preferred option
when the ISI is mild (and there is not much to be gained by the more complex
alternatives).

To close out this chapter we will compare equalizer performance for one
particular example. The reader is cautioned against drawing any universal con-

42

xk rk

nk

yk

FORWARD
FILTER

MOD
ak

+
–

–1F(z)

THP PRECODER

âkQUANT
MOD

âk
yk

FORWARD
FILTER

B(z)

zk QUANTIZE
A+

–

A
zk

DFE

rk

nk

ak

MOVE TO TRANSMITTER

H(z) F(z)

H(z)

B(z)

Figure 14: The relationship between DFE and THP. The top of the �gure
shows the channel model followed by the DFE from Fig. 10. The bottom part
of the �gure shows Tomlinson-Harashima precoder (THP) implemented at the
transmitter, before the channel, with additional processing performed by the
receiver. The feedback �lter of the DFE has been moved to the transmitter, but
with two modi�cations: (1) the quantizer of the DFE is replaced by a modulo
device for THP; (2) there is a scaling constant α in THP to avoid any signal
power ampli�cation. Also shown in the �gure are constellations at various points
of the THP system, for a 16-QAM alphabet and a particular ISI response at
SNR = 16 dB.

43

 0
-30

-20

-10

0

10

NORMALIZED FREQUENCY

M
A

G
N

IT
U

D
E

 R
E

S
P

O
N

S
E

 (d
B

)

|H(ej)|

0 1 2 3

|h0|

|h1| |h2|
|h3|

Figure 15: The channel magnitude response for the case study example, which
varies by 32 dB. The inset shows the magnitude of the impulse response coe�-
cients in the time domain.

clusions from this one example; as the previous paragraph points out, a di�erent
example might reveal very di�erent quantitiative results. Nevertheless the ex-
ample we consider will be a valuable tool for pointing out the various qualitative
di�erences between approaches.

Suppose a sequence of independent and uniformly distributed 16-QAM sym-
bols is transmitted over an ISI channel with AWGN, whose impulse response is
H(z) = 1 + h1z

−1 + h2z
−2 + h3z

−3, where h1 = 0.4 − 0.1j, h2 = 0.1 + 0.5j,
and h3 = 0.3 + 0.8j. The same ISI response was considered in the example of
Sect. 4.3. This channel is monic (h0 = 1) and minimum phase, which avoids the
need for forward �lters for the zero-forcing DFE and THP strategies. The monic
and minimum-phase condition is chosen for convenience, but is not itself a lim-
iting constraint on the channel, because any nonmonic and non-minimum-phase
channel with AWGN can always be transformed into a monic and minimum-
phase channel by a front-end all-pass �lter. In e�ect, by starting with the
minimum-phase channel, we are absorbing this all-pass �lter into the de�nition
of the channel. The magnitude response of the channel is shown in Fig. 15,
where we see deep spectral nulls that are 32 dB below the peak magnitude
response. The ISI in this example is severe.

Because the transmit PSD is �at, the underlying channel SNR and the MFB
(10) on post-equalization SNR are identical, namely SNR = Ea

∑
k |hk|2/N0.

Some equalization strategies, like the linear and decision feedback equalizers,
strive to transform the ISI channel into an e�ective memoryless (ISI-free) chan-
nel. When successful, the performance after such an equalizer can be quanti�ed
using the classical closed-form expression for the symbol-error probability of an
ML detector in AWGN for 16-QAM (see, e.g., (5.113) in [2]):

44

Pe = 3Q(
√
SNReq/5)− 2.25Q2(

√
SNReq/5), (42)

where SNReq is the SNR at the output of the equalizer. In the process of this
transformation, the equalizer typically introduces a penalty in SNR, so that
SNR after the equalizer is strictly less than the SNR of the underlying channel.
In the previous sections we derived theoretical expressions for this post-equalizer
SNR for various strategies, and compared them. Here we instead look at the
performance as measured by the symbol-error probability Pe.

The error-probability performance of eight di�erent equalizers is shown in
Fig. 18. In the following we will discuss the results for each strategy, one by
one:

ZF Linear Equalizer

• Implementation � Because the channel is FIR, its linear inverse (i.e., the
ZF linear equalizer of (23)) cannot be implemented as an FIR transversal
�lter. (It would require an in�nite number of coe�cients.) However,
because the channel has been reduced to its monic and minimum-phase
form, its inverse can be implemented recursively via yk = rk−

∑µ
i=1 hiyk−i,

where rk is the equalizer input and yk is the equalizer output, so that
the ZF linear equalizer can be implemented with only µ = 3 (feedback)
coe�cients.

• Performance � The right-most curve in Fig. 18 shows the error proba-
bility performance of the zero-forcing linear equalizer. It performs worse
than all other options, requiring nearly 21 dB to achieve a symbol-error
probability of Pe = 10−5. This curve (like most of the others) was gener-
ated via Monte Carlo simulations over millions of independent realizations
of the symbols and noise. However, because the ZF linear equalizer ex-
actly transforms the ISI channel into an ISI-free channel, we could instead
use the closed-form equation of (42) for this error-probability curve, with
SNReq set to the SNR after the ZF linear equalizer, namely the harmonic
mean SNRZF of the SNR spectral density, as speci�ed in (25).

MMSE Linear Equalizer:

• Implementation � Unlike the ZF case, the MMSE linear equalizer of (27)
cannot be implemented in exact form using a �nite number of coe�cients.
Instead, a �nite-coe�cient version of the MMSE was implemented, with
the number of coe�cients chosen to be 200, large enough to mimic the
performance of the theoretical in�nite-coe�cient case. The magnitude of
the 200 MMSE linear equalizer coe�cients for this example is shown in
Fig. 15 for the case when SNR = 15 dB.

• Performance � The MMSE linear equalizer outperforms the ZF linear
equalizer in this example at all SNR values. The advantage of MMSE over

45

-100 -50 0 50 100

0.5

0.9

|ck|

k

Figure 16: The magnitude of the 200 coe�cients of the MMSE linear equalizer
for the case study, when SNR = 15 dB. The leading and trailing coe�cients are
close to zero, suggesting that 200 coe�cients is enough to mimic the in�nite-
coe�cient theoretical MMSE linear equalizer.

ZF is seen to decrease as the SNR grows; the horizontal spacing between
the MMSE and ZF linear curves is only about 0.2 dB at Pe = 10−5. This
trend con�rms the fact that MMSE and ZF converge at high SNR, as
expected because of the fact the MMSE equalizer of (26) reduces to the
ZF equalizer as N0 → 0. We can use (42) to predict performance for the
MMSE linear equalizer, with SNReq set to SNRMMSE from (27). The
resulting curve is no longer exact, however, because the MMSE equalizer
only approximately transforms the ISI channel into an ISI-free channel,
leaving some residual ISI that is subsequently treated as noise. The fact
that the distribution of this residual ISI is not precisely Gaussian is what
makes the expression in (42) an approximation. Nevertheless, the central-
limit theorem ensures that it is close to Gaussian, and the curve predicted
by (42) (not shown) is indistinguishable from the actual performance curve
(generated via Monte Carlo simulation).

ZF DFE:

• Implementation �The ZF DFE is described by (31). Because the channel
is minimum-phase and monic, the forward �lter of (32) reduces to the
identity, F (z) = 1 (requiring no coe�cients), and the feedback �lter of
(33) reduces to the impulse response tail B(z) = H(z) − 1 = h1z

−1 +
h2z
−2 + h3z

−3, requiring only µ = 3 coe�cients. The complexity (as
measured by the number of coe�cients) of the ZF DFE is thus no greater

46

than that required by the ZF linear equalizer. Furthermore, by the same
complexity metric, the complexity of the ZF DFE is signi�cantly less than
that of the MMSE linear equalizer (which requires in theory an in�nite
number of coe�cients, or as implemented 200 coe�cients.)

• Performance � The ZF DFE is seen to signi�cantly outperform both
linear equalizers. Remarkably, this performance advantage comes at es-
sentially no cost in complexity. The dashed curve labeled �ideal ZF DFE�
shows the performance predicted by (42) with SNReq set to SNRZF−DFE

from (35); we see that this bound is not an accurate predictor of per-
formance, because (35) does not take into account the e�ects of error
propagation. The impact of error propagation can be quanti�ed by com-
paring the dashed and solid curves for the ZF DFE. Error propagation is
especially detrimental at low SNR, as might be expected, but its impact
decreases rapidly at high SNR. At Pe = 10−5, the SNR penalty due to
error propagation for the ZF DFE is 0.5 dB. Comparing ZF DFE to the
linear equalizers, we see that the ZF DFE always outperforms the ZF lin-
ear equalizer in this example, regardless of SNR, and regardless of error
propagation. Comparing the ZF DFE to the MMSE linear equalizer, we
see a crossover point: At high enough SNR the ZF DFE is better, while
at low enough SNR the MMSE linear equalizer is better.

MMSE DFE:

• Implementation � The MMSE DFE is described by (31), (36), and (37).
Because the channel H(z) in this example is minimum phase, the forward
�lter F (z) of (36) is anticausal, satisfying fk = 0 for all k > 0. In theory
this F (z) requires an in�nite number of equalizer coe�cients. Like the
linear case, however, we can approximate the in�nite-coe�cient case by
using a �nite number of coe�cients, and choosing this number to be large.
For this example, the MMSE DFE was implemented using a forward �lter
having 200 coe�cients, that approximates the in�nite-coe�cient �lter of
(36). The MMSE DFE feedback �lter from (37) has only µ = 3 nonzero
coe�cients. The magnitudes of the forward and feedback coe�cients for
the MMSE are shown in Fig. 17, where they are compared to those for
the ZF case.

• Performance � The MMSE DFE is seen to outperform the ZF DFE at all
values of SNR. The performance gain is most signi�cant at low SNR, and
decreases as SNR increases. At Pe = 10−5, the advantage of MMSE DFE
over ZF DFE is only 0.1 dB. This gain comes at the cost of an increase in
complexity due to the increased number of �lter coe�cients. The dashed
curve labeled �ideal MMSE DFE� shows the performance predicted by
(42) with SNReq set to SNRMMSE−DFE from (39); as for the ZF case,
this bound is not an accurate predictor of performance because it neglects

47

-20 -10 0 3

1

...

|fk|
|bk|

k

ZF

MMSE

Figure 17: Comparison of the ZF and MMSE forward and feedback coe�cients
(magnitudes) for the case study example, when SNR = 15 dB. The coe�cients
in the left box are the anticausal forward �lter coe�cients fk. For the ZF the
only nonzero forward coe�cient is f0 = 1, while for the MMSE case there are
200 nonzero coe�cients (not all are shown). The coe�cients in the right box
are the strictly causal feedback �lter coe�cients b1 through b3.

error propagation. Furthermore, again as in the ZF case, the penalty due
to error propagation at Pe = 10−5 for the MMSE DFE is 0.5 dB.

ZF Tomlinson-Harashima Precoding (THP):

• Implementation � The ZF THP precoded symbols xk are generated ac-
cording to (40), where � because H(z) is already monic and minimum
phase in this example � M(z) is set to H(z). This will only be possi-
ble when the transmitter knows the channel, perhaps through a feedback
mechanism from the receiver. To avoid the signal-enhancement e�ect of
the modulo device, these symbols are attenuated in amplitude by a fac-
tor of α =

√
Ea/Ex =

√
10/(32/3) ≈ 0.9682 before transmitting (see

Fig. 14). The forward �lter F (z) reduces to unity in this example. The
receiver thus directly scales the channel output and applies a modulo de-
vice, yielding zk = [rk/α]8, which is then rounded to the nearest alphabet
symbol to arrive at the decision.

• Performance �ZF THP is similar to ZF DFE but with one big advantage:
by moving the feedback �lter from the receiver to the transmitter (see
Fig. 14), THP avoids the problem of error propagation. In Fig. 18 we see
that that ZF THP outperforms ZF DFE at all SNR values, and that the
gap in performance is especially large at low SNR, where error propagation
is most severe. However, the performance of ZF THP is seen to fall short
of the performance of the ideal ZF DFE (dashed curve) that feeds back

48

correct decisions; this gap is due to a combination of the attenuation factor
α and the loss inherent in the modulo device at the receiver.

MMSE THP:

• Implementation � In theory, the MMSE THP forward �lter F (z) is the
MMSE DFE forward �lter of (36), and the precoded symbols xk are
generated according to (40), where the feedback �lter M(z) − 1 is the
MMSE DFE feedback �lter of (37). As before, the attenuation factor is
α =

√
Ea/Ex ≈ 0.9682. The forward �lter was implemented using 200

coe�cients, enough to emulate the in�nite-coe�cient �lter speci�ed by
(36). The receiver scales by 1/α and �lters by the MMSE forward �lter
F (z), as shown in Fig. 14, applies a modulo device, and then rounds to
the nearest alphabet symbol to arrive at the decision.

• Performance � In Fig. 18 we see that that MMSE THP is slightly but
consistently better than ZF THP at all SNR values. As in the ZF case,
the MMSE THP closely approaches the performance of the ideal MMSE
DFE; it falls short because of a combination of the attenuation factor α
and the modulo loss. It is worth emphasizing that THP is a transmitter-
based equalization strategy that requires knowledge of the channel at the
transmitter; as such it will be incompatible with many rapidly varying
applications, as well as with many broadcast (one-to-many) applications.

Viterbi Algorithm:

• Implementation � The Viterbi algorithm is implemented according to
(14), where in place of gk(p, q) we use the simpli�ed additive branch met-
ric µ̂k(p, q) = |rk − s(p,q)|2. There is no a priori term in the branch
metrics, because all transmitted symbols are independent and uniformly
distributed over the 16-QAM alphabet. Because the channel memory is
µ = 3 and the alphabet size isM = 16, the number of states in the trellis is
Mµ = 4096. Furthermore, there will be M = 16 branches emanating from
each node in the trellis. The overall complexity is thus extremely high,
signi�cantly higher than the suboptimal equalizers considered above.

• Performance � The gray curve in Fig. 18 shows the performance of the
Viterbi algorithm. At high SNR, the Viterbi algorithm signi�cantly out-
performs all of the linear, decision feedback, and THP strategies. At
Pe = 10−5, the SNR advantage of Viterbi over MMSE THP is 1.7 dB,
and the advantage over ZF LE is more than 5.3 dB. Interestingly, the
performance advantage of Viterbi is not as signi�cant at extremely low
SNR values. In fact, when the SNR is so low that the error probability
exceeds 20%, the Viterbi algorithm is seen to perform slightly worse than
the signi�cantly less complex THP strategies. The dashed curve labeled
�MFB� shows the error probability of the matched-�lter bound, which is

49

computed by substituting (10) into (42). The Viterbi algorithm closely
approaches the MFB at high SNR, falling only 0.2 dB short at Pe = 10−5.

BCJR Algorithm:

• Implementation � The BCJR is implemented using the same 4096-state

trellis as Viterbi, with a multiplicative branch metric γk(p, q) = e−|rk−s
(p,q)|2/N0

that is a simpli�ed version of (15). (Factors in the branch metric that are
common to all branches � like the a priori probability factor � are ig-
nored, to reduce complexity.) The forward and backward recursions are
implemented according to (17) and (18). The scaled a posteriori proba-
bilities for each QAM symbol are computed according to P (ak = a|r) =∑

(p,q)∈Ba αk(p)γk(p, q)βk+1(q), where Ba is the set of branches (p, q) cor-
responding to an input symbol of a ∈ A. The maximum such a posteriori
probability determines the MAP decision, âk = arg maxa∈AP (ak = a|r).

• Performance �The hard-output BCJR detector, which minimizes symbol-
error probability, is seen to be almost indistinguishable from the Viterbi
algorithm, which minimizes sequence-error probability. At high SNR they
perform identically, while at low SNR we see a slight advantage for BCJR
over Viterbi. This result reinforces a point that was made earlier: hard-
output BCJR is not typically worth the trouble, the Viterbi algorithm
is simpler to implement and performs nearly the same. The story would
change if we were to expand the case study to include error-control coding,
however; in that case the soft outputs of BCJR would become extremely
valuable, and the performance after error-control decoding would be sig-
ni�cantly better with BCJR than with Viterbi.

8 Summary

This chapter has reviewed an array of strategies for dealing with the intersym-
bol interference that arises because of dispersive channels. Linear and decision-
feedback equalizers transform the ISI channel into an e�ective ISI-free channel,
which enables us to quantify their performance by the post-equalization SNR.
This post-equalization SNR was in turn shown to be related in a simple way
to the harmonic and geometric means of the SNR spectral density. These re-
sults are tabulated in Table 1. In practice the DFE SNR falls short of the
SNR predicted by this theory because of error propagation; in the case study
example the penalty was seen to be about 0.5 dB. The Viterbi and BCJR de-
tectors have no notion of a post-equalization SNR, although their performance
is bounded and typically close to the matched-�lter bound at low error proba-
bilities. Which strategy to choose for a particular design scenario will depend
on many factors, including the severity of the ISI, the computational resources,
and the availability of reliable channel knowledge at the transmitter.

50

10 12 14 16 18 20

10–4

10–3

10–2

10–1

1

M
M

SE
ZF

M
M

SE
ZF

(M
FB)

BC
JR

VITER
BI

LINEAR

DFE

(IDEAL
DFE)

10–5

SNR (dB)

S
Y

M
B

O
L-

E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

THPM
M

SE
ZF

M
M

SE
ZF

Figure 18: Error probability comparison of various equalizers for the case study
example.

51

This chapter's focus was limited to classical equalization strategies for single-
carrier systems. Space limitations prevented us from exploring several alterna-
tive equalizers and related concepts. For example, we assumed throughout that
the channel response was known. Channel estimation [17] and adaptive equaliza-
tion [12] for �nite-coe�cient equalizers [2] are important topics for the realistic
case. We assumed perfect synchronization at all levels (e.g., frame, symbol,
and carrier phase). Synchronization strategies are explored in Chap. 7. Frac-
tionally spaced equalizers [15] are robust to timing errors and to signals with
excess bandwidth (beyond the minimum bandwidth assumed in this chapter),
while passband equalizers [13] are robust to carrier phase errors. A combina-
tion of partial-response linear equalization and trellis-based detection has been
e�ectively used for hard-disk drives for decades [4]. Single-carrier frequency-
domain equalization (as used in LTE-A uplink) is a reduced-complexity alter-
native for implementing either a linear equalizer or the forward �lter of a DFE
[11]. Multicarrier strategies such as orthogonal-frequency-division multiplexing
(OFDM) are immensely important strategies for communication over ISI chan-
nels; conceptually the idea is to transmit data independently across numerous
subchannels, each of whose bandwidth is so narrow that a simple one-coe�cient
linear �equalizer� is enough to compensate for the dispersive channel. Chap. 10
is devoted to OFDM and related concepts.

References

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimizing symbol error rate (corresp.). Information Theory,
IEEE Transactions on, 20(2):284�287, Mar 1974.

[2] J.R. Barry, E.A. Lee, and D.G. Messerschmitt. Digital Communication.
Springer-Verlag GmbH, 2004.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-
correcting coding and decoding: Turbo-codes. 1. In Communications, 1993.
ICC '93 Geneva. Technical Program, Conference Record, IEEE Interna-
tional Conference on, volume 2, pages 1064�1070 vol.2, May 1993.

[4] R.D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott. A prml
system for digital magnetic recording. Selected Areas in Communications,
IEEE Journal on, 10(1):38�56, Jan 1992.

[5] Jr. Forney, G.D. The viterbi algorithm. Proceedings of the IEEE, 61(3):268�
278, March 1973.

[6] J. Hagenauer, E. O�er, and L. Papke. Iterative decoding of binary block
and convolutional codes. Information Theory, IEEE Transactions on,
42(2):429�445, Mar 1996.

52

[7] H. Harashima and H. Miyakawa. Matched-transmission technique for chan-
nels with intersymbol interference. Communications, IEEE Transactions
on, 20(4):774�780, Aug 1972.

[8] W. Hirt and J.L. Massey. Capacity of the discrete-time gaussian channel
with intersymbol interference. Information Theory, IEEE Transactions on,
34(3):38�38, May 1988.

[9] J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE,
63(4):561�580, April 1975.

[10] R. Muller and W.H. Gerstacker. On the capacity loss due to separation
of detection and decoding. Information Theory, IEEE Transactions on,
50(8):1769�1778, Aug 2004.

[11] F. Pancaldi, G.M. Vitetta, R. Kalbasi, N. Al-Dhahir, M. Uysal, and
H. Mheidat. Single-carrier frequency domain equalization. Signal Pro-
cessing Magazine, IEEE, 25(5):37�56, September 2008.

[12] S.U.H. Qureshi. Adaptive equalization. Proceedings of the IEEE,
73(9):1349�1387, Sept 1985.

[13] J. F. Hayes R. D. Gitlin and S. B. Weinstein. Data Communication Prin-
ciples. Springer-V, 1992.

[14] M. Tomlinson. New automatic equaliser employing modulo arithmetic.
Electronics Letters, 7(5):138�139, March 1971.

[15] J.R. Treichler, I. Fijalkow, and C.R. Johnson. Fractionally spaced equaliz-
ers. Signal Processing Magazine, IEEE, 13(3):65�81, May 1996.

[16] M. Tuchler and A.C. Singer. Turbo equalization: An overview. Information
Theory, IEEE Transactions on, 57(2):920�952, Feb 2011.

[17] J.K. Tugnait, Lang Tong, and Zhi Ding. Single-user channel estimation and
equalization. Signal Processing Magazine, IEEE, 17(3):16�28, May 2000.

[18] A.J. Viterbi. An intuitive justi�cation and a simpli�ed implementation of
the map decoder for convolutional codes. Selected Areas in Communica-
tions, IEEE Journal on, 16(2):260�264, Feb 1998.

53

