ECE 3084
 Quiz 2
 School of ECE
 Georgia Institute of Technology

November 12, 2020

NAME: \qquad

PROBLEM	PoINTS	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

"My signature below attests that I have neither given nor received help during the taking of this exam,

 and that I am in complete compliance with the Georgia Tech honor code:"(your signature)

- This is a timed quiz: After you start you have 120 minutes to click the "Submit Quiz" button.
- The nominal duration of the quiz itself is 75 minutes; the extra 45 minutes is generously budgeted for scanning and uploading.
- The countdown starts once you begin. It will not pause if you disconnect from the internet, and it will not reset if you log in again.
- It is your responsibility to observe the time.
- You must begin the exam prior to the cutoff time specified.
- Open book, open calculator, open MATLAB. Google and other internet search engines are not recommended.
- No communications (electronic or otherwise) to anyone regarding the quiz, except for one exception:
- Please use Piazza for any questions, or to correct a typo.
- A correct answer without justification will not receive full credit.
- Full credit requires not only a correct answer but also a clear justification, so show your work and explain your thinking.
- Partial credit will be available but limited.
- Before you click "Submit Quiz," be sure to upload a single PDF document that shows your work and answers.
- If you have a printer: Print this PDF, work on it directly, then scan and upload it.
- If you do not have timely access to a printer, you have three other options:
- You can print the template and work on it,
- You can work directly on this PDF electronically, using a tablet and stylus.
- You can start with 7 blank pieces of paper and draw answer boxes that align with those on the template before proceeding.
- Regardless of how you proceed, you should end up with a single PDF document with 7 pages to upload.
- Do not attach extra pages. Only the first 7 pages will be graded.
- Do not "borrow" space from one page to show work about another problem (for example, do not show work for Prob. 1 on page 3).
- Violations of the Georgia Tech honor code will be reported to the Dean of Students for disciplinary action.

Problem 1.

Consider the signal $x(t)=3084 \cos \left(200 \pi t+\frac{\pi}{3}\right)$, a sinusoid with frequency $f_{0}=100 \mathrm{~Hz}$.
Let $y_{I}(t)$ be the in-phase component of $y(t)=x\left(t-t_{0}\right)$
(a delayed version of the original) with respect to f_{0}.
(a) Find $y_{I}(t)$ when the delay is zero $\left(t_{0}=0\right)$:

(b) Find the smallest positive value of the delay $t_{0}>0$ that results in $y_{I}(t)=0($ for all $t)$.

Problem 2. Consider the following system:

where $x(t)$ has the triangular Fourier transform shown in the figure, where $p(t)$ is the periodic signal with fundamental period 0.01 seconds shown in the figure, and where $v(t)=x(t) p(t)$ is passed through an ideal low-pass filter with gain A and cutoff frequency $\omega_{c} \mathrm{rad} / \mathrm{s}$, producing $y(t)$.
(a) Is it possible to choose A and ω_{c} so that $y(t)=x(t) ? \square_{\square}^{\text {YES }}$
(b) If YES, specify values for A and ω_{c} so that $y(t)=x(t)$:

If NO, explain: Why not?

Problem 3.

Suppose that a signal $x(t)=\cos (120 \pi t)\left(\frac{\sin (120 \pi t)}{\pi t}\right)^{2}$
is sampled by an ideal analog-to-digital converter with sampling
 rate $f_{s} \mathrm{~Hz}$, and that the sampled sequence $x[n]$ is fed to an ideal digital-to-analog converter with the same f_{s} parameter, to produce an output $y(t)$.
(a) In order for $y(t)=x(t)$ (no aliasing), the sampling rate must satisfy $f_{s}>\square \mathrm{H}$ Hz.
(b) If $f_{s}=120 \mathrm{~Hz}$ then $y(t)$ has the form $y(t)=A \frac{\sin (2 \pi B t)}{\pi t}$, where:

(c) Specify a sampling rate satisfying $f_{s}>120 \mathrm{~Hz}$ so that $y(t)$ has the form $y(t)=C \frac{\sin (2 \pi D t)}{\pi t}$, and further specify the constants C and D :

PROBLEM 4. (The two parts are unrelated.)
(a) In terms of the unit ramp $r(t)=t u(t)$, the inverse Laplace transform of $X(s)=\frac{\left(1-e^{-2 s}\right)^{3}}{s^{2}}$ can be written as: $\quad x(t)=\operatorname{Ar}(t)+\operatorname{Br}(t-C)+\operatorname{Dr}(t-E)+\operatorname{Fr}(t-G)$, where (hint: all answers are integers!):

(b) The Laplace transform of $x(t)=2 t e^{-t} \cos (t) u(t)$ can be written as $\quad X(s)=\frac{A s^{2}+B s}{\left(s^{2}+C s+D\right)^{2}}$,

Problem 5.

In the space below, carefully sketch the pole-zero plot
for the Laplace transform $H(s)$ of the following signal:

$$
h(t)=\left(e^{-t}-\sin (t)\right) u(t) .
$$

(This page left blank for scratch.)

ECE 3084
 Quiz 2
 School of ECE
 Georgia Institute of Technology

November 12, 2020

NAME:

PROBLEM	PoINTS	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

"My signature below attests that I have neither given nor received help during the taking of this exam,

 and that I am in complete compliance with the Georgia Tech honor code:"(your signature)

- This is a timed quiz: After you start you have 120 minutes to click the "Submit Quiz" button.
- The nominal duration of the quiz itself is 75 minutes; the extra 45 minutes is generously budgeted for scanning and uploading.
- The countdown starts once you begin. It will not pause if you disconnect from the internet, and it will not reset if you log in again.
- It is your responsibility to observe the time.
- You must begin the exam prior to the cutoff time specified.
- Open book, open calculator, open MATLAB. Google and other internet search engines are not recommended.
- No communications (electronic or otherwise) to anyone regarding the quiz, except for one exception:
- Please use Piazza for any questions, or to correct a typo.
- A correct answer without justification will not receive full credit.
- Full credit requires not only a correct answer but also a clear justification, so show your work and explain your thinking.
- Partial credit will be available but limited.
- Before you click "Submit Quiz," be sure to upload a single PDF document that shows your work and answers.
- If you have a printer: Print this PDF, work on it directly, then scan and upload it.
- If you do not have timely access to a printer, you have three other options:
- You can print the template and work on it,
- You can work directly on this PDF electronically, using a tablet and stylus.
- You can start with 7 blank pieces of paper and draw answer boxes that align with those on the template before proceeding.
- Regardless of how you proceed, you should end up with a single PDF document with 7 pages to upload.
- Do not attach extra pages. Only the first 7 pages will be graded.
- Do not "borrow" space from one page to show work about another problem (for example, do not show work for Prob. 1 on page 3).
- Violations of the Georgia Tech honor code will be reported to the Dean of Students for disciplinary action.

Problem 1.
Consider the signal $x(t)=3084 \cos \left(200 \pi t+\frac{\pi}{3}\right)$, a sinusoid with frequency $f_{0}=100 \mathrm{~Hz}$.
Let $y_{I}(t)$ be the in-phase component of $y(t)=x\left(t-t_{0}\right)$ (a delayed version of the original) with respect to f_{0}.
(a) Find $y_{I}(t)$ when the delay is zero $\left(t_{0}=0\right)$:
$x(t)$ is in env-andiphise form

$$
y_{I}(t)=1542
$$

$$
\begin{aligned}
& \Rightarrow \text { complex envelope is } \tilde{x}(t)=3084 e^{j \pi / 3} \\
& \Rightarrow \text { real part is } x_{I}(t)=3084 \cos \left(\frac{\pi}{3}\right)=1542
\end{aligned}
$$

(b) Find the smallest positive value of the delay $t_{0}>0$ that results in $y_{I}(t)=0($ for all $t)$. smallest $t_{0}=\frac{1}{\sum_{>0}^{240}}$
with nongens $t_{0}, y(t)$ still in ens - and phase form

$$
\Rightarrow \tilde{y}(t)=3084 e^{j\left(\frac{\pi}{3}-200 \pi t_{0}\right)}
$$

$$
\Rightarrow \text { real port zens when this is }-\frac{\pi}{2} \text { : }
$$

$$
\begin{aligned}
& \frac{\pi}{3}-200 \pi t_{0}=-\frac{\pi}{2} \\
& \Rightarrow t_{0}=\frac{5 \pi / 6}{200 \pi}=\frac{1}{240}
\end{aligned}
$$

Problem 2. Consider the following system:

where $x(t)$ has the triangular Fourier transform shown in the figure, where $p(t)$ is the periodic signal with fundamental period 0.01 seconds shown in the figure, and where $v(t)=x(t) p(t)$ is passed through an ideal low-pass filter with gain A and cutoff frequency $\omega_{c} \mathrm{rad} / \mathrm{s}$, producing $y(t)$.
(a) Is it possible to choose A and ω_{c} so that $y(t)=x(t)$? \square NO
(b) If YES, specify values for A and ω_{c} so that $y(t)=x(t)$:

If NO, explain: Why not?

$$
\begin{aligned}
& p(t)=\sum_{k} a_{k} e^{j k 200 \pi t} \\
& \begin{aligned}
\text { (when } a_{0} & =\frac{1}{0 .\left(1 \frac{1}{2}\right)(0.0050} \mathrm{a}_{0}=10 \\
& =0.25
\end{aligned} \\
& \operatorname{cic}_{i j}=100 \pi \\
& \Rightarrow v(t)=\sum_{k} a_{k} e^{j k 200 \pi t} x(t) \\
& V(j \omega)^{\hat{\imath}}=\sum_{k} a_{k} X(j(\omega-k 200 t)): \\
& \omega_{c} \in(90 \pi, 110 \pi)
\end{aligned}
$$

$$
X(j \omega)=\frac{1}{2} S(j(\omega \pm 120 \pi))
$$

Problem 3.
Problem 3.
Suppose that a signal $x(t) \stackrel{\downarrow}{=} \cos (120 \pi t)\left(\frac{\sin (120 \pi t)}{\pi t}\right)^{2}$
$S(t)$
is sampled by an ideal analog-to-digital converter with sampling rate $f_{s} \mathrm{~Hz}$, and that the sampled sequence $x[n]$ is fed to an ideal digital-to-analog converter with the same f_{s} parameter, to produce an output $y(t)$.
$S(t)=\left(\frac{\sin (120 \pi t)}{\pi t}\right)^{2} \leftrightarrow \underbrace{<}_{-24 \pi \pi} \underbrace{120}_{0} \int_{240 \pi}^{j}(j \omega) \omega$

Hz.

$$
f_{\text {max }}=180 \mathrm{H}_{y} \Rightarrow f_{s}>2 f_{\text {mans }}
$$

(b) If $f_{s}=120 \mathrm{~Hz}$ then $y(t)$ has the form $y(t)=A \frac{\sin (2 \pi B t)}{\pi t}$, where:

$$
x(t)=\operatorname{as}(120 \pi t) s(t)
$$

$$
\Rightarrow x[n]=x\left(\frac{n}{120}\right)=\cos (\pi n) \operatorname{s}\left(\frac{n}{120}\right)
$$

$$
=\cos (\pi n) 120^{2} \delta[n]=120^{2} \delta[n] \Rightarrow y(t)=120^{2} g(t)=120^{2}\left(\frac{\sin (120 \pi t)}{120 \pi t}\right)
$$

(c) Specify a sampling rate satisfying $f_{s}>120 \mathrm{~Hz}$ so that $y(t)$ has the form $y(t)=C \frac{\sin (2 \pi D t)}{\pi t}$, and further specify the constants C and D :

Same $X(j \omega) i$

Problem 4. (The two parts are unrelated.)

$$
R(s)=\frac{1}{s^{2}}
$$

(a) In terms of the unit ramp $r(t)=t u(t)$, the inverse Laplace transform of $X(s)=\frac{\left(1-e^{-2 s}\right)^{3}}{s^{2}}$ can be written as: $\quad x(t)=\operatorname{Ar}(t)+\operatorname{Br}(t-C)+\operatorname{Dr}(t-E)+\operatorname{Fr}(t-G)$, where (hint: all answers are integers!):

$$
\begin{aligned}
A=\square, B= & =-3, C=2, D=\square, E=\square, F=-1, G=\square \\
X(s)=\frac{\left(1-e^{-2 s}\right)^{3}}{s^{2}} & =\frac{1}{s^{2}}\left(1-3 e^{-2 s}+3 e^{-4 s}-e^{-6 s}\right) \\
& \uparrow \\
& \downarrow(t)
\end{aligned}=r(t)-3 r(t-2)+3 r(t-4)-r(t-6) .
$$

(b) The Laplace transform of $x(t)=2 t e^{-t} \cos (t) u(t)$ can be written as $\quad X(s)=\frac{A s^{2}+B s}{\left(s^{2}+C s+D\right)^{2}}$,

then $x(H)=\operatorname{tg}(t)$

$$
X(s)=-\frac{d}{d s} G(s)=\frac{\left(s^{2}+2 s+2\right) 2-(2 s+2)(2 s+2)}{\left(s^{2}+2 s+2\right)^{2}}
$$

$$
=\frac{\left(2 s^{2}+(4) s\right.}{\left.\left(s^{2}+2\right) s+(2)\right)^{2}}
$$

Problem 5.

In the space below, carefully sketch the pole-zero plot
for the Laplace transform $H(s)$ of the following signal:

$$
h(t)=\left(e^{-t}-\sin (t)\right) u(t) .
$$

$$
H(s)=\frac{1}{s+1}-\frac{1}{s^{2}+1}
$$

$$
=\frac{s^{2}+1-s-1}{(s+1)\left(s^{2}+1\right)}
$$

$$
=\frac{s(s-1)}{(s+1)\left(s^{2}+1\right)}
$$

$$
\begin{aligned}
& \text { roots of numenter } \Rightarrow \text { zeros at } s=0,+1 \\
& \text { rots of denominalx } \Rightarrow \text { boles at } s=-1, \pm i
\end{aligned}
$$

(This page left blank for scratch.)

