QuIz 2

School of Electrical and Computer Engineering
Georgia Institute of Technology
November 20, 2018

Name: \qquad

1. The quiz is closed book, closed notes, except for two 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1.

Suppose a signal $x(t)$ with the $\mathrm{FT} X(j \omega)$ shown below is passed as an input into the illustrated AM demodulator (dashed box), producing an output $y(t)$:

(a) Sketch the Fourier transform $Y(j \omega)$ of the demodulator output for the special case when the demodulator carrier frequency is $\omega_{0}=800 \pi$ (labeling amplitudes carefully!):

(b) In order for the demodulator output $y(t)$ to be a sinc function,
it must be that $\omega_{0}=$ \square
(c) Using the value of ω_{0} from part (b), the demodulator output has the form $y(t)=\frac{B \sin (C t)}{t}$, where:

$$
\begin{aligned}
& B=\square \\
& C=\square
\end{aligned}
$$

PROBLEM 2.

Suppose the signal $x(t)=30 \cos (15 \pi t)-84 \sin (15 \pi t)$ is fed as an input into a delay-by- t_{0} system, producing the
 output $y(t)=x\left(t-t_{0}\right)$, as shown in the figure.
Let $\omega_{0}=15 \pi$.
(a) The complex envelope of the input $x(t)$, with respect to ω_{0}, is

(b) Find the smallest* positive value for the delay $t_{0}>0$ so that the $\mathrm{I} \& \mathrm{Q}$ components of the delay output (with respect to ω_{0}) are $y_{I}(t)=84$ and $y_{Q}(t)=-30$, respectively.
*there are multiple positive values of t_{0} that do the job, but only one of them is the smallest

$$
t_{0}=\square
$$

PROBLEM 3.

Suppose that the continuous-time sinc-squared signal $x(t)=\left(\frac{\sin (80 \pi t)}{\pi t}\right)^{2}$ is sampled at an unspecified sampling rate f_{s}, and that the samples are immediately fed to an ideal D-to-C converter (or ideal DAC, with the same f_{s} parameter), producing the continuous-time output signal $y(t)$, as shown below:

(a) The zero-th sample is $x[0]=\square$.
(b) In order for the D-to-C converter to reconstruct the original signal (i.e., to achieve $y(t)=x(t)$), the sampling frequency must satisfy:

(c) In the space below, carefully sketch the output Fourier transform $Y(j \omega)$ when $f_{s}=140 \mathrm{~Hz}$, carefully labeling important amplitudes:

PROBLEM 4.

Consider a signal $x(t)$ that obeys the following differential equation:

$$
\frac{d^{2}}{d t^{2}} x(t)-9 x(t)=0
$$

where one initial condition is specified, namely $x(0)=2$, while the other initial condition $\dot{x}(0)$ is not specified and may be nonzero.

If the solution to this differential equation has the form $x(t)=B e^{-C t} u(t)$, where $C>0$, then it must be that:

$$
\begin{aligned}
\dot{x}(0) & =\square \\
B & =\square \\
C & =\square
\end{aligned}
$$

PROBLEM 5.

An LTI system (initially at rest, zero initial conditions) with input $x(t)$ and output $y(t)$ obeys the following differential equation:

$$
\frac{d^{2}}{d t^{2}} y(t)=2 x(t)-9 y(t)-4 \frac{d}{d t} y(t) .
$$

(a) Circle one: The system is [undamped $][$ overdamped $][$ underdamped $][$ critically damped $]$?
(b) Circle one: It most resembles a [LPF][HPF][BPF][notch] filter.
(c) Its d.c. gain is $H_{0}=$

(d) Its natural frequency is $\omega_{n}=$

(e) Its damping ratio is $\zeta=$ \square
(f) The impulse response of this system is $h(t)=A e^{-B t} \sin (C t)$, where:

QuIz 2

School of Electrical and Computer Engineering
Georgia Institute of Technology
November 20, 2018

Name: ANSWER KEY

1. The quiz is closed book, closed notes, except for two 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1.

Suppose a signal $x(t)$ with the $\mathrm{FT} X(j \omega)$ shown below is passed as an input into the illustrated AM demodulator (dashed box), producing an output $y(t)$:

(a) Sketch the Fourier transform $Y(j \omega)$ of the demodulator output for the special case when the demodulator carrier frequency is $\omega_{0}=800 \pi$ (labeling amplitudes carefully!):

(b) In order for the demodulator output $y(t)$ to be a sinc function, $\underbrace{\substack{\text { ction, } \\ \text { it must be that } \omega_{0} \\ \\ \text { rad } / \mathrm{s} .}}_{800 \pi}$
(c) Using the value of ω_{0} from part (b), the demodulator output has the form $y(t)=\frac{B \sin (C t)}{t}$, where:

PROBLEM 2.

Suppose the signal $x(t)=30 \cos (15 \pi t)-84 \sin (15 \pi t)$ is fed as an input into a delay-by- t_{0} system, producing the
 output $y(t)=x\left(t-t_{0}\right)$, as shown in the figure.
Let $\omega_{0}=15 \pi$.
(a) The complex envelope of the input $x(t)$, with respect to ω_{0}, is

$$
\tilde{x}(t)=30+84 j \text {. }
$$

(b) Find the smallest* positive value for the delay $t_{0}>0$ so that the I \& Q components of the delay output (with respect to ω_{0}) are $y_{I}(t)=84$ and $y_{Q}(t)=-30$, respectively.
*there are multiple positive values of t_{0} that do the job, but only one of them is the smallest

$$
t_{0}=\frac{1}{30}
$$

$$
\begin{aligned}
y(t) & =x\left(t-t_{0}\right) \\
= & 30 \cos \left(15 \pi\left(t-t_{0}\right)\right)-84 \sin \left(15 \pi\left(t-t_{0}\right)\right) \\
& =30 \cos (15 \pi t-\theta)-84 \sin (15 \pi-\theta) \\
& =84 \cos (15 \pi t)+30 \sin (15 \pi)
\end{aligned}
$$

$$
\text { when } \theta=15 \pi t_{0}=0.5 \pi \quad \Rightarrow \quad t_{0}=\frac{0.5 \pi}{15 \pi}=\frac{1}{30}
$$

PROBLEM 3.

Suppose that the continuous-time sinc-squared signal $x(t)=\left(\frac{\sin (80 \pi t)}{\pi t}\right)^{2}$ is sampled at an unspecified sampling rate f_{s}, and that the samples are immediately fed to an ideal D-to-C converter (or ideal DAC, with the same f_{s} parameter), producing the continuous-time output signal $y(t)$, as shown below:

(a) The zero-th sample is $x[0]=80^{2}$.
(b) In order for the D-to-C converter to reconstruct the original signal (i.e., to achieve $y(t)=x(t)$), the sampling frequency must satisfy:

$$
2 f_{\max }=2(80)=160
$$

(c) In the space below, carefully sketch the output Fourier transform $Y(j \omega)$ when $f_{s}=140 \mathrm{~Hz}$, carefully labeling important amplitudes:

PROBLEM 4.

Consider a signal $x(t)$ that obeys the following differential equation:

$$
\frac{d^{2}}{d t^{2}} x(t)-9 x(t)=0
$$

where one initial condition is specified, namely $x(0)=2$, while the other initial condition $\dot{x}(0)$ is not specified and may be nonzero.

If the solution to this differential equation has the form $x(t)=B e^{-C t} u(t)$, where $C>0$, then it must be that:

On the one hand, taking the LT of the given form yields:

$$
X(s)=\frac{B}{s+C}
$$

On the other hand, taking the LT of both sides of the diff eqn yields:

$$
\begin{aligned}
& s^{2} X(s)-s x(0)-\dot{x}(0)-9 X(s)=0 \\
& \Rightarrow X(s)=\frac{s x(0)+\dot{x}(0)}{s^{2}-9}=\frac{2(s+0.5 \dot{x}(0))}{(s+3)(s-3)}
\end{aligned}
$$

Equating both forms, it must be that the numerator cancels the 2nd factor in the denominator:

$$
\begin{aligned}
& \Rightarrow \quad s+0.5 \dot{x}(0)=s-3 \\
& \Rightarrow X(s) \text { reduces to } \frac{2}{s+3} \quad \Rightarrow \dot{x}(0)=-6 \\
& \Rightarrow B=2, C=3
\end{aligned}
$$

PROBLEM 5.

An LTI system (initially at rest, zero initial conditions) with input $x(t)$ and output $y(t)$ obeys the following differential equation:

$$
\frac{d^{2}}{d t^{2}} y(t)=2 x(t)-9 y(t)-4 \frac{d}{d t} y(t) .
$$

Taking LT, solving for $Y(s) / X(s) \Rightarrow H(s)=\frac{2}{s^{2}+4 s+9}$ Equate denom to $s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}$

$$
\Rightarrow \omega_{n}=3, \zeta=2 / 3
$$

(a) Circle one: The system is [undamped][overdamped $\begin{gathered}\text { underdamped } \text { [critically damped]? } \\ 0<\zeta<1\end{gathered}$
(b) Circle one: It most resembles a LPF HPF $][$ BPF $][$ notch $]$ filter. numerator is constant
(c) Its d.c. gain is $H_{0}=\frac{\frac{2}{9}}{\text { set } \mathrm{s}=0}$.
(d) Its natural frequency is $\omega_{n}=$

(e)

Its damping ratio is $\zeta=$| $\frac{2}{3}$ |
| :---: |

(f) The impulse response of this system is $h(t)=A e^{-B t} \sin (C t)$, where:

$$
\begin{aligned}
A & =\frac{H_{0} \omega_{n}}{\sqrt{1-\zeta^{2}}}=\frac{\left(2 / \frac{0}{}\right)(\hat{\jmath})}{\sqrt{5} / 3} & A=\frac{2}{\sqrt{5}} \\
B & =\zeta \omega_{n}=(2 / 3)(3) & B=\frac{2}{\square} \\
C & =\omega_{d}=\sqrt{1-\zeta^{2}} \omega_{n}=\frac{\sqrt{5}}{3}(3) & C=\sqrt{5}
\end{aligned}
$$

