ECE 3084

QUIZ 2

School of Electrical and Computer Engineering Georgia Institute of Technology April 7, 2016

Name: _____

- 1. The quiz is closed book, closed notes, except for one 2-sided sheet of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. (20 points)

Consider the system shown below, where the input x(t) is modulated twice. Assume that x(t) has the bandlimited triangular spectrum shown on the left.

(a) Sketch $W(j\omega)$, the Fourier transform of the signal w(t) after the first modulator.

(b) Sketch $Y(j\omega)$, the Fourier transform of the signal y(t) after the second modulator.

PROBLEM 2. (20 points)

Shown to the right are eight possible locations for one of the two poles of a second-order LTI system in the *s*-plane, labeled A through H. (Each pole has a companion pole in the complex conjugate location that is not shown.)

Shown below are the corresponding magnitude responses. Match each pole location to its corresponding magnitude response by writing a letter (A through H) in each answer box. *Justify your answers!*

PROBLEM 3. (20 points)

Consider a continuous-time signal x(t) whose Fourier transform is as sketched below:

Suppose this signal is sampled at an unspecified sampling rate f_s , and that the samples are immediately fed to an ideal D-to-C converter (with the same f_s parameter), producing the continuous-time output signal y(t), as shown below:

(a) In order for the D-to-C converter to reconstruct the original signal (i.e., to achieve y(t) = x(t)), the sampling frequency must satisfy:

(b) In the space below, carefully sketch the Fourier transform $Y(j\omega)$ of the D-to-C output when the sampling frequency is $f_s = 400$ Hz, carefully labeling important frequencies and amplitudes:

PROBLEM 4. (20 points)

An LTI system (zero initial conditions) with input x(t) and output y(t) obeys the following differential equation:

$$6\frac{d^2}{dt^2}y(t) = 12x(t) - 24y(t) - 6\frac{d}{dt}y(t).$$

(a) Circle one: The system is [overdamped] [underdamped] [critically damped]?

٦

(d) Its damping ratio is
$$\zeta =$$

ſ

PROBLEM 5. (20 points)

(a)

Consider an LTI system with input x(t), output y(t), and transfer function $H(s) = \frac{2s}{s+5}$. YES NO The system is BIBO stable.

- (b) The system acts as a [LPF][BPF][HPF]. (Circle one.)
- (c) Write a differential equation relating the input x(t) to the output y(t) of this system:

(d) Find an equation for the "ramp response" of this system;
i.e., find the output y(t) when the input is the unit ramp x(t) = tu(t):

$$y(t) =$$

(e) Use the final value theorem to determine the steady-state value $y(\infty)$ of the ramp response:

$$y(\infty) =$$

(Sanity check: your answers to parts (d) and (e) should agree.)