PROBLEM 1.1. Consider a channel with an ideal low-pass-filter frequency response, bandlimited to $|f| < 2500$ Hz.

(a) If we are to avoid ISI, what is the maximum symbol rate?

(b) If we are to avoid ISI, and if the transmitter pulse shape $g(t)$ is going to be the raised-cosine pulse shape of (7.62) in the book, with $\alpha = 0.5$ (in other words, 50% excess bandwidth), what is the maximum symbol rate?

PROBLEM 1.2. A 4-ary PAM transmitter is to transmit information with a symbol rate of 2400 symbols/sec, or 2400 baud. What is the minimum channel bandwidth required to avoid ISI?

PROBLEM 1.3. Consider an 8-ary PAM signal $s(t) = \sum_{k=-\infty}^{\infty} a_k g(t - kT)$, where $a_k \in \{\pm 1, \pm 3, \pm 5, \pm 7\}$, where $g(t) = \sin(5\pi t / T) / (5\pi t)$, and where $1 / T = 52$ kbaud.

(a) Is there intersymbol interference?

(b) Is $g(t)$ a Nyquist pulse for this baud rate?

(c) What is the bit rate R_b?

(d) How much channel bandwidth does the signal $s(t)$ require?

PROBLEM 1.4. Answer true or false for each question below. If true, explain why. If false, give a counterexample.

(a) True or False: A Nyquist pulse must have a finite bandwidth.

(b) True or False: If $p(t)$ is a Nyquist pulse for symbol rate $1 / T$, then $p(t)$ cannot be a Nyquist pulse for symbol rate $2 / T$.

(c) True or False: If $p(t)$ is a Nyquist pulse for symbol rate $1 / T$, then $p(t)$ is a Nyquist pulse for symbol rate $1 / (2T)$.

(d) Let $b(t)$ be a real received pulse in a PAM system, and let $p(t) = b(t) * b(-t)$ be the overall pulse shape after a matched filter. (The symbol $*$ denotes convolution.) True or False: If $b(t)$ is a Nyquist pulse, then $p(t)$ cannot be a Nyquist pulse.

PROBLEM 1.5. Do the pulse shapes with frequency responses sketched below satisfy the Nyquist criterion? Explain.

![Diagram](a)

![Diagram](b)
PROBLEM 1.6. Consider a binary PAM transmitter transmitting the signal \(s(t) = \sum_{k=\pm} a_k g(t - kT) \), where \(a_k \in \{ \pm 1 \} \), and where the transmitter pulse shape \(g(t) \) is:

\[
g(t) = \cos(\pi t / T), \\
t \in [-T/2, T/2]
\]

The signal \(s(t) \) is transmitted across a channel, as shown below:

\[
s(t) \quad h(t) \quad r(t)
\]

The channel impulse response is \(h(t) = \delta(t) - 0.1 \delta(t - T) \), where \(\delta(t) \) is the Dirac impulse function. Carefully sketch the eye diagram for the noiseless received signal \(r(t) \).

PROBLEM 1.7. Consider the binary PAM signal \(r(t) = \sum_{k=\pm} a_k p(t - kT) \) without noise, where \(a_k \in \{ \pm 1 \} \) and \(p(t) \) is the overall pulse shape. For each of the given following pulse shapes, carefully sketch the eye diagram for this signal.

\[
p(t) = \cos(\pi t / T), \\
t \in [-T/2, T/2]
\]

(a)

(b)

(c)

(d)

(e)