School of Electrical and Computer Engineering Georgia Institute of Technology

February 17, 2017

Name: \qquad

1. The quiz is closed book, closed notes, except for one 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	30	
2	40	
3	30	
TOTAL:	100	

PROBLEM 1. (30 points)
(a) If $X(j \omega)=e^{-j \omega / 5}\left(\frac{\sin (5 \omega)}{5 \omega}\right)^{2}$,
sketch its inverse transform $x(t)$ in the space below, labeling carefully both axes.

(b) Sketch the signal $y(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-1}^{1} e^{-\tau} e^{-j \omega \tau} d \tau\right\} e^{j \omega \tau} d \omega$ in the space below, labeling carefully both axes. (Hint: integration not required!)

PROBLEM 2. (40 points)
Define $x(t)$ as the following 25%-duty-cycle periodic square wave:

and define $h(t)$ as the following triangular signal of width $2 T$ and height 3 :

(a) The power of $x(t)$ is $P=\square$.
(b) The energy of $h(t)$ is $E=\square$ (as a function of T).
(c) For what values of the parameter T will the convolution $y(t)=x(t) * h(t)$ reduce to a constant, independent of t ? (Hint: There is more than one such value of T. Specify them all.)

PROBLEM 3. (30 points)
Consider an LTI system whose impulse response is $h(t)=e^{t}(u(t)-u(t-2))$, as sketched below:

(a) Evaluate the integral $\int_{-3}^{\infty} h(t) u(t+1) u(t+2) \delta(t-1) \frac{e^{-1}}{3+t^{5}} d t=\square$.
(b) Let $s(t)$ denote the step response of the system, i.e., the output in response to the unit step $u(t)$. Specify equations as a function of t for the step response $s(t)$ in the two large boxes below, and specify the times these equations change in the smaller boxes below:

for $t<\square$

(THIS PAGE LEFT INTENTIONALLY BLANK)

School of Electrical and Computer Engineering Georgia Institute of Technology

February 17, 2017

Name: \qquad

1. The quiz is closed book, closed notes, except for one 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	30	
2	40	
3	30	
TOTAL:	100	

PROBLEM 1. (30 points)

sketch its inverse transform $x(t)$ in the space below, labeling carefully both axes.

(b) Sketch the signal $y(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{\int_{-1}^{1} e^{-\tau} e^{-j \omega \tau} d \tau\right\} e^{j \omega t} d \omega$ in the space below, labeling carefully both axes. (Hint: integration not required!)

PROBLEM 2. (40 points)

Define $x(t)$ as the following 25%-duty-cycle periodic square wave:

and define $h(t)$ as the following triangular signal of width $2 T$ and height 3 :

(a) The power of $x(t)$ is $P=0.25$
(b) The energy of $h(t)$ is $E=6 T$ (as a function of T).

$$
\begin{aligned}
E & =\int_{-\infty}^{\infty} h^{2}(t) d t \\
& =2 \int_{0}^{T}(3 t / T)^{2} d t \\
& =\frac{18}{T^{2}} \int_{0}^{T} t^{2} d t \\
& =6 T
\end{aligned}
$$

(c) For what values of the parameter T will the convolution $y(t)=x(t) * h(t)$
reduce to a constant, independent of t ? (Hint: There is more than one such value of T. Specify them all.)

Freq response $H(j \omega)=\frac{3}{T}\left(\frac{\sin (\omega T / 2)}{\omega / 2}\right)^{2}$ is zero when

$$
\begin{aligned}
& \omega T / 2=\ell \pi \\
& \Rightarrow \omega=\ell \frac{2 \pi}{T} \text { for nonzero } \ell \\
& \Rightarrow \frac{2 \pi}{T}=\frac{\omega_{0}}{\ell} \\
& \Rightarrow \frac{1}{T}=\frac{f_{0}}{\ell}=\frac{1}{\ell T_{0}} \\
& \Rightarrow T=\ell T_{0}=0.04 \ell, \text { for nonzero } \ell
\end{aligned}
$$

PROBLEM 3. (30 points)

Consider an LTI system whose impulse response is $h(t)=e^{t}(u(t)-u(t-2))$, as sketched below:

(a) Evaluate the integral $\int_{-3}^{\infty} h(t) u(t+1) u(t+2) \delta(t-1) \frac{e^{-1}}{3+t^{5}} d t=0.25$.
(b) Let $s(t)$ denote the step response of the system, i.e., the output in response to the unit step $u(t)$. Specify equations as a function of t for the step response $s(t)$ in the two large boxes below, and specify the times these equations change in the smaller boxes below:

(THIS PAGE LEFT INTENTIONALLY BLANK)

