ECE 3084

QUIZ 2

School of Electrical and Computer Engineering Georgia Institute of Technology November 20, 2018

Name: _____

- 1. The quiz is closed book, closed notes, except for two 2-sided sheet of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1.

Suppose a signal x(t) with the FT $X(j\omega)$ shown below is passed as an input into the illustrated AM demodulator (dashed box), producing an output y(t):

(a) Sketch the Fourier transform $Y(j\omega)$ of the demodulator output for the special case when the demodulator carrier frequency is $\omega_0 = 800\pi$ (labeling amplitudes carefully!):

(c) Using the value of ω_0 from part (b), the demodulator output has the form $y(t) = \frac{B\sin(Ct)}{t}$, where:

PROBLEM 2.

Suppose the signal $x(t) = 30\cos(15\pi t) - 84\sin(15\pi t)$ is fed as an input into a delay-by- t_0 system, producing the output $y(t) = x(t-t_0)$, as shown in the figure. Let $\omega_0 = 15\pi$.

(a) The complex envelope of the input x(t), with respect to ω_0 , is

(b) Find the smallest* positive value for the delay $t_0 > 0$ so that the I & Q components of the delay output (with respect to ω_0) are $y_I(t) = 84$ and $y_Q(t) = -30$, respectively.

*there are multiple positive values of t_0 that do the job, but only one of them is the smallest

PROBLEM 3.

(a)

Suppose that the continuous-time sinc-squared signal $x(t) = \left(\frac{\sin(80\pi t)}{\pi t}\right)^2$ is sampled at an unspecified sampling rate f_s , and that the samples are immediately fed to an ideal D-to-C converter (or ideal DAC, with the same f_s parameter), producing the continuous-time output signal y(t), as shown below:

- (b) In order for the D-to-C converter to reconstruct the original signal (i.e., to achieve y(t) = x(t)), the sampling frequency must satisfy: $f_s >$ Hz.
- (c) In the space below, carefully sketch the output Fourier transform $Y(j\omega)$ when $f_s = 140$ Hz, *carefully labeling important amplitudes*:

PROBLEM 4.

Consider a signal x(t) that obeys the following differential equation:

$$\frac{d^2}{dt^2}x(t) - 9x(t) = 0,$$

where one initial condition is specified, namely x(0) = 2, while the other initial condition $\dot{x}(0)$ is not specified and may be nonzero.

If the solution to this differential equation has the form $x(t) = Be^{-Ct}u(t)$, where C > 0, then it must be that:

PROBLEM 5.

An LTI system (initially at rest, zero initial conditions) with input x(t) and output y(t) obeys the following differential equation:

$$\frac{d^2}{dt^2}y(t) = 2x(t) - 9y(t) - 4\frac{d}{dt}y(t).$$

- (a) Circle one: The system is [undamped][overdamped][underdamped][critically damped]?
- (b) Circle one: It most resembles a [LPF][HPF][BPF][notch] filter.

(f) The *impulse* response of this system is $h(t) = Ae^{-Bt}\sin(Ct)$, where:

ECE 3084

QUIZ 2

School of Electrical and Computer Engineering Georgia Institute of Technology November 20, 2018

Name:

ANSWER KEY

- 1. The quiz is closed book, closed notes, except for two 2-sided sheet of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1.

Suppose a signal x(t) with the FT $X(j\omega)$ shown below is passed as an input into the illustrated AM demodulator (dashed box), producing an output y(t):

(a) Sketch the Fourier transform $Y(j\omega)$ of the demodulator output for the special case when the demodulator carrier frequency is $\omega_0 = 800\pi$ (labeling amplitudes carefully!):

(c) Using the value of ω_0 from part (b), the demodulator output has the form $y(t) = \frac{B\sin(Ct)}{t}$, where:

PROBLEM 2.

Suppose the signal $x(t) = 30\cos(15\pi t) - 84\sin(15\pi t)$ is fed as an input into a delay-by- t_0 system, producing the output $y(t) = x(t-t_0)$, as shown in the figure. Let $\omega_0 = 15\pi$.

(a) The complex envelope of the input x(t), with respect to ω_0 , is

$$\begin{array}{c}
\underline{x(t)} \\
\underline{x(t)}$$

 $t_0 =$

 $\overline{30}$

(b) Find the smallest* positive value for the delay $t_0 > 0$ so that the I & Q components of the delay output (with respect to ω_0) are $y_I(t) = 84$ and $y_Q(t) = -30$, respectively.

*there are multiple positive values of t_0 that do the job, but only one of them is the smallest

$$\begin{split} y(t) &= x(t - t_0) \\ &= 30 \text{cos}(15\pi(t - t_0)) - 84 \text{sin}(15\pi(t - t_0)) \\ &= 30 \text{cos}(15\pi t - \theta) - 84 \text{sin}(15\pi - \theta) \\ &= 84 \text{cos}(15\pi t) + 30 \text{sin}(15\pi) \end{split}$$

when
$$\theta = 15\pi t_0 = 0.5\pi$$
 \Rightarrow $t_0 = \frac{0.5\pi}{15\pi} = \frac{1}{30}$

PROBLEM 3.

Suppose that the continuous-time sinc-squared signal $x(t) = \left(\frac{\sin(80\pi t)}{\pi t}\right)^2$ is sampled at an unspecified sampling rate f_s , and that the samples are immediately fed to an ideal D-to-C converter (or ideal DAC, with the same f_s parameter), producing the continuous-time output signal y(t), as shown below:

- (a) The zero-th sample is $x[0] = \begin{vmatrix} 80^2 \end{vmatrix}$
- (b) In order for the D-to-C converter to reconstruct the original signal (i.e., to achieve y(t) = x(t)), the sampling frequency must satisfy: $f_s > 160$ Hz.

$$2f_{\max} = 2(80) = 160$$

(c) In the space below, carefully sketch the output Fourier transform $Y(j\omega)$ when $f_s = 140$ Hz, *carefully labeling important amplitudes*:

PROBLEM 4.

Consider a signal x(t) that obeys the following differential equation:

$$\frac{d^2}{dt^2}x(t) - 9x(t) = 0,$$

where one initial condition is specified, namely x(0) = 2, while the other initial condition $\dot{x}(0)$ is not specified and may be nonzero.

If the solution to this differential equation has the form $x(t) = Be^{-Ct}u(t)$, where C > 0, then it must be that:

On the one hand, taking the LT of the given form yields:

$$X(s) = \frac{B}{s+C}$$

On the other hand, taking the LT of both sides of the diff eqn yields:

$$s^{2}X(s) - sx(0) - \dot{x}(0) - 9X(s) = 0$$

$$\Rightarrow X(s) = \frac{sx(0) + \dot{x}(0)}{s^2 - 9} = \frac{2(s + 0.5\dot{x}(0))}{(s + 3)(s - 3)}$$

Equating both forms, it must be that the numerator *cancels* the 2nd factor in the denominator:

$$\Rightarrow \quad s + 0.5\dot{x}(0) = s - 3 \quad \Rightarrow \dot{x}(0) = -6$$
$$\Rightarrow X(s) \text{ reduces to } \frac{2}{s+3} \qquad \Rightarrow B = 2, C = 3.$$

PROBLEM 5.

An LTI system (initially at rest, zero initial conditions) with input x(t) and output y(t)obeys the following differential equation:

$$\frac{d^2}{dt^2}y(t) = 2x(t) - 9y(t) - 4\frac{d}{dt}y(t).$$
Taking LT, solving for $Y(s)/X(s) \Rightarrow H(s) = \frac{2}{s^2 + 4s + 9}$
Equate denom to $s^2 + 2\zeta\omega_n s + \omega_n^2$

$$\Rightarrow \omega_n = 3, \zeta = 2/3$$
(a) Circle one: The system is [undamped][overdamped [underdamped][critically damped]?
(b) Circle one: It most resembles a [LPF] HPF][BPF][notch] filter.
numerator is constant
(c) Its d.c. gain is $H_0 = \boxed{\frac{2}{9}}_{set s = 0}$.
(d) Its natural frequency is $\omega_n = \boxed{3}$ (in rad/s).
(e) Its damping ratio is $\zeta = \boxed{\frac{2}{3}}_{set s = 0}$.

The *impulse* response of this system is $h(t) = Ae^{-Bt} \sin(Ct)$, where: (f)

$$A = \frac{H_0 \,\omega_n}{\sqrt{1 - \zeta^2}} = \frac{(2/9)(3)}{\sqrt{5}/3} \qquad A = \boxed{\frac{2}{\sqrt{5}}} \\ B = \zeta \omega_n = (2/3)(3) \qquad B = \boxed{2} \\ C = \omega_d = \sqrt{1 - \zeta^2} \,\omega_n = \frac{\sqrt{5}}{3} \,(3) \qquad C = \boxed{\sqrt{5}} \\ \end{bmatrix}$$

 $\sqrt{5}$